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ABSTRACT
Dispersion corrections are essential in the description of intermolecular interactions; however, dispersion-corrected functionals must
also be transferrable to hard solids. The exchange-hole dipole moment (XDM) model has demonstrated excellent performance for
non-covalent interactions. In this article, we examine its ability to describe the relative stability, geometry, and compressibility of
simple ionic solids. For the specific cases of the cesium halides, XDM-corrected functionals correctly predict the energy ranking of
the B1 and B2 forms, and a dispersion contribution is required to obtain this result. Furthermore, for the lattice constants of the
20 alkali halides, the performance of XDM-corrected functionals is excellent, provided that the base functional’s exchange enhance-
ment factor properly captures non-bonded repulsion. The mean absolute errors in lattice constants obtained with B86bPBE-XDM and
B86bPBE-25X-XDM are 0.060 Å and 0.039 Å, respectively, suggesting that delocalization error also plays a minor role in these sys-
tems. Finally, we considered the calculation of bulk moduli for alkali halides and alkaline-earth oxides. Previous claims in the lit-
erature that simple generalized gradient approximations, such as PBE, can reliably predict experimental bulk moduli have benefited
from large error cancellations between neglecting both dispersion and vibrational effects. If vibrational effects are taken into account,
dispersion-corrected functionals are quite accurate (4 GPa–5 GPa average error), again, if non-bonded repulsion is correctly repre-
sented. Careful comparisons of the calculated bulk moduli with experimental data are needed to avoid systematic biases and misleading
conclusions.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0015133., s

I. INTRODUCTION

London dispersion plays a critical role in determining the
structure and energetics of molecular aggregates, molecular crystals,
and layered materials.1,2 However, it has been shown that disper-
sion can also affect the description of solids where van der Waals
interactions are not usually thought to be important. For instance,
although electrostatics is the main contribution to binding in ionic
solids, inclusion of dispersion has been shown to improve the
quality of the computed lattice constants and atomization energies
significantly.3,4 As another example, density-functional calculations

without dispersion incorrectly predict the rocksalt (B1) structure to
be lower in energy than the cesium-chloride (B2) form of CsCl, CsBr,
and CsI under ambient conditions.5,6

Over the last 15 years, a number of dispersion corrections and
dispersion-including functionals have been developed in the con-
text of density-functional theory (DFT).1,2,7,8 These include asymp-
totic dispersion corrections,9–20 non-local density functionals,21–27

dispersion-correcting potentials,28–33 and parameterized exchange–
correlation functionals,34–38 among others.39–43 Beyond-DFT
methods, such as the random-phase approximation (RPA), also cap-
ture dispersion interactions.5,44 The class of asymptotic dispersion
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corrections includes several generations of Grimme’s models (D2,9

D3,10,11 and D412,13), the Tkatchenko–Scheffler (TS)14 and subse-
quent many-body dispersion (MBD)15 methods, and the exchange-
hole dipole moment (XDM) dispersion correction.16,45 Additional
improvements on the MBD model have been proposed to account
for polarizability variations due to fractional atomic charges, as in
MBD-FI46 and uMBD.47

In an asymptotic pairwise dispersion correction, the disper-
sion energy is written as a sum over atomic pairs using a damped
asymptotic energy expression, as motivated by second-order per-
turbation theory.48,49 The leading-order dispersion term in these
corrections is

E(6)disp = −∑
i<j

C6,ijf6,ij(Rij)
R6
ij

, (1)

where the sum runs over all atom pairs, the C6,ij’s are the disper-
sion coefficients, and f6,ij(Rij) is a damping function introduced to
avoid divergence at short internuclear separations, Rij. The devel-
opment and benchmarking of asymptotic pairwise dispersion cor-
rections are important because they attain good accuracy and
can be applied in combination with common, thoroughly tested
density-functional approximations. Furthermore, these methods are
computationally very simple with a much lower cost than non-
local dispersion functionals or the more complicated MBD-based
methods, extending their range of applicability to larger chemical
systems.

The various asymptotic dispersion corrections primarily dif-
fer in how the dispersion coefficients are computed, although there
are also differences in whether higher-order dispersion-energy terms
(i.e., C8 or C10) are included, and in the choice of damping function.
However, all of these dispersion corrections are in some way depen-
dent on reference data for neutral atoms or compounds, and only
the D4 method12 (very recently implemented for periodic solids13)
was specifically designed with ionic systems in mind. It is there-
fore uncertain how such asymptotic dispersion models perform for
ionic solids. Previous assessments for alkali halides demonstrated
a very poor performance of the TS method and convergence fail-
ures of MBD.3 While addition of the D2 or D3 corrections results
in significant improvements over uncorrected base functionals,5,6

they are still considerably less accurate than dispersion corrections
tailor-made for ionic crystals.3

All dispersion corrections have been designed with the pur-
pose of accurately describing non-covalent interactions, either in
molecules or in solids. However, if these methods are to be applied
to complex systems that involve not only van der Waals interac-
tions but also other bonding types (covalent, ionic, and metallic),
then it is crucial that those other interactions are correctly repre-
sented as well. In addition, given that systems where non-covalent
interactions are important are typically large, it would be prefer-
able to have a dispersion-corrected functional that is as simple as
possible. This would ideally be an asymptotic pairwise dispersion
correction paired with a GGA (generalized gradient approximation)
functional due to favorable scaling and the simplicity of their com-
putational implementation. In this work, we focus on the XDM
dispersion method, which has been shown to provide simultane-
ously excellent performance for gas-phase molecules,50,51 molecu-
lar crystals,52–56 surface adsorption,57–60 and layered materials61,62

in combination with GGA base functionals, without any modifi-
cation or reparameterization. Indeed, XDM is at present the only
pairwise asymptotic dispersion model that is able to provide an accu-
rate description of both the cell parameters and exfoliation energies
of layered transition-metal dichalcogenides.62,63 (Some variants of
non-local van der Waals functionals and MBD-FI46 also describe
these systems accurately.62)

