
Research Article
Modelling and Solving Rescheduling Problems in Dynamic
Permutation Flow Shop Environments

Pablo Valledor,1 Alberto Gomez ,2 Paolo Priore,2 and Javier Puente2

1ArcelorMittal Inc., Global R&D Asturias, Gijón, Spain
2University of Oviedo, Department of Business Administration, Polytechnic School of Engineering, 33203 Gijón, Spain

Correspondence should be addressed to Alberto Gomez; albertogomez@uniovi.es

Received 7 December 2019; Revised 25 May 2020; Accepted 18 June 2020; Published 24 July 2020

Academic Editor: Roberto Natella

Copyright © 2020 Pablo Valledor et al.,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

,e aim of this paper is to analyse, model, and solve the rescheduling problem in dynamic permutation flow shop environments
while considering several criteria to optimize. Searching optimal solutions in multiobjective optimization problems may be
difficult as these objectives are expressing different concepts and are not directly comparable. ,us, it is not possible to reduce the
problem to a single-objective optimization, and a set of efficient (nondominated) solutions, a so-called Pareto front, must be
found. Moreover, in manufacturing environments, disruptive changes usually emerge in scheduling problems, such as machine
breakdowns or the arrival of new jobs, causing a need for fast schedule adaptation. In this paper, a mathematical model for this
type of problem is proposed and a restarted iterated Pareto greedy (RIPG) metaheuristic is used to find the optimal Pareto front.
To demonstrate the appropriateness of this approach, the algorithm is applied to a benchmark specifically designed in this study,
considering three objective functions (makespan, total weighted tardiness, and steadiness) and three classes of disruptions
(appearance of new jobs, machine faults, and changes in operational times). Experimental studies indicate the proposed approach
can effectively solve rescheduling tasks in a multiobjective environment.

1. Introduction

Scheduling in production systems addresses the problem
of sequencing the manufacturing of a series of jobs
assigned to different machines in a production environ-
ment subject to certain requirements. Since 1950s, these
complex problems of (NP-hard) type as shown by Garey
et al. [1] have been studied in depth by the scientific
community.

Flow shop systems seek the optimal scheduling of “n”
jobs {j1, j2, . . ., jn} in “m” machines {m1, m2, . . ., mm}. Each
job consists of “m” tasks, the ith task being processed by the
machine mi. In each specific period of time, every machine
processes a single task.,us, to finish a job on the machine i,
this machine must be available and the job on machine
“m− 1” should have been fully processed.

When job scheduling is identical in each machine, there
is a permutation flow shop problem (PFSP), which usually
assumes no precedence among different job tasks or

interruptions on them. PFSP is the problem tackled in this
paper as it has many real-world applications, although other
environments may appear, such as the blocking flow shop
problem [2] or the integrated planning and scheduling
production system [3, 4].

Due to the combinatorial nature of the problem, of
factorial order, the number of schedules increases to n!

Multiobjective optimization seeks to recognize the best
advantageous solution by simultaneously analysing multiple
discrepant objectives (for example, cost, quality, or time).
Every objective can be measured in different units or have
different meanings, making them incomparable. Conse-
quently, they do not allow a possible optimal solution for all
criteria to be obtained. While finding efficient solutions
(known as nondominated), the final objective would be to
obtain the group of nondominated solutions, also called
Pareto-optimal solutions, making up the Pareto front.
Subsequently, the decision maker will select the solution that
better meets the business needs.

Hindawi
Complexity
Volume 2020, Article ID 2862186, 17 pages
https://doi.org/10.1155/2020/2862186

mailto:albertogomez@uniovi.es
https://orcid.org/0000-0003-3570-4043
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2862186

Multiobjective optimization problems need to use
metrics which allow comparing the performance efficiency
of the Pareto-Front obtained with every algorithm. Based on
the multiobjective optimization literature, the following
metrics have been selected:

(i) Hypervolume [5]
(ii) Unary epsilon indicator [6–8]

,e methods used to solve multiobjective optimization
problems are usually based on scalar [9] or metaheuristic
techniques [10]. Regarding scalar methods, many strategies
can be used to set up the objective weighting: conventional
(CWA), dynamic (DWA), random (RWA), and bang-bang
weighted aggregation (BWA). All of them try to convert a
multiobjective problem into a single one, by modifying the
weights of the objective functions at each process step in
order to find the Pareto-front solution set. Other scalar
methods are the epsilon-constraint, goal programming, and
lexicographical order.

Concerning metaheuristic methods, there are techniques
supported by evolutionary algorithms [11–17], particle
swarm optimization systems [18], tabu search [19], simu-
lated annealing [20–22], ant colonies [23, 24], greedy al-
gorithms [25], or local search methods [26].

Most of the papers on these methods study biobjective
problems which are more easily represented graphically and
whose results are easier to analyse.,e limitations of current
algorithms are usually analysed to solve problems with a
greater number of objective functions and subsequently
design new techniques which allow the specific problems to
be efficiently tackled [27, 28].

,is paper is structured in the following way. First,
rescheduling schemes studied in the literature are com-
mented. Once the problem’s mathematical formulation is
defined as an integer linear programming model, the
rescheduling architecture is presented to solve the problem
based on a predictive-reactive strategy. Next, the RIPG
metaheuristic is described and validated on Dubois-Lacoste
Instances in a static, biobjective environment. After cali-
brating the parameters, the RIPG metaheuristic is applied to
a benchmark that was specifically designed for this paper.
Finally, comparative results are obtained, and the discussion
and the main conclusions of the paper are shown.

2. Rescheduling Systems

In classical scheduling problems, an initial set of known jobs
must be scheduled considering the available machines in the
system and the existing technological constraints. ,is static
(also so-called offline) approach assumes that the jobs to be
sequenced and the configuration of the system are known in
advance and constant in time. In real production envi-
ronments, there may be new job arrivals, as well as certain
events, not known beforehand, that induce variations re-
quiring a new schedule, such as breakdowns or preventive
maintenance activities in machinery or changes in the
priority of jobs. ,ese conditions make it necessary to in-
corporate dynamism in the scheduling systems, through the
reorganization of jobs, as the static approach is not optimal

anymore. Rescheduling is the process of actualizing the
current scheduling to adapt to the disruptions that may
appear. ,e basic phases of this process are the following:

(i) ,e rescheduling strategy to be used, defining when
necessary the need for a new production schedule

(ii) ,e designated reprogramming policy, specifying
the time and manner of carrying out the resched-
uling process

(iii) ,e designed technique to update the original
schedule

,ere are mainly three rescheduling strategies described
in the literature: predictive-reactive, proactive (or robust),
and dynamic [29–32], among which the predictive-reactive
one was selected in this paper. Furthermore, three policies
are usually used to complete the rescheduling of the jobs
within this approach: event-driven, periodic, and hybrid
[33], of which the second one was chosen. ,ere are also
three main procedures available to actualize a non-feasible
schedule due to the occurrence of disruptions on the pro-
duction system: right-shift rescheduling [34, 35], partial
regeneration [34], and complete regeneration [36, 37], the
last of them being used in this paper.

Metrics normally employed in evaluating the reprog-
ramming performance can be based on efficiency (for ex-
ample, makespan, mean flow time, or total weighted
tardiness) or robustness (for example, the system’s average
stability, as proposed by Pfeiffer et al. [33]).

In the literature, there are hardly any papers which cover
rescheduling in dynamic, flow shop environments with
permutation and multiple objective functions. Itayef et al.
[38] and Liefooghe et al. [39] developed algorithms focused
on the search for nondominated solutions in a PFSP en-
vironment with a proactive-reactive strategy without using
the objective function weighting method. Itayef et al. [38]
used the Multiobjective Simulated-Annealing Algorithm
(MOSA) while Liefooghe et al. [39] proposed metaheuristics
based on the hypervolume, known as the Indicator-Based
Evolutionary Algorithm (IBEA). Liu et al. [40] proposed a
modified iterated greedy algorithm (eIG_Rep), introducing
an effective escape mechanism from a local optimum, to
consider the arrival of new orders in a PFSP.

Likewise, the literature does not abound when
rescheduling analysis is extended to environments which are
different from the PFSP environment. Xiong et al. [41]
adapted the NSGA-II, Nondominated Sorting Genetic Al-
gorithm [12], for a stochastic flexible job shop problem
(FJSP). Iima [42] developed a multiobjective genetic algo-
rithm to minimize the schedule’s total tardiness and stability
in an environment with parallel machines and variations in
job delivery dates. Zhang et al. [43] proposed the application
of a multiobjective evolutionary algorithm based on de-
composition (MOEA/D) to solve a hybrid flow shop
rescheduling problem with 2 objectives (makespan and
stability: as the number of jobs assigned to different ma-
chines versus the original schedule) and random machine
breakdowns. He et al. [44] implemented the NSGA-III al-
gorithm [27] to solve the rescheduling problem of rush

2 Complexity

orders in a hybrid flow shop system considering three ob-
jectives: makespan, total transportation time, and sequence
stability. In reviews on rescheduling techniques by Vieira
et al. [45] and Ouelhadj and Petrovic [46], the predictive-
reactive strategy is identified as the one most frequently
used.

