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ABSTRACT 

Although mechanical fatigue is considered stochastic in nature and there is a trend in industry towards 
reliability-based design, most popular high cycle stress-based fatigue models applied by industry still relies 
on deterministic methods. This is evidenced by the absence of integral probabilistic approach for 
predicting local and global probabilities of failure of structures in fatigue analysis commercial codes. In 
this paper, a probabilistic extension of the classical Basquin linear and bi-linear fatigue models, which are 
the most commonly promote by standards (ASTM, UNE…) and Guidelines (FKM, DNV GL, VDI…), is 
proposed. The proposed models include the scale effect and the probabilistic character of the S-N field. 
This seems to be a judicious and recommendable option for the practicing engineer to face the real fatigue 
design of components under varying loading while ensuring safety enhancement. The proposed enhanced 
model is implemented into the NCode2020 software to illustrate the possible implementation in general 
commercial codes focused on fatigue design. Finally, the applicability of the procedure proposed is 
illustrated by means of a practical example that includes the evaluation of experimental results and the 
prediction of failure for an Open-Hole-Plate. 
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Nomenclature 

 

𝐴 Slope of Basquin model 

𝐴𝑖  𝑖th slope of bi-linear curve 

𝐵 Vertical axis intersection of Basquin model.  

𝐵𝑖  𝑖th vertical axis intersection of bi-linear model. 

𝐵𝐷   Damage variable of the Basquin and bi-linear models  

GLM Generalized local model 

𝐺𝑃 Generalized parameter (driving force) 

𝑀 Miner number 

𝑁 Number of cycles 

𝑁  Number of cycles corresponding to load steps of Miner rule  

N’ Equivalent number of cycles 

CDF Cumulative distribution function 

Pfail Probability of failure 

Pglobal Global probability of failure 

Snew Specimen/finite element size 

Soriginal Original size of the specimens tested in the experimental program 

𝑆𝑖 𝑖th subdomain of S-N in bi-Linear model 

λ Weibull location parameter 

β Weibull shape parameter 

δ Weibull size parameter 

Δσ Stress range 
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1. Introduction 

Components and structures subject to variable loading over time might lead to premature failures due to 

fatigue damage [1,2]. Moreover, the stress state associated with the fatigue failure remains far below the 

static material strength, which often leads to unexpected failures. For that reason, developing 

methodologies for accurate estimation of the fatigue strength of materials is crucial in order to ensure 

safe design and maintenance of structures and components. 

Fatigue models are mainly focused on predicting the service life (𝑁) of components in terms of a particular 

generalized parameter (𝐺𝑃) defined by the failure criterion selected, such as equivalent range of stresses 

or strains, Smith–Watson–Topper parameter [3], Fatemi-Socie parameter [4], among others [5]. This 

relation 𝐺𝑃-𝑁 is determined experimentally by performing tests at different 𝐺𝑃 values and registering 

the number of cycles until failure. Despite the large scatter associated with those experimental results, 

the vast majority of models devoted to fit the 𝐺𝑃-𝑁 field are purely deterministic.  

The two models most used to fit the 𝐺𝑃-𝑁 field in research and industry environments are the Basquin 

linear model [6], and the bi-linear model. Some examples confirming this affirmation could be the ASTM 

E739-10 standard [7] and VDI 2230 guideline [8], that considers the use of Basquin approach; and the 

EN1993-1-9 (Eurocode 3) standard [9], FKM [10], IIW [11] and DNVGL [12,13] guidelines prone to use the   

Bi-linear approach. This situation leads researchers and design engineers to develop and apply new 

alternative models to predict the service life (𝑁) of components subject to a certain load history (referred 

to a driving force here denoted generalized parameter 𝐺𝑃) to overcome the deterministic point of view 

implied by those standards or guidelines which promote the lack of probabilistic information, particularly, 

in the previous fatigue characterization phase. 

According to a recent article [14] that reviews the state of the art about probabilistic S-N fields defined by 

statistical distributions, fatigue life prediction is feasible to be performed by deterministic models implying 

only mean or median S-N curve estimations, but the availability of reliable P-S-N fields of materials is 

crucial in the design of real components to take into account the influence of fatigue life scatter. During 

the last decades, some authors have introduced different probabilistic models, such as the Weibull Fatigue 

regression model proposed by Castillo and Canteli [15], or the probabilistic model proposed by V.V. 

Bolotin [15, 16] or  A.M. Freudenthal [17, 18], among others [19–23]. Although these probabilistic models 

present a clear advance in the evaluation of experimental fatigue results, researchers and engineers are 

still reluctant to apply them to the practical design, possibly because the supposedly complicated 

implementation compared to that implied in the deterministic approaches. For this reason, in this work, 

a comprehensible probabilistic extension of the simplest deterministic, and most used models, i.e. the 

linear and bi-linear ones, to characterize the 𝐺𝑃-𝑁 field are presented,  in order to promote a probabilistic 

practical design of structures and components based on more safe and reliable structural integrity 

principles, which include the size effect as a natural, concomitant improvement of those models. 
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With this aim, a model is to carry out probabilistic predictions taking into account the scale effect is 

introduced. A new way of assessing fatigue damage accumulation in a probabilistic way is also presented. 

The probabilistic method proposed is applied to the characterization of a 42CrMo4 steel [25] and, 

subsequently, to the probabilistic failure prediction of a real component. 

