
Noname manuscript No.
(will be inserted by the editor)

A memetic algorithm for restoring feasibility in
scheduling with limited makespan

Raúl Menćıa · Carlos Menćıa · Ramiro
Varela

Received: date / Accepted: date

Abstract When solving a scheduling problem, users are often interested in find-
ing a schedule optimizing a given objective function. However, in some settings
there can be hard constraints that make the problem unfeasible. In this paper we
focus on the task of repairing infeasibility in job shop scheduling problems with a
hard constraint on the makespan. In this context, earlier work addressed the prob-
lem of computing the largest subset of the jobs that can be scheduled within the
makespan constraint. Herein, we face a more general weighted version of the prob-
lem, consisting in computing a feasible subset of jobs maximizing their weighted
sum. To this aim, we propose an efficient memetic algorithm, that combines a ge-
netic algorithm with a local search method, also proposed in the paper. The results
from an experimental study show the practical suitability of our approach.

1 Introduction

Scheduling problems have attracted a large body of research over the last decades,
due to their practical interest and their usually high computational complexity [7].
As a result, a wide range of methods have been proposed for solving increasingly
challenging scheduling problems. Arguably, the job shop scheduling problem (JSP)
has been one of the most studied problems in this class, which serves to model a
variety of different settings while keeping its formulation simple.

Typically, when solving a scheduling problem the goal is to find a schedule
that optimizes a given objective function. However, in some cases there can be
additional constraints that make the problem unfeasible, that is, with no possible
solutions. This situation gives rise to the task of repairing the observed inconsis-
tecy, so that solving the problem to some extent.

In this paper we focus on repairing unfeasible job shop scheduling problems
with a hard constraint imposing that all the jobs must be completed within a

Department of Computer Science,
University of Oviedo, Campus of Gijón, Gijón 33204, Spain
{menciaraul, menciacarlos, ramiro}@uniovi.es
http://www.di.uniovi.es/iscop



2 Raúl Menćıa et al.

given makespan limit. This kind of constraint appears naturally in practice, and
has been studied in the literature (e.g. [9,8,1]).

Recently, in [17], a setting was considered in which unfeasible problem instances
can be relaxed by removing some of the jobs, so that the remaining ones can be
scheduled under the given makespan constraint. This setting yields the optimiza-
tion problem of computing the largest feasible subset of the jobs, for which an
efficient genetic algorithm (GA) was proposed in [17]. Whereas the largest subset
of jobs that can be scheduled under the given makespan constraint represents a
useful notion for repairing inconsistency, it does not take into account that some
jobs might be more prioritary than others. This way, we consider a more general
formulation of the problem, where each job has a positive weight, and focus on
computing a feasible subset of jobs maximizing their weighted sum.

For solving this problem, we show that the genetic algorithm proposed in [17]
can be easily adapted to handle the weights, and that the search space where it
looks for solutions is still dominant when weights are considered. In addition, we
propose an effective local search algorithm for this problem, that aims at improving
the quality of solutions. The local search method is combined with GA, resulting
in a memetic algorithm (MA). The results from an experimental study indicate
that the proposed methods are successful at solving the problem, and that the
local search approach enables the memetic algorithm to outperform the genetic
algorithm.

The remainder of the paper is organized as follows. In Section 2 we give a
formal definition of the problem. Section 3 reviews the genetic algorithm proposed
in [17], which is adapted to the weighted version of the problem considered herein.
Section 4 is devoted to the local search algorithm we propose, which is integrated
in the memetic algorithm presented in Section 5. All the methods are evaluated
in an experimental study reported in Section 6. Finally, we summarize the main
conclusions in Section 7.

2 Problem formulation

The job shop scheduling problem (JSP) consists in scheduling a set of n jobs
J = {J1, . . . , Jn} on a set of m resources or machines M = {M1, . . . ,Mm}. Each
job Ji ∈ J consists of a sequence of m tasks or operations (θi1, . . . , θim), where
each operation requires a machine M(θij) during a (positive integer) processing
time pθij .

