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Abstract: Information-based estimation techniques are becoming more popular in the field of
Ecological Inference. Within this branch of estimation techniques, two alternative approaches can
be pointed out. The first one is the Generalized Maximum Entropy (GME) approach based on a
matrix adjustment problem where the only observable information is given by the margins of the
target matrix. An alternative approach is based on a distributionally weighted regression (DWR)
equation. These two approaches have been studied so far as completely different streams, even
when there are clear connections between them. In this paper we present these connections explicitly.
More specifically, we show that under certain conditions the generalized cross-entropy (GCE) solution
for a matrix adjustment problem and the GME estimator of a DWR equation differ only in terms
of the a priori information considered. Then, we move a step forward and propose a composite
estimator that combines the two priors considered in both approaches. Finally, we present a numerical
experiment and an empirical application based on Spanish data for the 2010 year.

Keywords: ecological inference; generalized cross entropy; distributional weighted regression;
matrix adjustment

1. Introduction

Ecological inference (EI) is the process of drawing conclusions about individual-level behavior from
aggregate (historically called “ecological”) data, when no individual data are available. Situations where
the only available data are aggregated at a level other than the level of interest are quite common
in many application fields. This is the typical setting for Ecological Inference [1–3], Cross-level
Inference [4,5], Small Area Estimation [6], or disaggregation methods [7]. The basic idea is that, in
order to study the behavior of the individuals (or sub-groups of individuals), a microeconomic analysis
ought to be carried out using fairly localized individual data, and data which are aggregated by areal
units may be used in order to investigate the behavior of the individuals comprising those units. In this
paper, we specifically refer to the process of drawing conclusions about individual-level behavior
from aggregate data, when no individual data are available or when individual data are incomplete.
In this inferential context, one problem is that many different possible relationships at the individual
(or subgroup) level can generate the same observations at the aggregate (or group) level [8]. In the
absence of individual (or subgroup) level measurements (in the form of survey data), such information
needs to be inferred. Estimates of the disaggregated values for the variable of interest can be inferred
from aggregate data by using appropriate statistical techniques. However, in many situations, given
that the micro-data of interest are not available, the accuracy of any predicted value cannot be verified.
This research focuses on the estimation on disaggregated indicators by subclasses. Assume that we
have an indicator, yi·, that is observable across the different areas i = 1, . . . , T. Our objective is to
disaggregate it into an indicator yi j for the j = 1, . . . , K different sub-categories (or sub-areas) that
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conform each class (or area) i. The information available for this inference exercise, together with the
indicator yi·, is another disaggregated indicator xi j that is related to the target indicator yi j. This paper
approaches this estimation problem in an attempt to unify two estimation strategies and it is organized
as follows. Section 2 explains the main features of the matrix-adjustment following the ideas of the
Generalized Cross Entropy (GCE) estimation introduced in [9], whereas in Section 3 the basis of the
Distributionally Weighted Regression (DWR) estimation are explained. Section 4 studies these two
strategies under a common approach and propose a composite prior estimator in line with the Data
Weighted Prior (DWP) proposed in [10,11]. The comparative performance of the three techniques
is evaluated by means of a numerical experiment in Section 5. Finally, Section 6 presents the main
conclusions of the paper.

2. Matrix-Adjustment and Distributionally Weighted Regression Problems

Within the family of IT estimators, [10] proposed a general solution for the estimation problem
described in the introduction basing on the minimization of the divergence between the target variable
and some prior information. Following this approach, each indicator yi j is assumed as a discrete random
variable that can take M different values. Defining a supporting vector (for the sake of simplicity
assumed as common for all the yi j) z′ = [z1, z2, . . . , zM] that contains the M possible realizations of the
targets with unknown probabilities p′i j =

[
pi j1, pi j2, . . . , pi jM

]
, yi j can be written as:

yi j =
M∑

m=1

pi jmzm (1)

Alternatively, this idea can be generalized in order to include an error term and define each yi j as:

yi j =
M∑

m=1

pi jmzm + εi j (2)