This paper is organized as follows: Firstly, the probabilistic approach applied to the linear and bi-linear 

models is presented. Following, the procedure is introduced to take into account the scale effect and the 

damage accumulation in a probabilistic way. Thereafter, the applicability of the procedure proposed is 

illustrated by means of a practical example. Finally, the models and results are discussed, and the main 

conclusions of the paper summarized. 

2. Probabilistic fatigue characterization models 

In this section, two probabilistic models to characterize the fatigue crack initiation have been developed 

and implemented based on the Basquin Model, which establish a linear relation between 𝐺𝑃 and 𝑁 in a 

log-log scale. 

2.1. Linear fatigue-life probabilistic model 

The linear fatigue life probabilistic approach presented in this section is based on the well-known Basquin 

model, which is defined as: 

log(𝐺𝑃) = 𝐴 · log(𝑁) + 𝐵 (1) 

  

where N is the number of cycles until fatigue failure, GP is the generalized parameter defined by the failure 

criterion selected (∆𝜎, ∆𝜀, 𝑆𝑊𝑇 …), and, finally, 𝐴 and 𝐵 are the slope and the vertical intercept of the line 

defined by the model. Assuming that the distribution of the probability of failure does not depend on the 

𝐺𝑃 level in a logarithmic scale (See Fig. 1), the percentiles lines are parallel to each other at log-log scale, 

so that the Basquin damage (𝐵𝐷) representing the distribution of the fatigue failure can be defined as: 

𝐵𝐷 = log(𝐺𝑃) − 𝐴 · log(𝑁) (2) 
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Figure 1. Illustration of the linear fatigue-life probabilistic model proposed 

 

 

Figure 2. Flowchart of the Linear fatigue-life probabilistic model  

The definition of 𝐵𝐷  allows us to develop a new approach to characterize the probabilistic fatigue field (𝑝-

𝐺𝑃-𝑁) based on experimental results associated with different load levels. This approach is illustrated in 

figure 2, and the main steps are briefly described below. 

Step 1: Experimental program (𝐺𝑃, 𝑁) 

Obviously, the first step in a material characterization process consists in performing the experimental 

program in order to get data related to the phenomenon under study. In this case, the fatigue tests are 

usually performed under constant amplitude loading, which implies constant amplitude of remote 

stresses (𝐺𝑃 = ∆𝜎), representing the parameter most commonly associated with fatigue failure. 

Nevertheless, this model could be used for any other type of fatigue parameter (e.g. 𝐺𝑃 = ∆𝜀), which 

varies according to type of test performed to guarantee constancy of those values during the experimental 

test (e.g. stress or displacement amplitude, SWT parameter, etc.). The results of this step are represented 

as different points on the 𝐺𝑃-𝑁 field (See Fig. 2). 
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Step 2: Optimal Slope (A) 

The Basquin model assumes linear relation between 𝐺𝑃 and 𝑁 on a logarithmic scale (See Eq.(1)), so that 

the best slope (A) associated to this relation can be obtained by the linear least squares method: 

 

𝐴 =
𝑛 ∑ (log(𝐺𝑃𝑖) · log(𝑁𝑖))𝑛

𝑖=1 − ∑ (log(𝐺𝑃𝑖))𝑛
𝑖=1 · ∑ (log(𝑁𝑖))𝑛

𝑖=1

𝑛 ∑ (log(𝑁𝑖)
2)𝑛

𝑖=1 − (∑ log(𝑁𝑖))𝑛
𝑖=1

2  
(3) 

  

where n is the number experiments performed.  

 Step 3: Basquin Damage Values (𝐵𝐷) 

Once the slope of the line is obtained, the value of the Basquin damage associated with each experimental 

failure is calculated, as the combination of the value of the 𝐺𝑃 imposed and the number of cycles until 

failure, given by Eq.(2). 

The Basquin damage associated with each specimen failure is interpreted as the translation to the vertical 

axis of each point in a parallel way to the optimal slope obtained at the previous step (See Fig. 3).  

 

Figure 3. Illustration of the interpretation of the Basquin fatigue Damage  

Step 4: Cumulative distribution function (cdf) of failure  

At this step, a probability of failure will be assigned to each 𝐵𝐷  value obtained in the previous step and 

the cumulative distribution function (cdf) will be fitted. To do it, all  𝐵𝐷 values are sorted in ascending 

order and after using a median rank estimator [26,27] the probability of failure of each of them is 

established: 

𝑃𝑓𝑎𝑖𝑙𝑖
=

𝑖 − 0.3

𝑛 + 0.4
 

(4) 

where i corresponds to the number associated with each experiment after being sorted in ascending order 

according to the 𝐵𝐷  values, and n is the total number of experiments. 
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After that, the results are fitted to a three-parametric Weibull cdf [28],  

𝑃𝑓𝑎𝑖𝑙 = 1 − 𝑒𝑥𝑝 {− (
𝐵𝐷 − λ

𝛿
)

𝛽

} ; 𝐵𝐷 > 𝜆 
(5) 

    where  𝜆,  𝛽 and  𝛿 are the location, shape and scale Weibull parameters respectively. This fitting 

process is easily performed using the maximum likelihood method or the Weibull probabilistic paper. 

Step 5: Definition of the p-GP-N field  

Finally, the GP-N lines identified as iso-probability failure lines are obtained by combining Eq. (2) and 

Eq.(5): 

log(𝐺𝑃) = 𝐴 · log(𝑁) + {[−log(1 − 𝑃)]
1
𝛽 · 𝛿 + 𝜆} 

(6) 

thus, providing the 𝑝-𝐺𝑃-𝑁 field shown at the final step of Fig.2.  

