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Abstract

The aggregation of compositional data vec-
tors arises naturally in many fields of ap-
plication. In particular, the weighted cen-
troid is inherently linked to the process of
mixing two or more compounds. However,
as natural and simple as this process may
be, the weighted centroid does not fit the
standard definition of an aggregation func-
tion since there is no order relation, nor as-
sociated monotonicity, in the setting of com-
positional data. In this conference paper, we
prove that the weighted centroid fits within
the framework of penalty-based aggregation
(which does not build upon the property of
monotonicity) and discuss how all convex hull
internal functions for the aggregation of mul-
tidimensional data could potentially be used
for the aggregation of compositional data.
Interestingly, the weighted centroid is indeed
monotone when seen as a convex hull internal
function for the aggregation of multidimen-
sional data.

Keywords: Aggregation, Compositional
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1 Introduction

Penalty functions are a common tool in data aggre-
gation [6, 7, 20]. Intuitively, a penalty function mea-
sures the disagreement of a list of objects with a single
object. Most existing aggregation processes coming
from many different fields – such as the method of
Kemeny [14] in social choice theory, the median pro-
cedure [3] in relational calculus and the search for the
closest string [16] in computer science – can be seen
as processes aiming at minimizing some appropriate
penalty function given the list of objects to be aggre-
gated [18].

Fields such as soil science, chemistry, biology and
environmental science make daily use of some basic
techniques for the aggregation of compositional data.
In particular, whenever two or more compounds are
mixed (with a known mixing ratio), the composition
of the obtained construct is known to be given by the
weighted centroid of the compositions of the original
compounds. This simple function for the aggregation
of compositional data, which has been overly-studied
in the field of statistics, can also be seen as a pro-
cess aiming at minimizing some appropriate penalty
function given the compositions of the different com-
pounds. In this paper, we will position this function
within the framework of penalty-based data aggrega-
tion and we will discuss some alternatives that – al-
though they might lack a natural physical interpreta-
tion – could be used for the aggregation of composi-
tional data.

The remainder of the paper is structured as follows.
Section 2 is devoted to recalling some preliminary no-
tions in the field of aggregation theory. In Section 3,
we introduce the weighted centroid for compositional
data and illustrate how it is linked to a mixture pro-
cess. The weighted centroid is proved to fit within the
framework of penalty-based aggregation in Section 4.
A discussion on the use of convex hull internal func-
tions for the aggregation of multidimensional data in
the context of the aggregation of compositional data is
addressed in Section 5. We end with some conclusions
in Section 6.

2 Aggregation theory: State of the art

Aggregation functions [5, 12] represent the core of one
of the most important spin-offs of the fuzzy set com-
munity: aggregation theory.

Definition 1 Consider a bounded poset (X,≤, 0, 1)
and n ∈ N. A function A : Xn → X is called an
(n-ary) aggregation function on (X,≤, 0, 1) if
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(i) it satisfies the boundary conditions, i.e.,
A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1;

(ii) it is monotone, i.e., for any x,y ∈ Xn, the fact
that xi ≤ yi for any i ∈ {1, . . . , n} implies that
A(x) ≤ A(y).

For historical reasons, and because they surely are the
most natural examples of aggregation function, idem-
potent aggregation functions (also referred to as aver-
aging functions or means) have been deeply studied by
researchers coming from different fields [4, 13].

Definition 2 Consider a poset (X,≤) and n ∈ N. A
function A : Xn → X on (X,≤) is called an (n-ary)
averaging function on (X,≤) if

(i) it it is idempotent, i.e., A(x, . . . , x) = x, for any
x ∈ X;

(ii) it is monotone.

Although both definitions above have been historically
studied in the context of real numbers, in the last
decades we are witnessing an increasing interest in the
more generic framework of aggregation on (bounded)
posets [8, 15].