A schedule S is an assignment of a starting time stθij to each of the operations
such that the following constraints are satisfied:

i. The operations in a job must be scheduled in the order they appear in the job,
i.e., stθij + pθij ≤ stθi(j+1)

with i = 1, ..., n and j = 1, ...,m− 1.
ii. No machine can process more than one operation at a time, which translates

in disjunctive constraints of the form (stu + pu ≤ stv) ∨ (stv + pv ≤ stu) for
all operations u, v with u 6= v and M(u) = M(v).

iii. Preemption is not allowed, i.e., Cu = stu + pu for all u, where Cu denotes the
completion time of operation u.

The makespan of a schedule S is defined as the maximum completion time of
the operations in S, and it is denoted as Cmax(S). This metric has been commonly



A memetic algorithm for restoring feasibility in scheduling with limited makespan 3

considered as an objective function to be minimized, resulting in the optimization
version of the JSP denoted J ||Cmax in the α|β|γ notation proposed in [12].

Considering the makespan, the decision version of the JSP is the problem of
deciding, for a given problem instance, whether there exists a schedule S such
that Cmax(S) ≤ C, where C is a fixed limit on the maximum makespan allowed.
If such a schedule S exists, the problem instance is said to be feasible, whereas it
is unfeasible otherwise.

In this paper, we focus on the task of repairing unfeasible problem instances
with a hard constraint on the makespan in the best possible way. For this pur-
pose, we consider a setting that allows for dropping some of the jobs, so that the
remaining ones can be scheduled within the makespan limit. Based on this, in
the following, we refer to an unfeasible problem instance by a pair I = (J , C),
consisting in scheduling the set of jobs J within a maximum makespan of C.

The following definitions serve to characterize suitable repairs, which build
on related concepts in the field of the analysis of unsatisfiable propositional for-
mulas, such as maximal satisfiable subformula (MSS) or maximum satisfiability
(maxSAT) [2,14,23].

Definition 1 (FSJ) Given an unfeasible instance I = (J , C), S ( J is a feasible
subset of jobs (FSJ) of J iff (S, C) is feasible.

Definition 2 (MFSJ) Given an unfeasible instance I = (J , C), S ( J is a
maximal feasible subset of jobs (MFSJ) of J iff (S, C) is feasible and for all S′ ⊆ J
with S ( S′, (S′, C) is unfeasible.

Definition 3 (maxFSJ) Given an unfeasible instance I = (J , C), S∗ ( J is a
maximum feasible subset of jobs (maxFSJ) of J iff (S∗, C) is feasible and for all
FSJs S′ of J , |S′| ≤ |S∗|.

FSJs constitute subsets of the jobs that can be scheduled within the makespan
limit. Among the set of all possible FSJs, MFSJs and maxFSJs exhibit two different
forms of maximality. MFSJs are maximal w.r.t. set inclusion, i.e. no superset of
an MFSJ is an FSJ and so they represent a kind of local maxima. On the other
hand, maxFSJs are FSJs with maximum cardinality, i.e. the largest possible FSJs.
If only one of the previous sets is to be computed, arguably, maxFSJs might be
the most useful option, due to their largest size.

Recent work [17] addressed the problem approximating maxFSJs. Therein, the
following two results were proven (we omit the proofs, and refer the interested
reader to [17]):

Proposition 1 Let I = (J , C) be an unfeasible problem instance and S ( J an
FSJ of J . Then, for all S′ ⊆ S, S′ is an FSJ of J .

Proposition 2 Let I = (J , C) be an unfeasible problem instance. S ( J is an
MFSJ of J iff (S, C) is feasible and for all j ∈ J \ S, (S ∪ {j}, C) is unfeasible.

Proposition 1 states that all subsets of an FSJ are feasible subsets of jobs as
well. This monotonicity property allows for an alternative definition of MFSJs,
stated in Proposition 2.