Notice that this methodology allows us to perform the joint evaluation of all experimental results 

associated with different 𝐺𝑃 values, so that replicating tests at the same 𝐺𝑃 level [29], as customarily 

performed in current fatigue programs the last decades, may be avoided without any influence on the 

data assessment. In fact, it implies potentially either reduction of costs associated to the experimental 

fatigue campaign, because less number of specimens needs to be tested, or reliability enhancement of 

the data assessment, as a result of the advantageous test planning implied by more free and possible 

uniform choice of the GP in the experimental program.  

2.2. Bi-linear fatigue-life probabilistic model 

As in the previous model, the Bi-linear Basquin damage (𝐵𝐷)  is defined in this case allowing us to develop 

a new approach to characterize the probabilistic fatigue field (𝑝-𝐺𝑃 − 𝑁). This approach is illustrated on 

figure 4, which comprises the main steps as briefly described below. 

Figure 4. flowchart of the Bi-Linear fatigue-life probabilistic model proposed 
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Step 2: Optimal slope (𝐴1 and 𝐴2) and knee-Point (𝐺𝑃𝐾𝑛𝑒𝑒 , 𝑁𝐾𝑛𝑒𝑒) 

In order to obtain the knee-point and optimal slope of the lines associated to each fatigue region, two 

data sets are created. 

To do it, the failures are sorted in ascending order of the number of cycles to failure (𝑁) obtained 

experimentally and the sets are defined as follows: 

𝑓𝑖𝑟𝑠𝑡 𝑠𝑒𝑡 → 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠 ∈   [1: 𝑚] 

𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑒𝑡 → 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠  ∈ [𝑚 + 1: 𝑛] 

𝑚 ∈ (1, 𝑛) 

(7) 

where 𝑚 is an intermediate point and 𝑛 is the total number of test performed. Initially, the number of 

experiments associated with each set is unknown, so that the n-2 different possible m values are 

considered. After that, the optimal slopes (𝐴1, 𝐴2) (Eq. (8)) and intersections (𝐵1 , 𝐵2) (Eq. (9))  with the 

vertical axis for each set are obtained for each 𝑚 value by applying the least squared method. 

𝐴1 =
𝑚 ∑ (log(𝐺𝑃𝑖) · log(𝑁𝑖))𝑚

𝑖=1 − ∑ (log(𝐺𝑃𝑖))𝑚
𝑖=1 · ∑ (log(𝑁𝑖))𝑚

𝑖=1

𝑚 ∑ (log(𝑁𝑖)
2)𝑚

𝑖=1 − (∑ log(𝑁𝑖))𝑚
𝑖=1

2  
(8) 

𝐴2 =
(𝑛 − 𝑚) ∑ (log(𝐺𝑃𝑖) · log(𝑁𝑖))𝑛

𝑖=𝑚+1 − ∑ (log(𝐺𝑃𝑖))𝑛
𝑖=𝑚+1 · ∑ (log(𝑁𝑖))𝑛

𝑖=𝑚+1

(𝑛 − 𝑚) ∑ (log(𝑁𝑖)2)𝑛
𝑖=𝑚+1 − (∑ log(𝑁𝑖))𝑛

𝑖=𝑚+1
2  

 

 

𝐵1 =
∑ log(𝐺𝑃𝑖) − 𝐴1

𝑚
𝑖=1 ∑ log(𝑁𝑖)

𝑚
𝑖=1

𝑚
 

(9) 

𝐵2 =
∑ log(𝐺𝑃𝑖) − 𝐴2

𝑛
𝑖=𝑚+1 ∑ log(𝑁𝑖)

𝑛
𝑖=𝑚+1

𝑛 − 𝑚
 

 

Finally, the R-Squared index of each pair of sets is calculated and the sum of both R-Squared index pair is 

identify as the reference parameter to determine what is the optimal m value (the highest the R-Squared 

value, the better the solution). The knee point is then calculated by finding the intersection between the 

optimal pair of lines: 

log(𝑁𝑘𝑛𝑒𝑒) = −
𝐵1 − 𝐵2

𝐴1 − 𝐴2

 
(10) 

𝐺𝑃𝑘𝑛𝑒𝑒 = 𝐴1 · log(𝑁𝑘𝑛𝑒𝑒) + 𝐵1  

Step 3: Boundary between the two regions. 

The S-N domain is divided in two subdomains (𝑆1 and 𝑆2). The leftmost domain, related to lowest cycles, 

will be linked to the 𝐴1 slope, whereas the rightmost domain, related to highest cycles, will be linked to 

𝐴2 slope. A log-log straight boundary is proposed to define the boundary between both subdomains. In 

this work, the boundary between both regions is automatically determined without user’s intervention. 

This boundary must ensure the compatibility between the failure probability for both domains. In other 

words, the cumulative distribution function associated with the Basquin failure hazard in both domains 

should be as similar as possible on the boundary region (See Fig. 5).  
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Once the boundary region is defined, the calculation of fatigue damage will be different according to the 

position of each experiment. On the one hand, the Basquin damage associated to the experimental results 

located at the left part of the boundary limit is calculated as in the linear model, by transferring the results 

directly to the vertical axis (GP) by Eq.(2) (See Fig (3)). On the other hand, the experimental results linked 

to the 𝑆2 domain are transferred to the boundary between both domains and, after that, to the vertical 

axis according to Eq. (2).  