In order to complete the exploration of XDM-corrected func-
tionals, we address herein their ability to correctly predict the stable
polymorphs of the cesium halides, as well as the lattice parameters
and bulk moduli of 20 alkali halides and 4 alkaline-earth oxides. The
accurate calculation of relative stabilities, geometries, and bulk mod-
uli has been shown to be essential for the prediction of many other
thermodynamic properties in simple solids.64,65 These ionic systems
have been studied in the literature using dispersion methods other
than XDM,3–6 and we also address some of the difficulties with these
previous works regarding the comparison with experimental data for
bulk moduli.

II. COMPUTATIONAL METHODS
Calculations were performed for the alkali halides composed

of all combinations of the Li, Na, K, Rb, and Cs cations and the
F, Cl, Br, and I anions, as well as MgO, CaO, SrO, and BaO.
At ambient pressure and temperature, all of these compounds
present the rocksalt (B1) structure, as shown in Fig. 1, except for
CsCl, CsBr, and CsI, which have the CsCl (B2) structure. For each
compound, energy vs volume curves were constructed by vary-
ing the lattice constants from 70% to 120% of their equilibrium
values, and phonon frequencies were computed at each geom-
etry. As all atoms occupy symmetry-fixed sites, all calculations
were single-point energy evaluations and no further relaxation was
required.

Our calculations used the exchange-hole dipole moment
(XDM) dispersion method. XDM is a pairwise asymptotic disper-
sion correction, in which the dispersion energy is

Edisp = − ∑
n=6,8,10

∑
i<j

Cn,ijfn(Rij)
Rn
ij

, (2)

where Cn ,ij are the pairwise dispersion coefficients, f n is the damp-
ing function for the order-n dispersion term, and Rij is the distance

FIG. 1. Conventional unit cells of sodium chloride [B1 (a)] and cesium chloride [B2
(b)]. The alkali cations are shown in purple and the halide anions in green.
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between atoms i and j. The XDM dispersion energy contains only
two adjustable parameters (a1 and a2) used in all Becke–Johnson
damping functions,66

fn(R) = Rn

Rn + (a1Rc + a2)n , (3)

where Rc is the critical radius, computed from ratios of the dis-
persion coefficients of the interacting atoms. The purpose of the
damping function parameters is to match the XDM energy with the
long-range exchange–correlation from the base functional, and they
are determined by fitting to a benchmark set of molecular dimer
binding energies.50,61 After this initial fitting, the a1 and a2 values
are never reparameterized for specific systems. In XDM, the dis-
persion coefficients (Cn ,ij) are computed from the self-consistent
Kohn–Sham states based on the assumption that dispersion orig-
inates from the interaction between dipoles formed by the elec-
trons plus their exchange(–correlation) holes. In this way, XDM
captures the physically correct evolution of the Cn coefficients with
the atomic chemical environment62 while, at the same time, retain-
ing the simplicity and cost-efficiency of an asymptotic dispersion
correction. The three-body and higher-order coefficients can be cal-
culated as well,67,68 but are not included in the standard XDM imple-
mentation. A more in-depth description of XDM has been given
elsewhere.16,45,68,69

In this work, the XDM dispersion correction is paired with
either the PBE70 or B86bPBE70,71 GGA functionals. PBE is the more
popular functional in the materials community, but B86bPBE is
the recommended functional to be paired with XDM for solid-
state calculations due to its desirable behavior in the limit of large
reduced density gradients.16,72–75 Additional calculations were also
performed for a hybrid functional76 based on B86bPBE with 25%
exact exchange,77 termed B86bPBE-25X.78

All calculations used version 6.1 of the Quantum ESPRESSO
program,79 with an 8 × 8 × 8 uniform k-point mesh and plane
wave cutoffs of 80 and 800 Ry for the kinetic energy and electron
density, respectively. We employed the projector augmented wave
(PAW) method.80 Phonon frequencies were calculated at each vol-
ume using density-functional perturbation theory (DFPT)81 with
a 4 × 4 × 4 q-point mesh. The XDM damping function parame-
ters were set to their established literature values of 0.3275 Å and
2.7673 Å for PBE,16 0.6512 and 1.4633 Å for B86bPBE,16 and 0.6754
Å and 1.4651 Å for B86bPBE-25X.78 We use the canonical ver-
sion of XDM with pairwise C6, C8, and C10 terms, but no atomic
three-body dispersion, which has been shown to give a negligible
contribution in alkali halides,3 in general.68 We note that the XDM
pairwise dispersion coefficients do include electronic many-body
effects.68

The E(V) curves, combined with the phonon frequencies at
each volume, were used to calculate the thermodynamic proper-
ties of each crystal using the Gibbs2 program.82,83 At zero pres-
sure and temperature, T, the Gibbs energy can be computed from
the DFT electronic energy (Eel) and the vibrational Helmholtz free
energy (Fvib),

G(V ,T) = F(V ,T) = Eel(V) + Fvib(V ,T). (4)

Here, Fvib can be calculated as

Fvib(V ,T) = ∫ [ω2 + kBT ln(1 − e− ω
kBT )]g(ω)dω, (5)

where ω is the vibration frequency, g(ω) is the phonon density
of states obtained from DFPT, and kB is Boltzmann’s constant. In
the quasi-harmonic approximation (QHA), we introduce anhar-
monicity by making g(ω) dependent on the volume. At a given
temperature and zero pressure, the equilibrium volume, V(T), the
lattice parameters, and bulk modulus are found by minimizing
G(V, T).