As pointed out, maxFSJs constitute useful ways of repairing infeasibility. How-
ever, in some settings some jobs may be more prioritary than others, and maxFSJs



4 Raúl Menćıa et al.

J1 θ11,M1 θ12,M2

J3 θ31,M2 θ32,M1

1 2 3 4 5 6 7 8 9 10

Fig. 1 Gantt chart of a schedule for the weighted-maxFSJ {J1, J3} in Example 1.

do not take this information into account. In this respect, we consider a more gen-
eral formulation, in which each job j ∈ J has a (positive integer) weight, denoted
w(j). Then, for a set of jobs S, we define its total weight as w(S) =

∑
j∈S w(j).

Weights allow for an alternative kind of repairs:

Definition 4 (weighted-maxFSJ) Given an unfeasible instance I = (J , C),
S∗ ( J is a weighted maximum feasible subset of jobs (weighted-maxFSJ) of J iff
(S∗, C) is feasible and for all FSJs S′ of J , w(S′) ≤ w(S∗).

So, weighted-maxFSJs are feasible subsets of jobs with the maximum possible
total weight. Clearly, if all the weights are equal, weighted-maxFSJs correspond to
maxFSJs. Thus, the problem of computing a maxFSJ is a particular case of that
of computing a weighted-maxFSJ for a given unfeasible problem instance.

Example 1 Consider a job shop with four jobs J = {J1, J2, J3, J4} and two ma-
chinesM = {M1,M2}. Each job Ji has a weight w(Ji) and consists of a sequence
of two operations (θi1, θi2), with processing times and required machine as shown
in the following table:

J1 J2 J3 J4
θi1 2 (M1) 3 (M1) 6 (M2) 5 (M2)
θi2 3 (M2) 2 (M2) 4 (M1) 5 (M1)
w 4 2 7 4

With a hard constraint limiting the makespan to C = 10 the instance (J , C)
is unfeasible. There are 11 FSJs of J : ∅, {J1}, {J2}, {J3}, {J4}, {J1, J2}, {J1, J3},
{J1, J4}, {J2, J3}, {J2, J4} and {J1, J2, J4} as there exists a schedule with makespan
less than or equal to 10 for each of them. Three of these sets are MFSJs: S1 =
{J1, J3}, S2 = {J2, J3} and S3 = {J1, J2, J4}, with w(S1) = 11, w(S2) = 9 and
w(S3) = 10. Besides, only S3 is a maxFSJ of J , and the only weighted-maxFSJ is
S1. Fig. 1 shows a schedule for the weighted-maxFSJ with makespan not exceeding
the limit of 10.

In this paper, we address the maximization problem of approximating weighted-
maxFSJs for a given unfeasible problem instance (J , C), that is finding feasible
subsets of jobs with the maximum possible total weight. This problem is related to
the problem considered in [9], where the goal is to find a feasible subset of jobs in
a two-stage flow shop maximizing a weighted sum of the jobs. However, deciding
the feasibility of a two-stage flow shop can be done in polynomial time, whereas
deciding the feasibility of a JSP instance is known to be NP-complete [10].



A memetic algorithm for restoring feasibility in scheduling with limited makespan 5

Algorithm 1: Solution Builder.

Data: Set of jobs J , makespan limit C
Result: S ( J an MFSJ of J
R ← J ; // Initialize reference set to the set of all jobs
S ← ∅; // Initialize S to the empty set
while R 6= ∅ do

Pick j ∈ R; //Non-deterministically
R← R \ {j};
if Feasible(S ∪ {j}, C) then
S ← S ∪ {j};

end

end
return S;

3 Genetic algorithm for computing weighted-maxFSJs

In this section we review the genetic algorithm (GA) proposed in [17] for computing
(unweighted) max-FSJs, and show that it can be easily extended, keeping all its
properties, to handle weights by only changing its evaluation function.

The GA looks for solutions in the search space defined by a solution builder
aimed at approximating MFSJs of J for a given unfeasible problem instance
I = (J , C). Restricting the search to the set of MFSJs allows for reducing the
size of the search space while still being dominant, i.e., this set contains opti-
mal solutions for any given problem instance. Noticeably, this property holds for
the weighted version of the problem as well, what follows from the fact that all
weighted-maxFSJs are MFSJs too, as we prove next:

Proposition 3 Let S∗ ( J be a weighted-maxFSJ of J for a given unfeasible
problem instance I = (J , C). Then, S∗ is an MFSJ of J as well.