To define the linear log-log boundary (See Fig. 5) between both domains the following algorithm is used: 

a. Boundary line is defined by a point and slope. The point is defined as the intersection between the 

two optimal log-log lines defined at step 2 of this section. All knee point candidates for boundary 

slope are considered from the open interval defined by the 𝐴1 and 𝐴2 slopes, Ab ∈

(−∞, A1) ∪ (A2, +∞). 

b. 𝐵𝐷  corresponding to every pair of GP-N is calculated and classified according to their domain 

(𝑆1 𝑜𝑟 𝑆2).  

c. The P-value of k-sample Anderson-Darling test [30] related to sets of domains 𝑆1 and 𝑆2 is 

calculated in order to measure their similitude. 

d. Proceed with the next slope candidate.  

Steps b-d are repeated until the 𝑛𝑐  candidates of boundary slope are considered. The one with the 

highest p-value is finally selected.  

Once the slopes and the boundary line are defined, the 𝐵𝑑  sets of the optimal slope are merged into a 

single set. The result of this step is the damage (𝐵𝐷) associated to each experiment, that is given as a 

combination of number of cycles (𝑁) until failure and the 𝐺𝑃 value.  

  

(a) (b) 

Figure5. (a) Schematic illustration of a non-optimal slope obtained during optimization process, and the 

pdfs associated to each domain;(b) Schematic Illustration of an optimal solution, and pdfs reached for 

the Bi-Linear Probabilistic fatigue Model  
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Step 4: Cumulative distribution function (CDF) of failure  

As in the linear probabilistic model, a probability of failure is assigned to each 𝐵𝐷  value obtained in the 

previous step (See Eq(4)) and a Weibull cdf is fitted  (See Eq (5)).  The procedure in the Bi-linear case is 

the same as in the linear case. 

Step 5: Definition of the 𝑝-𝐺𝑃-𝑁 field 

Finally, the 𝑝-𝐺𝑃-𝑁 field is defined in two parts divided by the boundary line defined in step 3: 

log(𝐺𝑃) = 𝐴1 · log(𝑁) + {[−𝑙𝑜𝑔(1 − 𝑃)]
1
𝛽 · 𝛿 + 𝜆} ; 𝐿𝑒𝑓𝑡 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑝 − 𝐺𝑃 − 𝑁 

(11) 

log(𝐺𝑃) = 𝐴2 · log(𝑁) + {[−𝑙𝑜𝑔(1 − 𝑃)]
1
𝛽 · 𝛿 + 𝜆} ; 𝑅𝑖𝑔𝑡ℎ 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑝 − 𝐺𝑃 − 𝑁 

 

It is important to mention that this Bi-linear model allows all experimental results in the same cdf to be 

taken into account, independently of the GP value associated to each of them or their position in the 𝑝-

𝐺𝑃-𝑁 field (left or right part). This is a consequence of the continuity between the two regions on the 

boundary limit, which is a condition the model must necessarily fulfil.  

3. Probabilistic prediction of fatigue failure 

According to the models described above, the probability of failure associated to any pair of 𝐺𝑃 and 𝑁 

can be easily obtained. Nevertheless, further advantages in the classical linear and bi-linear models could 

be achieved by incorporating the scale effect [28–30] and a probabilistic cumulative damage concept in the 

damage analysis of fatigue under variable loading even based on the classical deterministic Miner rule[34]. 

Both implements are already included in some regression Weibull models [15] representing a notably 

advance in the component design. In fact, they are indispensable tools for guaranteeing transferability of 

the experimental results from the laboratory tests to the practical component design contributing to more 

reliable fatigue failure predictions 

3.1. Scale and stress concentration effects  

It is well known that the fatigue failure is influenced by the scale effect [28,29] though usually it is 

disregarded by classical deterministic fatigue models. This may be assigned to the lack of an analytical 

equation to perform the transformation from one scale to another. On the contrary, the probabilistic 

fatigue models introduced in this paper imply the scale effect in their definition according to the Weibull 

cdf expression: 

𝑃𝑓𝑎𝑖𝑙 = 1 − 𝑒𝑥𝑝 {−
𝑆𝑛𝑒𝑤

𝑆𝑟𝑒𝑓

(
𝐵𝐷 − λ

𝛿
)

𝛽

} ; 𝐵𝐷 > 𝜆 
(12) 

where 𝑆𝑟𝑒𝑓  is the reference size of the experimental specimens used to obtain the 𝑝-𝐺𝑃-𝑁 field, and 𝑆𝑛𝑒𝑤  

is the size for which the probability of failure wants to be known. As can be seen, the 𝑝-𝐺𝑃-𝑁 field derived 

from the steps described in the previous sections is unequivocally associated with the size of the tested 

specimens through the scale parameter of the Weibull model (𝛿). Thus, the real fatigue lives of a  
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component  should be in agreement with those predicted from the experimental results on specimens in 

the laboratory, while the use of Eq.(6) or Eq.(11) to predict the fatigue life of any other specimen or 

component, without any scale effect correction, is incorrect.  For that reason, a correction of the GP 

distribution must be performed according to the scale effect: 

log(𝐺𝑃) = 𝐴 · log(𝑁) + {[−
𝑆𝑟𝑒𝑓

𝑆𝑛𝑒𝑤

𝑙𝑜𝑔(1 − 𝑃)]

1
𝛽

· 𝛿 + 𝜆} 

(13) 