A prominent family of averaging functions is that of
penalty-based aggregation functions, which are built
around the notion of a penalty function [6, 7, 20]. In
this context, the property of monotonicity is often-
times forfeited. Although the definition of a penalty-
based aggregation function is typically restricted to
the aggregation of real numbers, in a recent paper [18]
we proposed a natural generalization of this type of
function built upon the notion of a betweenness rela-
tion. Note that posets are probably the most common
example of set equipped with a betweenness relation,
but we can find more general examples such as the set
of compositional data vectors (which will be discussed
here in the upcoming sections).

Definition 3 A ternary relation B on a non-empty
set X is called a betweenness relation if it satisfies the
following three properties:

(i) Symmetry in the end points: for any x, y, z ∈ X,
it holds that

(x, y, z) ∈ B ⇔ (z, y, x) ∈ B .

(ii) Closure: for any x, y, z ∈ X, it holds that(
(x, y, z) ∈ B ∧ (x, z, y) ∈ B

)
⇔ y = z .

(iii) End-point transitivity: for any o, x, y, z ∈ X, it
holds that(

(o, x, y) ∈ B ∧ (o, y, z) ∈ B
)
⇒ (o, x, z) ∈ B .

A betweenness relation provides a set with some de-
sirable semantics. Thus, we can construct a penalty
function measuring the disagreement of a single ob-
ject with a given list of objects to be aggregated that
preserves the semantics provided by a given between-
ness relation.

Definition 4 Consider n ∈ N, a set X and a between-
ness relation B on Xn. A function P : X×Xn → R+

is called a penalty function (compatible with B) if the
following four properties hold:

(P1) P (y; x) ≥ 0, for any y ∈ X and any x ∈ Xn;

(P2) P (y; x) = 0 if and only if x = (y, . . . , y);

(P3) The set of minimizers of P (·; x) is non-empty, for
any x ∈ Xn.

(P4) P (y; x) ≤ P (y; x′), for any y ∈ X and any x,x′ ∈
Xn such that ((y, . . . , y),x,x′) ∈ B.

Remark 1 Two additional desirable properties for a
penalty function are:

(P5) P (y; x) ≤ P (y′; x), for any y, y′ ∈ X, any x ∈ Xn

and any minimizer z ∈ X of P (·; x) such that
((z, . . . , z), (y, . . . , y), (y′, . . . , y′)) ∈ B;

(P6) P (y; x) = P (z; x), for any y ∈ X, any x ∈ Xn

and any two minimizers z, z′ ∈ X of P (·; x) such
that ((z, . . . , z), (y, . . . , y), (z′, . . . , z′)) ∈ B.

Ultimately, the penalty-based function associated with
a penalty function is defined as the function that, given
a list of objects to be aggregated, outputs the object
that minimizes the disagreement with the given list of
objects. If this minimizer is not unique, the function
will output the set of minimizers. For this reason, we
deal with functions of the type f : Xn → P(X), where
P(X) represents the powerset of X.

Definition 5 Consider n ∈ N, a set X, a betweenness
relation B on Xn and a penalty function P : X×Xn →
R+ compatible with B. The function f : Xn → P(X)
defined by

f(x) = arg min
y∈X

P (y; x) ,

for any x ∈ Xn, is called the penalty-based function
associated with P .

Note that this function is always idempotent but does
not need to be monotone (there might be no associ-
ated order relation). However, it can be used for ag-
gregating any type of objects, even in the absence of
an associated order relation.
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3 Aggregation of compositional data
as the result of a mixture

Vectors of positive real numbers adding up to one are
referred to as compositional data vectors. Due to their
natural interpretation as the proportions of different
compounds in a mixture, they are common in many
fields of application [1, 2], e.g., soil science, chemistry,
biology and environmental science. The set of all k-
dimensional compositional data vectors is referred to
as the k-dimensional simplex and is defined as

Sk =
{

x ∈ [0, 1]k
∣∣∣ ∑k

j=1 x(j) = 1
}
.