Proof Since S∗ is a weighted-maxFSJ of J , by Definition 4, the instance (S∗, C)
is feasible, i.e., S∗ is an FSJ of J . Let us suppose that S∗ is not an MFSJ of J .
Then, by Definition 2, there must exist an FSJ S′ with S∗ ( S′ ( J . As every job
in J has a positive weight and S′ is a strict superset of S∗, it necessarily follows
that w(S′) > w(S∗), and so S∗ is not a weighted-maxFSJ of J . A contradiction.

The result above enables searching for optimal solutions in the (reduced) space
of MFSJs. In practice, as pointed out above, the search space is defined with the use
of a solution builder which is integrated into the genetic algorithm in its decoding
phase. In the following subsections we describe both the solution builder and the
main components of the GA.

3.1 Solution builder

When solving scheduling problems, the search space is commonly defined by means
of schedule builders, also known as schedule generation schemes, e.g. [11,3,22,19].
These are non-deterministic methods that enable the computation and enumer-
ation of a subset of the schedules for a given problem instance, thus defining a
search space. However, for the task of approximating weighted-maxFSJs, besides



6 Raúl Menćıa et al.

Table 1 Trace of Algorithm 1 on the instance in Example 1

It. j Feasible(S ∪ {j}, C) S R
Init. - - ∅ {J1, J2, J3, J4}

1 J3 true {J3} {J1, J2, J4}
2 J4 false {J3} {J1, J2}
3 J1 true {J1, J3} {J2}
4 J2 false {J1, J3} ∅

computing schedules we need to search in the subset space of the jobs in order to
identify feasible subsets of jobs, so a different kind of procedure is necessary for
this purpose. This way, the search space is defined by means of a solution builder
that aims at computing MFSJs of a given unfeasible problem instance.

Its pseudocode is shown in Algorithm 1. The solution builder follows a linear
search approach [4,13] for computing an MFSJ. The algorithm maintains a set S
(initially empty) and a set R with all the jobs that have not yet been considered
(initialized as J ). Throughout the course of the algorithm, S represents an FSJ
of J and this set grows until eventually representing an MFSJ of J . Iteratively,
until all the jobs have been considered, the algorithm selects a job j ∈ R and tests
whether the instance (S ∪ {j}, C) is feasible or not, i.e., whether there exists a
schedule for the jobs in S ∪{j} with makespan not exceeding the given limit C. If
such a schedule exists, the job j is added to S. In either case, j is removed from
R. The algorithm terminates after |J | iterations, when R becomes empty.

The solution builder relies on the use of a procedure Feasible for testing the
feasibility of different subsets of jobs. Whenever Feasible is a complete decision
procedure (e.g. [16]), Algorithm 1 correctly computes an MFSJ of J , which follows
from Proposition 2.

We note that the selection of the job j in each iteration is non-deterministic.
As an example, if we consider the unfeasible problem instance in Example 1, the
sequence of choices (J1, J2, J3, J4) would result in the MFSJ {J1, J2, J4}. Alterna-
tively, the sequence of choices (J3, J4, J1, J2) would lead the algorithm to comput-
ing the MFSJ {J1, J3}. In addition, considering all possible sequences of choices
(i.e. permutations of the jobs) results in the definition of a search space that con-
tains all MFSJs of a given problem instance, including all the weighted-maxFSJs
(what follows from Proposition 3). In order to clarify how this algorithm works,
we show a trace in the following example.

Example 2 Let us consider the unfeasible problem instance in Example 1, con-
sisting in scheduling the jobs {J1, J2, J3, J4} with a hard constraint limiting the
makespan to C = 10. Table 1 shows a trace of Algorithm 1 assuming that it
implements Feasible as a complete decision procedure, following the sequence of
choices (J3, J4, J1, J2). Concretely, for each iteration, the table shows the selected
job j ∈ R, the result of the feasibility test on the instance (S ∪ {j}, C) as well as
the content of the sets S and R at the end of the corresponding iteration. As we
can observe, Algorithm 1 produces the MFSJ {J1, J3}.

