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1 Introduction

Most business applications rely on relational databases for storing and man-
aging a huge quantity of data spread over multiple tables. These applications
interact with the database by means of SQL queries. These queries implement
an important part of the business logic of the database application and it is,
therefore, a key issue that these queries are validated for correctness.

Among software verification and validation activities, testing is one of the
most used in the industry. One type of testing is functional testing, which
alms to verify the functionality of the code under test. An important task of
the functional testing activities is the design of test data, and the success of
testing greatly depends on the quality of the designed test data. In the context
of testing SQL queries, the behavior of the query depends not just on the query
parameters provided for the current run, but also on the set of rows stored
in the database (the database state). Therefore, the design of such test data
must consist of the preparation of a test database that covers the different
situations that the SQL query can exhibit.

It is common practice that the tester uses a copy of a live (production)
database or a database generated by a commercial or academic tool (Houkjaer
et al 2006) as a test database, executes the query on the test database and
then checks that the query gives the desired results. However, it often happens
that the query execution returns no rows or returns rows which do not exercise
the different behaviors of the query. This is because the test database is not
designed taking into account the different situations that the query can exercise
and therefore the test database does not contain enough diverse data in each
table to be able to reveal possible faults in the query under test. Additionally,
comparison between the actual and expected result is difficult when the test
database is composed of many tables and rows. A way to avoid these problems
is to reduce the production database such that the coverage of the queries is
the same for production and reduced databases. This proposal, presented by
Tuya et al (2016), searches and finds small representative subsets (reduced
databases) that satisfy the same coverage as the initial ones, have similar
fault detection ability and make the comparison between actual and expected
results easier. Another way is to generate small test databases starting from
empty states that is the aim of this work.

Existing test criteria commonly used for testing programs in procedural
languages, such as for example branch coverage, have been used to guide the
test database design for the query (Khalek et al 2008; Binnig et al 2007a;
Veanes et al 2009; Chays et al 2008). However, these criteria are not designed
to test particular features of SQL queries that have the different semantics
compared to the procedural code, such as the presence of null values and
JOIN operators. There are some approaches in the literature that focus on
the definition of test adequacy criteria specifically for relational databases
(Kapfhammer and Soffa 2003; Halfond and Orso 2006; Tuya et al 2007;
Sudrez-Cabal and Tuya 2009).
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Another important issue is related to the cost of the testing process. In
database applications, this aspect is critical because the cost of test database
preparation can be very high (preparing many data over many joined tables).
It is usual that a database application is composed of different SQL queries
executing over the same database and therefore it seems natural to use the
same test database for testing all the queries, as it reduces the cost of the
test preparation and execution. This manual task is not trivial and it is very
expensive, and an automated procedure is needed in order to reduce the cost
of the test database generation.

The scope of this paper is related to the automation of test relational
database generation and we address this challenge (1) by creating meaningful
values in the tables that must be diverse enough to be able to reveal faults in a
query and (2) by creating databases small enough to keep the testing efficient
for multiple queries.

Our approach uses as test criterion the SQLFpc coverage criterion (Tuya
et al 2010). This criterion is based on the Modified Condition Decision Cov-
erage (MCDC). Given an SQL query, it provides a set of test requirements,
expressed as SQL queries, which the test database must fulfill. Test require-
ments are derived from decisions in WHERE and HAVING clauses in SQL
query, as well as joins, groupings and aggregate functions. The execution of
the test requirement against the test database determines whether it is met
when the output returns at least a row.

Conceptually, given a set of SQL queries and an initial database state,
our goal is to automatically generate a test database that covers all the test
requirements by following an incremental approach. Our aim is to start from
an initial database state and find a new database state that fulfills as many
test requirements as possible. This is done incrementally, by considering one
requirement, updating the database state to cover that requirement, then cov-
ering another requirement, and so on, until all test requirements have been
processed. Thus, the final database state is a test database. For the automatic
generation of the database state in each step, we formulate it as a Constraint
Satisfaction Problem (CSP) (Tsang 1993) where the constraints are the test
requirements and the previous database state, and then we solve them using
a general-purpose constraint solver (Prud’homme et al 2015).

In our previous work (de la Riva et al 2010) we addressed the test database
generation with support for a reduced kind of SQL queries and a limited eval-
uation. This paper goes significantly further and makes the following specific
contributions:

— An incremental approach to populate test relational databases with
support for multiple SQL queries. The incremental strategy is achieved by
means of re-using the data from previous database states.

— Automatic support of the test data generation by means of the formal-
ization of the incremental approach as a Constraint Satisfaction Problem

(CSP).
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— Support for a large set of SQL queries including SELECT, JOIN,
WHERE, GROUP and HAVING clauses.

— Evaluation on a real database application with a large number of tables
and columns, and using two different sets of SQL queries with different
complexity.

The rest of the paper is organized as follows. Sect. 2 introduces the back-
ground and notation used in the paper. We present the general approach, the
problem and the test database generation algorithm in Sect. 3. The formal-
ization of the database state generation as a CSP is detailed in Sect. 4. In
Sect. 5, we present QAGrow tool, which fully automates the approach, and
we also present its limitations. Sect. 6 describes the results of the experiments
over a real case study and Sect. 7 discusses the related work. The paper ends
with conclusions in Sect. 8.

2 Background
2.1 Relational Model Definitions and Notation

In the relational model of databases (Codd 1990), the data in a database is
represented as a collection of relations. Here, we give some definitions and we
describe the basic notation that will be used in the remainder of the paper.

Relations, tuples and attributes. Given a set of attributes A = {Ay, As, .., Ap}
over a set of domains Dy, Do, ..., Dy, a relation denoted as R(A1, As, ..., Ap)
or R(A) is a subset of the Cartesian product of the domains and it is composed
of a finite set of m-tuples R(A) = {r',r%,...,r™}. A tuple 77 is specified as

=< a{, al,...,al > where a{ is the value of the attribute A; in the tuple 7/

or is a special null value which denotes missing information in the value of the
attribute. To handle the missing information, we define the Boolean predicate
isnull(al) that is true if the value a’ is null. In relational database implemen-
tations, a relation is a table, a tuple is a row of the table, attributes are the
columns of the table and the domains define data types of the attributes. The
term relation schema refers to the set of attributes of the relation.

Database schema and constraints. A database schema S is a set of relation
schemas S = {Rj, Ra,..R,} and a set of constraints specifying restrictions on
the database that require relations and attributes to satisfy certain properties.
The nullability constraint (NOT NULL) forces an attribute not to accept null
values. We define the predicate nl(4;) that is true when the attribute A;
is nullable (it has been declared in the database schema without the NOT
NULL constraint). The primary key constraint, denote as pk(R), specifies a
set of attributes in a relation R that uniquely identifies each tuple of the
relation. The foreign key constraint from a relation R; to a relation R;, denoted
as fk(R;, R;), is a pair of subsets of attributes (A, B), where A and B are
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attributes of R; and R; respectively, such that attributes A reference attributes
B.

Database states and instances. A database state S refers to the data in a
database at a particular point of time. Given a database schema S, a database
state DS of the schema S is a set of relations DS = {Ry, Ra, ..., R,} such
as all R;s satisfy the set of constraints on S. The specific database states
managed in this paper are: empty state (the database does not contain data),
initial state (the database is loaded with data for the first time) and database
instance (the database state loaded with test data).

Database operations and queries . The basic operations over a database are
defined as relational assignment in the form Z < rve, where rve denotes a
relation-valued expression (an expression whose evaluation yields a relation)
and Z is a relation containing the tuples obtained when applying the rve. In
SQL, rve expression is called query. Using Codd notation (Codd 1990), the
select operator Z <+ R[p(A)] (in SQL, SELECT+*FROM R WHERE p(A)) uses a
relation R and generates a relation Z with the tuples of R that satisfy the
predicate p on the attributes A. The inner join operator Z < R[p(A, B)|S (in
SQL, SELECT * FROM R INNER JOIN S ON p(A,B)) uses two relations, R(A)
and S(B), and generates a relation Z with tuples of R(A) concatenated with
tuples of S(B) where the logical condition p(A, B) is evaluated to true. The left
outer join returns the result of the inner join, plus those tuples in R(A) that do
not match the join operator. The right outer join operator is symmetric to the
left join for S(B). The full outer join is defined as the union of the inner join,
the left outer join and the right outer join. To identify each outer join type in an
rve expression, we use the notation R[p(A, B)]’TS, where JT = {LJ,RJ, F.J}
denotes the join type (left, right and full outer join, respectively). The framing
operator Z < R///G divides a relation R into a set of groups where each of
them has equal values for a set of attributes G (grouping attributes). The most
commonly used is in the form Z < R///G(G, F) (in SQL SELECT G,F FROM R
GROUP BY G) which carries out aggregated calculations performed by aggregate
functions (F) over all tuples on each frame. A further select operator may
be applied after framing: Z « R///Glq(A, F)](G, F) (in SQL, SELECT G,F
FROM R GROUP BY G HAVING q(A,F)). Predicate q(A4, F) involves attributes
A in R and aggregate functions over A, and it is called frame predicate. In
order to clarify these operators, Table 1 summarizes the equivalences between
this notation, relational and extended relational algebra notation, and SQL
statements.