For the case k = 3, the simplex can be naturally rep-
resented by an equilateral triangle where the length of
each of the medians1 equals one. Every point inside
the equilateral triangle corresponds to a point of the
simplex. The coordinates of any point are obtained by
the projection of the given point to each of the medi-
ans. As an illustrative example, we refer to Figure 1 for
visualizing the coordinates of the compositional data
vector (0.55, 0.32, 0.13)T .

•

1 1

1

0

00

(0.55, 0.32, 0.13)

Figure 1: Graphical representation of the 3-
dimensional simplex.

When dealing with the aggregation of compositional
data, the notion of monotonicity is somehow question-
able since there is no notion of order and there is no
compositional data vector that is greater than another
(let aside the Lorenz order [17] and similar notions re-
lated to the inequality/diversity of the compositional
data vectors which require a reordering of the com-
pounds). However, one might still find the aggrega-
tion of compositional data in daily-life exercises, e.g.,
when mixing two liquids. Precisely, when mixing two
liquids of known compositions in a one-to-one propor-
tion, the composition of the resulting liquid is known

1Amedian of a triangle is a line segment joining a vertex
to the midpoint of the opposite side.

to be given by the componentwise arithmetic mean
(usually referred to as the centroid) of the composi-
tions of both original liquids. For a different mixing
ratio, the composition of the resulting liquid is then
known to be given by the componentwise extension of
a single weighted arithmetic mean (usually referred to
as a weighted centroid).

Formally, we can aggregate n compositional data vec-
tors x1, . . . ,xn ∈ Sk, resulting in a new compositional
data vector, by using the function Cw : (Sk)n → Sk
defined as

Cw(x1, . . . ,xn)(j) =
n∑

i=1

wixi(j) ,

for any j ∈ {1, . . . , k}, where w = (w1, . . . , wn) is
a suitable weighing vector such that wi > 0 for any
i ∈ {1, . . . , n} and

∑n
i=1 wi = 1 (in the case of the

liquids, the weighing vector represents the mixing ra-
tio associated with each of the different liquids in the
mixture).

Example 1 As an illustrative example, consider the
compositional data vectors x1 = (0.55, 0.32, 0.13)T and
x2 = (0.03, 0.72, 0.25)T representing the composition
of two liquids in terms of three compounds. If we mix
both liquids, in the same quantity, the resulting mixture
will have the following composition:

C( 1
2 ,

1
2 )

(x1,x2) = (0.29, 0.52, 0.19)T .

In case different quantities are used for each of the liq-
uids, a weighted arithmetic mean, instead of the usual
arithmetic mean, needs to be considered. For instance,
in case we mix the previous two liquids in such a way
that the quantity of x1 is the triple of the quantity of
x2, the following compositional data vector would be
obtained:

C( 3
4 ,

1
4 )

(x1,x2) = (0.42, 0.42, 0.16)T .

As intuitive as this sounds, this function is not an ag-
gregation function in the most classical sense. There
is no intuitive order relation – and perhaps the prop-
erty of monotonicity should be abandoned – but it is
clear that this should be understood as an aggregation
process. In the upcoming section we present the com-
ponentwise extension of a single weighted arithmetic
mean within the framework of penalty-based aggrega-
tion.

4 Penalty-based aggregation of
compositional data

In the context of compositional data there is no in-
tuitive notion of order, however, there is indeed an
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intuitive notion of betweenness. This notion is cap-
tured by the betweenness relation BSk

on Sk, defined
as follows:

BSk
=

{
(x,y, z) ∈ (Sk)3

∣∣∣∣ (∀j ∈ {1, . . . , k})(
min(x(j), z(j)) ≤ y(j) ≤ max(x(j), z(j))

)} .
This betweenness relation is illustrated in Figure 2.

•

•

• •

•

Figure 2: Illustration of the compositional data vectors
(highlighted in grey) that are strictly in between the
compositional data vectors that are highlighted in red
according to the betweenness relation BS3

.