As pointed out, each feasibility test requires solving an NP-complete problem,
so using a complete decision procedure (i.e. an exact algorithm) for this purpose
may be impractical. Alternatively one could use an incomplete procedure, at the
expense of losing the guarantee that the computed subset represents an MFSJ.



A memetic algorithm for restoring feasibility in scheduling with limited makespan 7

Algorithm 2: Schedule builder G&T .

Data: A JSP problem instance P
Result: A feasible schedule S for P
A ← {ti1; Ji ∈ J};
SC ← ∅;
while A 6= ∅ do

v∗ ← argmin{rv + pv ; v ∈ A};
B ← {u ∈ A;M(u) = M(v∗), ru < rv∗ + pv∗};
Pick u ∈ B non deterministically;
Set stu ← ru in S;
Add u to SC and update rv for all v /∈ SC;
A ← {v; v /∈ SC, P (v) ⊆ SC};

end
return the built schedule S;

Given a feasibility test on an instance (S ∪ {j}, C), the incomplete procedure
would look for a schedule for the set of jobs in S ∪ {j} with makespan not ex-
ceeding C. If such a schedule is found, the instance would be correctly declared
feasible. Otherwise, there would not be the guarantee that the instance is unfeasi-
ble, although Algorithm 1 would treat it as such (not adding the job j to the set
S). As a result, the computed set could be an under-approximation of an MFSJ
but, in any case, it will always be a feasible subset of the jobs (since it cannot
happen that an unfeasible instance is declared feasible).

In order to search for schedules for a given JSP instance, our approach uses the
well-known G&T schedule builder [11]. This algorithm schedules one operation at a
time iteratively. Algorithm 2 shows its pseudocode, where for an operation u, P (u)
denotes its immediate predecessor in its job and ru denotes its earliest possible
starting time, referred to as the head of u. The algorithm maintains a set SC
with the operations scheduled so far and the set A containing all the unscheduled
operations that are either the first one in their job or whose immediate predecessor
in their job has been already scheduled. At each iteration, the algorithm identifies
the operation v∗ ∈ A with the earliest possible completion time and builds a set
B with all the operations v ∈ A that require the same machine as v∗ and can
be scheduled before the earliest possible completion time of v∗. At this point,
one operation in B is selected and scheduled at its earliest possible starting time,
updating SC, A and the heads of the operations that remain to be scheduled.

On termination, the G&T algorithm is guaranteed to return an active schedule,
in which no operation can be scheduled earlier without delaying the starting time
of some other operation. The selection of the job j ∈ B to be scheduled at a
given iteration is non-deterministic. This way, the G&T schedule builder defines a
search space, particularly that formed by the set of all active schedules, which is
dominant for the makespan, i.e. it always contains at least one schedule with the
minimum possible makespan.

3.2 Main components of the genetic algorithm

This section reviews the main components of the GA proposed in [17] for approx-
imating maxFSJs, that we extend herein for approximating weighted-maxFSJs.
Its structure is shown in Algoritm 3: it is a generational genetic algorithm with



8 Raúl Menćıa et al.

Algorithm 3: Genetic Algorithm.

Data: A problem instance P and a set of parameters (Pc, Pm,#gen,#popsize)
Result: A solution for P
Generate and evaluate the initial population P (0);
for t=1 to #gen-1 do

Selection: organize the chromosomes in P (t− 1) into pairs at random ;
Recombination: mate each pair of chromosomes and mutate the two offsprings

in accordance with Pc and Pm;
Evaluation: evaluate the resulting chromosomes;
Replacement: make a tournament selection among every two parents and their

offsprings to generate P (t);
end
return the best solution built so far ;

random selection and replacement by tournament among parents and offsprings,
which confers the GA an implicit form of elitism. The algorithm requires the fol-
lowing four parameters: crossover and mutation probabilities (Pc and Pm), number
of generations (#gen) and population size (#popsize). Below, we describe its most
important elements:

3.2.1 Coding schema

The GA exploits a coding schema commonly used for solving job shop scheduling
problems, in which chromosomes are permutations with repetitions [6]. Particu-
larly, for an instance with n jobs and m machines, a chromosome is a permutation
of the job indices where each job appears m times.