3. Proposed Solution

First, having found no references in the literature, a
mathematical formulation for solving this type of problem as
an integer linear programming model is proposed. ,e
model tries to optimize three objective functions: makespan,
total weighted tardiness (TWT), and stability in order to
increase productivity in (1) the production environment (by
reducing the makespan), (2) the customer service (by
minimizing TWT), and (3) the schedule stability in the
rescheduling process when faced with different sudden
disruptions.

Subsequently, the architecture for the proposed
rescheduling system, its implementation, and the applied
RIPG method are described. RIPG is a non-population-
based algorithm recently developed by Ciavotta et al. [25]
and applied to a biobjective PFSP environment. In this
paper, the algorithm was used in a different context, having
been adapted to the dynamic rescheduling architecture
developed and used to optimize the three objective functions
defined: makespan, total weighted tardiness, and stability.

3.1. Mathematical Model. Before presenting the mathe-
matical model formulation, the scientific literature dealing
with uncertainty and multiobjective optimization ap-
proaches will be briefly discussed. Razmi et al. [47] presented
a mathematical model that included uncertainty through
fuzzy processing times, that is to say, a stochastic model in
which processing times are not input data for the model, but
random variables with a known probability distribution. For
multiobjective environments, Itayef et al. [38] formulated a
biobjective mathematical model to address the arrival of new
jobs and thus minimize the maximum completion time for
the tasks and improve the schedule stability. In such amodel,
two independent sets of jobs are considered: new arrivals to
the system, and jobs which were already scheduled in the
prior rescheduling period.

Fattahi and Fallahi [48] formulated a dynamic FJSP
which considered the starting time of the rescheduling
period and the rescheduling time (RT), trying to optimize
two objectives: makespan and stability. In order to model the
FJSP system, restrictions on operations precedence were
included (this type of constraint is not present in PFSP
problems).

Ramezanian et al. [49] proposed a mathematical model
to formulate a biobjective PFSP with the aim of minimizing
the linear combination of the stock jobs cost and the late
releases cost, including the starting time of the jobs at the
machines (release time). ,e thesis written by ,örnblad
[50] on mathematical formulations in FJSP explained the
importance of analysing the objective functions when

developing the problem-solving method. For this analysis,
different formulations were proposed, amongst which the
so-called time-indexed model, based on the temporal dis-
cretization of the scheduling period, stood out. When dif-
ferent formulations were evaluated taking into consideration
the objectives of makespan and the average between the
tardiness and the completeness time for the jobs, a great
difference in performance was observed, depending upon
the objective to be reached.

Yenisey and Yagmahan [51] considered a static, multi-
objective PFSP formulation which includes the analysis of
three time types: waiting times (for jobs at themachines), job
preprocessing times (before jobs are processed by the sys-
tem-ready times), and processing times. Li et al. [52] pro-
posed a mathematical formulation for the PFSP
rescheduling problem that includes recovery times for
broken machines with the aim of minimizing a bi-criteria
function while weighting the makespan and the system
stability (calculated as the number of jobs that have a release
time which is different from the planned release time cal-
culated within the prior rescheduling point). Finally, Yuan
and Yin [53] developed a fuzzy multiobjective local search-
based decomposition (FMOLSD) algorithm to solve a bio-
bjective problem to minimize makespan and total flow time,
while considering fuzzy processing times for the jobs
scheduled in a permutation flow shop problem.

,e mathematical formulation to solve the problem is
detailed in the following. ,is formulation is based on the
previously mentioned approaches and incorporates new
characteristics. Because this is a PFSP, each job must access
each machine following the same processing order, that is to
say, from the first to the last machine. In the problem, the
following considerations are considered:

(1) Overlapping is not permitted in consecutive oper-
ations for the same job; that is, a new operation in a
job cannot begin until the preceding operation for
that job is completed.

(2) Job pre-emption is not permitted; that is to say, each
job must wait until the preceding job has finished in
order to be processed on the same machine.

(3) ,ere are infinite buffers (intermediate storage areas)
between two machines.

(4) All the jobs that have begun to be processed in the
system must maintain their scheduling order when
any type of disruption arises.

(5) All jobs interrupted due to a disruption must remain
on their assigned machine, with the pending jobs
being delayed if necessary. Jobs not impacted by the
disruption, so not delayed, will go on with their
normal process.

(6) Rescheduling is carried out periodically; therefore,
two types of jobs exist in the system: those which are
already being processed whose schedule order can-
not vary, and those whose order can vary (new jobs
and jobs which have not yet begun to be processed).
It is important to consider the jobs that are being
processed because, depending upon the disruptions

Complexity 3

which arise (for example, machine breakdowns), a
certain minimum starting time will be established for
the next incoming job in the system (in order to be
processed by the first machine).

(7) Machine breakdowns can arise at any time and not
only when the machines are busy.

(8) If a machine breakdown arises when a job is being
processed, the job will restart processing at the point
where the interruption occurred.

(9) When a variation in the processing time of a job
arises, the new processing time is fixed until the next
processing time variation occurs on the same job.

As it is a predictive-reactive rescheduling process, the
Mixed-Integer Linear Programming (MILP) model can be
run at each rescheduling point, meaning that the past dis-
ruptions (new jobs, processing time variations, and machine
breakdowns) that have happened during each rescheduling
period are received as inputs in the model.,ose disruptions
impact the next schedule. ,erefore, there are no predicted
disruptions considered in this formulation.

,e problem is defined by three finite sets:

(i) J: the set of new jobs to be scheduled from 1, . . ., n
(ii) M: the set of machines from 1, . . ., m
(iii) O: the set of operations for each job at each machine

from 1, . . ., m

Here, Ji is the job at ith position of the permutation.
,e parameters used in the model are as follows:

(i) pij: the processing time for job Ji € J on machine j.
(ii) di: the delivery date for job Ji € J.
(iii) wi: the priority (weight) of job i with respect to the

rest of the jobs.
(iv) rli (release time): once a new job has arrived at the

system, the release time is the time necessary for
job i to be available in order to be processed again
by the production environment.

(v) rtj (ready time): the time in which machine j is
ready to process a new job. ,is input data vector
represents the initial situation of the machines
before undertaking the new scheduling. It is cal-
culated based on the current time, the disruptions
which have arisen, and the scheduling scheme
calculated at the previous rescheduling point. It is
an important factor as it cannot be supposed that
all the machines are initially available.

(vi) RT: current temporal instant. ,is represents the
current point of rescheduling in the production
environment.

(vii) To take into account the schedule stability crite-
rion, the number of unprocessed jobs in the base
schedule (nnot processed) needs to be defined, in-
cluding new arrivals to the system, the starting
time for the jobs at each machine in the base
schedule (Sbaselinei,j), the current rescheduling in-
stant (RT), and a scale constant (scale� 10 in

accordance with the value used in Pfeiffer et al.
[33], used to apply a quadratic penalty method to
the starting time variation in the base schedule
with respect to RT).

(viii) BJ
start: a breakdown instant for machine j.

(ix) BJ
end: recovery instant from the breakdown of

machine j.
(x) BigM: large constant (BigM⟶∞).

In terms of decision variables, the following were
considered:

(i) Binary variables which represent the position of
each of the jobs in the planned schedule:

∀ i, j ∈ J: xij � f(x) �
1, if Ji is at j position,

0, otherwise.
􏼨 (1)

(ii) Ci: completion time for the job at position i.
(iii) Ci,j: completion time for the job at position i, on

machine j.
(iv) Si,j: starting time of job i, on machine j.
(v) Binary variables that indicate the circumstances

under which a machine breakdown has occurred
(three situations are modelled):

(a) ∀ i ∈ J∧ j ∈M: yi,j,1: it takes the value 1 if the
operation Oi,j finishes before the breakdown
occurs; that is to say, the time the operation
takes to finish is less than the machine’s
breakdown starting point.

(b) ∀ i ∈ J∧ j ∈M: yi,j,2: it takes the value 1 if the
operation Oi,j is not yet finished at the moment
when the breakdown occurs; that is to say, the
time the operation takes to finish overlaps with
the machine’s breakdown starting point.

(c) ∀ i ∈ J∧ j ∈M: yi,j,3: it takes the value 1 if the
operation Oi,j has a starting time which is after
the moment when the machine breaks down.

(vi) Cmax, TWT, STB: these variables correspond to the
maximum completion time for the tasks, the total
weighted tardiness, and the schedule stability,
respectively.

,e mathematical model for the MILP formulation of
the permutation flow shop rescheduling problem was based
on the following equations.