A computationally simpler alternative to the full QHA, which
requires the DFPT phonon density of states at each volume, is the
Debye model.84–86 In this model, the phonon density of states is
taken to be a parabola whose curvature is determined by the Debye
frequency, ωD,

gDebye(ω) =
⎧⎪⎪⎨⎪⎪⎩

9nω2

ω3
D

, ω < ωD

0, ω ≥ ωD,
(6)

where n is the number of atoms in the unit cell and ωD = kBΘD. ΘD
is the Debye temperature, which can be computed from the static
lattice parameter (a0) and bulk modulus [B0 = V(∂2Eel/∂V2)] as

ΘD = f (σ)
kB
(6π2n)1/3

√
a0B0

M
, (7)

where M is the molecular mass and f (σ) is a function of the Poisson
ratio, usually taken to be σ = 1

4 for simplicity.83,86 The advantage of
the Debye model in this formulation is that it only requires the E(V)
curve as input data, greatly simplifying the calculation. The Debye
model has been shown to be appropriate in the description of alkali
halides.87

Two important properties that determine the compressibility of
a solid are the isothermal (BT) and adiabatic (BS) bulk moduli. The
isothermal bulk modulus is

BT = V( ∂
2F

∂V2 )
T

, (8)

and the adiabatic bulk modulus is

BS = V(∂
2U

∂V2 )
S
= BT(1 + αγT), (9)

where U is the internal energy, α is the coefficient of thermal
expansion, and γ is the Grüneisen parameter.83

III. RESULTS
A. Cesium-halide polymorphism

Following previous studies in the literature,5,6 we first con-
sider the relative stabilities of the B1 and B2 cesium-halide poly-
morphs predicted by XDM-corrected functionals. Experimentally,
CsF adopts the B1 structure at room temperature and pressure, while
the remaining cesium halides (CsCl, CsBr, and CsI) all favor the
B2 phase. The calculated energy differences between the B1 and B2
phases of the cesium halides are shown in Fig. 2 using the B86bPBE
and B86bPBE-25X functionals, with (ΔEXDM) and without (ΔEbase)
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FIG. 2. Relative static energies (ΔE) and Gibbs free energies (ΔG) of the B1 and
B2 phases of the Cs halides. A negative value indicates that the B2 phase is more
stable. The curves are the Debye (ΔGDebye) and full QHA (ΔGQHA) Gibbs free-
energy differences and the static energy differences with (ΔEXDM) and without
(ΔEbase) dispersion.

the XDM dispersion correction. Without dispersion, both base func-
tionals incorrectly predict the B1 form to be stable for all four
cesium halides. The addition of the XDM dispersion term recov-
ers agreement with experiment, and the inclusion of exact exchange
has only a minimal effect on the results. This is in agreement with
similar observations in the literature using other dispersion correc-
tions.5,6 The addition of the D2 dispersion correction to PBE, the
addition of the D3 or rVV1088 dispersion corrections to the SCAN
functional,89 and the use of several methods based on the random-
phase approximation, were also found to favor the B2 phase for
CsCl, CsBr, and CsI.5 Thus, while inclusion of dispersion is clearly
needed to identify the correct stable polymorph in cesium halides,
the energy ranking is largely insensitive to the choice of dispersion
correction.

The calculated energy differences per formula unit are 0.84
(CsF), −2.77 (CsCl), −3.56 (CsBr), and −5.39 kcal/mol (CsI) using
B86bPBE-XDM, and 0.63 (CsF), −3.30 (CsCl), −3.74 (CsBr), and
−4.99 (CsI) using B86bPBE-25X-XDM. These values are com-
parable to those reported using other dispersion-corrected func-
tionals for CsCl:6 −4.46 (PBEsol-D2), −5.19 (HSE06-D2), and
−5.33 kcal/mol (PBE0-D2), although they significantly favor the
B2 phase compared to RPA5 data: 3.26 (CsF), −0.28 (CsCl),
−0.55 (CsBr), and −0.57 kcal/mol (CsI). Given that this over-
stabilization of the B2 phase is common to most functionals
and dispersion corrections (see also Ref. 5), it is possible that
its origin lies in some underlying deficiency of the density-
functional approximations for ionic interactions90 or with the RPA
itself.44

Figure 2 also shows the relative free energies of the B1 and
B2 phases obtained with B86bPBE-XDM or B86bPBE-25X-XDM
at room temperature from either the Debye model (ΔGDebye) or
full QHA (ΔGQHA). For CsCl, CsBr, and CsI, the vibrational con-
tribution to relative phase stability is negligible, and ΔE ≈ ΔG
in all cases. We note that QHA calculations could not be per-
formed for the B2 phase of CsF, as this phase becomes dynami-
cally unstable at the room temperature equilibrium volume, a prob-
lem, which cannot happen with the simpler Debye model. For the
other three Cs halides, results with the Debye model are in excellent

agreement with those from full QHA. All results shown for CsCl,
CsBr, and CsI will correspond to the B2 phase in the rest of this
article.

B. Static lattice constants

Tao et al. recently benchmarked several dispersion-corrected
DFT methods for the lattice constants of the alkali halides, as well as
bulk metals.3 Their reference data were obtained by back-correcting
experimental lattice constants to eliminate vibrational effects, allow-
ing a direct comparison with the static results from DFT optimiza-
tions. Table I displays the equilibrium alkali-halide lattice constants
obtained using the selected functionals, with the results from Tao et
al. provided for comparison.