In such a case, we assume that the yi j elements are given from two sources: a signal that keeps the
resemblance with the priors xi j, plus a noise term (εi j). The noise components can be included in order
to account for potential spatial heterogeneity and our uncertainty about the target variable. Basically,
we represent uncertainty about the realizations of the errors treating each element εi j as a discrete
random variable with L ≥ 2 possible outcomes contained in a convex set v′ = {v1, . . . , vL}, which for
the sake of simplicity will be assumed as common for all the εi j. We also assume that these possible
realizations are symmetric around zero (−v1 = vL). The traditional way of fixing the upper and lower
limits of this set is to apply the three-sigma rule [12]. Under these conditions, each εi j can be defined as:

εi j =
L∑

l=1

wi jlvl; ∀i = 1, . . . , T; j = 1, . . . , K (3)

where wi jl is the unknown probability of the outcome vl for the cell ij. Now, the yi j elements can be
written as:

yi j =
M∑

m=1

pi jmzm +
L∑

l=1

wi jlvl (4)

The solution to the estimation problem is given by the minimization of the Kullback-Leibler
divergence between the posteriors distributions p′s and the a priori probabilities q′ij =

[
qi j1, qi j2, . . . , qi jM

]
.

The q′s reflect the information we have on the indicators xi j, which are somehow related to our target
yi j, being defined by the expression:
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xi j =
M∑

m=1

qi jmzm (5)

The solution to the estimation problems is given by minimizing the KL divergence between the p′s
and the q′s. If we do not have an informative prior, the a priori distributions are specified as uniform(
qi j =

1
M ; ∀m = 1, . . . , M

)
, which leads to the GME solution. The uniform distribution is usually set as

the natural prior W0 for the error terms. Specifically, the constrained minimization problem can be
written as:

Min
p,W

D
(
p, W‖q, W0

)
=

M∑
m=1

T∑
i=1

K∑
j=1

pi jmln
(pi jm

qi jm

)
++

L∑
l=1

T∑
i=1

K∑
j=1

wi jlln

wi jl

w0
i jl

 (6)

subject to:

yi· =
K∑

j=1

 M∑
m=1

pi jmzm +
L∑

l=1

wi jlvl

C· j; i = 1, . . . , T (7)

M∑
m=1

pi jm =
L∑

l=1

wi jl = 1; 1 ∀i = 1, . . . , T; j = 1, . . . , K (8)

Restrictions (8) are just normalization constrains, whereas Equation (7) reflects the observable
information that we have on the relationship between the aggregates yi· and the indicators yi j through
the observable K-dimensional vector C· j. Denoting as ŷ0

i j to the solution in absence of this information,

this is given by the indicator xi j; i.e., ŷ0
i j = xi j =

M∑
m=1

qi jmzm.

Following Golan et al., (1994), the aggregate vectors yi· and C· j are, respectively, row and column
margins in a matrix of inter-industry flows. However, the availability of sample (observable) and
out-of-sample (unobservable) information could be different in our estimation problem, because in the
inter-industry problem it is natural to have known K + T data, but in other estimation problems we
only have aggregate information across the dimension of T through yi·. For example, if we want to
disaggregate the income per capita in each area i (yi·) into the income per capita of its sub-populations
(men and women, population classified by education levels, etc.) being observable the weight of each
sub-population on the total population, but not the overall income per capita of each sub-group.

Sometimes the aggregate C· j is not observable and it is replaced by the observation of the weights
given to the sub-category j in each area i (θi j) that defines the indicator yi· as the weighted sum:

yi· =
K∑

j=1

yi jθi j; i = 1, . . . , T (9)

Additionally, the relation between the target indicators yi j and the prior information xi j will be
made explicit by means of a functional relationship like:

yi j = αi + βi jxi j + εi j (10)

and, consequently:

yi· =
K∑

j=1

(
αi + βi jxi j + εi j

)
θi j; i = 1, . . . , T (11)

Equations (10) and (11) contain the starting point of the traditional approach to spatial
disaggregation based on some Distributionally Weighted Regression (DWR) of the type proposed
in [13,14]. In Equation (10), the unobservable yi j are defined as a linear function of xi j, allowing for
slope heterogeneity (note that the βi j can be different for each area and sub-class) and an specific
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area indicator αi plus an error term εi j. For the estimation of model Equation (10), the same IT-based
strategy is followed, by defining for the M possible realizations of each parameter, the support vector
b′ = [b1, b2, . . . , bM] (again common for parameters αi and βi j) with unknown probabilities pα, pβ to be
recovered. The noise components εi j are treated in the same ways as in Equation (5).