,e objectives of the problem were to minimize the
makespan, the total weighted tardiness (TWT), and the
stability of the schedule to be planned (STB), obtaining the
optimal Pareto frontier (PF):

min PF Cmax, TWT, STB(􏼁. (2)

,e makespan was calculated as the maximum com-
pletion time for all the jobs, and it corresponds to the
completion time for the last scheduled job, that is, the time
when the last task in the last machine finishes:

Cmax � max
i�1,...,n

Ci(π)(􏼁 � Cn. (3)

4 Complexity

,e total completion time for each job, Ci, is defined by
the following equation, according to the completion time in
the last machine M:

∀ i ∈ J: Ci � Ci,j�M, (4)

where M is the set of machines in the system.
More specifically, the completion time for each job i on

each machine j takes into consideration the following
components:

(i) ,e time at which the job i can begin to be processed
by machine j. ,is time depends on the following:

(a) ,e completion time of job i on the previous
machine (Ci,j−1).

(b) ,e completion time of the previous job, located
at position (i− 1), on the current machine j
(Ci−1,j).

(c) ,e maximum of these terms will be the instant
of time in which job i can begin to be processed
by machine j (Si,j).

(ii) ,e processing time for job i on machine j (pi,j).
(iii) Time of breakdown onmachine jwhen job i is being

processed (BJ
end − BJ

start).

When calculating the completion time along with ma-
chine breakdowns, the following equations are modelled,
considering the three possible breakdown situations:

If the operation finishes before the breakdown appears,

∀i ∈ J∧∀j ∈M: Ci,j + 1 − yi,j,1􏼐 􏼑 · BigM≥ Si,j + 􏽘

n

k�1
xki · pkj,

∀i ∈ J∧∀j ∈M: Ci,j − 1 − yi,j,1􏼐 􏼑 · BigM≤ Si,j + 􏽘
n

k�1
xki · pkj.

(5)

If the breakdown appears while the operation Oi,j is
being processed, it is necessary for the job to wait until the
machine is ready again in order to continue its processing:
∀i ∈ J∧∀j ∈M:

Ci,j + 1 − yi,j,2􏼐 􏼑 · BigM≥ Si,j + 􏽘
n

k�1
xki · pkj + B

J
end − B

J
start􏼐 􏼑,

∀i ∈ J∧∀j ∈M:

Ci,j − 1 − yi,j,2􏼐 􏼑 · BigM≤ Si,j + 􏽘
n

k�1
xki · pkj + B

J
end − B

J
start􏼐 􏼑.

(6)

Finally, if the operation Oi,j has not yet begun, the work
must wait until the machine breakdown has finished:

∀i ∈ J∧∀j ∈M:

Ci,j + 1 − yi,j,3􏼐 􏼑 · BigM≥ Max Si,j, B
J
end􏼐 􏼑􏼑 + 􏽘

n

k�1
xki · pkj,

∀i ∈ J∧∀j ∈M:

Ci,j − 1 − yi,j,3􏼐 􏼑 · BigM≤ Max Si,j, B
J
end􏼐 􏼑 + 􏽘

n

k�1
xki · pkj.

(7)

Although the above equations contain the max function
(that is not linear), they can be expressed in a linearized way
using a big-M plus binary variables representation, being
automatically transformed by most of the commercial
solvers and respecting theMILP formulation of the problem.

If a machine breakdown appears, only one of these three
situations can arise; this can be ensured by including the
following equation:

∀i ∈ J∧∀j ∈M: 􏽘
3

k�1
yi,j,k � 1. (8)

,e starting time for each job i on each machine j de-
pends upon the following equation:

∀i ∈ J∧ j ∈M: Si,j � Max Ci,j−1, Ci−1,j􏼐 􏼑. (9)

In order to define the starting times in the MILP model,
the following equations are used.

Operation Oi,j cannot begin until the operation for the
previous job has finished on the same machine:

∀i> 1 ∈ J∧∀j ∈M: Si,j ≥Ci−1,j, (10)

and operation Oi,j cannot begin until the previous operation
for the same job has finished:

∀i ∈ J∧∀j> 1 ∈M: Si,j ≥Ci,j−1. (11)

,e starting time for job i on the first machine must be
greater than the overall release time, as this is the moment
when the job is ready to begin to be processed:

∀i ∈ J : Si,1 ≥ rli. (12)

Because not all the machines are initially available, in
order to be able to process the next job, it is important to take
into consideration the fact that the starting time for the jobs
cannot begin until the machine is available; that is to say,

∀i ∈ J∧∀j ∈M: Si,j ≥ rtj. (13)

In case there are delays—that is, when a job completion
time is greater than its delivery date—the total weighted
tardiness (TWT) is calculated as the weighted sum of dif-
ferences between the total completion time for each job and
its delivery date, according to their assigned priority weights
(wi):

TWT � 􏽘

n

i�1
Max Cim − di, 0(􏼁 · wi. (14)

For modelling purposes in the MILP problem, the fol-
lowing equations were included:

TWT≥ 􏽘
n

i�1
Cim − di(􏼁 · wi,

TWT≥ 0.

(15)

,e third objective function considered in the problem is
the stability (STB), with respect to the base schedule cal-
culated in the previous period (baseline). Stability is
expressed as the average of the absolute differences of

Complexity 5

unprocessed job starting times, adding a penalty which
depends upon the variation in the starting time for the base
schedule regarding the current RT. Unprocessed tasks are
defined as those jobs which have previously been scheduled
at the prior point of rescheduling and which have not yet
begun to be processed by the system at the current RT:

STB �
1

nnot processed
· 􏽘

n

i�1
Si,1 − S

baseline
i,1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 +
scale

�����������

Sbaselinei,1 − RT
􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(16)

,e absolute value function used in calculating the
stability objective is nondifferentiable in addition to being
nonlinear. Nevertheless, it can be expressed in an integer
linear way, as follows:

STB �
1

nnot processed
· 􏽘

n

i�1
DeltaStart Timei +

scale
�����������

Sbaselinei,1 − RT
􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(17)

Two new binary variables d1j and d2j were introduced, as
well as a large constant BigM, and the following equations
for MILP formulation:
∀j ∈ J : 0≤ Sj,1 ≤ BigM,

∀j ∈ J : 0≤DeltaStart Timej − Sj,1 − S
baseline
j,1􏼐 􏼑≤ 2 · BigM · d2j,

∀j ∈ J : 0≤DeltaStart Timej − S
baseline
j,1 − Sj,1􏼐 􏼑≤ 2 · BigM · d1j,

∀j ∈ J : d1j + d2j � 1.

(18)

If d1 � 1, then delta at the starting time would take the
value Sj,1 − Sbaselinej,1 ; otherwise, if d2 �1, it would take the
value Sbaselinej,1 − Sj,1.

Finally, the model ensures that a job must be in one
single position and that only a single job can exist at any
position of the schedule. ,is is done through the following
equations:

∀i ∈ J: 􏽘
n

j�1
xij � 1,

∀j ∈ J: 􏽘

n

i�1
xij � 1.

(19)

3.2. Rescheduling Architecture. ,e rescheduling strategy
used was based on the predictive-reactive approach; thus, a
baseline schedule was first generated and then updated
according to the disruptions that arise in system. A periodic
rescheduling policy was used through time windows. Finally,
the rescheduling method consisted of a complete resched-
uling based on heuristic/metaheuristic algorithms (as
rescheduling method we proposed RIPG algorithm, de-
scribed in detail in the next section). RIPG is selected be-
cause its efficient behaviour in static multiobjective
permutation flow shop problems [25] makes it a promising
technique for the dynamic environment under study. ,e
proposed rescheduling architecture is shown in Figure 1.

Initially, the baseline schedule was generated according
to both the flow shop system involved and the jobs to be
scheduled. ,en, a synchronous control was establish-
ed—every T units of time—in order to perform a
rescheduling process when disruptions arise in the system,
obtaining the Pareto-front output from the solutions found
in each executed rescheduling interval. It is important to
specify an appropriate period, based on the dimensions of
the problem, for each rescheduling process. In this paper,
this period was calculated as the maximum completion
time for jobs (Cmax) divided by the total number of
rescheduling points to be executed on the system (we have
considered 5 rescheduling points as it is an appropriate
number to evaluate the architecture adaptation capacity
and does not excessively increase the number of executions
in the system).

Likewise, at each point of rescheduling, it is necessary to
select a representative solution for the calculated Pareto
front. ,e selected solution will be used as a baseline
schedule to be employed for each new rescheduling. ,e
fundamental importance of this base schedule lies in its use
in evaluating the stability objective function. To calculate the
representative solution for the Pareto front, a knee point
method was used [54–56]. A detailed description of the knee
point method used to calculate this most representative
solution can be found in Valledor et al. [57].