This modification makes it possible to carry out fatigue life predictions of larger components than those 

being tested in the laboratory (tests at reduced scale), which is the most obvious advantage, but it also 

allows further fatigue life predictions to be performed based on 𝐺𝑃 distributions obtained from finite 

element (FEM) calculations. Taking into account the local 𝐺𝑃 values at each finite element for a given 

mesh, the element size (𝑆),  and the number of cycles (𝑁), it is possible to assess the probability of fatigue 

failure of any finite element using Eq. (13). The graphical representation of the local probability of failure 

for the finite element mesh is known as hazard map [35], which provides to the design engineer a practical 

valuable information to check or improve the current design. Once the local probability of failure at each 

finite element is determined, the weakest link principle is applied to calculate the global probability of 

failure of the whole component using the expression: 

𝑃𝑓𝑎𝑖𝑙𝑔𝑙𝑜𝑏𝑎𝑙
= 1 − ∏(1 − 𝑃𝑓𝑎𝑖𝑙𝑗

)

𝑛𝑒

𝑗=1

= 1 − ∏(𝑒𝑥𝑝 {−
𝑆𝑛𝑒𝑤𝑗

𝑆𝑟𝑒𝑓

(
𝐵𝐷𝑗

− λ

𝛿
)

𝛽

}

𝑛𝑒

𝑗=1

 
(14) 

where j is the element under local study varying from 1 to the total number of elements (ne). 

3.2. Damage accumulation  

The most commonly used fatigue damage accumulation model is the Miner rule [34], which proposes 

damage being given as the relation between the number of cycles applied to the component (𝑁𝑖) at a 

certain 𝐺𝑃 level and the number of cycles associated with the expected fatigue life of the material (𝑁𝑖) 

for that GP level: 

𝑀 = ∑
𝑁𝑖

𝑁𝑖

𝑛

𝑖=1

 
(15) 

As can be seen, according to the Miner rule, the total fatigue damage for a certain load history is calculated 

as the sum of the partial damages associated to each cycle (or block of cycles), 𝑖 ∈ [1, 𝑚]. The classical 

Miner rule establishes deterministically that the component fails for 𝑀 = 1.  

On the other hand, the combination of the Miner rule with the models proposed in this paper enables the 

probabilistic interpretation of the Miner number to be accomplished. Since the Miner number represents 

the cumulative damage of the material fatigue strength, it follows that the fatigue strength of this material 

under varying load can be defined in a probabilistic way using the models proposed above. Thus, once the 

percentile (𝑃) to which the critical number of cycles to failure  𝑁𝑖  are referred to, is selected, the 

probabilistic proposal applied to the Miner rule establishes that failure occurs when M = 1 for the  
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probability of failure represented by that percentile.  Consistent with this new approach, if the value of 

the Miner number is known for a given percentile after applying a load history, it would be possible to 

calculate the new Miner number associated with any other probability of failure, say between 0 and 0.99 

and, inversely, to obtain for which probability of failure the result becomes. 

Alternatively to the procedure described above, it is possible to apply a recursive process that accumulates 

probability of failure [15], [36] for the different loading blocks applied. Figure 6 shows a graphical 

explanation of the different steps implied in the accumulation of probability of failure as described below.  

 

Fig. 6. Procedure for accumulating probability of failure  

In Fig. 6 , the hypothetical first pair of GP and N applied are represented as 𝐺𝑃1 − 𝑛1, and the damage 

associated to this loading block can be calculated by Eq.(16), 𝐵𝐷1 . After that, a new loading block defined 

by 𝐺𝑃2 − 𝑛2 is be added. To do that, it is necessary to transform the number of cycles associated to the 

previous blocks (𝑁1) to the equivalent number of cycles associated to 𝐺𝑃2 while maintaining the same 

probability of failure (𝑁1
′), i.e. the same damage level, once the first step is concluded and before the 

second one is applied, which implies:  

𝐵𝐷1 = 𝐵𝐷1′ → log(𝐺𝑃1) − 𝐴 · log(𝑁1) = 𝑙𝑜𝑔(𝐺𝑃2) − 𝐴 · log(𝑁1
′) (16) 

Clearing 𝑁1
′ in the previous equation, the equivalent number of cycles is given by: 

 𝑁1
′ = 𝑁1 (

𝐺𝑃2

𝐺𝑃1

)

1
A

 (17) 

Finally, the accumulated damage after the second block (𝑛2) is calculated as:  

𝐵𝐷2 = log(𝐺𝑃2) − 𝐴 · log(𝑁1
′ + 𝑛2)  

 

(18) 

This procedure is repeated as many times as loading blocks are defined in the loading history. In the 

illustrative example shown on Fig.6, the process is repeated four times and, at the end of each loading 



12 

 

block application, the fatigue damage obtained (𝐵𝐷𝑖 ; 𝑖 ∈ [1,4]) is related to a probability of failure by Eq 

(14) (𝑃𝑓𝑎𝑖𝑙𝑖
; 𝑖 ∈ [1,4]). It is important to remark that the final probability of failure obtained from this 

procedure coincides with that calculated using the Miner rule following the procedure formerly described. 