In case we are dealing with lists of compositional data
vectors, we should consider the associated product be-
tweenness relation, defined as:

B
(n)
Sk

=

{ (
(x1, . . . ,xn), (y1, . . . ,yn), (z1, . . . , zn)) ∈ (Snk )3

| (∀i ∈ {1, . . . , n}
)(

(xi,yi, zi) ∈ BSk

) }
.

In the following, we want to prove that any componen-
twise extension of a single weighted arithmetic mean is
an example of penalty-based function compatible with
the betweenness relation above.

Proposition 1 For any weighing vector w =
(w1, . . . , wn}, the function Cw : (Rk)n → Rk de-
fined by Cw(x1, . . . ,xn)(j) =

∑n
i=1 wixi(j), for any

j ∈ {1, . . . , k}, is a penalty-based function compatible

with B
(n)
Sk

.

Proof. First, we can recall that any componentwise
extension of a single weighted arithmetic mean could
be characterized as follows:

Cw(x1, . . . ,xn) = arg min
y

n∑
i=1

wi d(xi,y)2

= arg min
y

n∑
i=1

wi

k∑
j=1

(
xi(j)− y(j)

)2
.

We could then consider the penalty function P : Sk ×
Snk → R+ defined as

P
(
y, (x1, . . . ,xn)

)
=

n∑
i=1

wi

k∑
j=1

(
xi(j)− y(j)

)2
.

We now prove that all properties for a penalty function

compatible with B
(n)
Sk

are fulfilled.

Both (P1) and (P2) follow from the fact that we are
adding positive values and that each addend equals
zero if and only if xi(j) = y(j). Furthermore,
(P3) follows straightforwardly from the characteriza-
tion of the (unique) minimizer of P (·; (x1, . . . ,xn)) as
the componentwise extension of the weighted arith-
metic mean associated with the weight vector w of
the compositional data vectors x1, . . . ,xn. Finally,
(P4) follows from the fact that, given any y ∈ Sk
and any (x1, . . . ,xn), (x′

1, . . . ,x
′
n) ∈ Snk such that(

(y, . . . ,y), (x1, . . . ,xn), (x′
1, . . . ,x

′
n)
)
∈ B(n)

Sk
, it holds

that (
xi(j)− y(j)

)2 ≤ (x′
i(j)− y(j)

)2
,

for any i ∈ {1, . . . , n} and any j ∈ {1, . . . , k}.

The additional desirable properties are also satis-
fied. Since there exists a unique minimizer of
P (·; (x1, . . . ,xn)) for any (x1, . . . ,xn) ∈ Snk , (P6) is
trivially satisfied. Finally, (P5) follows from the fact
that, given any y,y′ ∈ Sk and any (x1, . . . ,xn) ∈ Snk
such that

(
(y, . . . ,y), (y′, . . . ,y′), (z, . . . , z)

)
∈ B

(n)
Sk

(where z = Cw(x1, . . . ,xn) is the unique minimizer
of P (·; (x1, . . . ,xn))), it holds that

min(y(j), z(j)) ≤ y′(j) ≤ max(y(j), z(j)) ,

for any j ∈ {1, . . . , k}, and, thus, due to the convexity

of the function F (t) =
∑n

i=1 wi

(
xi(j) − t

)2
, it also

holds that

F (y(j)) =
n∑

i=1

wi

(
xi(j)− y(j)

)2
≤

n∑
i=1

wi

(
xi(j)− y′(j)