Table I shows the results for three density functionals with-
out dispersion corrections: the LDA (local density approxima-
tion) and two GGA functionals, PBE and B86bPBE. The LDA sys-
tematically underestimates lattice constants, while they are con-
sistently overestimated with both GGAs. The general trend in
the predicted lattice constants of LDA < PBE < B86bPBE fol-
lows the known behavior of the exchange enhancement factors
of these functionals. The B86bPBE enhancement factor has the
highest limit for large density gradients and provides the best
agreement with exact exchange.72–74 Indeed, PBEsol,91 which has
an enhancement factor intermediate between the LDA and PBE,
provides the improved lattice constants,92,93 but, as we show
below, this is likely the result of error cancellation between an
overbinding exchange functional and the neglect of dispersion
effects.

Table I also shows that adding a dispersion correction to either
GGA results in a contraction of the unit cell and a reduction in the
lattice constant, often leading to improved agreement with exper-
iment. However, the quality of the computed lattice constants is
highly dependent on the choice of dispersion correction. These dif-
ferences can be attributed to the assumptions made in the computa-
tion of the leading-order C6 dispersion coefficients and to the choice
of damping function.

As noted by Tao et al.,3 the TS method gives very poor results,
overestimating the effect of dispersion and giving errors 3–4 times
higher than obtained with the LDA. This could be because the TS
dispersion coefficients are computed from neutral free-atom ref-
erence values, which are then scaled by a ratio of atom-in-solid
to free-atom volumes. The Hirshfeld volumes used in the scaling
have only a weak dependence on chemical environment and charge
state, resulting in little change from the atomic reference values.57,94

Improved values may be obtained if the TS method is modified to
use iterative Hirshfeld partitioning.95 The TS method has also been
shown to display poor performance for alkali and alkaline-earth
metals.96

In the D3 method, the dispersion coefficients are obtained from
interpolation of values for neutral hydrides, based on the coordi-
nation number.10 In contrast to TS, addition of the D3 dispersion
correction to PBE causes only a slight contraction of the lattice con-
stants and still results in systematic overestimation. This error may
be due to the zero-damping function used in D3.10 This damp-
ing function may reduce the dispersion energy excessively at the
relatively short internuclear separations seen in ionic solids.11
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TABLE I. Lattice constants (a0 in Å) for 20 alkali halides computed with the selected density functionals, compared to experimental data, back-corrected to eliminate vibrational
effects.3 The B86bPBE, PBE-XDM, B86bPBE-XDM, and B86bPBE-25X-XDM results are original to this work. Literature data obtained with other functionals are also shown.
ME: mean error and MAE: mean absolute error.

No dispersion Literature dispersion methods XDM-corrected methods

Name LDA3 PBE3 B86bPBE PBE-vdW3 PBE-TS3 PBE-D33 PBE B86bPBE B86bPBE-25X Expt.3

LiF 3.911 4.067 4.075 4.002 3.656 4.001 3.961 4.004 3.960 3.948
LiCl 4.966 5.151 5.167 5.086 4.949 5.085 5.062 5.084 5.077 5.045
LiBr 5.311 5.511 5.534 5.440 5.531 5.436 5.419 5.451 5.459 5.403
LiI 5.807 6.020 6.044 5.942 5.894 5.934 5.892 5.956 5.987 5.883
NaF 4.505 4.699 4.710 4.653 4.866 4.638 4.588 4.570 4.527 4.556
NaCl 5.466 5.697 5.708 5.631 5.377 5.655 5.526 5.522 5.532 5.547
NaBr 5.786 6.036 6.051 5.962 5.586 5.960 5.838 5.841 5.869 5.884
NaI 6.262 6.530 6.551 6.441 6.001 6.410 6.289 6.305 6.351 6.368
KF 5.161 5.419 5.434 5.231 5.151 5.383 5.138 5.215 5.199 5.267
KCl 6.077 6.382 6.400 6.103 5.548 6.383 5.986 6.142 6.167 6.205
KBr 6.372 6.706 6.727 6.421 5.757 6.689 6.257 6.433 6.478 6.503
KI 6.818 7.183 7.196 6.929 6.239 7.094 6.666 6.849 6.912 6.961
RbF 5.462 5.738 5.755 5.558 5.272 5.700 5.408 5.522 5.518 5.559
RbCl 6.378 6.699 6.712 6.436 5.718 6.723 6.221 6.411 6.452 6.498
RbBr 6.667 7.016 7.041 6.716 5.997 7.038 6.489 6.693 6.750 6.803
RbI 7.104 7.486 7.501 7.156 6.646 7.443 6.898 7.100 7.174 7.241
CsF 5.807 6.111 6.149 5.920 5.465 6.075 5.731 5.898 5.900 5.984
CsCl 3.968 4.202 4.226 4.014 3.869 4.198 3.934 4.027 4.041 4.057
CsBr 4.139 4.389 4.413 4.201 3.956 4.388 4.104 4.208 4.228 4.224
CsI 4.402 4.667 4.689 4.466 4.137 4.666 4.340 4.446 4.500 4.491

ME −0.103 0.164 0.183 −0.006 −0.341 0.124 −0.134 −0.038 −0.017
MAE 0.103 0.164 0.183 0.058 0.386 0.124 0.143 0.060 0.039

Table I also shows the performance of several XDM-corrected
methods. PBE-XDM gives relatively poor performance, with errors
comparable in magnitude to PBE-D3, but opposite in sign. This may
be attributed to the balance between the XDM dispersion energy and
the PBE base functional. PBE tends to underestimate non-bonded
repulsion due to its exchange enhancement factor.16,72–75 As a result,
PBE-XDM typically over-estimates the strength of more polar inter-
actions, such as H-bonding, while underestimating purely dispersive
interactions.50 It therefore follows that PBE-XDM would provide
excessive binding in ionic crystals. Conversely, B86bPBE, which is
typically the functional of choice to pair with XDM,16,52,61 gives a
more accurate treatment of non-bonded repulsion, providing stiffer
potentials than PBE, closer to exact exchange.72–74 As shown in
Table I, B86bPBE-XDM provides lattice constants in good agree-
ment with experiment, with a mean absolute error (MAE) similar to
the PBE-vdW method developed specifically for simple bulk solids.3