 

4. Model’s implementation in a commercial software  

Probabilistic damage approach reported in this analysis is implemented in a Hbm Prenscia NCode 2020 

commercial code. The selection of this software is motivated on one hand by the dedicated fatigue 

analysis built-in routines and tools available in the code. Among other, this software includes routines for 

loading and processing multiple finite element code results, multiple stress combinations for generalized 

parameters, multiples mean stress corrections routines, time series generation, analysis, and processing 

routines, rainflow methods, post-processing libraries, etc. All these procedures make implementing a new 

fatigue approach in Ncode simpler than making it from scratch. On the other hand, Ncode is positioned 

as one of the standards durability analysis code in a broad range of industries. The customization 

capabilities of the software enable the implementation of new durability and fatigue approaches with 

almost the same functionality and interface than Ncode native fatigue and durability approaches. 

Accordingly, the learning curve of a skilled Ncode analyst for applying the new probabilistic approach is 

very low, making the dissemination and application of this new approach within industry easier. 

4.1 Description of the implementation 

The approach reported in this article is implemented by combining Custom Analysis glyphs and Custom 

engine using python v.3.6 programming language. Fig. 7 reports a schematic workflow of Custom Analysis 

Glyph. 

The Custom Analysis glyph workflow retrieves the centroidal stress tensors, element by element, from 

the unitary load case solution. Then, it combines the stress tensor with its corresponding load time history. 

After that, within the Custom Stress Combination routine, the stress tensor is transformed into the GP, in 

this way converting a tensor time history into a scalar one. In this user case, maximum absolute principal 

stress is considered as 𝐺𝑃. The 𝐺𝑃 time history is then processed by the Ncode built-in four-point rainflow 

algorithm, decomposing time history in multiple pairs of stress range and mean stress values. Each of 𝐺𝑃 

pair computed by the rainflow is then passed to the custom engine together with the fatigue S-N material 

properties. The Custom Engine routine processes the input information and outputs accumulated 

elemental local probability according to the implemented Probabilistic Basquin and bi-linear approach. 

The Custom Analysis routine proceeds with all pairs of mean and range stress derived from the rainflow 

analysis (inner loop) and with all the finite elements of the model (outer loop) until local probability of 

failure is computed for all the elements in the considered domain. After that, the global probability of 

failure is estimated.  
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Fig. 7. NCODE workflow algorithm 

 

The communication between Custom Engine and Custom Analysis is defined by four python functions to 

be programmed according to the applied probabilistic fatigue approach. Each of the routines has a 

particular purpose, namely: 

• Initialise():defines and initializes the customized variables of the implemented probabilistic 

approach.  

• Reset():is called by NCODE every time it a new element is considered. Exception is produced 

during the first element where Initialise function is called instead of Reset.   

• CalcCycleDamage():deals with the core of the new probabilistic approach. It computes probability 

of failure of each element based upon the generalized parameter calculated by Ncode and the 

material properties related to the analyzed finite element. 
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• GetCustomResults(): defines the output variable to be tabulated or graphically plotted in contours. 

In our case, this function basically defines element failure probability and global part failure 

probability. This function interface with  

4.2. Environment for final users. 

One of the main advantages of implementing the predictive models on a commercial software is the 

improvement on the widespread of the used of them, which will be accessible for fatigue expert users on 

a friendly environment. Fig. 8 depicts the interface of the implemented workflow in NCODE. The following 

list which includes the most important glyphs or modules:   

• Input FE: includes the unit load finite element solution calculated by finite element software.  

• Time history generator glyph: generates load time history. 

• XY display glyph: plots a cycle of the applied dynamic loading. 

• Custom Analysis:  represents the main glyph of the approach model. (See Previous Section)  

• Statistic glyph: computes the cumulative failure probability of the whole part. 

• FE display glyph: plots contours of probability of failure for all the elements in the FEM. 

• Data Value Display glyph: lists the accumulated probability of failure element by element. 

• Multicolumn manipulation glyph: merges applied load amplitude and accumulated probability of 

failure of the part in a single variable.  

• Data Value Display glyph (2): displays the applied force amplitude and corresponding 

accumulated probability of failure.  

 

Fig. 8. Overview of the graphical NCODE workflow interface 
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5. Example of application 

5. 1. Case study 

To illustrate the applicability of the methodologies introduced in this paper, the experimental results from 

a fatigue characterization campaign on 42CrMo4 steel [25] (See Figure 9 and Table A1),  are used to derive 

the probabilistic S-N field (p-S-N). Thereafter, the results are used to perform an example of prediction of 

failure of a component. This prediction also includes a study of the influence of the mesh size on the final 

fatigue failure prediction. 

 

Fig. 9. Experimental results obtained during the fatigue characterization of the 42CrMo4 Steel [25] 

According to the work of Boller and Seeger [25] the driving force associated with the fatigue failure of this 

material is the range of the maximum principal stresses. Accordingly, GP = ∆σmax is adopted for the 

characterization and prediction phases of this case study. 

 

 
Figure 10. a) Geometry of the specimens used to perform the fatigue characterization and detail of the 

area considered as the reference size; b) Geometry of the specimens used for the illustration of prediction 

of probability of failure. 

Once the p-S-N fields are calculated, they are used to obtain the probability of failure of a component 

subject to a local stress field completely different than the one present on the experimental 

characterization programme. Figure 10 shows the specimen geometry used to perform the fatigue 

characterization and to illustrate how the probability of failure is predicted. As could be expected, the 

stress field on the characterization specimen is almost uniform on its central part, and stress 

concentrations are avoided as much as possible. On the contrary, high stress concentration are common 
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in the design of components, usually originated by holes or notches, which differs from the load conditions 

applied on the laboratory during the characterization. To solve this problem, the methodology described 

in this paper enables the local distribution of the stress amplitudes in the fatigue problem to be take into 

account by converting it into a probability of failure contour plot and a global probability of failure. With 

the aim of demonstrating how these predictions are derived on a real case basis, a 6mm thick off-centred 

Open-Hole-Plate [37] (see Fig. 10) is used. The Open-Hole-Plate is subject to uniaxial cyclic constant 

amplitude loading at 𝑟 =-1 ratio, when the relation between probability of failure and dynamic loading 

amplitude loading is obtained for three different number of cycles: 105, 5 ⋅ 105 and 106 cycles. About 100 

simulations are carried out at monotonically increasing stress range for each approach and the three 

targeted number of cycles.  