3.3. Restarted Iterated Greedy Algorithm. ,e implementa-
tion of the developed RIPG algorithm was based on the
design proposed by Ciavotta et al. [25]. ,eir application of
the technique was explained using a biobjective PFSP, and
its results on Taillard Instances were described, comparing
the RIPG technique with 17 algorithms, including MOSA
and Multiobjective Tabu Search (MOTS). Ciavotta et al.
[25] described the RIPG as a state-of-the-art method be-
cause of its excellent results when compared with the best
approaches previously presented in the literature. ,e
RIPG algorithm is an extension of the IG (Iterated Greedy)
technique proposed by Ruiz and Stützle [58]. ,ese tech-
niques belong to the stochastic local search (SLS) category.
,e RIPG technique consists of 5 phases, as shown in
Figure 2:

Phase 1. First, an Initial Solution Set (ISS) is determined
based upon the execution of different simple heuristics.
More specifically, NEH heuristics [59, 60] are used,
each one being applied to obtain acceptable solutions
with different objective functions. For each of the two
solutions obtained via heuristics, the greedy phase
(described below in phase three) is applied, generating
an initial set of nondominated solutions (working set).
Phase 2. Second, the optimization loop begins with the
process of selecting a solution via the Modified
Crowding Distance Assignment (MCDA) method, in
order to improve the working set during the greedy
phase. ,e MCDA process receives the working set as
an input parameter and calculates the distance to each
one of the solutions. ,e selected solution is the one

6 Complexity

with the greatest modified crowding distance (MCD)
value, which coincides with solutions in sparsely
populated search spaces. ,e main difference between

MCDA and Crowding Distance Assignment (CDA),
proposed originally in the NSGA-II [12], is that the first
method considers the number of times that a solution

Synchronous control
(every T units of time)

Evaluation of every
objective function for

each solution

Disruptions

Periodic control of
disruptions

Baseline
schedule
generator

Rescheduling

New schedule
(baseline)

Baseline
schedule

Jobs to schedule
Flow shop environment definition

Figure 1: Rescheduling architecture.

Restart working set?

No

No

Start RIPG

Solution working set initialization
(NEH & Rajendran heuristics + greedy phase)

Yes

Modified Crowding Distance Assignment
selection

Greedy phase
1. Destruction of “k” contiguous positions in the sequence

2. Construction phase

Greedy phase initial solution selection using
Modified Crowding Distance Assignment operation

Local search
(Insertion nsel jobs in nneigh neighbours)

Return Pareto front

External
solution
archive

Working set restarting

Yes
Stopping criterion?

Figure 2: Flow diagram for the RIPG technique.

Complexity 7

has been previously selected, giving it less opportunity
of being reselected.
Phase 3. As the next step, the greedy phase is executed.
,e selected solution is modified by applying both a
destruction operation to eliminate a sub-schedule of
jobs from the solution and a greedy process, known as a
construction operation, to insert each of the eliminated
jobs in one of the possible schedule positions. In this
way, a solution pool is created.
Phase 4. Next, once again by the MCDA method, a
solution is selected from the solution pool generated
during the greedy phase, and a local search method is
applied for improvement. As local search, we applied
the same classical approach as proposed by Ciavotta
et al. [25], where nsel jobs are randomly selected; then,
each of them is eliminated from the schedule and
reinserted in nneigh consecutive positions, half of which
precede the initial position of the selected job and the
other half follow it. Once all the movements are un-
dertaken for the selected jobs, the generated solutions
are subsequently evaluated, and the dominated solu-
tions are eliminated. ,e nondominated solutions are
added to the working set.
Phase 5. Finally, a restarting mechanism is imple-
mented on the set of solutions to prevent the algorithm
from reaching only a local optimal solution and causing
a stagnation effect. ,e mechanism is simple and re-
liable; it consists of storing the set of nondominated
solutions in the working set in an external file and,
subsequently, randomly restarting the working set.,is
restart process is launched if the size of the working set,
that is, the number of nondominated solutions found
until that time, does not vary in a pre-set number of
iterations.

,e RIPG algorithm requires the configuration of 5
input parameters: the size of the set of solutions (working
set), k (the number of consecutive elements eliminated
during the destruction operation of the greedy phase), nsel
(the number of elements randomly selected in the local
search phase), nneigh (the number of consecutive positions in
which a job is reinserted in the local search phase), and the
restart threshold (the maximum number of iterations
allowed without modifying the size of nondominated so-
lution set; once this limit is surpassed, the working set
automatically restarts).

4. Results and Discussion

4.1. Experimental Design. ,e lack of a common scheme to
assess rescheduling problems in a PFSP leads to the gen-
eration of databases that permit to work with diverse dis-
ruptions in the production environment (appearance of new
jobs, machine failures, etc.) and evaluate a multiobjective
optimization problem. ,e main database to assess PFSPs
was established by Taillard [61] whose instances were ini-
tially generated to be applied into single-objective envi-
ronments, minimization of the completion time of the jobs.

Subsequently, these instances were modified to incorporate a
due date to each job, similarly to Minella et al. [62] and
Hasija and Rajendran [63], allowing the rescheduling system
to be assessed under different objective functions, such as
total weighted tardiness (TWT) or maximum delay of jobs
[64].

In the proposed rescheduling system, after the original
schedule comes into effect, different disruptions may occur
over time. NEH heuristic was used [59, 65] to achieve the
original schedule in order to optimize themakespan. Minella
et al. [62] also used it to have a feasible original schedule.
Additionally, in our generated benchmark, the disruptions
to be considered and the way in which they occur are de-
fined. Although most rescheduling systems focus on one
type of disruption, in this paper we use three: machine faults,
new job arrivals, and variable processing times.

Machine faults were defined through an exponential
distribution defined by the level of failure reached by the
system, the mean time to repair (MTTR), and the mean time
between faults (MTBF). ,e breakdown level (Ag), per-
centage of machine failure time, was estimated by means of
the following expression:

Ag �
MTTR

MTTR + MTBF
. (20)

We have followed the machine faults parameterization
proposed by Adibi et al. [66] and Mason et al. [67]. Re-
garding the arrivals of new jobs, an exponential distribution
was also adopted with an arrival rate based on the quotient
between the degree of use of the system and the average
operating time [68]. Concerning the deviation of the job
processing times, they were randomly generated (1%
probability) with a variation factor of 30%, in line with the
parameters established by Swaminathan et al. [69] with a
symmetric triangular distribution.

From the 120 instances of Taillard, another 120
rescheduling instances were created, and from them a subset
of 50 was selected to be evaluated with the RIPG algorithm.
,e reason for not evaluating all 120 instances is the high
execution time required. ,us, for each of these instances, 5
rescheduling points were executed, during which the system
was updated according to the events in the flow shop en-
vironment, and, therefore, the technique was executed 5
times per instance. ,e 50 instances used were randomly
selected from the set of 120 Taillard Instances, excluding
those of greater size (with 500 jobs), because it is not usual to
work with such a high number of jobs in environments with
more than one objective function. At the website Instances &
Solutions, the following files have been included:

(i) Training instances used with the Irace Package
(ii) Evaluation instances
(iii) Pareto-front solutions from the RIPG for each one

of the 10 repetitions undertaken for each evaluation
instance

4.2. Validation of the RIPG Algorithm on Dubois-Lacoste
Instances in a Static, Biobjective Environment. Since we have

8 Complexity

not found a benchmark for the dynamic three-objective
problem in the literature, we adapted the algorithm to a
static, biobjective approach and used the multiobjective
performance metrics proposed by Dubois-Lacoste et al. [26]
as a way to validate the correct behaviour of the algorithm.
,e aim of Dubois-Lacoste et al. was minimizing both the
maximum completion time for the tasks and the total
weighted tardiness. ,e reason for selecting this environ-
ment is the ability to compare the results of the applied
algorithm with the best results obtained in the literature
through a Two-Phase Local Search + Pareto Local Search
(TP+ PLS) hybrid algorithm.

In our experiments, the RIPG metaheuristic used classic
parametrization as proposed in the literature [25] and
recommended for biobjective environments (see Table 1).

Each experiment was repeated 5 times (independently)
in order to evaluate the multiobjective metrics of hyper-
volume and the unary epsilon indicator (I1ε) on each of the
Dubois-Lacoste et al. instances [26]. Based upon a prelim-
inary statistical study with the Wilcoxon test, the RIPG
algorithm was inferred to behave in a similar way to the
TP+PLS algorithm in a static, biobjective environment, as
can be seen in the box plot in Figure 3. Similar results are
obtained with the unary multiplicative epsilon indicator, as
can be seen in Figure 4.

In Figure 5, a comparison between the Pareto fronts
obtained by the RIPG algorithm and the best results found in
the literature is shown [26] for some of the Taillard
Instances.

,e RIPG algorithm approaches the best Pareto fronts
obtained in the literature, following the same trends without
excessively deviating from the reference nondominated
solutions. New nondominated solutions have even been
detected in some cases, as can be seen in instances ta018 and
ta024.

4.3. Parameter Calibration. As classical parameters in static
environments could not adjust properly to dynamic sce-
narios, we have run a parameter calibration of RIPG in our
rescheduling multiobjective environment. ,e hardware
environment for experimentation consisted of a machine
with a Quad-Core Intel Xeon X5675 processor, 3.07GHz,
and 16GB of RAMmemory. ,e operating system used was
Windows 7 Enterprise Edition, 64 bit architecture. ,e

software was developed on the .NET platform with the C#
programming language using the Microsoft Visual Studio
2010 Development Framework.