Once the respective supporting vectors and the a priori probability distributions are set, the DWR
estimation can be made in the terms of the following GCE program:

Min
pα,pβ,W

D
(
pα, pβ, W‖qα, qβ, W0

)
=

M∑
m=1

T∑
i=1

pαmiln
(

pαmi
qαmi

)
+

M∑
m=1

T∑
i=1

K∑
j=1

pβmijln

 pβmij

qβmij

+
L∑

l=1

T∑
i=1

K∑
j=1

wi jlln
(

wi jl

w0
i jl

) (12)

subject to:

yi· =
K∑

j=1

 M∑
m=1

pαmib
α
m +

M∑
m=1

pβmijb
β
mxi j +

L∑
l=1

wi jlvl

θi j; i = 1, . . . , T (13)

M∑
m=1

pαmi =
M∑

m=1

pβmij =
L∑

l=1

wi jl = 1;∀i = 1, . . . , T; j = 1, . . . , K (14)

Both for the parameters and the errors, the supporting vectors usually contain values symmetrically
centered on zero. If all the a priori distributions (qα, qβ, W0) are specified as uniform, then the GCE
solution reduces to the GME one.

3. Unifying the Two Approaches: A Composite Prior Estimator

In this section, we will unify the two previous approaches under a common framework showing
that the matrix adjustment problem introduced in [9] is simply a case of a DWR equation (if the
available observable information is the same) with not necessarily uniform distributions for qα and qβ.
We let out of the discussion the a priori distribution of the errors W0 because the uniform solution is
the most intuitive. We will base our explanation on the most common case of supporting vectors with
M ≥ 2 values distributed symmetrically around zero.

Note that the GME solution to the DWR problem departs from the specification of a priori
distributions that assume that the parameters can take any value as long as they remain in the bounds
set in the supports. In contrast, in the solution offered in [9] for the inter-industry flows estimation, no
area-specific (row-specific in terms of the problem discussed there) effect was considered and the prior
expectation on yi j is given by the corresponding cell xi j. These assumptions can be formulated in terms
of the a priori distributions used in the DWR approach, which means that both approaches can be
treated as particular cases of a general estimation problem.

The a priori distribution qα can be defined in order to consider the assumption of avoiding any
area-specific parameter αi from Equation (10). As opposed to the GME’s solution to the DWR estimation
where they are specified as uniform (qαu), now we specify an alternative non-uniform distribution (qαn)
with a point mass at bαm = 0. Similarly, the a priori distribution qβ should reflect that the uninformative
estimation of yi j is the regressor xi j. This non-uniform distribution (qβn), consequently, should be
specified as fulfilling the condition ŷ0

i j = xi j, or alternatively:∑
M
m=1bβmqβn

ijm = 1; i = 1, . . . , T; j = 1, . . . , K (15)

Appendix A illustrates how specifying such an a priori distribution for the simplest case with
M = 2 values in the supporting vectors. Having made explicit that, under the same information
availability, the two approaches only differ on the a priori distributions specified, it is possible to apply
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a composite prior estimator that considers both possibilities in the same fashion as in in [10,11]. This
estimator is very flexible in the assumptions made on the a priori distributions, given that it allows
for including both uniform and non-uniform priors. The estimator it is called Data Weighted Prior
(DWP) because it is the information observed which weighs the two alternative priors considered.
Furthermore, the authors of [10] prove that its estimates present relatively lower variance than those
estimated from a GCE program.

Specifically, the DWP program can be written for our problem as:

Min
pα,pβ,Pγ,W

D
(
pα, pβ, pγ, W‖qα, qβ, qγ, W0

)
=(

1− γαi
) M∑

m=1

T∑
i=1

pαu
mi ln

(
pαu

mi
qαu

mi

)
+

(
1− γβi j

) M∑
m=1

T∑
i=1

K∑
j=1

pβu
mijln

 pβu
mij

qβu
mij

+
γαi

M∑
m=1

T∑
i=1

pαn
mi ln

(
pαn

mi
qαn

mi

)
+ γ

β
i j

M∑
m=1

T∑
i=1

K∑
j=1

pβn
mijln

 pβn
mij

qβn
mij

+
H∑

h=1

T∑
i=1

pγαhi ln
(

pγαhi
qγαhi

)
+

H∑
h=1

T∑
i=1

K∑
j=1

pγβhijln

 pγβhij

qγβhij

+
L∑

l=1

T∑
i=1

K∑
j=1

wi jlln
(

wi jl

w0
i jl

)
(16)

subject to:

yi· =
K∑

j=1

 M∑
m=1

pαmib
α
m +

M∑
m=1

pβmijb
β
mxi j +

L∑
l=1

wi jlvl

θi j; i = 1, . . . , T (17)