2.2 SQLFpc Test Coverage Criterion

SQLFpc (Tuya et al 2010) is a test criterion that specifies test requirements (or
test situations) specifically tailored to handle the details of SQL queries. It is
based on the logical coverage criterion MCDC (Chilenski 2001) that specifies
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Table 1 Equivalences between operators, different notations and SQL statements

Operator Codd notation Relational algebra, SQL statement
Extended relational
algebra

Select R[p(A)] apa)(R) SELECT * FROM R
WHERE p(A)

Inner join R[p(A, B)]S Rpa,B)S SELECT * FROM R
INNER JOIN S ON
p(A,B)

Left, right, full R[p(A, B)]'TS, where Ray4,p)S, where @ = SELECT * FROM R

outer join JT ={LJ,RJ,FJ} {2, >, <} [LEFT | RIGHT |
FULL] OUTER JOIN S
ON p(A,B)

Framing R///G aS(R) SELECT G FROM R
GROUP BY G

Framing and R///G(G,F) aSr(R) SELECT G,F FROM R

aggregation GROUP BY G

functions

Select after R///Glq(A, F)I(G,F) 0qa,r) (cSr(R)) SELECT G,F FROM R

framing (frame GROUP BY G HAVING

predicate) q(A,F)

test requirements such that every condition in a logical decision has taken
all possible outcomes, and each condition has been shown to independently
affect the decision’s outcome. For example, consider the decision (A and B).
To satisfy MCDC, for each condition we must generate a pair of test inputs.
For the condition A, a pair that satisfies the criterion is (1,1) and (0,1), because
when the value of condition A changes (while the rest of the conditions do not
change) the result of the decision changes. For the condition B, only the test
case (1,0) is generated.

Based on these principles, SQLFpc provides a criterion for SQL queries,
where the test input is the database and the programs are the SQL queries. In
addition to decisions in WHERE and HAVING clauses, the SQLFpc criterion
deals with the way in which SQL queries perform the joins, groupings and
aggregations, as well as the handling of the three-valued logic.

Given an SQL query, SQLFpc specifies a set of test requirements in or-
der to fulfill the criterion. These test requirements impose a set of constraints
on the database in order to achieve the coverage, which are called SQLFpc
coverage rules and are expressed as SQL queries. Consider for example, a
query SELECT ID FROM Order INNER JOIN Customer ON customerID = ID
WHERE price > 10. One of its coverage rules is SELECT * FROM Order INNER
JOIN Customer ON customerID = ID WHERE not (price>10).The coverage
rule is fulfilled if when it is executed against a test database, the output re-
turns at least one row. In this example, the test database must contain rows
where the condition in the WHERE clause (price>10) is false.
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Table 2 Sample database schema and SQL queries

Table Customer Table Order
Column Integrity Constraints Column Integrity Constraints
ID PK orderID PK
name customerID  FK, NOT NULL
price NOT NULL
quantity
Q1:

SELECT ID, orderID FROM Order INNER JOIN Customer ON customerID=ID
WHERE quantity>5

Q2:

SELECT ID FROM Order INNER JOIN Customer ON customerID=ID WHERE
price>10

Although the primary use of the SQLFpc criterion is for assessing the
coverage of the test data in relation to a query that is executed, it can also be
used for designing meaningful test inputs. This is the purpose of this paper.

3 Test Database Generation

This paper addresses the following general problem: Given a set of SQL queries,
a database schema and a set of test requirements (specified as SQLFpc cover-
age rules), find a set of test database instances such that the test requirements
are fulfilled by them. Due to the fact that there may exist many different
database instances that meet these criteria, the goal is to find a small number
of them with a reduced size which satisfy the test requirements.

3.1 General Approach and Overview

In order to keep the presentation of the approach concise, we use a simple ex-
ample of an online store interacting with a database for customers and orders.
Table 2 illustrates the database schema and two sample SQL queries issued
from a reporting application over the database. Query Q1 lists customers and
their orders when the order quantity is greater than 5, and query Q2 selects
customers who have orders where the order price is greater than 10.

In order to test these queries adequately, it is necessary to design diverse
test data that cover the different situations of each query. We use the SQLFpc
test coverage criterion as test criterion for guiding the test database generation
(Tuya et al 2010). Informally, to fulfill this criterion for Q1, the test database
must include rows with the following test requirements: customers with orders
where the condition quantity>5 is true (Q1.1) and false (Q1.2), the column
quantity is NULL (Q1.3) and customer without joined orders (Q1.4). Addi-
tionally, the test database must meet the integrity constraints of the database
schema. Similar test requirements can be derived for Q2: related rows where
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price >10 is true (Q2.1), false (Q2.2) and customers without joined orders
(Q2.3).

In essence, our approach follows a constraint-solving problem. Given an
SQL under test, the SQLFpc test situations define the constraints that the
rows in the test database must fulfill. To find these rows, a constraint solver
is used to solve the constraints.

A first approach involves generating the test database by means of a global
solving approach. It starts from a blank test database and then solves all the
constraints for all queries in a single step. If the solver finds a solution, this so-
lution is the test database. However, if there are two or more test requirements
(or integrity constraints) that are inconsistent with each other, the solver re-
turns no solution. A possible solution to the above problem is to solve each
test situation individually together with all database constraints (individual
solving). In this case, the solver is called as many times as test requirements
exist in the query and thus a test database is generated for each test situation.
But this approach is impractical and it is quite far from the initial goals due
to the high number of test databases that could be generated (for testing the
Q1 query, we have four different test databases).

We propose an incremental solving approach to generate the test database
by means of re-using previous generated data (test database states) on previ-
ous test requirements. Now, we assume for simplicity that the test database is
empty to begin with. It starts solving the conditions for (Q1.1) (quantity>5
and customerID=ID) and, as a result, a test database state is generated as-
signing values to the columns in the constraints. Next, the process continues
with the test requirement Q1.2. To cover it, the row in the Customer table
with ID=1 can be re-used if an order references this customer and it satisfies
the condition not (quantity>5). This order is added and the process contin-
ues with the remaining test requirements of Q1 and Q2. Finally, values of
attributes (Customer.name), which do not affect the fulfillment of test re-
quirements, can be randomly generated. Table 3 shows the database states
for each test requirement. The final test database state that can be used as
test database for the queries Q1 and Q2, with a reduced size (there are no
unnecessary rows) and high coverage (the test data considers each different
test situation).

3.2 Problem Statement

We enunciate the test database generation problem as follows:

Definition 1.- (Test database generation problem). Given a database schema
S, an initial database state DSp, and a set of queries @ = {Q1,Q2,...,Qn}
under test.

Problem: Find a set of database instances DB = {DB;1,DB,,...,DB,,} in
order to cover each test requirement derived from the queries in Q.

Applying the SQLFpc criterion on each query of Q, a set of coverage rules
is obtained. Therefore, the problem is re-formulated as obtaining the set of
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Table 3 Incremental test database generation. (a) Detailed process for the test require-
ments of the query Q1. (b) Final test database state for the queries Q1 y Q2. The values
added/updated to the database state to cover the test situation are highlighted in bold.

Test requirements Test database states

Customer Order

ID name orderID quantity price customerID

(2)

(Q1.1):  set of 1 1 6 1
joined rows where

Order quantity is

greater than 5

(Q1.2):  set  of 1 1 6 1
joined rows where 2 5 1
Order quantity is

not greater than 5

(Q1.3): rows such 1 1 6 1
that Order quan- 2 5 1
tity is NULL 3 NULL 1
(Q1.4): rows in 1 1 6 1
Customer without 2 2 5 1
joined rows in 3 NULL 1
Order

(b)

All the test require- 1 X 1 6 11 1
ments for Q1 and 2 Y 2 5 10 1
Q2 3 NULL 11 1

database instances DB such that each coverage rule is covered by at least one
of them. Our aim is to find the test database instances by means of partial and
incremental database states for each coverage rule. We enunciate this problem
as follows:

Definition 2.- (Database state generation problem for a coverage rule). Given
a database state DS;_1, and a coverage rule C'R.

Problem: Starting from the database state D.S;_;, find a database state D.S;
such that CR is covered by DS; (i.e. when executing C' R against DS}, at least
one row is returned).

The approach to find the database state DS; from D.S;_; is based on two
basic operations: (1) inserting rows and (2) modifying values in DS;_; such
that CR is covered. We denote T(DS;_1,CR) as the function that obtains
DS;, defined as follows:

Definition 3.- ( Transformation function). Given a database state D.S;_1, and
a coverage rule CR, T(DS;_1,CR) is the function that obtains DS, starting

from DS;_1, such that CR returns at least one row.

Fig. 1 illustrates the above definitions.
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y 0
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1 DS, = DBy

: Test Database Instance
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Transformation function for each CR (Incremental) Database state for each CR

Fig. 1 Database State and Test Database Instance generation

3.3 General Algorithm

Given a database state DS;_; and a coverage rule CR, a new database state
DS, is obtained by applying a series of changes on DS;_;.Three particular
cases can be distinguished for finding solutions to database state generation:

— Case 1: The database state DS;_1 already covers the coverage rule CR,
then DS;_4 is the solution: DS; = DS;_1.

— Case 2: The database state D.S;_; does not cover the coverage rule CR.
The solution DS; is found by transforming the database state DS;_1 by
applying the function T (inserting rows and/or updating values): DS; =
T(DS;-1,CR).

— Case 3: The database state DS;_1 does not cover the coverage rule and it
is not possible to find any transformation in order to obtain D.S; and cover
CR (the coverage rule is inconsistent with data in DS;_1). Then a solution
does not exist modifying DS;_1: DS; = DS;_;.

After all coverage rules are processed:

— the final database state will be the database instance that will be added
to the final solution (DB), and

— the set of coverage rules not covered (CRNotCovered) will be processed
again, but starting from an empty database, until there are no rules in
CRNotCoverved that can be covered.

This procedure (depicted in Algorithm 1) is performed incrementally in two
aspects: 1) using the database state generated for each coverage rule as the
initial state for the next rule and 2) repeating the generation of new database
instances for those coverage rules not covered before.