We also note that, of the methods considered here, only XDM and
the vdW method of Tao et al. involve non-empirical dispersion coef-
ficients, which likely explains their improved accuracy for ionic sys-
tems by being the only methods that capture electronic many-body
effects correctly.68

Despite the good performance of B86bPBE-XDM in Table I, the
lattice constants remain systematically underestimated with respect
to experiment. A possible explanation for this may be delocalization
error from the underlying GGA functional,97–100 which is expected

to result in overbinding of ionic materials, and could potentially be
reduced with hybrid functionals. This prompted us to consider the
performance of the B86bPBE-25X hybrid, paired with XDM. The
results in Table I show that B86bPBE-25X-XDM further reduces the
errors, and the MAE of 0.039 Å is the lowest obtained with any of
the methods considered.

The average errors in the calculation of static equilibrium
volumes of alkali halides using B86bPBE-XDM and B86bPBE-
25X-XDM are 3.0% and 2.0%, respectively. If only cesium halides
are considered, these figures decrease to 2.6% and 1.6%. For
comparison, Nepal et al. reported the average errors of 2.4%
and 1.8% using the random phase approximation (RPA) and
beyond-RPA methods for the cesium halides, respectively.5 The
performance of B86bPBE-XDM and B86bPBE-25X-XDM is also
comparable to the best-performing non-local functionals reported
by Klimeš et al.4

C. Room-temperature lattice constants
The static lattice constants proposed by Tao et al.3 rely

on a back-correction to compare experimental data to static
results. However, the vibrational free energy also changes accord-
ing to the functional, so it is interesting to consider whether lat-
tice constants at a finite temperature predicted with the Debye
and full QHA models are equally accurate. In particular, the
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B86bPBE-XDM and B86bPBE-25X-XDM functionals have been
shown to predict accurate static lattice constants, so we now consider
their performance in the calculation of room-temperature lattice
constants.

Table II shows our results for the room-temperature (298 K)
lattice constants, accounting for thermal expansion via either the
Debye or full QHA models. The four alkaline-earth oxides (MgO,
CaO, SrO, and BaO) are added to our dataset, as they share the
same rocksalt structure with the majority of the alkali halides. Since
phonon frequencies cannot be calculated with hybrid function-
als in Quantum ESPRESSO, the B86bPBE-XDM phonon densities
of states were used in combination with the B86bPBE-25X-XDM
electronic energies in the full QHA case.

Before proceeding to the results, we note that the full QHA does
not give reliable results for LiCl, LiBr, and LiI. In LiCl, the room-
temperature volume was grossly overestimated, whereas in LiBr and
LiI, the B1 phases were found to have phonon instabilities at the
room-temperature volumes. In all three cases, the root of the prob-
lem is the breakdown of the quasiharmonic approximation in the
particular case of full QHA beyond ∼150 K–200 K. The thermal

TABLE II. Computed lattice constants (in Å) obtained with the B86bPBE-XDM and
B86bPBE-25X-XDM methods using thermal corrections obtained with either the
Debye model (aDebye) or the full quasi-harmonic approximation (aQHA). Experimental
data at 298 K102,103 are included for comparison. ME: mean error and MAE: mean
absolute error.

B86bPBE-XDM B86bPBE-25X-XDM Experiment

Name aDebye aQHA aDebye aQHA aexpt

LiF 4.071 4.060 4.025 4.010 4.017
LiCl 5.168 . . . 5.158 . . . 5.130
LiBr 5.537 . . . 5.543 . . . 5.501
LiI 6.041 . . . 6.070 . . . 6.000
NaF 4.639 4.616 4.594 4.571 4.620
NaCl 5.600 5.576 5.611 5.586 5.641
NaBr 5.926 5.900 5.953 5.929 5.973
NaI 6.402 6.370 6.445 6.418 6.473
KF 5.292 5.260 5.275 5.242 5.347
KCl 6.220 6.192 6.250 6.219 6.293
KBr 6.516 6.487 6.564 6.535 6.600
KI 6.943 6.902 7.008 6.969 7.066
RbF 5.592 5.565 5.589 5.560 5.640
RbCl 6.489 6.454 6.534 6.498 6.581
RbBr 6.777 6.737 6.841 6.797 6.854
RbI 7.198 7.141 7.272 7.220 7.342
CsF 5.961 5.941 5.966 5.944 6.008
CsCl 4.071 4.071 4.093 4.085 4.123
CsBr 4.252 4.252 4.284 4.273 4.286
CsI 4.511 4.511 4.573 4.546 4.567
MgO 4.266 4.259 4.223 4.216 4.211
CaO 4.818 4.810 4.805 4.796 4.810
SrO 5.188 5.182 5.174 5.167 5.160
BaO 5.585 5.585 5.577 5.576 5.523

ME −0.029 −0.060 −0.014 −0.042
MAE 0.058 0.077 0.033 0.053

expansivity, α, is known experimentally to be linear with tempera-
ture at high temperature. Wentzcovitch et al. proposed the inflection
point in the calculated thermal expansivity vs temperature curve as
the temperature threshold above which the quasiharmonic approxi-
mation is not valid.101 Figure 3 shows the α(T) curves obtained using
B86bPBE-XDM and the full QHA or Debye models. The threshold
temperature in full QHA is reached at 200 K, and consequently, the
equilibrium volume at higher temperatures is overestimated. The
same problem is not present when the Debye model is used.