M∑
m=1

pαmi =
M∑

m=1
pβmij =

H∑
h=1

pγαhi =
H∑

h=1
pγβhij =

L∑
l=1

wi jl = 1;

i = 1, . . . , T; j = 1, . . . , K
(18)

The γ parameters are estimated simultaneously with the rest of coefficients of the model. Each γ
measures the weight given to the uniform prior qu for each parameter and it is defined as γ =

∑H
h=1 bγh pγh ,

where bγ1 = 0 and bγH = 1 are, respectively, the lower and upper bound defined in the supporting
vectors with H values for these parameters (b′ = (0, . . . , 1)→ 0 ≤ γ ≤ 1). The a priori probability
distributions are always uniform

(
qγh = 1

H

)
and the same is applied for the errors (w0

i jl =
1
J ).

To understand the logic of this estimator, an explanation on the objective function of the previous
minimization program is required. Note that Equation (16) is divided in four terms. The last term
measures the Kullback divergence between the posterior and the prior probabilities for the noise
component of the model. The first term quantifies this divergence between the recovered probabilities
and the uniform priors for each coefficient, being this divergence weighted by the corresponding
(1− γ). Next, the second element of (16) measures the divergence with the non-uniform priors and
it is weighted by γ. The third element in (16) relates to the Kullback divergence of the weighting
parameters γ. Equation (16) is minimized subject to the set of constraints present in Equations (16)–(18).
Again, the restrictions in (18) ensure that the posterior probability distributions of the estimates and
the errors are compatible with the observations, and Equation (18) are just normalization constraints.

4. A Numerical Experiment

The numerical simulation compares the performance of the estimation strategies explained
previously to estimate a set of latent indicators (T × K). The target will be the unknown elements
yi j (output per worker, income per capita, etc.) that measure the amount of certain variable zi j per
unit of other auxiliary variable li j. The values of the later are drawn from a normal distribution as
li j ∼ N(20, 2), which define the weights as θi j = li j/li· We also simulate an observable disaggregated

indicator xi j drawn as xi j ∼ N(10, 1) related to our unobservable target yi j.
In the context of simulation, we assume that the indicator yi j is generated as a convex combination

from two possible schemes:
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yi j = δ
[
αi + βi jxi j + εi j

]
+ (1− δ)

[
ηi jxi j + εi j

]
; i = 1, .., T; j = 1, .., K. (19)

This equation contains two sets of slope parameters, namely βi j and ηi j, which relate the regressor
xi j with the target yi j. Furthermore, a fixed area effect αi is also included. These parameters have been
arbitrarily set as:

αi ∼ N(5, 1)
βi j ∼ N(0, 0.1)
ηi j ∼ N(1, 0.1)

(20)

and they are kept constant along the simulations. The error term εi j is drawn as εi j ∼ N(0, 0.1) and it
is generated in each new trial of the experiment.

The first part of the equation (αi + βi jxi j + εi j) shows that yi j can be generated from a process like
the one depicted in (16): a linear function of xi j with slope heterogeneity plus a specific area effect
(see 11). The second term (ηi jxi j + εi j) does not include any specific area indicator and assumes that
yi j is exclusively affected by xi j (see 2). Equation (19) includes the scalar δ bounded between 0 and 1
that weighs the two possible sources that generate the variable. If we make δ→ 1 , the first possible
mechanism takes over and the contrary happens when we make δ→ 0 . Note that if we set δ = 1
we are imposing a data-generating process in line with the assumptions made in the GME program
depicted in Equations (12)–(14) for the DWR estimation. On the contrary, if we set δ = 0, this is a
scenario compatible with the assumptions of non-uniform priors for the parameters that reflected
the belief of absence of area-specific effects and a slope parameter close to 1 (labeled as GCE when
the simulation results are shown). Any other value of δ between these two extreme cases shows a
data-generating process that is not fully incorporated in the priors of either alternative. It is in this
type of intermediate situation with the composite prior estimator (labeled as DWP in the simulation
results) described in Equations (16)–(18) can be useful, because both priors are considered and we let
the data speak for themselves and favor the most realistic one.