To illustrate this procedure, consider a database loaded initially with data
(DSy), and a subset of three coverage rules depicted in Table 4. The database
schema has two tables R and S: R has a primary key, attribute ID, and
the attributes a and b, and S has the attribute I D as primary key and the
attributes ¢, which is a foreign key referencing R.ID, and d.

Table 5 details the incremental procedure for obtaining the solution (a set
of test database instances). The Cov.Rule column contains the coverage rule
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Algorithm 1 Test database instance generation

1: procedure TESTDATABASEINSTANCEGENERATION

2: Input: initial database state DSp, a set of queries under test Q

3: Output: a set of test database instances (DB) that cover the test requirements of @
4.

5

CRSet + set of coverage rules of ) to be covered obtained by applying SQLFpc
test coverage criterion

6: DS;_1 < DSy

7 DB <+ empty set

8: repeat

9: CRNotCovered < empty set

10: for each coverage rule CR in CRSet do

11: /*Determine DS;, starting from DS;_1, for covering C'R (database state gen-
eration problem)*/

12: if CR is covered by DS;_1 (case 1) then

13: DSZ‘ < DSZ',1

14: else

15: if there is a transformation, T', of DS;_1 that covers CR (case 2) then

16: DSi«+ T(DS;—1,CR)

17: else

18: /* there are no transformations of DS;_ that cover CR (case 3)*/

19: DS; + DS;_1

20: /*Add CR to CRSetNotCovered set to be processed later again*/

21: CRSetNotCovered < CRSetNotCovered|J{CR}

22: end if

23: end if

24: /*Next iteration starts from DS;*/

25: DSZ',1 — DSI

26: end for

27 DB « DB|JDS;

28: CRSet < CRSetNotCovered

29: DS;_1 < empty database

30: until CRSet is empty
31: return DB
32: end procedure

Table 4 Example of inputs for the test database generation

Database Schema Initial DB State(D.JSp)
R S R S

ID PK ID PK ID a b ID ¢ d
a c FK(ref. RID) 1 5 11

b d 2 5 10

Coverage Rules (CR)

CR1. SELECT * FROM R WHERE a=5
CR2. SELECT * FROM R INNER JOIN S ON R.ID = S.c WHERE R.b=10
CR3. SELECT * FROM R WHERE ID=1 and a<5
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Table 5 Example of an execution of the test database generation

Cov.

Rule Case DB State i (DS;) Rule Ouput

Case 1: R S
Considering DSy 1D b ID

as DS;_1, this ] 11 {(R.ID,a,b)} _

is  sufficient for
covering CR1 and 2 5 10 gllji"é)l)’ (2,5,10)}

transformations
are not necessary
DS; = DS;_4

o |

CR1

Case 2: R S

CR2 is covered if D a b 1D c d

the tuple (1,2, ) is

inserted into S. As L 5 1112 {(R.ID,a,b,S.ID,c,d)}
CR2  the attribute d is 2 ©° 10 =1{(2,5,10,1,2,)}

irrelevant for CR2, (1 row)

it may take any

value. It is repre-

sented by a blank

space.

Case 3:

It is not possible

to cover C R3 start-

ing from DS;_1 be-

cause there exists a

tuple in R where . R.ID,a,b)} =
ID=1 but a=5, and No solution E[I(IO rows) n=0
other tuples such

that ID=1 and a<5

cannot be inserted

due to the fact that

ID is PK.

Case 2: R S

Starting from an M a b D c¢ d
empty  database,
CR3 is covered if
a new tuple (1,1,
) is inserted into
R. Attribute b may
take any value, so
is represented by a
blank space.

CR3

{((RID,a,b)} =

{1, 1,)}
(1 row)

CR3

under processing. The Case column indicates what particular case is applied
and a brief description of the transformations over DS;_; in order to cover
each C'R. The results of these transformations allow obtaining a new database
state D.S;, shown in the DB State i column where the updates are highlighted
in bold. Finally, the Rule Output column indicates the output of the coverage
rule and the rows returned.
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Table 6 Example of an output of the test database generation

Solution (DB) - Test Database Instances

DB instance DB [ DB instance DB>

R S | R S

ID a b ID ¢ d|ID a b ID ¢ d
1

1 5 11 1 2 1 1 1
2 5 10

The solution is depicted in Table 6, which is composed of two database
instances: DB; that covers CR1 and C'R2, and DB that covers C'R3.

Note that at the end of the transformations there may exist attributes
whose value does not influence the coverage, and then any value in its domain
is assigned, as is the tuple in S (1,2,1) in DBj.

4 Database State Generation as a Constraint Satisfaction Problem

The database state generation problem (Definition 2) requires finding the
function T'(DS;_1, CR) that transforms a database state D.S;_; into another
DS, such that a coverage rule CR returns at least one row. Our aim is to
generate D.S; determining automatically when a row must be inserted or up-
dated and also the values that must be assigned. To be able to automate these
transformations, we state this problem as a Constraint Satisfaction Problem
(CSP)(Tsang 1993).

In general, a CSP is represented by the tuple CSP = (X, D,C), where
X denotes the finite set of variables of the CSP, D the set of domains (one
for each variable) and C is a set of constraints. Typically, most constraints
can be defined as equalities (=) or inequalities (! =, <, >, <,>) of arithmetic
expressions over variables, or a boolean combination of such constraints. A
solution to a CSP is an assignment of values to variables that satisfies all
constraints, with each value within the domain of the corresponding variable.
A CSP that does not have solutions is called unsatisfiable. A constraint solver
is a tool in charge of finding a solution that satisfies the constraints.

Definition 4.- (Constraint Satisfaction Problem for database state genera-
tion). Given: a database state DS;_1, and a coverage rule CR. Let a CSP be
defined as a tuple (X, D, C') where:

— X is the set of variables {X;,Xa,..., X, } that represent the database
state, the attributes and parameters of the coverage rule;

— D is a function that associates its domain to each variable;

— C is the set of constraints that are defined on a subset of X in order to
restrict the possible values for these variables. These constraints are derived
from restrictions of the database and the coverage rule.

In general, the solution to a CSP is to find assignments of values from its
domain to every variable in X such that every constraint in C' is satisfied. In
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our context, the solution will consist of finding the assignments to the database
rows such that the database constraints are satisfied and the coverage rule CR
is covered.

Below, the elements of the tuple (X, D, C) and the solution to the CSP are
specified for the database state generation problem.

4.1 Variables and Domains

We distinguish two types of variables:

— Stored-Data (SD): represents the database state, initially D.S;_1, which is
going to be transformed into DS; when the solution is found. Each variable
represents a value in an attribute of a relation, and sets of SD variables
may represent tuples of a relation, or even the database depending on the
context in which they are used.

— Rule-Output (RO): represents the output tuples of the coverage rule CR.
This information must include a row that assures C'R is covered, i.e. there
is at least one row in the output of C'R.

Each variable X; has a domain depending on the type of the attribute of
which it models. Moreover, a particular value is included in each domain: null
value (represented by NULL) that allows the evaluation of the three-valued
logic. Given a variable X;, the boolean predicate isnull(X;) is true if X; has
been instanced to NULL and false otherwise.

Each variable X; has a state in a CSP whose meaning for our problem is:

— Non-instantiated: when its value is not relevant for covering the coverage
rule or no value has been assigned yet. Non-instantiated variables will be
represented by @.

— Instantiated: the variable has been instantiated to a value of the domain
that allows covering the coverage rule and it cannot be modified.

Consider the coverage rule SELECT * FROM R INNER JOIN S ON R.ID =
S.c WHERE R.b=10 and the relations R(ID,a,b) and S(ID,c,d) of the previ-
ous example (in Table 5). Before the generation, the instantiated variables were
only SD, SD ={R, S} = {{(1,5,11),(2,5,10)} ,{@}}; RO were not instanti-
ated (represented by @), RO = {R, S} = {{(©,2,2)},{(®, @, @)}}. After the
generation, variables are instantiated as SD = {{(1,5,11),(2,5,10)},{(1,2,@)}}
and RO = {{(2,5,10)},{(1,2,©)}}. Note that S.d in SD and RO variables
continues without instantiating because it is not relevant for covering the rule.

4.2 Constraints

Constraints in the set C' are classified in the following categories:

— database state constraints (Cpg) restrict the values of SD variables to the
values of the database state Dg;_1,
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— schema constraints (Cg) restrict the values of SD variables in order to

fulfill the database schema. Specifically, primary keys, foreign keys and
nullability constraints for each relation are considered provided that they
are defined. If a primary key or a foreign key in a relation is not defined,
the solution will be generated taking into account the rest of constraints
established,

coverage rule constraints (Cor) restrict the values of RO variables so that
predicates in the coverage rule evaluate to true in order to cover the cov-
erage rule, and

state transformation constraints (Cgr) restrict the values of SD and RO
variables ensuring each tuple in RO variables exists in SD variables, and
transforming the database state DS;_; into the new database state D.JS;.

As an illustrative example of the constraint satisfaction process, consider

the coverage rule CR2 in the previous example (in SQL SELECT * FROM R
INNER JOIN S ON R.ID = S.c WHERE R.b=10) and the database state DB;_;
where R(ID,a,b) = {(1,5,11),(2,5,10)} and S(ID, ¢,d) = {@}, shown in Ta-
ble 5 and Table 6. Initially, the SD and RO variables are non-instantiated. In
Fig. 2, the final values in variables are depicted if constraints are satisfied as
follows:

1.
2.

Cpg: the values from DB;_; are assigned to the SD variables.