Table II shows that, in agreement with the static results from
Table I, both B86bPBE-XDM and B86bPBE-25X-XDM provide
good agreement with the experimental geometries at room tem-
perature. For B86bPBE-XDM, the MAEs are 0.058 Å and 0.077 Å
with the Debye and full QHA models, respectively. These values
are comparable to the MAE of 0.060 Å obtained for the static
lattice constants. Similar to the static case, addition of some exact-
exchange mixing further lowers the errors, with B86bPBE-25X-
XDM giving MAEs of 0.033 Å and 0.053 Å, again bracketing the
value of 0.039 Å obtained for the static lattice constants. Table II
confirms that the Debye model is an excellent approximation for
these compounds. The Debye approximation actually outperforms
the more complex full QHA method, possibly due to error can-
cellation and a lower sensitivity to unphysical effects at high tem-
perature, as seen in the case of lithium halides. Notably, the MAE
between the calculated Debye and QHA cell parameters is only
0.022 Å, which is remarkable given the fact that the Debye model
requires only the E(V) curve as an input. The good performance
of the Debye model for alkali halides has been noted before in the
literature.87

D. Bulk moduli
Finally, we consider the performance of the XDM dispersion

correction for the prediction of bulk moduli. Given the good per-
formance of the Debye model for ionic solids, and the unphysical
results of the full QHA in some cases, we consider vibrational effects
calculated with the Debye model only in the following discussion.

There are two different kinds of experimental bulk moduli:
isothermal [BT , Eq. (8)], measured using static methods (e.g., x-ray

FIG. 3. Thermal expansivity (α) as a function of temperature in LiCl, predicted by
B86bPBE-XDM with the full QHA (black) and Debye (red) models.
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diffraction), and adiabatic [BS, Eq. (9)], measured using dynamic
methods (e.g., from ultrasonic elastic constants). They are related
by Eq. (9) and, in the particular case of the alkali halides, can differ
by several GPa. For instance, using B86bPBE-XDM and the Debye
model, BT = 66.9 GPa and BS = 71.8 GPa for LiF. Since this differ-
ence is comparable to the errors from different density-functional
approximations, clearly one must make sure to compare to the
correct bulk modulus. This distinction is often disregarded in the
literature.

Similar to the lattice constants, in order to compare calculated
and experimental bulk moduli, one must account for vibrational
effects. In the literature, vibrational corrections are typically lim-
ited to zero-point effects93 (i.e., without the thermal contribution)
or simply neglected.3–5 The neglect of vibrational zero-point and
thermal effects is sometimes appropriate, as in the calculation of rel-
ative stabilities discussed in Sec. III A and as noted by Nepal et al.5

for cesium halides. However, doing the same for the bulk moduli is
incorrect in general because the bulk modulus decreases significantly
with temperature.

The temperature dependence of the bulk modulus can be
quantified using experimental data for the temperature-derivative

of the bulk modulus logarithm (d lnB/dT) for various solids. For
instance, Park and Sivertsen measured an adiabatic bulk mod-
ulus of 71.6 GPa at room temperature and ∼75.5 GPa in the
zero-temperature limit for BaO.104 A simple fit to the linear,
high-temperature portion of the experimental BS(T) curve yields
d lnB/dT = −2.5 × 10−4 K−1, which results in a more than 4 GPa
difference between the 0 K and room-temperature BS values for
BaO. This difference increases even further once vibrational zero-
point effects are considered. For the alkali halides, d lnB/dT ranges
from −2 × 10−4 to −10 × 10−4 K−1, depending on the solid.105

Therefore, there will be a very significant systematic error if static
and experimental adiabatic bulk moduli are compared directly.
This reasoning can be extended to other simple solids, making
most density-functional benchmarks based on bulk moduli pre-
sented in the literature flawed.3–5,93 More recent benchmark studies
on bulk moduli do include both thermal and zero-point correc-
tions,106,107 but a consistent way of experimentally back-correcting
room-temperature adiabatic and isothermal bulk moduli is still
required.

Given that systematic bias has been introduced in previous
density-functional benchmarks for bulk moduli, one must question

TABLE III. Adiabatic bulk moduli at room temperature, in GPa, computed with the PBE, B86bPBE, and B86bPBE-25X functionals, compared to experimental data. Three sets
of data are shown: the static bulk moduli without dispersion corrections, the static bulk moduli with XDM, and the adiabatic bulk moduli calculated using the Debye model and
with the XDM dispersion correction. ME: mean error and MAE: mean absolute error.

Static B0 (no dispersion) Static B0 (XDM) BS (XDM) BS

Name PBE B86bPBE B86bPBE-25X PBE B86bPBE B86bPBE-25X PBE B86bPBE B86bPBE-25X Expt.