The unobservable indicators generated in (20) will be estimated by the three estimation strategies
described in the paper (DWR, GCE and DWP estimators) with equal amounts of observable information

(the aggregates yi· =
K∑

j=1
yi jθi j). We have specified a common supporting vector for all the parameters

with M = 3 points at b′ = (−10, 0, 10). Similarly, a three-point (H = 3) support vector with values 0,
0.5 and 1 has been set for the weighting parameters γ. For the error terms, the support with L = 3
values has been chosen, applying the three-sigma rule with uniform a priori weights.

In the experiment, we compare the performance of the three approaches under different scenarios.
Three different dimensions (T×K) of the matrix with the target indicators yi j have been considered and
for each case we set arbitrarily six different values of scalar δ: 0.0; 0.2; 0.4; 0.6; 0.8 and 1.0. In each one
of these 18 scenarios, we have carried out 200 trials and computed the mean of the absolute deviation
in percentage between our estimates and the real yi j. Table 1 shows the results:

Table 1. Results of the numerical experiment (1000 replications): deviation figures.

Matrix 1
(20 × 4)

Matrix 2
(50 × 4)

Matrix 3
(100 × 4)

γ = 0.00

DWR
13.126
(0.049)
[1.544]

13.642
(0.126)
[1.622]

14.837
(0.040)
[1.767]

GCE
11.420
(0.126)
[1.275]

10.047
(0.054)
[1.232]

11.633
(0.038)
[1.382]

DWP
11.546
(0.087)
[1.321]

11.267
(0.091)
[1.352]

12.645
(0.002)
[1.494]
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Table 1. Cont.

Matrix 1
(20 × 4)

Matrix 2
(50 × 4)

Matrix 3
(100 × 4)

γ = 0.20

DWR
13.697
(0.053)
[1.429]

13.667
(0.116)
[1.462]

14.791
(0.035)
[1.595]

GCE
12.623
(0.131)
[1.249]

10.639
(0.044)
[1.276]

11.996
(0.044)
[1.297]

DWP
12.393
(0.091)
[1.248]

11.420
(0.081)
[1.233]

12.654
(0.004)
[1.356]

γ = 0.40

DWR
15.307
(0.057)
[1.382]

14.357
(0.107)
[1.357]

15.381
(0.029)
[1.479]

GCE
14.788
(0.136)
[1.282]

12.213
(0.035)
[1.288]

13.306
(0.049)
[1.278]

DWP
14.247
(0.095)
[1.243]

12.258
(0.072)
[1.175]

13.406
(0.009)
[1.282]

γ = 0.60

DWR
18.565
(0.062)
[1.399]

15.922
(0.097)
[1.307]

17.152
(0.024)
[1.429]

GCE
18.603
(0.141)
[1.373]

15.264
(0.025)
[1.288]

16.098
(0.055)
[1.330]

DWP
17.666
(0.100)
[1.300]

14.222
(0.062)
[1.182]

15.465
(0.015)
[1.278]

γ = 0.80

DWR
25.047
(0.067)
[1.466]

19.109
(0.088)
[1.313]

20.898
(0.018)
[1.439]

GCE
26.062
(0.145)
[1.519]

20.652
(0.016)
[1.409]

21.302
(0.060)
[1.449]

DWP
24.405
(0.105)
[1.409]

18.271
(0.053)
[1.255]

19.764
(0.020)
[1.341]

γ = 1.00

DWR
42.350
(0.071)
[1.578]

26.659
(0.079)
[1.374]

31.769
(0.013)
[1.506]

GCE
46.481
(0.149)
[1.711]

31.563
(0.006)
[1.595]

34.915
(0.066)
[1.625]

DWP
42.903
(0.109)
[1.564]

27.362
(0.043)
[1.385]

31.829
(0.026)
[1.466]

Values on each cell report the mean absolute deviation (in %) between the real generated target values and the
estimated ones. Values in parentheses show the average bias, on absolute terms (ABIAS), and the figures in brackets
show the root of the mean squared errors of the estimates (RMSE).