The following subsections describes the implementation and results of the fitting p-S-N field and the 

predictions of failure for the case under study. 

5. 2. Fitting the p-S-N field for the proposed models 

Following the methodologies described above, the GP-N experimental results (Fig.2) are fitted to a 

Basquin linear and bi-linear probabilistic models. In the case of the Basquin model, the first step consists 

in obtaining the optimal slope using the last squared method, which results 𝐴1 = −0,0728. After that, 

the denominated Basquin damage (𝐵𝐷), as defined in this work, is calculated for each pair of GP-N 

according to Eq (2). Following, the 𝐵𝐷  are fitted to a Weibull CDF (See Figure 11(a)), which allows a relation 

between the probability of failure, the number of cycles and the values of the GP to be established (See 

Figure 11(b)). Note that this relation is associated with the size of the specimens tested in the laboratory 

(See Figure 10(a)). Considering that the most common cause of fatigue failure may be assigned to surface 

defects, the size to be considered is the surface of the specimens, instead of their volume. For the 

specimens tested in [25], the reference area is 419,4 mm2. 

On the other hand, the same fatigue data can be evaluated using the bi-linear probabilistic model. In this 

case, the first step consists in the calculation of the optimal knee-point (𝐺𝑃𝐾𝑛𝑒𝑒 =

   693.69 MPa; 𝑁𝐾𝑛𝑒𝑒 =  3872 )  and the optimal slopes of both lines of the model (𝐴1 = −0,1107 ;  𝐴2 =

−0,0504). After that the angle defining the boundary limit between the two regions and the line defined 

by this angle and the knee-point (log 𝐺𝑃 =  −5.5316e − 4 ⋅ log 𝑁 +  2.8432) is defined. The next step 

consists in the calculation of the damage associated to each experiment at failure, so that all experimental 

points must be transferred to the vertical axis. To do that, the points on the right side of the field are 

transferred to the boundary line with a slope equal to  𝐴2 and, thereafter, all experimental points are 

transferred to the vertical axis with the slope equal to  𝐴1. Following, the 𝐵𝐷  are fitted to a Weibull CDF 

(See Figure 11(c)) and the p-GP-N field is represented (See Figure 11(d)). 
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a) 

 

b) 

 

c) 

 

d) 

 

 Fig. 11. Results for the linear(a,b) and bi-linear(c,d) probabilistic model: Estimated Weibull cdf; (a,c) 

Resulting p-GP-N field, (b, d). Sref=419,4 mm2. 

 

5. 3. Failure prediction  

The first step on the failure prediction for the components under study consists in the implementation of 

a finite element calculation in order to obtain the local stresses. To do that, Ansys Workbench Mechanical 

2019 R3 software is used to derive the stress field for a reference tensile load (10 kN). Modelling assumes 

that load level is low enough to keep the material within the linear elastic range and under infinitesimal 

strains. Accordingly, a linear relationship between force and displacement is considered and any loading 

state of the Open-Hole-Plate subject to axial load is estimated from the solution of a single unitary loaded 

structural finite element model scaled by the corresponding applied load. 

In order to check the suitability of the mesh size and its influence on the stress field and on the prediction 

of fatigue failure, three different mesh sizes are considered using hexahedral solid 186 three-dimensional 

iso-parametric quadratic elements. A reference mesh size is first defined, and in the other two mesh sizes 

the element edge length is reduced to the half of its predecessors. Figure 12 shows the considered three 

mesh types. 
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(a) (b) (c) 

Fig. 12. Mesh discretization applied to the open hole: a) coarse; b) medium; c) fine  

 

Figure 13 reports the maximum principal stress contour map of the unitary load case for the three mesh 

densities. Combining Richardson extrapolation and the grid convergence index the exact value of the 

maximum absolute principal stress in the most critical point of the coupon is estimated. The study reports 

an error on stresses estimation at the most critical point lower than 0.3% for all meshes, according to the 

Richardson Extrapolation. This means that all meshes can be used to estimate the real stress field across 

the component, so that any of them can be chosen to perform the fatigue analysis. 

 

   
(a) (b) (c) 

Fig. 13. Absolute principal stress at the open hole for the three mesh densities: a) coarse; b) medium;  

c) fine. 
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Once the maximum principal stresses are obtained using FEM, they are introduced into the custom 

probabilistic fatigue program implemented in NCode (See Section 4) in order to convert them into local 

failure probability contour plots. As an example, Figure 14 depicts the contour plot of local failure 

probability for  5 ⋅ 105 cycles for the Basquin linear  (a-b) and bi-linear (c-d) probabilistic approaches, 

associated to a global probability of failure of 99%, which corresponds to an applied cyclic force amplitude 

of  85 kN and 115 kN for the Basquin linear  (a-b) and bi-linear approaches, respectively.  