Ccr: due to the predicate R.b=10, the value 10 is assigned to RO variable
R.b.

Csr: each tuple in RO variables must exist in SD variables. In order to
satisfy this constraint, the tuple (2,5,10) in R relation in SD variables may
be used for this relation in RO variables because it has the same value
in attribute R.b. Therefore, the rest of the attributes in SD variables are
assigned to the attributes in RO variables.

Ccr: due to predicate R.ID=S.c, the value 2 is assigned to RO variable
S.c.

Cgr: there are no tuples in S relation in SD variables then inserting a
new tuple for this relation in SD variables is necessary to satisfy Cgr
constraints. Because at this moment, the only value known in RO variables
for S is S.c, the new tuple will be (@, 2,0).

Cg: the attribute S.ID is PK in S relation, so it must be unique for its tu-
ples. Because there are no values assigned to this attribute in SD variables,
the value will be 1.

Cgr: once again, as in Step 3, the values in the tuple (1,2, ®) in S relation
in SD variables, may be assigned to S in RO variables.

Each one of these categories is defined in the following subsections as well

as the different types into which they are divided.

4.2.1 Database State Constraints, Cpg

Definition 5.- (Database state constraint). Given the set of stored-data vari-
ables SD and a database state DS;_1, the value of each attribute in each tuple
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Coverage Rule
SELECT R.ID, S.ID
FROM R INNER JOIN SON R.ID =S.c
WHERE R.b =10

DS, 2. Ccr (Rb = 10)
SD variables RO variables
RID [Ra [Rb RID | Ra R.b_[ SID [Sc [Sd
1. CDS—» »
g 4! 5 11 2 5 10 1, 2 -

2 5 10 M
6. CS 3. CST

\ SID |Sc |Sd 4. Ccr (R.ID=S.c)
il 2 |-
= 5. cST

7. CST

Fig. 2 Solving the problem of generating a database state for a coverage rule starting from
DS;—1

of relations in DS;_; is assigned to the corresponding SD variable, remaining
as non-instantiated if the value has not been assigned yet in DS;_1. Let Cpg
be defined as the assignment of the information stored in DS;_1 to SD:

CDS(SD,DSi_l) =8D « DSi_l

4.2.2 Schema Constraints, C'g

Definition 6.- (Primary key constraints). Given a relation R in SD variables,
for each tuple of R, the primary key must be NOT NULL and distinct from
the other tuples of R. Let A; be attributes of R such that A; € pk(R), j and k
be tuples in R, and a] and a¥ be the value of A; in tuples j and k, respectively.
The primary key constraint is defined for each A; as:

Cs(A; € pk(R), j, k) :=—isnull(al) A ~isnull (a¥)
Al =af & j=k)

Definition 7.- (Foreign key constraints). Given two relations R and S in
SD variables, for which a foreign key is defined in R referencing S. For each
attribute, in each tuple, in the foreign key of R, its values are equal to the
values of the attribute referenced in any tuple of S or, if the attribute is
nullable, they can be NULL. Let A; be attributes of R and B; be attributes of
S such that (4;, B;) € fk(R,S), j and k be tuples in R and S respectively, a;
be the value of A; in tuple j and b¥ be the value of B; in tuple k. The foreign
key constraint is defined for each A; and B; as:
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Cs((A;, B;) € fE(R,S), j, k) := (-nl(A;) = —~isnull(al) A —isnull(bF) A al = b¥)
V (nl(Ay) = isnull(al) V (—isnull(al) A —isnull(b¥)
Na] = bF))

Definition 8.- (Nullability constraints). Given a relation R in SD variables,
for each attribute non-nullable of R, it value in each tuple must be NOT
NULL. Let A; be an attribute of R such that A; is not nullable, ~nl(A4;), j be
a tuple in R and a] be the value of A; in tuple j, the nullability constraint is
defined as:

Cs(A;, j) = —nl(A;) = —isnull(a?)

4.2.8 Coverage Rule Constraints, Cop

While the previous constraints are common for all coverage rules under test
that are executed against databases with the same schema, coverage rule con-
straints are specific for each coverage rule restricting the values of RO variables
so that its predicates evaluate to true.

Coverage rule constraints (Ccr) depend on the predicates in joins, WHERE
and HAVING clauses and the grouping attributes in GROUP BY clause. Other
elements of SQL that have influence on Cog are relation aliases, aggregation
functions and parameters.

Conversion of Predicates into Constraints . Due to the three-valued logic of
the predicates in coverage rules, domains of both RO and S D variables include
the null value and constraints must consider this value and evaluate properly.
Consider a simple coverage rule SELECT * FROM R WHERE a=b and assume
that the values of a and b are NULL. Constraint a=b would be satisfied in
two-valued logic (a has the same value as b). However, the coverage rule does
not return rows because the predicate a=b evaluates to unknown or NULL in
three-valued logic. Therefore, it is necessary to complement the predicates so
that the constraints take into account null values as indicated in Table 7. In
the example, the constraint must restrict values of @ and b to be not NULL; the
predicate a=b is converted into the constraint —isnull(a) A —isnull(b) Aa = b.

Table 7 displays the conversions of coverage rule predicates into constraints.
The general rule is to ensure the value of variables is not NULL (using the
predicate —isnull(A)) before evaluating predicates.

Below, the constraints arising from different SQL clauses in coverage rules
are defined. In each definition, predicates are considered to establish the con-
straints according to the previous conversions.

Definition 9.- (WHERE clause constraint). Given a coverage rule CR with a
select operator R [p(A)], the predicate p(A) in the WHERE clause is converted
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Table 7 Conversions of predicates into constraints for evaluating three-valued logic

Predicate: p Conversion of p into constraints: CONV(p)
p(A) —isnull(A) A p(A)

p(A, B) —isnull(A) A —isnull(A) A p(A, B)

not(p(A)) —isnull(A) A —p(A)

p(A) and ¢(B) —isnull(A) A p(A) A —isnull(B) A q(B)

p(A) or q(B) (misnull(A) Ap(A)) V (misnull(B) A q(B))

A IS NULL isnull(A)

A IS NOT NULL —isnull(A)

not(A IS NULL) —isnull(A)

not(A IS NOT NULL)  isnull(A)

into a constraint that restricts the values ago of RO variables for the attributes
A, as indicated in Table 7:

Ceor(R[p(A)]) := CONV (p(aro))

Note that the name of the value of attributes is agp instead of a because
these constraints restrict the values of the output tuples of the coverage rule,
represented in RO variables.

JOIN Operator Constraints . Consider the coverage rule SELECT * FROM R
INNER JOIN S ON R.ID = S.c, which is covered when there exist tuples in R
and S relations which verify the predicate R.ID=S.c. Due to the three-valued
logic, as WHERE predicates, it is converted into a constraint following the
conversions in Table 7.

In the case where coverage rules have an outer operator, LEFT OUTER
JOIN (LJ) or RIGHT OUTER JOIN (RJ), they are covered when at least one
row is returned by the inner join or by the outer increment. For example, ex-
ecuting the coverage rule SELECT * FROM R LEFT JOIN S ON R.ID=S.c ob-
tains output with tuples in R and S that verify the predicate R.ID=S.c or
with tuples in R that do not join to any tuple in S and null values for the
attributes in S. Constraints must ensure one of the following conditions:

1. tuples in RO variables of R and S such that the join predicate is verified,

2. tuples in R and S such that the join predicate is false for values of R.ID
in RO variables and any value of S.c in SD variables, and every attribute
in S in RO variables is NULL.

When the join type is RJ, constraints are symmetrically established.

Definition 10.- (INNER JOIN operator constraint). Given a coverage rule
CR with an inner join operator R[p(A, B)]!S and relations R and S in RO
variables. Let aro and bgro be values of attributes of R and S respectively,
and CONYV a conversion function defined in Table 7:

OCR(R[p(A, B)]S) = CONV(p(aRo, bRO))
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Definition 11.- (OUTER JOIN operator constraint). Given a coverage rule
CR with an outer join operator R[p(A, B)]’TS, where the join type (JT) is
LEFT OUTER JOIN (LJ) or RIGHT OUTER JOIN (RJ), and relations R
and S in RO and SD variables. Let agro and bro be values of attributes of R
and S in RO respectively, i and j be tuples of R and S in SD, ak, be values
of attributes of R in the tuple i, bg p be values of attributes of S in the tuples
7, and CONV a conversion function defined in Table 7:

If join type (JT') is LJ, for each tuple j of S in SD variables:

Ccr(R[p(A, B)]*’S) :=CONV (p(aro,bro))
V (isnull(bro) AN CONV (not(p(aro, bé ))))

If join type (JT') is RJ, for each tuple ¢ of R in SD variables:

Cer(R[p(A, B)S) :=CONV (p(aro, bro))
V (isnull(aro) A CONV (not(p(a’sp,bro))))

Framing Constraints . When a query has a GROUP BY clause, HAVING
clauses or aggregation functions (avg, sum, max, min, count), applying SQLFpc
criterion, several coverage rules are generated to exercise test requirements.
Some of them are dependent on the groups and the number of rows in each
group that compose the output, and others concerning aggregation functions
and the attributes on them. Consider the query SELECT a,c, sum(b) FROM R
WHERE a>1 GROUP BY a,c; taking into account the different patterns of rules
than can be generated, the following cases can be distinguished:

— Case 1.- Coverage rules exercise test requirements related to conditions in
the WHERE clause. The rule will be covered if the output is a group with
a tuple verifying all predicates within it; in this case, coverage rule con-
straints, Co g, model the predicates of the rule without aggregate functions
although they exist. For the previous query, a coverage rule is SELECT a,c,
sum(b) FROM R WHERE (a=1) GROUP BY a,c.