In order to define the stopping criterion, we analysed
different approaches from the literature [58, 70–74]. Most
use a maximum execution time, calculated depending on the
size of the problem that is defined by the number of jobs and
machines that the system has available, as the stopping
criterion. For this study, the time limit was calculated with
the following equation: t � n × m2 × 100, where t is the time
inmilliseconds, n is the number of jobs, andm is the number
of machines. ,e above expression was used to calculate the

Table 1: Classical parametrization for the RIPG algorithm.

Parameter Default value
Size of the set of job solutions after the restart phase (working set) 100
k (number of consecutive elements eliminated in the greedy phase’s destruction
operation). 5

nsel (number of elements selected randomly in the local search phase). Dynamic
parameter dependent on the number of jobs in the instance to be solved.

nsel � ncount if ncount≤ n∗ 0.5,
else nsel � n∗ 0.5

n is the number of jobs and ncount is the number of times
that a solution has been selected

nneigh (consecutive positions where a job is reinserted in the local search phase). 5
Restart threshold (maximum number of iterations allowed without modifying
the size of the nondominated solutions set. Once this value is surpassed, the
working set randomly restarts).

2∗ n (where n is the number of jobs)

H
yp

er
vo

lu
m

e

1.0

0.8

0.6

0.4

0.2

RIPG TP + PLS

Figure 3: Box plot showing hypervolume in a biobjective
environment.

U
na

ry
 ep

sil
on

 in
di

ca
to

r

2.0

1.8

1.6

1.4

1.2

1.0

RIPG TP + PLS

Figure 4: Box plot showing the unary epsilon indicator in a
biobjective environment.

Complexity 9

execution time because both the number of jobs and the
number of machines played a role in the difficulty of the
problem to be solved. In addition, it allowed the use of more
calculation time in problems with greater complexity.

Likewise, the automatic configuration of the parameters
defined by the RIPG algorithm was proposed based on an
extension of the iterated F-Race method and implemented

in the Irace tool [75]. To accomplish this, hypervolume
was defined as a metric to evaluate the configuration
schemes, as this is the most common criterion in mul-
tiobjective problems. To select the training instances, a
complexity analysis was used depending on the results
provided in the literature regarding Taillard Instances
[26].

0

5000

10000

15000

20000

1250 1300 1350 1400
Makespan

Proposed metaheuristic
TP + PLS

To
ta

l w
ei

gh
te

d
ta

rd
in

es
s

(a)

Proposed metaheuristic
TP + PLS

0
2000
4000
6000
8000

10000
12000

1340 1360 1380 1400 1420 1440
Makespan

To
ta

l w
ei

gh
te

d
ta

rd
in

es
s

(b)

Proposed metaheuristic
TP + PLS

0

2000

4000

6000

8000

10000

1540 1560 1580 1600 1620
Makespan

To
ta

l w
ei

gh
te

d
ta

rd
in

es
s

(c)

Proposed metaheuristic
TP + PLS

0

200

400

600

800

1000

2220 2225 2230 2235 2240
Makespan

To
ta

l w
ei

gh
te

d
ta

rd
in

es
s

(d)

Proposed metaheuristic
TP + PLS

130000
135000
140000
145000
150000
155000
160000

2700 2750 2800 2850
Makespan

To
ta

l w
ei

gh
te

d
ta

rd
in

es
s

(e)

Proposed metaheuristic
TP + PLS

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

3100 3200 3300 3400
Makespan

To
ta

l w
ei

gh
te

d
ta

rd
in

es
s

(f)

Proposed metaheuristic
TP + PLS

0
200000
400000
600000
800000

1000000
1200000

6300 6500 6700 6900 7100

To
ta

l w
ei

gh
te

d
ta

rd
in

es
s

Makespan

(g)

Proposed metaheuristic
TP + PLS

0
1000000
2000000
3000000
4000000
5000000
6000000

10600 10700 10800 10900 11000 11100 11200

To
ta

l w
ei

gh
te

d
ta

rd
in

es
s

Makespan

(h)

Figure 5: Comparison of Pareto frontiers between the RIPG metaheuristic and the TP+PLS algorithm in a static, biobjective flow shop
environment. (a) Problem instance ta001, (b) problem instance ta002, (c) problem instance ta018, (d) problem instance ta024, (e) problem
instance ta031, (f) problem instance ta047, (g) problem instance ta084, and (h) problem instance ta100.

10 Complexity

As representative instances, a total of 6 problems were
selected (ta02, ta031, ta047, ta061, ta080, and ta024), in
which two have low complexity, two have medium com-
plexity, and two are of high complexity in terms of solving
difficulty. ,e criterion chosen to evaluate the complexity of
an instance was based on a trade-off between the number of
nondominated solutions found in the literature for bio-
bjective, static problems (makespan and total weighted
tardiness), combined with the relative error found in mono-
objective problems considering the makespan criterion. ,e
instances used in the calibration phase were not subse-
quently used for the evaluation of the algorithm in order to
avoid overfitting.

After analysing the Irace results, the RIPG algorithm
parameters’ configurations did not have a great impact on
the results; therefore, this algorithm is robust in terms of

parameter variation. In Table 2, the results of the optimal
Irace automatic configuration for the RIPG algorithm are
shown.

4.4. Performance of the RIPG Algorithm in Multiobjective
Dynamic Environments. With the aim of verifying the
performance of the RIPG metaheuristic, it was executed on
the 50 benchmark problems which were developed specif-
ically in this study for a flow shop rescheduling environment.
,e RIPG algorithm was executed 10 times (independently)
for each of the experiments in order to carry out a reliable
statistical analysis. As it was impossible to compare the RIPG
algorithm with other metaheuristics in the proposed envi-
ronment, the results obtained from the simulations in 4
selected instances are presented below. In Figures 6–9, the

Table 2: Automatic RIPG configuration via Irace.

Parameter Value Data
type

Range established
for Irace

Size of the set of job solutions after the restart phase (working
set). 124 Integer [50, 200]

k (number of consecutive elements eliminated in the greedy
phase’s destruction operation). 5 Integer [1, 10]

nsel (number of elements selected randomly in the local search
phase). Dynamic parameter dependent on the number of jobs
in the instance to be solved.

nsel � ncount if ncount≤ n∗ 0.1
else nsel � n∗ 0.1

n is the number of jobs and ncount is the
number of times that a solution has been

selected

Decimal [0.1, 1]

nneigh (consecutive positions where a job is reinserted in the
local search phase). 8 Integer [1, 12]

Restart threshold (maximum number of iterations allowed
without modifying the size of the nondominated solutions set.
Once this value is surpassed, the working set randomly
restarts).

3∗ n (where n is the number of jobs) Integer [1, 4]

Dynamic Pareto front in TA_FSRP_20 × 5 × 1

1400 1600 1800
Makespan

2000 2200 −2000 20
00 40
00 60

00 80
00

10
00

0

Total weighted tardiness12
00

0
14

00
0

16
00

0

St
ab

ili
ty

0

0
50
100
150
200
250
300
350
400

−50

Rescheduling point 1
Rescheduling point 2
Rescheduling point 3

Rescheduling point 4
Rescheduling point 5

Figure 6: RIPG Pareto front in TA_20_5_1.

Complexity 11

Pareto fronts obtained in the 4 chosen instances are shown.
Five Pareto fronts are shown from each instance, corre-
sponding to the five generated at each point of rescheduling.
We can see how the number of nondominated solutions
found goes down as the problem’s size increases.

All the Pareto fronts obtained from the RIPG algorithm
can be viewed at Instances & Solutions. https://www.dropbox.

com/s/l4mqu5p17wov5s6/Multiobjective Rescheduling-
Instances%26Solutions.zip?dl�0.

Finally, with the aim of viewing the rescheduling pro-
cesses when disruptions appear, a small instance was se-
lected (TA_20_5_3) to show the evolution of the
manufacturing schedule. It should be noted that, as this is a
small instance, machine breakdowns did not occur;

Dynamic Pareto front in TA_FSRP_50 × 5 × 4

3000
3500 4000 4500

Makespan
5000

5500 6000
220000

240000

Total weighted tardiness260000
280000

300000

St
ab

ili
ty

200

300

400

500

600

700

800

Rescheduling point 1
Rescheduling point 2
Rescheduling point 3

Rescheduling point 4
Rescheduling point 5

Figure 8: RIPG Pareto front in TA_50_5_4.

Dynamic Pareto front in TA_FSRP_20 × 10 × 3

1500
2000

2500

Makespan
3000

3500
4000−5000

0
5000

Total weighted tardiness10000
15000

20000

St
ab

ili
ty

−100

0

100

200

300

400

500

Rescheduling point 1
Rescheduling point 2
Rescheduling point 3

Rescheduling point 4
Rescheduling point 5

Figure 7: RIPG Pareto front in TA_20_10_3.