)2
= F (y′(j)) ,

for any j ∈ {1, . . . , k}. �

5 Convex hull internal functions for
aggregating multidimensional data

In the field of (computational) statistics, there is a
large literature on how to combine several (multidi-
mensional) real vectors into a single one. For instance,
the aforementioned componentwise extension of a sin-
gle weighted arithmetic mean has been deeply anal-
ysed under the name of weighted centroid [11]. Great
interest has also been devoted to the proposal of differ-
ent generalizations of the (unidimensional) median in
order to deal with (multidimensional) real vectors [19],
highlighting the spatial median (also referred to as ge-
ometric median or Fermat-Weber point).
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An interesting property for such functions aiming at
combining several (multidimensional) real vectors into
a single one is that of convex hull internality [10]. This
property requires the result of aggregating the (multi-
dimensional) real vectors x1, . . . ,xn ∈ Rk to belong to
their convex hull, i.e., the set{

x =
n∑

i=1

λixi ∈ Rk | (λ1, . . . , λn) ∈ Sn

}
.

Typical examples of convex hull internal functions are
the aforementioned weighted centroid and spatial me-
dian. Some other generalizations of the unidimen-
sional median are also known to be convex hull internal
(e.g., the convex hull stripping median [9]), whereas
some others are known to fail this intuitive property
(e.g., the componentwise median).

This property is of key importance to the aggregation
of compositional data. Precisely, all convex hull inter-
nal functions for the aggregation of multidimensional
data can be used for the aggregation of compositional
data, even though – unlike with the weighted centroid
– an intuitive physical meaning could be lacking.

Proposition 2 If a function A : (Rk)n → Rk is con-
vex hull internal, then, for any (x1, . . . ,xn) ∈ (Sk)n,
it holds that A(x1, . . . ,xn) ∈ Sk.

Proof. Consider (x1, . . . ,xn) ∈ (Sk)n. Since
A : (Rk)n → Rk is convex hull internal, it follows that
A(x1, . . . ,xn) belongs to the convex hull of x1, . . . ,xn.
Since all x1, . . . ,xn belong to Sk, the convex hull of
x1, . . . ,xn needs to be a subset of the convex hull of
Sk. Finally, since Sk is already a convex set, it coin-
cides with its convex hull and, thus, we conclude that
A(x1, . . . ,xn) ∈ Sk. �

We end the section by noting that some convex hull in-
ternal functions for aggregating multidimensional data
(e.g. the spatial median) are easily proven to fit within
the penalty-based aggregation framework discussed in
Section 2, whereas some others (e.g. the convex hull
stripping median) do not fit within said framework.

6 Conclusions

The field of aggregation theory has historically built
upon the property of monotonicity. In a recent paper,
Gagolewski [10] raises the question on whether this
monotonicity property should be sometimes forfeited
in the setting of multidimensional data, for which the
poset structure is possibly questionable. In particular,
some further results by Gagolewski and the present
authors [11] prove that when idempotence is com-
bined with equivariance to orthogonal transformations
(which is a classical property in multivariate statis-
tics), the only monotone functions that remain are

componentwise extensions of a single weighted arith-
metic mean (or weighted centroids).

In this conference paper, we went further and discussed
the setting of compositional data in which the property
of monotonicity is not only “questionable” but actu-
ally nonsensical. The weighted centroid, which in the
setting of compositional data represents the result of
a mixing process, was proved to fit within the frame-
work of penalty-based aggregation introduced in [18].
A final discussion on the use of convex hull internal
functions for the aggregation of multidimensional data
in the context of the aggregation of compositional data
opens several future research topics. A further study of
potential definitions of betweenness-based monotonic-
ity properties for these functions is yet to be addressed.
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[11] M. Gagolewski, R. Pérez-Fernández, B. De Baets,
An inherent difficulty in the aggregation of mul-
tidimensional data, submitted.

[12] M. Grabisch, J.-L. Marichal, R. Mesiar, E. Pap,
Aggregation Functions, Cambridge University
Press, Cambridge, 2009.

[13] M. Grabisch, J.-L. Marichal, R. Mesiar, E. Pap,
Aggregation functions: Means, Information Sci-
ences 181 (2011) 1–22.

[14] J. G. Kemeny, Mathematics without numbers,
Daedalus 88 (4) (1959) 577–591.
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