— Case 2.- Coverage rules exercise test requirements related to the grouping
attributes. There are two sub-cases:

— Case 2.1: The output must have at least one group formed by at least
two rows with the same values in grouping attributes. Considering
the query, the coverage rule is SELECT a,c,sum(b) FROM R WHERE a>1
GROUP BY a,c HAVING count(*)>1. In this case, constraints must re-
strict the values such that R in RO variables have different tuples with
equal values of grouping attributes a and c.

— Case 2.2: The output must have at least one group with rows with differ-
ent values in specific attributes different from the grouping attributes.
For the query, a coverage rule is SELECT ¢ FROM R WHERE a>1 GROUP
BY c HAVING count(distinct a)>1. Constraints establish that R in
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RO variables has different tuples with the same value in grouping at-
tribute ¢ but different values in the attribute a.
— Case 3.- Coverage rules exercise test requirements related to attributes in
aggregate functions. There are two sub-cases:

— Case 3.1: The output must have at least one group with tuples that
have duplicate and non-duplicate values in the attribute which is in the
aggregate function. The coverage rule is SELECT a, c, sum(b) FROM R
WHERE a > 1 GROUP BY a, c HAVING count(b)>count(distinct b)
AND count(distinct b)>1. Constraints restrict the values of R in RO
variables in order to have different tuples with duplicate and non-
duplicate values in the attribute b, which is in the aggregation function
sum(b).

— Case 3.2: The coverage rule for this case is only generated when the
attribute in the aggregation function is nullable. The output must have
at least one group with tuples where different values in the attribute
exist and some of them are equal to NULL. The rule is SELECT a, c,
sum(b) FROM R WHERE a >1 GROUP BY a,c HAVING count (*)>COUNT(b)
AND COUNT(DISTINCT b)>1. Constraints must restrict the values of R
in RO variables in order to have tuples with non-duplicate and NULL
values in the attribute b.

When a query has predicates in the HAVING clause, these predicates will
be added to the HAVING clause in each coverage rule generated and they
must be satisfied within rows in each group. Suppose the query SELECT a,c,
sum(b) FROM R WHERE a>1 GROUP BY a,c HAVING sum(b)>10 and c>0 and
the coverage rule SELECT a,c, sum(b) FROM R WHERE a>1 GROUP BY a, c
HAVING sum(b)>10 and c¢>0 and count(*)>1. The output of this coverage
rule must have a group formed with at least two rows where sum(b) is greater
than 10 and values of the attribute ¢ are greater than 0. Therefore, con-
straints established must ensure these predicates evaluate to true into the
groups formed after framing, but bearing in mind that:

— Case 4.- If the predicate has an aggregation function, like sum(b), it is
evaluated using the result of executing the aggregation function on the
TOWS.

— Case 5.- Otherwise, in case ¢>10, the predicate is evaluated on each row
that forms the group.

Definition 12.- (Framing constraints). Given a coverage rule C' R with a select
operator after framing R(A)///G[pAF], where G C A is the set of grouping
attributes and pAF (predicate After Framing) is the predicate applied after
framing which may contain aggregation functions, and a relation R in RO
variables. Let G; € G be attributes of R, j, k and [ be tuples in R, X be an
attribute of R, g/ be the value of G; in tuple j, 27 be the value of X in tuple
7, and CONV a conversion function defined in Table 7 :

If pAF is count (*)>1 (case 2.1):
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Cor(R(A)/]/Gleount(x) > 1]) := =(pk(r?) = pk(r*)) A g] = g}

If pAF is count (distinct X)>1 (case 2.2):

Ceor(R(A)//Gleount(distinctX) > 1)]) := ~(z? = zF) A g = gF

If pAF is count(X)>count(distinct X) and count(distinct X)>1 (case
3.1):

Cer(R(A)///Glcount(X) > count(distinctX)
and count(distinctX) > 1]) :=
=(pk(r?) = pk(r*)) Aa? = 2% A =(2? = 2')

If pAF is count (*)>count(X) and count(distinct X)>1 and nl(X) (case
3.2):

Cor(R(A)///Glcount(x) > count(X) and count(distinctX) > 1]) :=

(27 = 2*) Adsnull(x!)

If pAF is a predicate in the form p(aggf(X)), which does not follow the
previous patterns (case 4), where aggf is an aggregation function:

Cor(R(A)///Glplaggf(X))]) := CONV (p(aggf(z',2”...)))

If pAF is a predicate in the form q(G) without aggregation functions (cases 1
and 5):

Cer(R(A)///Gla(G))) = CONV(q(g”))

Other features in Coverage Rules . When a coverage rule has an alias defined
for a relation in the FROM clause, RO variables are included for tuples of this
alias as if it was a relation. Furthermore, an additional constraint is established
if there are two or more aliases for the same relation. In this case, there are
RO variables to represent tuples for each alias and constraints must restrict
the values of these tuples such that if the primary keys are equal, the rest of
the values in the attributes must be equal.

Definition 13.- (Relation alias constraint). Given a coverage rule CR with
alias; and aliasy relation aliases referencing the same relation R in RO vari-
ables. Let A be attributes of R, j and k be tuples corresponding to alias; and
aliasy, respectively, and a' be the value of A in tuple i:



22 Maria José Sudrez-Cabal et al.

Ccr(R,aliasj, aliasy) :=pk(R;) = pk(Ry)) =

(isnull(a?) A isnull(a®)) V o/ = a*

Another feature of the coverage rule that must be taken into account is
that of having parameters. If a coverage rule has them, they are represented
with RO variables and they are going to be treated by constraints dependent
on the coverage rule, Ccog, in the same way as attributes of relations

All constraints presented in previous sections, depending on SQL clauses,
are individually established for each clause. However, a coverage rule may be
composed of multiple predicates in different clauses. In this case, the coverage
rule constraint will be established as the conjunction of all constraints.

Consider the coverage rule SELECT a,c,sum(b) FROM R WHERE a>1 GROUP
BY a,c HAVING sum(b)>10 and c>0 and count (*)>1. The coverage rule con-
straint is:

Cer(Rla > 1]///G(a,c)[count(x) >1 and sum(b) > 10 and ¢>0]):=
Cer(Rla > 1]) A Cer(R///G(a, ¢)[count(x) > 1])A
Cor(R///G(a,b)[sum(b) > 10]) A Cor(R///G(a,b)[c > 0])

Definition 14.- (Composition constraint). Given a coverage rule CR and C, 5
constraints for predicates in different clauses of C'R:

Ccr = Cé‘R A C%R
4.2.4 State Transformation Constraints, Csp

Constraints previously defined, Cpg, Cs and Ccg, are specifically focused
on the database, the schema or coverage rules. However, maintaining the re-
lation between SD and RO variables is necessary due to the fact that the
output tuples of a coverage rule (represented by RO variables) depend on
the information stored in the database (represented by SD variables). State
Transformation Constraints (Cgr) relate both types of variables, which allow
the database state D.S;_1 to be transformed into a new database state D.S;.

Constraints C's7 ensure tuples in RO variables exist in SD variables, mean-
ing that tuples in the output of the coverage rule are in the database. These
constraints take into account that the primary key of each tuple of a relation
in RO implies the existence of the same tuple of the relation in SD and if a
tuple in RO variables does not exist in S'D variables, it will be created.

Definition 15.- (State transformation constraint). Given a relation R in SD
and RO variables. Let Asp and Aro be attributes of a relation R in SD and
RO, j and k be tuples of R in SD and RO, and a%p, and a’fw be values of
attributes Agp and Agre in tuples j and k:
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Csr(R) := pk(RL ) = pk(R%o) = (isnull(al ) Adsnull(ako)) vV ak, = alko

Consider, for example, the coverage rule SELECT * FROM R WHERE R.b IS
NULL and the database state DS;_; where R(ID,a,b) = {(1,5,®)}. Sup-
pose, initially, variables SD and RO are instantiated as SD = {(1,5,@)}
and RO = {(®,2,©)}. The coverage rule constraint, Ccg, related to the
WHERE condition R.b IS NULL, is satisfied by instantiating RO variables to
{(©,@,null)}. State transformation constraints, Csr, could be satisfied (tu-
ples of the output of the coverage rule are in the database) in two different
ways:

1. Adding a new tuple to SD variables with null value in the attribute R.b
and using its R.ID value in RO variables. In this case, the solution is
SD ={(1,5,2),(2,2,null)} and RO = {(2,@,null)}.

2. Reusing a tuple of SD variables: completing the tuple in RO variables with
R.ID =1 and R.a =5 (values in the existing tuple of SD variables), and
assigning null value to the attribute R.b in the tuple in SD. The solution
is DS = {(1,5,null)} and RO = {(1,5, null)}.

4.3 Strategy for Finding a Solution

Given a coverage rule CR and an initial database state DS;_1, the database
state generation problem is stated as CSP. If it is possible to find the solution
verifying all the constraints, the solution is a new database state D.S;, which is
the result of the transformation function T'(DS;_1, CR). When the coverage
rule has parameters, the solution includes the database state D.S; and the
set of pairs (param,value), where param is the name of parameters in the
coverage rule and walue is its corresponding value assigned in the solution,
in order to evaluate to true predicates of the coverage rule. Otherwise, if the
constraints cannot be satisfied, no solution is found for the problem and the
coverage rule is not covered starting from DS;_1.

Our purpose is focused on obtaining meaningful databases that are as
reduced in size as possible. Reusing information and instantiating attributes
without value in the database state DS;_; is the key to obtaining databases
which avoid inserting unnecessary new tuples. For this reason, we are going to
use an optimization strategy.