12 Complexity

https://www.dropbox.com/s/l4mqu5p17wov5s6/Multiobjective Rescheduling-Instances%26Solutions.zip?dl=0
https://www.dropbox.com/s/l4mqu5p17wov5s6/Multiobjective Rescheduling-Instances%26Solutions.zip?dl=0
https://www.dropbox.com/s/l4mqu5p17wov5s6/Multiobjective Rescheduling-Instances%26Solutions.zip?dl=0

however, the rest of the disruptions did appear (see Table 3).
In Figure 10, the schedule of the jobs at the different points of
rescheduling is shown. J16 is the first job in the initial base
schedule. NJX identifies new jobs. ,e base schedule is
presented (t� 0) as well as 5 rescheduling runs (at times

t� 232, t� 464, t� 696, t� 928, and t� 1160). Due to the
appearance of new jobs and variations in job processing
times, the schedule was modified. Figure 11 shows the RIPG
Pareto front for each rescheduling point in the instance
TA_20_5_3.

Table 3: Disruptions in TA_20_5_3.

Time Disruptions
t1 � 232 7 new jobs, 2 variations in processing time
t2 � 464 3 new jobs, 1 variation in processing time (job 9)
t3 � 696 4 new jobs, 4 variations in processing time
t4 � 928 5 new jobs, 3 variations in processing time
t5 �1160 4 new jobs, 2 variations in processing time

Dynamic Pareto front in TA_FSRP_50 × 20 × 1

4000 4500 5000 5500 6000

Makespan
70006500

7500 8000 8500

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0
10

00
00

40
00

0

Total weighted tardiness

30
00

0
20

00
0

10
00

0

St
ab

ili
ty

200
100
0

300
400
500
600
700
800

Rescheduling point 1
Rescheduling point 2
Rescheduling point 3

Rescheduling point 4
Rescheduling point 5

Figure 9: RIPG Pareto front in TA_50_20_1.

Initial sequence J16 J3 J20 J18 J7 J1 J12 J10 J5 J2 J9 J4 J19 J14 J17 J6 J13 J11 J8 J15
t0 = 0

NJ3 J10 J5 J9 J17 J4 J14 NJ5 J15 J11 J6 NJ7 J13 J19 J8 NJ2 NJ1 NJ6 NJ4 J2
t1 = 232

J11 J19 J9 J4 J17 NJ3 J15 J6 J14 J13 NJ8 NJ9 NJ1 NJ2 NJ10 J8 NJ4 NJ6
t2 = 464

J6 J13 J14 J15 NJ3 NJ8 NJ1 NJ2 NJ10 NJ13 NJ4 NJ11 J8 NJ6 NJ9 NJ14 NJ12
t3 = 696

NJ8 NJ3 NJ1 NJ12 NJ13 NJ2 NJ4 NJ11 J8 NJ9 NJ14 NJ17 NJ10 NJ6 NJ18 NJ15 NJ19 NJ16
t4 = 928

NJ21 NJ2 NJ11 J8 NJ9 NJ14 NJ17 NJ10 NJ16 NJ23 NJ6 NJ19 NJ15 NJ18 NJ22 NJ20
t5 = 1160

Makespan = 1840, TWT = 32310, stability = 31

Makespan = 2150, TWT = 15872, stability = 9

Makespan = 2323, TWT = 11816, stability = 21

Makespan = 1159=>rescheduling interval = 232

Makespan = 1445, TWT = 37885, stability = 158

Makespan = 1608, TWT = 32326, stability = 94

Figure 10: Schedule of jobs at the different rescheduling points in TA_20_5_3.

Complexity 13

5. Conclusions and Future Lines of Research

,is research proposes several relevant contributions. First,
a newMILPmathematical formulation has been proposed to
represent the dynamic, triobjective rescheduling problem to
be solved. Likewise, a set of problems (benchmark instances)
has been defined to model dynamic rescheduling environ-
ments, including the specification of different disruptions
which can arise in a production environment. Additionally,
a rescheduling architecture has been designed and imple-
mented, based on a predictive-reactive strategy with periodic
rescheduling. Moreover, the RIPG metaheuristic has been
applied and its proper operation in dynamic rescheduling
systems verified.

To validate the proposed approach and having found no
references in the literature, a benchmark based on a static
biobjective environment was used. It is important to note that
RIPG algorithm approaches the best Pareto frontiers obtained
in the literature, following the same trends without exces-
sively deviating from the reference nondominated solutions
set in a static biobjective environment. New nondominated
solutions have even been detected in some cases, as can be
seen in instances ta018 and ta024. Likewise, RIPG is very
robust because any parametrization of the algorithm yields
similar results in terms of the median value. As it has been
impossible to compare the RIPG algorithm with other
metaheuristics in the proposed environment, due to the lack
of techniques applied in such problems, Pareto frontiers
obtained for several instances of problems of different sizes
have been shown. ,e number of nondominated solutions
found goes down as the problem’s size increases.

For future lines of research, it may be useful to delve
deeper into analysing the influence of the base schedule

(baseline) used to evaluate the stability objective function on
the algorithm’s results. In addition, although this paper has
analysed all the experiments using 5 rescheduling points, the
dynamic system could be evaluated for a variable number of
rescheduling points between 0 and 1000, as Sabuncuoglu
and Karabuk [76] considered in their work. Likewise, the
RIPG metaheuristic could be adjusted to dynamic situations
in problems known asmany-objective optimization, in which
the number of objective functions is greater than three.
Lastly, another existing metaheuristic could be adapted to
resolve this problem, so that the results may be compared
with those obtained through RIPG.

Data Availability

Instances and Solutions Dataset referred in this paper can be
accessed at https://doi.org//10.17632/4p4jcwdwpt.2 (Men-
deley Website).

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

References

[1] M. R. Garey, D. S. Johnson, and R. Sethi, “,e complexity of
flowshop and Jobshop scheduling,” Mathematics of Opera-
tions Research, vol. 1, no. 2, pp. 117–129, 1976.

[2] G. Lebbar, A. El Barkany, A. Jabri, and I. El Abbassi, “Hybrid
metaheuristics for solving the blocking flowshop scheduling
problem,” International Journal of Engineering Research in
Africa, vol. 36, pp. 124–136, 2018.

[3] Z. I. M. Hassani, A. El Barkany, A. Jabri, I. El Abbassi, and
M. Darcherif, “New approach to integrate planning and

Dynamic Pareto front in TA_FSRP_20 × 5 × 3

1200 1400 1600 1800 2000
Makespan

2200 2400 2600

20
00

0
15

00
0

30
00

0
35

00
0

40
00

0
45

00
0

50
00

0

25
00

0

Total
weig

hted
 tar

diness

10
00

0
50

00

St
ab

ili
ty

−100

0

100

200

300

400

500

Rescheduling point 1
Rescheduling point 2
Rescheduling point 3

Rescheduling point 4
Rescheduling point 5

Figure 11: RIPG Pareto front in TA_20_5_3.

14 Complexity

https://doi.org//10.17632/4p4jcwdwpt.2

scheduling of production system: heuristic resolution,” In-
ternational Journal of Engineering Research in Africa, vol. 39,
pp. 156–169, 2018.

[4] Z. I. M. Hassani, A. El Barkany, I. El Abbassi, A. Jabri, and
M. Darcherif, “New model of planning and scheduling for
job-shop production system with energy consideration,”
Management and Production Engineering Review, vol. 10,
no. 1, pp. 89–97, 2019.

[5] E. Zitzler and L. ,iele, “Multiobjective evolutionary algo-
rithms: a comparative case study and the strength Pareto
approach,” IEEE Transactions on Evolutionary Computation,
vol. 3, no. 4, pp. 257–271, 1999.

[6] J. Knowles, E. ,iele, and E. Zitzler, “A tutorial on the per-
formance assessment of stochastic multiobjective optimizers,”
Computer Engineering and Networks Laboratory (TIK), ETH
Zurich, Zurich, Switzerland, 2006.

[7] E. Zitzler, L. ,iele, M. Laumanns, C. M. Fonseca, and
V. G. Fonseca da, “Performance assessment of multiobjective
optimizers: an analysis and review,” IEEE Transactions on
Evolutionary Computation, vol. 7, no. 2, pp. 117–132, 2003.

[8] E. Zitzler, D. Brockhoff, and L. ,iele, “,e hypervolume
indicator revisited: on the design of Pareto-compliant indi-
cators via weighted integration,” in Evolutionary Multi-Cri-
terion Optimization, S. Obayashi, K. Deb, C. Poloni,
T. Hiroyasu, and T. Murata, Eds., Springer, Berlin, Heidel-
berg, Germany, pp. 862–876, 2007.

[9] G. Lebbar, I. El Abbassi, A. Jabri, A. El Barkany, and
M. Darcherif, “Multi-criteria blocking flowshop scheduling
problems: formulation and performance analysis,” Advances
in Production Engineering & Management, vol. 13, no. 2,
pp. 136–146, 2018.

[10] G.Minella, R. Ruiz, andM. Ciavotta, “A review and evaluation
of multiobjective algorithms for the flowshop scheduling
problem,” INFORMS Journal on Computing, vol. 20, no. 3,
pp. 451–471, 2008.

[11] H. Amirian and R. Sahraeian, “Multi-objective differential
evolution for the flow shop scheduling problem with a
modified learning effect,” International Journal of Engineering
- Transactions C: Aspects, vol. 27, no. 9, p. 1395, 2014.

[12] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
Elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2,
pp. 182–197, 2002.