Independently of the estimation approach, the numbers on Table 1 show some common patterns
to the three of them. The deviations increase with the value of the scalar δ given that high values of
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this scalar give more weight to the part of the data-generating process that includes an area-specific
effect, which makes the yi j indicators more difficult to predict. The errors seem more stable regarding
the different sizes of the target matrices.

If we pay attention to the comparative performance among the three approaches evaluated in
the experiment, the results indicate (not surprisingly) that, for low values of the scalar δ, it seems
preferable considering that the GCE approach does not introduce any area-specific effect and considers
the regressor xi j as the best prediction in absence of observable information. The longer the value
of this scalar, the better the relative performance of the GME-DWR approach (based on a priori
uniform distributions).

The rule of thumb would be, consequently, to use the former when we suspect that no area-specific
effect is present (if the second term in Equation (19) dominates) and to favor the latter otherwise
(if the first term is more important). In empirical estimation problems, is virtually impossible to know
beforehand which one of the two terms is more important. It is in these situations when the use of the
composite prior estimator can be helpful. The DWP approach generally outperforms the competing
estimators for intermediate values of δ (ranging from 0.4 to 0.8). These medium values indicate some
degree of uncertainty about the type of process that generates the data to be estimated. Moreover,
the DWP approach can be seen as a conservative solution: even when one of the two parts of the
process is clearly dominant (δ = 0 or δ = 1), the composite prior does not perform much worse than
the best of the three options. The losses in terms of prediction, however, can be larger if we choose one
single-prior estimator when the other is the best option (see the first and last rows of Table 1).

5. An Empirical Application: Obtaining Disaggregated Information on Wages

In order to illustrate the performance of the proposed estimator, it will be applied to solve an
empirical problem of disaggregating data of average wages for Spain. The most detailed information
about non-agricultural wages in Spain is published in the Wage Structure Survey (Encuesta de Estructura
Salarial). The complete version of this survey is conducted by the Spanish Statistical Office (INE)
every four years, being the corresponding to 2010 one of the most recent ones. In intermediate years,
however, only partial data are collected and the microdata are not released. If, for example, we want to
explore the differences across industries on average wages by gender and type of working day in a
year where the complete statistical operation is not conducted, the only information we have are at
aggregate level. This situation happens, for example, in 2011, where the only available data on are the
aggregates reported in Table 2, which do not allow disaggregated differences between male and female
workers to be analyzed depending on the industry they belong to:

Table 2. Available information on annual wages by industry, type of working day and gender.
Wage Structure Survey, 2011.

Industry Mean Wage (EUR)

Mining and quarrying industries 29,223
Manufacturing industry 25,308

Supply of electrical energy, gas and steam 50,371
Water supply, sewerage and waste management 25,570

Construction 22,541
Trade and repair of vehicles 19,445

Transport and storage 23,347
Accommodation 14,235

Information and communications 32,491
Financial and insurance activities 41,124

Real estate activities 20,349
Professional, scientific and technical activities 25,350
Administrative and support service activities 16,199

Public administration 27,816
Education 21,565
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Table 2. Cont.

Industry Mean Wage (EUR)

Health and social services activities 26,058
Arts, recreation and entertainment activities 18,106

Other services 17,035

Type of Working Day and Gender Mean Wage (EUR)

Full-time female 23,693
Full-time male 27,596

Part-time female 10,078
Part-time male 11,233

In such a context, if the researcher wants to study wage gender gaps across industries it would
be necessary to apply an estimation procedure that produces disaggregated values for this specific
year, since the official aggregated data do not allow for this type of analysis. The values in Table 2
provide the aggregates required for applying our DWP estimator. Vector y, with dimension (18× 1)
and elements yi·, contains the mean wage for each industry and our estimation target will be the
unknown yi j elements, where sub-index j refers to the type of worker (classified into four categories:
full-time males, full-time female, part-time male and part-time females). The information in Table 2 is
also useful for setting a regressor (xi j) for our analysis. In particular, the aggregate mean wages for
each type of worker (xi·, in the four bottom rows of Table 2) will be used for this purpose, assuming
that xi· = xi j, j = 1, . . . , 4. The additional information required to define the weights (θi j) has been
taken from the Spanish Labor Force Survey (EPA) corresponding to that year, where we can find
information about the number of workers classified by industry, type of working day and gender.
With all this information, the DWP estimator has been applied, specifying identical support vectors as
those described in the previous section with the numerical simulation, and the estimates obtained are
shown in Table 3:

Table 3. DWP estimates on disaggregated mean annual wages (EUR) by industry, type of working day
and gender, 2011.