As an illustrative example, consider the coverage rule SELECT * FROM R
INNER JOIN S ON R.ID=c and the database state D.S;_; where R(ID,a,b) =
{(1,@,11)} and S(ID,c¢,d) = {(1,@,@)}. There are different alternatives to
transform the database state D.S;_; into D.S; in order to cover the coverage
rule, but depending on the generation strategy, the solution changes:

— Alternative 1: the strategy is to always insert new tuples. In this case D.S;
is: R ={(1,0,11),(2,0,0)},5 ={(1,0,0),(2,2,2)}-
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— Alternative 2: the strategy is to reuse existing tuples (without modifying
them) and insert new tuples in other cases. DS; is: R = {(1,0,11)},S =
{(1,2,0),(2,1,0)}.

— Alternative 3: the strategy is to reuse tuples, instantiate attributes and
insert new tuples in other cases. DSS; is R = {(1,0,11)},5 = {(1,1,2)}.

We use an optimization strategy based on the minimization of the number
of tuples of the relations in SD variables. To this end, we have defined a
minimization function for the sum of the number of tuples of the relations in
SD variables that it should be applied in order to solve the problem in an
optimized way.

Definition 16.- (Minimization function for database state generation). Given
the relations R; in S'D variables. Let #R; be the number of tuples of R;, the
minimization function is defined as min(> (#R;)).

Continuing with the above example, the minimization function will evalu-
ate the lowest value with the third alternative where the database state has
two tuples (whereas database states in alternatives 1 and 2 have four and three
tuples, respectively).

5 Tool Support: QAGrow

We have developed the QAGrow Tool (Query Aware Grow databases) that
fully automates our approach by implementing the algorithm described in
Sect. 3.3. It includes the search for the solution to the test database generation
problem (Definition 1).

For finding the solution to the database state generation problem for a cov-
erage rule (Definition 2), we have integrated Choco (Prud’homme et al 2015),
version 2.1.2, into our tool. It is a free and Open-Source java library, whose im-
plementation embeds and internally manages a SAT (Boolean S AT atisfiability
Problem) solver. It builds on an event-based propagation mechanism with
backtrackable structures.

In QAGrow tool, using Choco, the database state generation problem for
a coverage rule is modeled in the form of Constraint Satisfaction Problem
and it is solved with Constraint Programming Techniques. Choco launches
a resolution, uses its default search strategy and stops at the first solution
found. The optimization strategy is established with the aim of minimizing
the number of tuples generated in the test database.

5.1 Tool Description

Fig. 3 depicts the whole process which has an initial database state and a set
of queries as inputs, and the set of database instances and the sets of pairs
(param,value) that cover the input queries as outputs. For each query in
the input, QAGrow obtains the set of coverage rules using the SQLFpc web
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service (Tuya et al 2010). For each rule, a pre-processing is carried out, trying
to find a solution for the rule from an empty database state. If a solution is
found, the rule is feasible and the process continues. However, if no solution is
found, the rule is marked as unsatisfiable and its processing ends. After this, it
searches for the solution to the database state generation problem (Definition
2) considering a database state DS;_1:

1. Modeling the problem as a CSP: SD and RO variables are defined in their
domains and constraints are established.

2. Solving the problem using the Choco solver.

3. Generating a new database state D.S; and a new set of pairs (param, value)
if a solution is found. Otherwise, marking the rule as not covered.

After all rules have been processed, QAGrow generates a database instance
that includes the last database state with all values generated. If there are still
uncovered rules (a subset of C'Rs), they are processed again, repeating the
procedure but starting with an empty database state and obtaining as output
a new database instance and new sets of pairs (param, value).

5.2 Tool Limitations

QAGrow tool automates our approach for relational databases and SQL state-
ments that read the information stored. It is able to handle a large set of SE-
LECT syntax, including the main clauses (SELECT, JOIN, WHERE, GROUP
BY, HAVING) as well as parameters, arithmetic expressions, aggregation func-
tions (avg, sum, max, min, count) and views. In this version, subqueries are
not supported. The CASE operator is supported when it is placed in the SE-
LECT clause due to the coverage rules related to present CASE conditions in
the WHERE clause as if they were normal WHERE conditions.

Other SQL statements (INSERT, UPDATE, DELETE) that update databases
are not directly supported. However, their treatment could be feasible if they
were transformed into SELECT queries and were processed similarly to Zhou
and Frankl (2011) approach: deriving queries from updating statements then
characterizing the state change that would occur if they were executed.

Regarding database schema constraints, QAGrow tool supports primary
keys, foreign keys and nullability checks. Other features of Database Man-
agement Systems (DBMS), such as stored procedures, triggers or other types
of check restrictions, which could include pieces of code different from SQL
queries (for example, PL/SQL in Oracle) or present a variety of structures
depending on the DBMS, are not yet handled.

As QAGrow tool uses the constraint solver Choco, the features of Choco
limit some aspects of the tool. In Choco, a variable domain can be integer,
boolean, set and real, but it does not include support for strings. Our im-
plementation generates integers instead of strings when the database schema
includes the type of attributes as strings, therefore the LIKE operator is not
handled by this tool.
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This work is focused on the coverage at the query level. Therefore, the
program under test is a set of SQL queries and test requirements that are
obtained by applying the SQLFpc coverage criterion (Sect. 2.2) to the queries.
This is well suited for reporting when most of the application logic resides in
queries, but in general does not guarantee the coverage of the procedural code
of an application. In programs that use databases, part of the application logic
is embedded in the SQL queries that access the database and some decisions
taken in the code depend on the result of queries executed. The more appli-
cation logic is embedded in queries, the more likely it is that coverage of the
procedural code be kept because the generated database has considered the
coverage of the logic embedded in queries. Experiments in (Tuya et al 2016)
considered a program under test that includes four methods coded in Java
with 15 decisions and 9 queries dynamically constructed. The decisions were
based on the output of these queries. They showed the execution of the de-
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signed test cases, including reduced databases that fulfilled SQLFpc criterion,
led to 100% of decision coverage.

An alternative usage scenario is to generate test databases to check how
the application behaves when queries do not get information from databases.
In this case, there are two ways to carry this out using QAGrow tool: (1)
before the generation process, select coverage rules whose output is different
from the original query output and generate test databases for them; or (2)
after the generation process, filter information in test databases that would
not be selected by queries, and then execute queries against the filtered infor-
mation. In both cases, no row will be returned when queries of applications
are executed.

6 Experiments and Results

In order to evaluate the feasibility of our approach for test database generation,
our evaluation addresses the following research questions:

RQ1: How many database instances and how many rows are generated?

RQ2: What is the performance of the approach comparing the databases
generated with other existing test databases in terms of effectiveness, coverage
and fault-detection?

RQ3: What is the cost of the process taking into account the time spent?

6.1 Experiment Setup

An application named Helpdesk, a real-life web system that manages user
support requests (known as tickets), has been used for evaluating our ap-
proach. The database contains 37 tables and the main information stored is
the helpdesk ticket, which is created for each user request. Whenever an action
is performed on a ticket, a history record is created. The application imple-
ments a complete security subsystem that, before starting each transaction,
executes a set of the SQL queries embedded in the procedural code to check
permissions. We have taken the set of queries from the database logs collected
during exploratory testing sessions to check the security subsystem.

From those queries, and according to complexity in the number of tables
and joins and in the number of conditions, we have considered two different
subsets of queries for the evaluation of the generation process of test databases:

— Qs is a set of 20 simple queries selected, where the maximum number of
tables in joins is 2 and the maximum number of conditions is 4.

— Q. is a set of 195 complex queries selected which have joins up to 10 tables,
up to 19 conditions and query parameters.

Given these sets of queries, we have performed several test database genera-
tion processes using the QAGrow tool that implements the approach described
in this paper. The test database instances generated allow covering all coverage
rules. The generation processes and resulting test databases are:
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— Starting from an empty database state, using the queries in @, we obtain
a set of two test database instances, D B;.

— Starting from an empty database state, using the queries in @Q)., we obtain
a set of three database instances DB, and sets of pairs (param, value) for
rules that have parameters to instantiate them during the execution of the
tests.

— Starting from the first database instance of the set DBy generated previ-
ously, DBy, using the queries in )., we obtain a set of three database
instances DBS! and sets of pairs (param, value).

Experiments have been run on an Intel®Core ™i7, 2.30GHz. with 8 GB
of memory using the QAGrow tool for generating the test databases, and the
SQLFpc v. 1.1.84.0 and SQLMutation v. 1.2.77.2 web services for evaluating
the coverage and the mutation score of the queries under test against the test
databases.

6.2 Analysis and Comparison of the Results

In order to analyze and compare the fault detection ability and the coverage
of generated test databases, we have taken:

— A copy of the production database, named prodD B, that is used to measure
the coverage and the mutation score for both sets of queries. It was used
during exploratory testing sessions from which queries for evaluation were
taken from the database logs.

— A database generated using a global approach described in our previous
work (de la Riva et al 2010) using the constraint solver Alloy', named
alloyDB. It can only be used to measure the coverage and the mutation
score for Qs because that approach does not support queries as complex
as those of Q..

Next, the results obtained in the generation processes are analyzed and
compared with each of the aforementioned databases. Discussions are focused
on answering the research questions, which relate to the number of generated
database instances, the effectiveness of the approach (percentage of coverage
and mutation score) and the generation time.

6.2.1 Test Databases Generated

Table 8 summarizes the results of test databases generated including the num-
ber of rows of the main tables (tickets, history records and users), the total
number of rows (#rows), the time (in seconds) of each generation and the
number of coverage rules (#rules) that have been covered in the generation of
test databases. As results produced are sets of database instances, there is one
column for each set of test databases generated (DB, DB, and DBg!) that

L http://alloy.mit.edu/alloy/
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Table 8 Test database generation results for the sets of queries Qs and Q.