[13] H. Ishibuchi and T. Murata, “Multi-objective genetic local
search algorithm,” in Proceedings of IEEE International
Conference on Evolutionary Computation, pp. 119–124,
Nagoya, Japan, May 1996.

[14] N. Karimi and H. Davoudpour, “A high performing meta-
heuristic for multi-objective flowshop scheduling problem,”
Computers & Operations Research, vol. 52, pp. 149–156, 2014.

[15] G. Lebbar, I. El Abbassi, A. El Barkany, A. Jabri, and
M. Darcherif, “Solving the multi objective flow shop sched-
uling problems using an improved NSGA-II,” International
Journal of Operations and Quantitative Management, vol. 24,
no. 3, pp. 211–230, 2018a.

[16] B.-B. Li and L. Wang, “A hybrid quantum-inspired genetic
algorithm for multiobjective flow shop scheduling,” IEEE
Transactions on Systems, Man and Cybernetics, Part B (Cy-
bernetics), vol. 37, no. 3, pp. 576–591, 2007.

[17] T. Pasupathy, C. Rajendran, and R. K. Suresh, “A multi-
objective genetic algorithm for scheduling in flow shops to
minimize the makespan and total flow time of jobs,” Inter-
national Journal of Advanced Manufacturing Technology,
vol. 27, pp. 804–815, 2006.

[18] D. Y. Sha and H.-H. Lin, “A particle swarm optimization for
multi-objective flowshop scheduling,” International Journal of
Advanced Manufacturing Technology, vol. 45, no. 7-8,
pp. 749–758, 2009.

[19] M. A. Allouche, “Manager’s preferences modeling within
multi-criteria flowshop scheduling problem: a metaheuristic
approach,” International Journal of Business Research and
Management, vol. 1, no. 2, pp. 33–45, 2010.

[20] A. Jabri, A. El Barkany, and A. El khalfi, “Multi-pass turning
operation process optimization using Hybrid Genetic-Sim-
ulated Annealing algorithm,” Modelling and Simulation in
Engineering, vol. 2017, Article ID 1940635, 10 pages, 2017.

[21] S.-W. Lin and K.-C. Ying, “Minimizing makespan and total
flowtime in permutation flowshops by a bi-objective multi-
start simulated-annealing algorithm,” Computers & Opera-
tions Research, vol. 40, no. 6, pp. 1625–1647, 2013.

[22] T. K. Varadharajan and C. Rajendran, “A multi-objective
simulated-annealing algorithm for scheduling in flowshops to
minimize the makespan and total flowtime of jobs,” European
Journal of Operational Research, vol. 167, no. 3, pp. 772–795,
2005.

[23] M. Gravel, W. L. Price, and C. Gagné, “Scheduling continuous
casting of aluminum using a multiple objective ant colony
optimization metaheuristic,” European Journal of Operational
Research, vol. 143, no. 1, pp. 218–229, 2002.

[24] A. Rabanimotlagh, “An efficient ant colony optimization
algorithm for multiobjective flow shop scheduling problem,”
International Journal of Mechanical, Aerospace, Industrial,
Mechatronic and Manufacturing Engineering, vol. 5, no. 3,
pp. 598–604, 2011.

[25] M. Ciavotta, G. Minella, and R. Ruiz, “Multi-objective se-
quence dependent setup times permutation flowshop: a new
algorithm and a comprehensive study,” European Journal of
Operational Research, vol. 227, no. 2, pp. 301–313, 2013.

[26] J. Dubois-Lacoste, M. López-Ibáñez, and T. Stützle, “A hybrid
TP + PLS algorithm for bi-objective flow-shop scheduling
problems,” Computers & Operations Research, vol. 38, no. 8,
pp. 1219–1236, 2011.

[27] K. Deb and H. Jain, “An evolutionary many-objective opti-
mization algorithm using reference-point-based non-
dominated sorting approach, Part I: solving problems with
box constraints,” IEEE Transactions on Evolutionary Com-
putation, vol. 18, no. 4, pp. 577–601, 2014.

[28] Y. Yuan,H. Xu, andB.Wang, “An improvedNSGA-III procedure
for evolutionary many-objective optimization,” in Proceedings of
the 2014 Annual Conference on Genetic and Evolutionary Com-
putation, pp. 661–668, New York, NY, USA, 2014.

[29] J. Kuster, D. Jannach, and G. Friedrich, “Applying local
rescheduling in response to schedule disruptions,” Annals of
Operations Research, vol. 180, no. 1, pp. 265–282, 2008.

[30] K. Lee, F. Zheng, and M. L. Pinedo, “Online scheduling of
ordered flow shops,” European Journal of Operational Re-
search, vol. 272, no. 1, pp. 50–60, 2019.

[31] W. Liu, Y. Jin, and M. Price, “New scheduling algorithms and
digital tool for dynamic permutation flowshop with newly
arrived order,” International Journal of Production Research,
vol. 55, no. 11, pp. 3234–3248, 2017.

[32] Z. Zakaria and S. Petrovic, “Genetic algorithms for match-up
rescheduling of the flexible manufacturing systems,” Com-
puters & Industrial Engineering, vol. 62, no. 2, pp. 670–686,
2012.

[33] A. Pfeiffer, B. Kádár, and L. Monostori, “Stability-oriented
evaluation of rescheduling strategies, by using simulation,”
Computers in Industry, vol. 58, no. 7, pp. 630–643, 2007.

Complexity 15

[34] R. J. Abumaizar and J. A. Svestka, “Rescheduling job shops
under random disruptions,” International Journal of Pro-
duction Research, vol. 35, no. 7, pp. 2065–2082, 1997.

[35] S. F. Smith, “Reactive scheduling systems,” in Intelligent
Scheduling Systems, D. E. Brown and W. T. Scherer, Eds.,
Springer, Boston, MA, USA, 1995.

[36] L. K. Church and R. Uzsoy, “Analysis of periodic and event-
driven rescheduling policies in dynamic shops,” International
Journal of Computer Integrated Manufacturing, vol. 5, no. 3,
pp. 153–163, 1992.

[37] G. E. Vieira, J. W. Herrmann, and E. Lin, “Analytical models
to predict the performance of a single-machine system under
periodic and event-driven rescheduling strategies,” Interna-
tional Journal of Production Research, vol. 38, no. 8,
pp. 1899–1915, 2000.

[38] A. B. Itayef, T. Loukil, and J. Teghem, “Rescheduling a per-
mutation flowshop problems under the arrival a new set of
jobs,” in Proceedings of the International Conference on
Computers Industrial Engineering, pp. 188–192, Troyes,
France, July 2009.

[39] A. Liefooghe, M. Basseur, J. Humeau, L. Jourdan, and
E.-G. Talbi, “On optimizing a bi-objective flowshop sched-
uling problem in an uncertain environment,” Computers &
Mathematics with Applications, vol. 64, no. 12, pp. 3747–3762,
2012.

[40] W. Liu, Y. Jin, andM. Price, “Newmeta-heuristic for dynamic
scheduling in permutation flowshop with new order arrival,”
?e International Journal of Advanced Manufacturing Tech-
nology, vol. 98, pp. 1817–1830, 2018.

[41] J. Xiong, L. Xing, and Y. Chen, “Robust scheduling for multi-
objective flexible job-shop problems with random machine
breakdowns,” International Journal of Production Economics,
vol. 141, no. 1, pp. 112–126, 2013.

[42] H. Iima, “Genetic algorithm approach to multiobjective
rescheduling on parallel machines,” IFAC Proceedings Vol-
umes, vol. 38, no. 1, pp. 139–144, 2005.

[43] B. Zhang, Q. Pan, L. Gao, and Y. Zhao, “MOEA/D for multi-
objective hybrid flowshop rescheduling problem,” in Pro-
ceedings of the ASME 2018 13th International Manufacturing
Science and Engineering Conference, College Station, TX,
USA, June 2018.

[44] X. He, S. Dong, and N. Zhao, “Research on rush order in-
sertion rescheduling problem under hybrid flow shop based
on NSGA-III,” International Journal of Production Research,
vol. 58, no. 4, pp. 1161–1177, 2019.

[45] G. E. Vieira, J. W. Herrmann, and E. Lin, “Rescheduling
manufacturing systems: a framework of strategies, policies,
and methods,” Journal of Scheduling, vol. 6, no. 1, pp. 39–62,
2003.

[46] D. Ouelhadj and S. Petrovic, “A survey of dynamic scheduling
in manufacturing systems,” Journal of Scheduling, vol. 12,
no. 4, pp. 417–431, 2009.

[47] J. Razmi, R. T. Moghaddam, and M. Saffari, “A mathematical
model for a flow shop scheduling problem with fuzzy pro-
cessing times,” Journal of Industrial Engineering, vol. 3,
pp. 39–44, 2009.

[48] P. Fattahi and A. Fallahi, “Dynamic scheduling in flexible job
shop systems by considering simultaneously efficiency and
stability,” CIRP Journal of Manufacturing Science and Tech-
nology, vol. 2, no. 2, pp. 114–123, 2010.