LiF 66.92 65.89 73.10 87.69 80.00 86.60 78.36 71.77 77.02 69.6105

LiCl 31.72 31.03 32.71 39.86 37.27 38.78 36.11 32.41 33.84 31.7105

LiBr 25.67 25.04 26.12 33.79 30.18 31.00 30.83 26.70 27.46 25.6105

LiI 19.78 19.22 19.89 28.78 24.29 24.41 25.93 21.83 21.90 19.2105

NaF 44.79 43.93 48.45 58.01 58.83 64.56 52.09 52.22 57.42 48.5105

NaCl 23.65 23.03 24.17 35.00 34.19 34.12 31.32 30.44 30.40 25.1105

NaBr 19.37 18.82 19.54 29.36 28.59 28.37 25.71 25.08 24.94 20.6105

NaI 15.14 14.68 15.08 23.46 22.75 22.45 20.27 19.47 19.52 15.9105

KF 28.92 28.36 30.79 54.18 41.91 43.86 50.58 37.62 39.91 31.6105

KCl 16.24 15.82 16.47 37.65 26.30 25.64 34.13 23.86 23.06 18.2105

KBr 13.45 14.89 15.59 32.32 22.95 22.13 29.07 20.58 19.88 15.4105

KI 11.40 11.60 12.35 25.38 19.20 18.60 22.46 16.64 16.32 12.2105

RbF 24.52 24.01 25.98 54.61 38.01 38.79 51.34 35.55 35.74 27.7105

RbCl 14.17 13.80 14.34 37.34 25.58 24.91 33.82 22.93 21.47 16.2105

RbBr 12.08 12.29 13.06 31.48 22.23 21.53 28.31 19.60 18.17 13.8105

RbI 10.68 10.88 11.74 24.15 18.18 17.61 21.43 15.89 15.28 11.1105

CsF 20.46 20.01 21.57 56.97 35.98 36.06 54.13 32.65 32.44 23.9105

CsCl 16.06 16.52 13.03 36.38 25.67 26.11 34.25 23.10 23.25 18.3105

CsBr 13.51 13.92 12.02 32.63 22.14 22.26 30.80 20.00 17.73 15.9105

CsI 11.31 11.68 10.81 29.44 18.98 19.15 27.66 17.48 12.06 12.9105

MgO 149.00 147.91 165.70 155.54 155.45 173.56 147.24 147.18 164.96 163.9108

CaO 105.92 105.18 114.25 117.32 114.24 123.22 111.22 107.77 116.85 112.0109

SrO 84.53 83.84 91.44 98.32 91.86 99.75 95.87 89.01 95.76 91.0110

BaO 68.23 67.56 73.46 90.30 76.86 81.82 87.49 73.63 78.53 71.6104

ME −2.68 −3.00 −0.42 14.09 6.66 8.89 10.36 2.98 4.67
MAE 2.74 3.00 1.52 14.78 7.36 8.89 11.81 4.89 4.74
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how the conclusions were affected by this bias. It has been noted
that application of dispersion corrections decreases agreement with
experimental bulk moduli. For instance, Tao et al. avoided using
PBE-vdW bulk moduli since they “slightly worsen the PBE bulk
modulus.”3 Likewise, Klimeš et al.4 observed that the MAEs of non-
local functionals are generally worse than those obtained using much
simpler GGA functionals. This is at odds with the observations for
the lattice constants.

Table III provides a clue to resolve this contradiction. This
table shows the static bulk moduli and room-temperature adiabatic
bulk moduli, calculated with three different functionals, with and
without dispersion, and compared to reference room-temperature
BS values. The experimental adiabatic bulk moduli reported were
obtained from various sources in the literature,104,105,108–110 and they
are equal to the reference data used by Tao et al. in the case of alkali
halides.3

Consistent with the observations of Tao et al.3 and others,
the agreement between static bulk moduli using uncorrected GGA
functionals and the experimental bulk moduli is excellent. How-
ever, by our previous argument, this comparison is not appropri-
ate because of the quite substantial vibrational contributions to the
bulk moduli, which is evidenced in the difference between the static
and BS results in this table. The static bulk moduli calculated with
dispersion-corrected functionals are substantially higher, resulting
in a much worse agreement with experimental BS data. However,
the inclusion of vibrational effects brings the adiabatic bulk mod-
uli back into reasonable agreement with experiment, at least in the
cases of B86bPBE-XDM and B86bPBE-25X-XDM. Therefore, the
apparent good performance of GGA functionals can be attributed
to an (easily preventable) systematic bias introduced by the neglect
of vibrational effects, which at room temperature have about
the same magnitude as the dispersion contributions to the bulk
moduli.

Importantly, Table III shows that PBE, which performs very
well if the erroneous comparison between static and experimental
bulk moduli is made, is the worst-performing functional once dis-
persion interactions and vibrational effects are taken into account.
As in the case of lattice constants, we attribute the poorer perfor-
mance of PBE-XDM to the underestimation of non-bonded repul-
sion due to the exchange enhancement factor, resulting in a gross
overestimation of the bulk modulus. In sharp contrast, if func-
tionals with a more appropriate exchange enhancement factor are
used, such as B86bPBE-XDM or its 25% hybrid, then the error
decreases to the 4–5 GPa range, with a slight systematic overesti-
mation remaining, which could be attributed to our treatment of
anharmonicity.

IV. DISCUSSION
B86bPBE-XDM has essentially the same cost as a semilocal

functional calculation, and the dispersion correction has the sim-
plicity of an asymptotic pairwise formula. The good performance
of B86bPBE-XDM and its 25% hybrid functional (B86bPBE-25X-
XDM) for ionic solids, together with their ability to treat molec-
ular crystals,52–56,111,112 layered materials,62 surface adsorption,57–59

and gas-phase molecules,16,50,113,114 confirms that these methods
are excellent candidates for the universal modeling of chemical

processes in materials science. This adds further support to what we
have stated in the past:62 that asymptotic pairwise methods can be as
accurate as their more complicated relatives if they correctly capture
electronic many-body effects.