Test DBs Generated by QAGrow Test DBs for comparing

DB DB, DBs! prodDB alloyDB
#tickets 12 50 59 22,387 8
##hrecords 4 2 4 103,553 4
Ffusers 10 19 21 279 7
#rows 82 200 238 139,259 139
Time(s) 1.66 118.72 116.08 - 285
#rules 68/68 1,269/1,271 1,269/1,271 42/68; 58/68

717/1,271

Table 9 Test database instances generated for the sets of queries Qs and Q.

Test DBs Instances Generated

DB, DB, DBg!
#tickets 1042 504-04-0 39+420+0
##hrecords 3+1 24040 44040
F#users 9+1 194-04-0 941240
F#rows 69413 18841042 17645943
Time(s) 1.504-0.15 118.66+40.054-0.01  106.31+9.75+40.02
#rules 54+14 1,2604+-841 1,081+186+-2

contains the sum of: (1) rows, (2) the generation time of the instances and (3)
the covered and total coverage rules (covered/total). Last two columns include
the values in databases used for comparing (prodDB and alloyDB). Please
note that the #rules cell for prodDB has two values: covered and total rules
using queries in Q4 (42/68) and using queries in Q. (717/1,271). Moreover, Ta-
ble 9 contains one column for each set that presents these values disaggregated
for each instance (values are separated by '+7).

When test databases are generated starting from an empty database state
(DBs and DB,), the number of rows for both sets of queries, taking into
account the rows of all instances (82 rows in DB and 200 rows in DB.),
is significantly less than prodDB (139,259 rows). Therefore, generated test
databases may contribute to avoiding problems associated with handling large
amounts of data (DB, is only 0.14% of prodDB).

For the set of queries @5, comparing DB; (82 rows) with the test database
obtained with a global approach (alloyDB with 139 rows), we can highlight
that QAGrow: (1) optimizes the generation with a lower number of rows (D B;
is 58.99% of AlloyDB) and (2) is able to generate other test database instances
to cover rules not yet covered. The Alloy approach is not able to generate more
than one test database, and 10 coverage rules remain uncovered with alloyDB.

Most of the coverage rules are covered with a single database instance.
However, it is necessary to generate others, in general smaller than the first one,
in order to cover a few test requirements that are inconsistent with the others
in the same database instance. After generating the first database instance
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for Qs, 14 coverage rules of 68 are still pending for covering which will be
covered with a new database instance. In the case of the set Q). starting from
an empty database state, after generating the first database instance, 11 rules
of 1,271 are still uncovered; the second database instance is generated to cover
8 rules and the third instance for only one rule. There are two coverage rules
which are not covered with any instance; these are unsatisfiable rules where
conditions in the WHERE clause are impossible to evaluate true. In this clause,
there are unsolvable expressions due to repeated coupled conditions, in the
form NOT(A=1 OR A=2) AND NOT(A<>1 AND A<>2). These types of rules are
detected automatically by QAGrow, which carries out a pre-processing in order
to ensure rules can be covered in the generation process.

When test databases are generated starting from a non-empty state, results
(DBg') are finally similar to the above point (D B,) although they are not the
same during the process: in both cases the number of rows generated is less
than in prodD B, however, the distribution of rows in the database instances
are quite different. The first database instance generated in the set DBS! has
slightly fewer rows (176 rows) than that generated beginning with an empty
database state (188 rows). This is due to the fact that rows in the non-empty
initial database state add constraints which make it impossible to cover more
coverage rules. Therefore, the second database instance generated contains
more rows (59 rows) in order to cover these coverage rules.

In conclusion, answering RQ1, QAGrow generates a database instance with
a low number of rows, which cover as many coverages rules as possible, and
when there are incompatible rules, it generates additional database instances
that allow covering all rules.

6.2.2 Effectiveness

The analysis of the results considers two dependent variables: (1) the percent-
age of SQLFpc coverage (Tuya et al 2010) reached for each set of queries and
databases and (2) the mutation score calculated using SQLMutation (Tuya
et al 2007) to compare the effectiveness in detecting faults of each database.

Table 10 contains information about coverage and mutation test scores:
the number of coverage rules (#CovR) and mutants (#Mut) generated from
the sets of queries Qs and @., and the percentage of coverage rules covered
(%SQLFpc) and the mutation score (%MutScore) reached using different test
databases (generated by QAGrow, DB, DB,., and DB#!, and used for com-
paring, prodDB and alloyDB). Due to the fact that QAGrow generates sets of
database instances, %SQLFpc and %MutScore are calculated by accumulat-
ing the results obtained from the execution against each instance. In Table 11,
columns "Disaggregated %SQLFpc” and ”Disaggregated %MutScore” show
the scores disaggregated in each test database instance. Note that the sum
of values in these columns is not equal to values in columns " %SQLFpc” or
?%MutScore” because a coverage rule or a mutant could be covered by more
than one instance. For example, for the set Q,, there are 11.77% of coverage
rules that are covered by both database instances of DBs.
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Table 10 SQLFpc Coverage and Mutation Score

. SQLFpc SQLMutation
Queries  Test Databases #CovR  %SQLFpc #Mut %MutScore
DBy 100 70.09
Qs (2 instances, 82 rows)
(20 prodDB 61.76 65.54
simple (1 inst., 139,259 rows) 68 2,417
queries) alloyDB 85.33 84.13
(1 instance, 139 rows)
0 DB, 98.98 80.44
(1';5 (3 inst., 200 rows)
sl
com- DB; 1,271 98.98 56,787 80.12
lox (3 inst., 238 rows)
PEeX prodDB 56.41 60.06
queries)

(1 inst., 139,259 rows)

Table 11 SQLFpc Coverage and Mutation Score of test database instances generated

Queries Test Database Disaggregated Disaggregated

%SQLFpc Y%MutScore
Qs DB, 91.18;20.59 69.22; 11.63
(2 instances, 82 rows)
Q DB, 98.27; 12.27; 7.32 80.30;0.71;0.26
¢ (3 instances, 200 rows)
DB3! 86.78;35.09;6.61  71.45; 35.24; 0.28

(3 instances, 238 rows)

Regarding the SQLFpc coverage criterion, test databases generated by QA-
Grow reach the highest possible coverage scores (100% for Qs, 98.98% for Q..).
These results are larger than those obtained with the production database
(61.76% for Qs, 56.41% for Q.), even though prodDB has a much higher
number of rows. Compared with results obtained by a global approach (test
database alloyD B), due to the optimization strategy, QAGrow is able to pop-
ulate test databases that not only reach higher coverage scores but also have
fewer rows than alloyDB (100% and 82rows vs. 85.33% and 139rows).

Regarding the mutation analysis, results show %MutScore is higher in
databases generated with QAGrow than prodDB, therefore the fault detec-
tion effectiveness can be improved by using generated test databases instead
of production databases (70.09% with DB vs. 65.54% with prodDB for Qs,
up to 80% with DB, vs. 60.06% with prodDB for Q.).

However, the mutation score of DBy is less than that reached with alloyD B
(70.09% with DBg vs. 84.13% with alloyDB). This is specifically due to NLS
and IRC mutants which replace columns in SELECT clauses (score of NLS:
10% with DB, vs. 54.54% with alloyDB; score for IRC: 57.78% with DB
vs. 85.86% with alloyDB). Those types of mutants tend to be killed more
easily the greater the diversity of data. The minimization of the number of



32 Maria José Sudrez-Cabal et al.

Rows, accumulated coverage and acummulated mutation score
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Fig. 4 Number of rows in each generated database instance for the set of queries Q.
and %SQLFpc and %MutScore accumulated with each database, starting from an empty
database state and from a database instance (DBs) generated previously.

rows in databases generated with QAGrow might produce less diverse data
and, therefore, less mutants are killed.

Fig. 4 depicts how the coverage and the mutation score evolve as database
instances are generated by QAGrow for the set of queries Q. when the process
starts from an empty database state in order to generate test database DB,
and when it starts from a non-empty initial database state (DS0) to generate
DBt For DBg!, the initial coverage and the initial mutation score are close
to 50% on its DSO and they are 0% for DB.. However, after generating the
first database instance (DB1), these scores are higher and quite close to the
maximum for DB, that begins with an empty database state (98.27% vs.
86.78% for coverage and 80.30% vs. 71.45% for mutation score). For the rest of
the database instances generated, the accumulated coverages and the mutation
scores are very similar for both cases. From the figure, we can appreciate that
QAGrow allows us to generate test databases obtaining high scores of coverage
and a mutation score independent of the initial database state, although better
results are reached earlier when the process starts from an empty database
state.

Moreover, the maximum coverage reached for the set Q. is 98.98% is not
the maximum possible (99.84%) due to the loss of coverage because there are 11
coverage rules which are not covered at the end of the process. These rules are
covered during the generation process. However, rows in master tables without
details, which allowed their coverage, are re-used adding details for covering
subsequent rules. This situation leads to subsequent rules being covered whilst
losing the coverage of previous ones.

In conclusion, answering RQ2, the results of these experiments show the
viability of the approach in populating test databases for a set of SQL queries,
attaining good scores in the coverage and fault detection ability. This implies
that the generated test databases contain good, diverse sets of rows (in the
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sense that they exercise the target queries) that are good enough to be used
for testing purposes (in the sense of fault detection capability).

6.2.3 Cost

In Table 8, the Time row displays the number of seconds spent during the
generation processes and, in Table 9, the time spent in obtaining each database
instance (separated by '+’).