[49] R. Ramezanian, M. B. Aryanezhad, and M. Heydari, “A
mathematical programming model for flow shop scheduling
problems for considering Just in time production,” Interna-
tional Journal of Industrial Engineering and Production

Research, vol. 21, no. 2, 2010, https://www.researchgate.net/
publication/49591605_A_Mathematical_Programming_
Model_for_Flow_Shop_Scheduling_Problems_for_
Considering_Just_in_Time_Production.

[50] K.,örnblad,Mathematical Optimization in Flexible Job Shop
Scheduling, Modelling, Analysis, and Case Studies, Chalmers
University of Technology and University of Gothenburg,
Göteborg, Sweden, 2013.

[51] M. M. Yenisey and B. Yagmahan, “Multi-objective permu-
tation flow shop scheduling problem: literature review,
classification and current trends,” Omega, vol. 45, pp. 119–
135, 2014.

[52] J. Li, Q. Pan, and K. Mao, “A discrete teaching-learning-based
optimisation algorithm for realistic flowshop rescheduling
problems,” Engineering Applications of Artificial Intelligence,
vol. 37, pp. 279–292, 2015.

[53] F. Yuan and M. Yin, “A novel fuzzy model for multi-objective
permutation flow shop scheduling problem with fuzzy pro-
cessing time,” Advances in Mechanical Engineering, vol. 11,
no. 4, pp. 1–9, 2019.

[54] J. Bukchin and M. Masin, “Multi-objective lot splitting for a
single product m-machine flowshop line,” IIE Transactions,
vol. 36, no. 2, pp. 191–202, 2004.

[55] P. M. Chaudhari, D. R. V. Dharaskar, and D. V. M. ,akare,
“Computing the most significant solution from Pareto front
obtained in multi-objective evolutionary,” International
Journal of Advanced Computer Science and Applications,
vol. 1, no. 4, pp. 63–68, 2010.

[56] H. A. Taboada and D. W. Coit, “Data clustering of solutions
for multiple objective system reliability optimization prob-
lems,”Quality Technology &Quantitative Management, vol. 4,
no. 2, pp. 191–210, 2007.

[57] P. Valledor, A. Gomez, P. Priore, and J. Puente, “Solving
multi-objective rescheduling problems in dynamic permu-
tation flow shop environments with disruptions,” Interna-
tional Journal of Production Research, vol. 56, no. 19,
pp. 6363–6377, 2018.

[58] R. Ruiz and T. Stützle, “A simple and effective iterated greedy
algorithm for the permutation flowshop scheduling problem,”
European Journal of Operational Research, vol. 177, no. 3,
pp. 2033–2049, 2007.

[59] M. Nawaz, E. E. Enscore, and I. Ham, “A heuristic algorithm
for the m-machine, n-job flow-shop sequencing problem,”
Omega, vol. 11, no. 1, pp. 91–95, 1983.

[60] C. Rajendran, “Heuristics for scheduling in flowshop with
multiple objectives,” European Journal of Operational Re-
search, vol. 82, no. 3, pp. 540–555, 1995.

[61] E. Taillard, “Benchmarks for basic scheduling problems,”
European Journal of Operational Research, vol. 64, no. 2,
pp. 278–285, 1993.

[62] G. Minella, R. Ruiz, and M. Ciavotta, “Restarted iterated
Pareto Greedy algorithm for multi-objective flowshop
scheduling problems,” Computers & Operations Research,
vol. 38, no. 11, pp. 1521–1533, 2011.

[63] S. Hasija and C. Rajendran, “Scheduling in flowshops to
minimize total tardiness of jobs,” International Journal of
Production Research, vol. 42, no. 11, pp. 2289–2301, 2004.

[64] P. Perez-Gonzalez and J. M. Framinan, “Scheduling permu-
tation flowshops with initial availability constraint: analysis of
solutions and constructive heuristics,” Computers & Opera-
tions Research, vol. 36, no. 10, pp. 2866–2876, 2009.

[65] E. Taillard, “Some efficient heuristic methods for the flow shop
sequencing problem,” European Journal of Operational Re-
search, vol. 47, no. 1, pp. 65–74, 1990.

16 Complexity

https://www.researchgate.net/publication/49591605_A_Mathematical_Programming_Model_for_Flow_Shop_Scheduling_Problems_for_Considering_Just_in_Time_Production
https://www.researchgate.net/publication/49591605_A_Mathematical_Programming_Model_for_Flow_Shop_Scheduling_Problems_for_Considering_Just_in_Time_Production
https://www.researchgate.net/publication/49591605_A_Mathematical_Programming_Model_for_Flow_Shop_Scheduling_Problems_for_Considering_Just_in_Time_Production
https://www.researchgate.net/publication/49591605_A_Mathematical_Programming_Model_for_Flow_Shop_Scheduling_Problems_for_Considering_Just_in_Time_Production

[66] M. A. Adibi, M. Zandieh, and M. Amiri, “Multi-objective
scheduling of dynamic job shop using variable neighborhood
search,” Expert Systems with Applications, vol. 37, no. 1,
pp. 282–287, 2010.

[67] S. J. Mason, S. Jin, and C. M.Wessels, “Rescheduling strategies
for minimizing total weighted tardiness in complex job
shops,” International Journal of Production Research, vol. 42,
no. 3, pp. 613–628, 2004.

[68] L. Tang, W. Liu, and J. Liu, “A neural network model and
algorithm for the hybrid flow shop scheduling problem in a
dynamic environment,” Journal of Intelligent Manufacturing,
vol. 16, no. 3, pp. 361–370, 2005.

[69] R. Swaminathan, M. E. Pfund, J. W. Fowler, S. J. Mason, and
A. Keha, “Impact of permutation enforcement when mini-
mizing total weighted tardiness in dynamic flowshops with
uncertain processing times,” Computers & Operations Re-
search, vol. 34, no. 10, pp. 3055–3068, 2007.

[70] A. Abdelhadi and L. H. Mouss, “An efficient hybrid approach
based on multi agent system and emergence method for the
integration of systematic preventive maintenance policies in
hybrid flow-shop scheduling to minimize makespan,” Journal
of Mechanical Engineering Research, vol. 5, no. 6, pp. 112–122,
2013.

[71] A. Costa, F. A. Cappadonna, and S. Fichera, “A hybrid
metaheuristic approach for minimizing the total flow time in
A flow shop sequence dependent group scheduling problem,”
Algorithms, vol. 7, no. 3, pp. 376–396, 2014.

[72] S. Hatami, R. Ruiz, and C. A. Romano, “Two simple con-
structive algorithms for the distributed assembly permutation
flowshop scheduling problem,” in Managing Complexity,
C. Hernández, A. López-Paredes, and J. M. Pérez-Rı́os, Eds.,
Springer, Cham, Switzerland, 2014.

[73] D. L. de Souza, F. S. Lobato, and R. Gedraite, “A comparative
study using bio-inspired optimization methods applied to
controllers tuning,” Frontiers in Advanced Control System,
vol. 7, 2012, http://www.intechopen.com/books/frontiers-in-
advanced-control-systems/a-comparative-study-using-bio-
inspired-optimization-methods-applied-to-controllers-
tuning.

[74] E. Vallada and R. Ruiz, “Genetic algorithms with path
relinking for the minimum tardiness permutation flowshop
problem,” Omega, vol. 38, no. 1-2, pp. 57–67, 2010.

[75] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres,
M. Birattari, and T. Stützle, “,e irace package: iterated racing
for automatic algorithm configuration,” Operations Research
Perspectives, vol. 3, pp. 43–58, 2016.

[76] I. Sabuncuoglu and S. Karabuk, “Rescheduling frequency in
an FMS with uncertain processing times and unreliable
machines,” Journal of Manufacturing Systems, vol. 18, no. 4,
pp. 268–283, 1999.

[77] P. Czyzżak and A. Jaszkiewicz, “Pareto simulated
annealing—a metaheuristic technique for multiple-objective
combinatorial optimization,” Journal of Multi-Criteria Deci-
sion Analysis, vol. 7, no. 1, pp. 34–47, 1998.

[78] H. Ishibuchi, T. Yoshida, and T. Murata, “Balance between
genetic search and local search in memetic algorithms for
multiobjective permutation flowshop scheduling,” IEEE
Transactions on Evolutionary Computation, vol. 7, no. 2,
pp. 204–223, 2003.

Complexity 17

http://www.intechopen.com/books/frontiers-in-advanced-control-systems/a-comparative-study-using-bio-inspired-optimization-methods-applied-to-controllers-tuning
http://www.intechopen.com/books/frontiers-in-advanced-control-systems/a-comparative-study-using-bio-inspired-optimization-methods-applied-to-controllers-tuning
http://www.intechopen.com/books/frontiers-in-advanced-control-systems/a-comparative-study-using-bio-inspired-optimization-methods-applied-to-controllers-tuning
http://www.intechopen.com/books/frontiers-in-advanced-control-systems/a-comparative-study-using-bio-inspired-optimization-methods-applied-to-controllers-tuning