To support this point, it is interesting to compare the per-
formance of B86bPBE-XDM with other functionals that are not
based on an asymptotic dispersion energy expression. Given the
abundance of results for non-local and other dispersion methods
in the literature, we focus on a very recent paper by Kim et al.,47

where the uMBD method, a modification of MBD,15 is benchmarked
for metallic, ionic, and van der Waals interactions. The authors
stated that “uMBD conserves a better uniform accuracy over other
methods across a wide range of systems,”47 so we may take it as
a representative sample of a modern non-asymptotic dispersion
method.

While a full comparison is not possible because of the lim-
ited uMBD data presented,47 uMBD underperforms in compari-
son to B86bPBE-XDM for common benchmark sets. For the S22
set of molecular binding energies,115,116 uMBD has an MAE of
0.54 kcal/mol compared to 0.37 kcal/mol for B86bPBE-XDM. Sim-
ilarly, for the X23 set of molecular lattice energies,61,117 B86bPBE-
XDM achieves an MAE of 0.85 kcal/mol,16,78 while uMBD has an
MAE of 1.2 kcal/mol. In addition, B86bPBE-XDM has been exten-
sively applied to molecular crystal polymorphism,53–56,111,112 demon-
strating excellent performance for the prediction of experimental
polymorph landscapes.

Moving to inorganic solids, the MAE in the alkali-halide lat-
tice constants is 0.060 Å for B86bPBE-XDM, as shown above,
while it is 0.047 Å for uMBD.47 For surface adsorption, the sets
reported for uMBD47 and B86bPBE-XDM57 are not equivalent, so
we examine the individual systems for which adsorption energies
have been calculated using both methods. For benzene on Au(111),
the adsorption energies are 14.8 (B86bPBE-XDM) and 12.0 kcal/mol
(uMBD), compared to the reference value of 16.7 kcal/mol. Sim-
ilarly, for benzene on Ag(111), the adsorption energies are 15.7
(B86bPBE-XDM) and 11.5 kcal/mol (uMBD), compared to the ref-
erence value of 14.6 kcal/mol. A more meaningful comparison could
be obtained with more data but, in these particular cases, the per-
formance of B86bPBE-XDM far exceeds uMBD, which appears
to systematically underestimate the adsorption energies. Finally,
B86bPBE-XDM shows excellent performance for the calculation of
interlayer separations (MAE = 0.072 Å) and exfoliation energies
(MAE = 4.0 meV/Å2) of layered materials, comparable to MBD-
FI. The latter is similar to uMBD; unfortunately, Kim et al.47 did
not provide enough data about layered systems for a meaningful
comparison.

Our analysis confirms the good performance and universality
of B86bPBE-XDM for metallic, ionic, and molecular systems. When
it comes to dispersion corrections, a principle of parsimony must
apply. Asymptotic pairwise dispersion corrections are simple, cheap,
and if they capture electronic many-body effects correctly,68 they
are comparable in quality if not better than the most complicated
dispersion-corrected functionals.

V. CONCLUSIONS
In this article, we have studied the performance of sev-

eral XDM-corrected functionals in the description of the relative
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stability, lattice constants, and bulk moduli of simple ionic solids.
XDM-corrected functionals have shown excellent performance in
the description of non-covalent interactions in the past, and the pur-
pose of this work is to establish that these functionals can also be
used in the modeling of hard solids, such as ionic compounds.

The studied systems were simple ionic solids, including 20
alkali halides and 4 alkaline-earth oxides (MgO, CaO, SrO, and
BaO). Three different aspects were considered: the relative stabilities
of cesium-halide phases, the calculation of lattice constants and of
bulk moduli. The prediction of polymorphism in the cesium halides
is relatively simple, and we show that XDM and other dispersion-
corrected functionals correctly identify the experimental phase of
CsF (B1, rocksalt) and of CsCl, CsBr, and CsI (B2, CsCl). The use
of a dispersion correction is essential in order to obtain the proper
energy ranking, while vibrational effects have only a very minor
role.

The lattice constant benchmark was carried out in two steps.
First, we used the experimental data proposed by Tao et al.3 that
were back-corrected to remove vibrational effects and allow a direct
comparison with the calculated static lattice constants. We find
that B86bPBE-XDM and its 25% hybrid (B86bPBE-25X-XDM) per-
form excellently, with average errors of only 0.060 Å and 0.039 Å,
respectively. The inclusion of dispersion corrections again decreases
the error in the calculated lattice constants and, importantly, PBE-
XDM has a considerably higher error (0.143 Å), which we attribute
to the underestimation of non-bonded repulsion. We have noted
previously that the effect of the exchange enhancement factor on
non-bonded repulsion can be magnified for ionic interactions.90

The improved performance of the hybrid functional is attributed
to decreased delocalization error, which may be important in these
systems. In the second step, we considered the calculated lattice con-
stants at room temperature using the Debye and full QHA thermal
models. The good performance of B86bPBE-XDM and B86bPBE-
25X-XDM for the lattice constants is preserved, and we also note
the excellent predictions achieved with the relatively crude Debye
model.

Finally, we also considered the calculation of bulk moduli in
ionic systems. It has been claimed in the literature that simple GGAs,
such as PBE or PBEsol, are able to accurately predict experimental
bulk moduli. We show that this is the result of a quite significant
and uncontrolled error cancellation between missing dispersion and
missing vibrational effects, which arises from comparing static (or
zero-point corrected) bulk moduli and experimental bulk moduli. If
the comparison is made including vibrational effects, then including
dispersion is essential. As seen for the lattice constants, dispersion-
corrected PBE is the worst-performing functional, which confirms
that properly accounting for non-bonded repulsion through the
exchange enhancement factor is necessary for ionic solids. Previous
claims regarding the accuracy of simple semilocal functionals for the
prediction of bulk moduli are marred by a preventable systematic
bias in comparison with experimental data.
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