Industry Full-Time,
Female

Full-Time,
Male

Part-Time,
Female

Part-Time,
Male

Mining and quarrying industries 13,338 31,307 5311 5840
Manufacturing industry 16,323 29,220 5738 5911
Supply of electrical energy, gas and steam 36,909 55,191 7445 7330
Water supply, sewerage and waste management 14,301 28,675 5419 6135
Construction 12,459 24,134 5239 5987
Trade and repair of vehicles 19,603 23,324 7453 6298
Transport and storage 14,336 26,803 5664 6248
Accommodation 15,473 17,508 6553 6230
Information and communications 23,483 39,877 6741 7326
Financial and insurance activities 38,566 46,664 7946 6078
Real estate activities 21,301 23,487 7301 6299
Professional, scientific and technical activities 25,022 29,926 7984 6565
Administrative and support service activities 17,383 20,534 9142 6290
Public administration 24,433 32,196 6269 6117
Education 25,838 21,708 8396 6720
Health and social services activities 31,832 20,406 9049 6078
Arts, recreation and entertainment activities 17,460 24,232 8094 8778
Other services 19,600 18,896 7537 6116

The aggregate information classified by industry in Table 2 displayed a high variability, ranging
from slightly more than EUR 14,000 for the average worker in the Accommodation industry to almost
three times higher in Financial and Insurance services. Additionally, the aggregates also showed that
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the male workers earned more on average than the female workers. Specifically, full-time male workers
earned on average around 16% than their female counterparts, whereas this gap was around 11% in
the case of part-time workers. This information, however, does not allow for checking if this gender
differences on wage keep stable independently on the industry. The estimates obtained by the DWP
estimator and reported on Table 3 help to shed some light on this matter.

According to the outcomes of the estimation, the gender gap for full-time workers is much larger in
the case of economic branches related to mining, manufacturing or construction than in service activities.
Furthermore, for the specific case of Education and Health and social services activities, we estimate
significant positive difference for full-time female workers. Something similar, but to a lesser extent,
happens with the case of part-time workers: the mean gender gap in favor of male workers, according
to the estimates, is mainly produced by the higher wages received in mining, manufacturing and
construction, but in general the activities related to services tend to alleviate this gap. Detecting these
differential patterns across industries is possible due to the disaggregated information contained in the
estimates, which was partially hidden in the aggregated averages. Additionally, we have explored how
robust are the estimates and the patterns found by modifying the supporting vectors, which in turn
impact on the priors, as depicted in equation (15). The estimates reported in Table 3 correspond to a
case where the support vectors have been defined as b′ = [−100,0,100] with M = 3 and common for
parameters αi and βi j. Appendix B reports the same estimates as in Table 3, where the support vectors
are defined as b′ = [−10,0,10] (Table A1) and b′ = [−1,000,0,1,000] (Table A2) in order to check if having
wider or narrower vectors impacts on the results. Despite some of the minor differences produced by
the numerical simulation, the general patterns seem to be robust to this specification.

6. Conclusions

In this paper, we have tackled the problem of providing reliable estimates of a target variable in a
set of small geographical areas, by showing that under certain conditions the generalized cross-entropy
(GCE) solution for a matrix adjustment problem and the GME estimator of a DWR equation differ
only in terms of the a priori information considered. Then, a composite estimator that combines the
priors considered in both approaches is proposed and the performance among the three approaches is
evaluated throughout Montecarlo experiments.

The proposed method may represent a new basis to recover estimate at a disaggregate level in
presence of: (i) sampling and response errors; (ii) small samples. Within this framework, minimal
distributional assumptions are necessary, and a dual loss function is used to take into account both
the estimation precision and the prediction objectives. The choice of the prior is data based and
endogenously determined and the method provides a simple way of introducing and evaluating
prior information in the estimation process. The DWP estimation procedure seem to be a promising
alternative model-based estimation technique because the implementation of the method involves
minimum outlay of computing, it does not depend on any hypotheses regarding the form of the
error distribution in the model, and it produces good results for small-sized samples, especially in
the presence of spatial heterogeneity. Finally, theoretical and other non-sample information may be
directly imposed on the DWP estimates much more easily than the classic Maximum likelihood and
Bayesian estimation techniques.