We do not compare the time values with the time it takes prod DB because
it was obtained from the production environment. However, we can compare
the time of generating databases with QAGrow with the global Alloy approach.

For the set of queries @), generating the set of database instances starting
from an empty database state takes less time than generating the alloyDB
test database with a global approach (1.66s. vs. 285s.). More importantly,
QAGrow populates database instances with fewer rows (82rows vs. 139rows)
more meaningfully from the point of view of the coverage (100% vs. 85.33%).
Therefore, there is a remarkable improvement over previous work (de la Riva
et al 2010).

For the set of queries @), the generation process starting from an empty
database state takes approximately the same time as starting from a non-
empty state (118.72s. vs. 116.08s.).

Determining which of the two test database generations (starting from an
empty database state or beginning with a non-empty state) would be more
adequate does not depend on the generation time or on the accumulated cov-
erage (because they are the same). Only if the tester decided to manage a
single database instance, starting from an empty database state would be the
best option because, although more rows are generated (188rows vs. 176rows),
both the coverage and the mutation score are higher (98.27% vs. 86.78% for
%SQLFpc and 80.30% vs. 71.45% for %MutScore).

Answering RQ3, the incremental approach generates test database in-
stances taking fewer seconds than the global approach (de la Riva et al 2010)
and the test databases are smaller and more significant, achieving higher cov-
erage.

7 Related Work

Database testing is a challenging problem, which has garnered renewed atten-
tion in recent years. With regard to functional testing, which is the scope of
this paper, most works focus on test input or test database generation over
the SQL queries as well as coverage evaluation, the database application or
the database management systems. Below we discuss the work on these topics.

One of the first works on testing SQL statements using automated reason-
ing was the work in Zhang et al (2001). Given an SQL query, the schema and
a set of user test requirements as input, the output is a set of constraints that
define the characteristics of the test database. Database instances for testing
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the SQL query can be derived by solving these constraints. Using this idea
as a basis, other works explore the same problem. Khalek et al (2008) define
a tool for test data generation incorporating Alloy specifications both for the
schema and for the query. Each table is modeled as a relation over the attribute
domains and the query is specified as a set of constraints that models the con-
dition in the WHERE clause. As test criterion, they use a predicate coverage
criterion over the predicate of the WHERE clause with the goal of generating
a test database and validating the output of queries in different DBSMs. The
scalability is limited because the approach cannot handle tables with a larger
number of rows (no more than four according to their experiments) and tables
have at most two attributes. In contrast, our approach supports larger schemas
and databases, and we use a specific test criterion for SQL queries that takes
into account the particularities of the SQL language in addition to WHERE
predicates (e.g. JOIN operators, nullable values). In Veanes et al (2009), the
satisfiability modulo theories solver Z3 has been used to generate input data
for SQL queries satisfying a given test condition. Whereas the test conditions
are given in an ad-hoc fashion (the query result is empty, nonempty, contains
a value, etc.), our approach employs automated and query-based test condi-
tions (SQLFpc coverage rules) to guide the database generation. Binnig et al
(2007a) propose a technique named Reverse Query Processing for generating
test databases that takes the query and the desired output as input and gen-
erates a database instance (using a model checker) that could produce that
output for the query. This approach supports one SQL query and therefore
generates one test database for each query. A further extension to this work
(Binnig et al 2008) supports a set of queries and allows specifying to the user
the output constraints in the form of SQL queries. However, the creation of
these constraints could be difficult if the source specification is not complete.
Caballero et al (2010) developed a framework for generating test cases for
correlated SQL views using CLP (Constraint Logic Programming). Compared
with ours, the approach does not support JOIN operators and nullable values
and it has not been evaluated over large schemas and databases. Other ap-
proaches (Shah et al 2011; Pan et al 2013; Vemasani et al 2014; Chandra
et al 2015) use mutation analysis over the SQL queries as test criterion in
order to guide the test database generation. The aim is to generate sufficient
test data that detect faults in SQL mutants (the original query modified with
a defect). In our work, we use mutation analysis as an effectiveness measure
rather than as test criteria. Kapfhammer et al (2013) define a technique that
generates test data with the aim of testing the integrity constraints. Thus, they
focus on testing the relational schema instead of the SQL queries, although
the approach could be used in a complementary fashion with our method.

In general, our work differs from preceding works in the following points: (1)
We propose a fully automated approach for testing SQL (query parameters and
test database), (2) we use a specific test coverage criterion for generating the
test database that is specially tailored for SQL queries and (3) our approach
supports complex queries over large and complex databases.
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On a related but complementary level, testing database applications con-
siders the control flow of the program interacting with the database instead
of individual SQL queries. The AGENDA toolset (Chays et al 2004, 2008)
describes an approach that populates databases with test data that satisfies
the schema constraints. It uses the category-partition method over the schema
constraints and uses heuristics to fill the test database. It requires tester in-
tervention to provide the data group whereas our work relies on the SQLFpc
coverage rules and thus the test input generation process is fully automatic.
Other approaches are based on Dynamic Symbolic Execution (DSE) (Sen et al
2005), which extends traditional symbolic execution by running the program
with concrete inputs while collecting both specific and symbolic information
at runtime.

Willmor and Embury (2006a,b) develop a technique to specify intensional
test cases for database applications. The database test cases are formed by
preconditions that specify the initial state of the database and post-conditions
that must hold after execution of the target program and are provided by the
user. Symbolic execution was used to generate input and database state. While
the post-conditions are outside the scope of this work, the preconditions have a
similar purpose to the SQLFpc coverage rules we use, but in our approach they
are automatically generated. Other works (Emmi et al 2007; Pan et al 2014;
Marcozzi et al 2015) have been developed to handle the presence of SQL state-
ments within the classical code to be symbolically executed. The main idea is
to track symbolic constraints from the procedural code and the embedded SQL
queries and then use these constraints in conjunction with a constraint solver
to generate program inputs and/or database states. As test criteria, they use
branch coverage and the test situations are obtained both from the conditional
statements of the procedural code and the conditions of the WHERE clause.
Whereas the previous works are addressed to generate test data from scratch,
Pan et al (2011, 2015) and Li and Csallner (2010) propose DSE-based ap-
proaches for generating program inputs for testing database applications, but
they use existing database states in the program input generation in order to
avoid the overhead of generating new database states during test generation.
In this sense our approach follows the same principle, but we use the database
states not only to generate program inputs (in our case query parameters) but
also to generate test database states. With a different approach, Blanco et al
(2012) develop a specification-based approach to guide the design of the test
input and the test database in applications with user-database interactions.
Both the application database and the user interface are integrated in a single
model and the test requirements are derived from the model in the form of
SQLFpc coverage rules. In this context, our approach can be used to auto-
matically generate the test inputs using the test requirements derived from
the model as input in our method.

A variety of methods and tools have also been used for testing some features
(both functional and extra-functional) and the benchmarking of Database
Management Systems (DBMS). Bruno and Chaudhuri (2005) and Houkjeer
et al (2006) present a data generator that helps the tester to define synthetic
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databases with rich data distributions with inter- and intra-table relationships.
However, in contrast with our work, these methods do not use the information
of the queries while generating the data and hence the execution of the query
against the generated database might not return results. QAGen (Binnig et al
2007b) and MyBenchmark (Lo et al 2014) are notable examples of query-aware
generators. Whereas QAGen supports the data generation for one query, and
hence for n queries n independent test databases, MyBenchmark, which uses
the QAGen as core, generates a minimal set of test database instances for a set
of queries. Other works (Bruno et al 2006; Khalek and Khurshid 2011) sup-
port the testing of DBMS by creating SQL queries, instead of generating test
data, in order to produce results with different sizes. The main aim of these
works is the support of the test database engine (e.g. generation of workload
for stress testing and application-based benchmarking) instead of the testing
of functional requirements embedded in the SQL queries, which is the primary
objective of our method.

8 Conclusions

We have presented an automated approach that takes a set of SQL queries
and an initial database state (which can be empty or populated with data) as
input and generates a reduced number of test databases with meaningful data
and of a reduced size for testing all the queries.

The approach supports a large set of SQL clauses including SELECT,
JOIN, GROUP, WHERE and HAVING clauses, as well as the generation of
test data for numerical data types.

The results from the experimental evaluation show the feasibility of the ap-
proach in generating test relational databases with a high coverage (SQLFpc
test coverage) and fault detection ability measured in terms of the mutation
score (SQLMutation) for a number of non-trivial SQL queries over a large
schema database. The number of generated test databases for a large set of
SQL queries is small and with one test database it is possible to achieve high
coverage for most of the queries. Additionally, the test databases have a re-
duced size making the evaluation of the test outputs easier.

Typical scenarios for the application of the approach include either the test
database generation starting from scratch or the test generation starting from
a previous populated database in order to complete the tests. Because the ap-
proach is fully automated, a first evident benefit is the reduction of the time
needed to create the test relational database, so the tester is not required dur-
ing the test data preparation. Moreover, the test data generation is guided by
a systematic test criterion ensuring that the test database contains meaning-
ful data to test the queries. In addition, the reduced size of the generated test
database contributes to facilitating the task of checking the actual test output
when testing the SQL queries, making the process of test output evaluation
more reliable.
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Future work is addressed to extending the support to other clauses and
database schema restrictions (i.e. check constraints) and to considering the
test data generation for non-numerical types (i.e. string values) by means of
the integration with a string solver. Moreover, QAGrow tool can be adapted
to use at application level for checking the application behavior when queries
do not return any rows from the database or generating test cases considering
test requirements of both procedural code and SQL queries.
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