 

 

 
 

 
 

  
(a) (b) 

Fig. 14. Contour plot of local probability of failure estimated by Basquin and Bi-linear approach: a) 

Basquin  𝐹𝑎 = 115 𝑘𝑁, 5 ⋅ 105 cycles (front and back face); b) Bi-linear  𝐹𝑎 = 85 𝑘𝑁, 5 ⋅ 105 cycles 

(front and back face).  

 

Furthermore, the software enables the cumulative failure probability to be obtained in terms of the 

applied force amplitude. Figure 15 depicts an example of the relation between the dynamic loading 

amplitude and the probability of failure associated to the three targeted number of cycles (105, 5 ⋅ 105 

and 106 𝑐𝑦𝑐𝑙𝑒𝑠). Figure 15 also shows the influence of the discretization considered for the three mesh 

densities (all CDFs associated with each model are overlapping).  
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Fig. 15. Cumulative probability of failure vs force amplitude for the linear and bi-linear approach for  

105, 5 ⋅ 105 and 106 cycles. 

 

Finally, Table 1 shows the values of the force amplitude associated to different probabilities of failure for 

the target number of 105, 5 ⋅ 105 and 106 cycles. As can be seen, the relative error between both models, 

Basquin and Bi-linear, is lower than 9% in all cases. 

Table. 1. Cyclic force amplitude prediction for 𝑝𝑓𝑎𝑖𝑙 = 0.01 0.05 and 0.1 

Cycles Value 𝑝𝑓𝑎𝑖𝑙  = 0.01 𝑝𝑓𝑎𝑖𝑙  = 0.05 𝑝𝑓𝑎𝑖𝑙  = 0.10 

105 cycles 

Basquin 8.2217 8.5812 8.8098 

Double Basquin 8.5021 8.6475 8.7149 

Relative Error -3.4% -0.8% 1.1% 

5 ⋅ 105 cycles 

Basquin 7.3314 7.6529 7.8549 

Double Basquin 7.8336 7.9694 8.0302 

Relative Error -6.6% -4.1% -2.2% 

106 cycles 

Basquin 6.9788 7.2854 7.4774 

Double Basquin 7.5631 7.6948 7.7541 

Relative Error -8.0% -5.5% -3.6% 
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6. Discussion 

The paper presents two alternatives to fit a probabilistic fatigue field based on Basquin linear or bi-linear 

models. The main advantage of extending these models by a simple, but powerful, probabilistic approach 

is the general recognition that the Basquin model finds in the industrial environment. Almont all standards 

and guidelines are focused on the derivation and use of linear and bilinear fatigue models, so that 

practically all engineers related to reliability calculations are familiar with these models.  

This paper would allow to introduce some probabilistic aspects related to the characterization of the 

fatigue experiments, and the used of 𝑝-𝑆-𝑁 fields properly during the design of real components. 

Furthermore, the transferability of the scatter show during the characterization process can be easily 

transfer to the prediction of failure, which would lay the foundation for starting probabilistic fatigue life 

assessments in industry, where commercial software is generally used to make deterministic calculations, 

despite the great variability associated with fatigue failure. 

Regarding the results obtained on the probabilistic prediction of failure shown in this paper, it is important 

to mention that both approaches (linear and bilinear) have reported different predictions of failure, but 

the main differences appear for high probabilities of failure, which is not the area of interest. In the lower 

part of the cdf obtained, associated to lower probabilities of failure, both approaches give similar results, 

although the linear model seems to be more conservative in all cases. Nevertheless, it is crucial to highlight 

that it con not confirmed that the Linear Model will be always more conservative than the Bilineal model, 

because it depends on the material 𝑝-𝑆-𝑁 field and the stress distribution of the component to be 

designed. 

Note that the model is implemented for different mesh sizes in order to confirm it to be mesh-

independent, even though the size of each mesh element is used in the model to obtain the local and 

global probabilities. 

7. Conclusions 

The main conclusions to be drawn from the former Sections are the following:  

- A probabilistic extension of the linear and bilinear Basquin fatigue models is developed, which 

enables them to be defined as p-S-N fields. 

- An algorithm is provided to define the boundary between the two regions in which a bilinear 

fatigue model is divided based on the compatibility between the failure distributions on both 

regions. Contrary to other models, it is automatically determined excluding  subjective factors, i.e. 

user’s criteria. 

- A methodology for considering the scale effect is presented that ensures transferability of the 

experimental results from fatigue characterization programs to the design of real components. It 

allows the local distribution of stress amplitude, or any other generalized parameter, on the scale 

effect to be considered.  
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- Based on the proposed enhanced models, a methodology is developed to achieve a probabilistic 

analysis of damage accumulation. It enables probabilistic failure prediction for components 

subject to non-constant amplitude loading, in particular random loading, to be performed.  

- The models and methodologies presented on this paper are exemplary implemented into a 

commercial software (NCode) in order to promote their dissemination to the practical structural 

and component fatigue design. 

- A practical example is chosen to illustrate the applicability of the proposed enhanced models and 

scale effect methodology presented in this paper.   
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APPENDIX A: 

 

Table A1. Experimental results evaluated 

Cycles 
Stress 

 (MPa) 

248 890,4 

260 947,5 

280 934,8 

300 933,7 

750 822,8 

770 790,6 

1050 793,1 

1270 796,6 

5000 679,2 

7700 665,3 

7950 668,8 

17200 649,6 

18400 637,3 

27900 639,5 
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81000 595,7 

90000 595,7 

152000 586,4 

195000 553,3 

290000 558,7 

 