The results indicate that for low values of the parameter δ (that measures the weight given to
the uniform prior for each parameter), it seems preferable considering the GCE approach that does
not introduce any area-specific effect and considers the indicator observed at area level as the best
prediction in absence of observable information. The longer the value of this scalar, the better the
relative performance of the GME-DWR approach (based on a priori uniform distributions).

The working of the proposed estimation procedure has been also illustrated by applying the
procedure on the estimation of average wages for the Spanish industries in 2011, classified by gender
and type of working day. Our results have shown that the DWP estimation has the potential to obtain
disaggregated estimates based on minimal assumptions about the data-generating process.
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Appendix A

To simplify the analysis, but without loss of generality, we assume that we consider a supporting
vector bβ that contains M = 2 symmetric values, namely –m and m, with respective prior probabilities
qβ1 and qβ2. Consequently:

ŷ0
i j =

[
−mqβ1 + mqβ2

]
xi j =

[
−mqβ1 + m

(
1− qβ1

)]
xi j (A1)

The a priori probability distribution qβ that guaranties that ŷ0
i j = xi j is:

x0
i j =

[
−mqβ1 + m

(
1− qβ1

)]
xi j (A2)

1 =
[
−mqβ1 + m

(
1− qβ1

)]
= qβ1(−2m) + m (A3)

and the solution is:
qβ1 = m−1

2m
and

qβ2 = 1− qβ1 = 1− m−1
2m = m+1

2m

(A4)

whereas in the GME-DWR approach, the prior used for these parameters is qβ1= qβ2 = 1
2 .

Appendix B Analysis of the Sensitivity of the Estimates

Table A1. DWP estimates on disaggregated mean annual wages (EUR) by industry, type of working
day and gender, 2011. Support vectors as b′ = [−10,0,10].

Industry Full-Time
Female

Full-Time
Male

Part-Time
Female

Part-Time
Male

Mining and quarrying industries 13,161 31,325 5231 5749
Manufacturing industry 16,206 29,259 5667 5822

Supply of electrical energy, gas and steam 22,195 58,689 5963 6238
Water supply, sewerage and waste management 14,147 28,706 5342 6051

Construction 12,275 24,150 5160 5903
Trade and repair of vehicles 19,606 23,332 7435 6222

Transport and storage 14,190 26,839 5594 6168
Accommodation 15,491 17,496 6562 6174

Information and communications 23,414 39,917 6679 7253
Financial and insurance activities 38,574 46,663 7888 5988

Real estate activities 21,325 23,476 7273 6222
Professional, scientific and technical activities 25,027 29,932 7950 6488
Administrative and support service activities 17,367 20,519 9199 6220

Public administration 24,415 32,215 6204 6031
Education 25,899 21,618 8379 6648

Health and social services activities 31,890 20,254 9023 5991
Arts, recreation and entertainment activities 17,407 24,263 8094 8771

Other services 19,651 18,825 7537 6039
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Table A2. DWP estimates on disaggregated mean annual wages (EUR) by industry, type of working
day and gender, 2011. Support vectors as b′ = [−1,000,0,1,000].

Industry Full-Time
Female

Full-Time
Male

Part-Time
Female

Part-Time
Male

Mining and quarrying industries 13,276 31,313 5270 5810
Manufacturing industry 16,109 29,288 5620 5869

Supply of electrical energy, gas and steam 21,789 58,787 5866 6212
Water supply, sewerage and waste management 14,188 28,699 5358 6053

Construction 12,448 24,138 5210 5931
Trade and repair of vehicles 19,388 23,603 7070 6203

Transport and storage 14,222 26,835 5558 6146
Accommodation 15,416 17,670 6328 6149

Information and communications 22,962 40,148 6450 7046
Financial and insurance activities 37,672 47,434 7474 6015

Real estate activities 21,066 23,806 6949 6205
Professional, scientific and technical activities 24,618 30,351 7510 6427
Administrative and support service activities 17,366 20,907 8567 6210

Public administration 23,958 32,537 6070 6046
Education 25,727 22,124 7922 6579

Health and social services activities 31,809 20,810 8506 6028
Arts, recreation and entertainment activities 17,335 24,582 7618 8309

Other services 19,539 19,168 7183 6058
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