A permutation represents a tentative ordering of the operations, that we refer
to as operation sequence: in a chromosome the j-th occurrence of job Ji (from left
to right) corresponds to the operation θij . For example, the chromosome (4, 1, 1,
3, 2, 4, 2, 3) represents the operation sequence (θ41, θ11, θ12, θ31, θ21, θ42, θ22, θ32)
for an instance with 4 jobs and 2 machines. This sequence can be exploited to
guide a schedule builder, such as the G&T algorithm, in the search of a schedule
for a given JSP instance.

In addition, this representation can be also used to guide a solution builder
in the construction of an (approximate) MSFJ as it establishes a total order of
the jobs, that we refer to as job sequence. Concretely, given a chromosome the
job sequence it represents is defined by the order of the jobs w.r.t. their first
appearance in the chromosome. For instance, the chromosome (4, 1, 1, 3, 2, 4, 2,
3) represents the job ordering (J4, J1, J3, J2). As a result, the coding schema, in
combination with the decoding algorithm presented below allows the GA to search
in both the subset space of the set of jobs and in the space of schedules for any
given subset of jobs at the same time.

3.2.2 Decoding algorithm

The GA uses the solution builder depicted in Algorithm 1 as a decoder. Given a
chromosome, the decoder builds an (approximate) MFSJ using the solution builder
in a way that it selects the jobs in the order they appear in the job sequence



A memetic algorithm for restoring feasibility in scheduling with limited makespan 9

encoded in the chromosome. In other words, at the i-th iteration of the algorithm,
it picks the job appearing in the i-th position of the job sequence.

The procedure Feasible in Algorithm 1 is implemented by an invocation to the
G&T schedule builder described in Algorithm 2, which is guided by the opera-
tion sequence extracted from the chromosome. This way, it is used as a greedy
algorithm. At each iteration, the operation in the set B that appears first in the
operation sequence is chosen to be scheduled. If the makespan of the resulting
schedule satisfies the hard constraint on the makespan, the instance declared fea-
sible, and unfeasible otherwise. Since this does not constitute a complete decision
procedure, there is no guarantee that an MFSJ would be computed, but an ap-
proximation instead, as discussed in Section 3.1.

After the execution of the solution builder, the total weight of the computed
set is taken as the fitness of the chromosome. Notice that this is the only difference
with respect to the GA in [17], which considered the cardinality of the computed
set instead.

3.2.3 Crossover and mutation

For crossover, the GA uses the well-known Job-based Order Crossover (JOX) [21],
specifically designed for permutations with repetitions. Given a pair of individuals,
JOX selects a random subset of the jobs and copies their genes to the offspring
in the same positions as they are in the first chromosome; then the remaining
genes are taken from the second chromosome maintaining their relative order.
The second child is computed by the same procedure swapping the role of the
parents.

On the other hand, the mutation operator implements a simple procedure,
which randomly swaps two consecutive positions of the chromosome.

4 Local search

Local search stands out as a very effective framework for solving hard combina-
torial optimization problems and, as such, it has been successfuly applied in the
field of scheduling as well (e.g. [20,27,18,26]). Although many different local search
algorithms exist in the literature, they all follow the same underlying principle:
starting from a solution to a given problem instance, a local search algorithm
introduces small perturbations to the solution, replacing it by a new found so-
lution if the latter has higher quality. This process is repeated until no further
improvements are observed (or other termination condition is met).

In this section, we propose a local search algorithm aimed at improving the
solutions computed by the GA described above. Note that, because of the solution
builder used by the GA in its decoding phase, these solutions constitute approxi-
mations of MFSJs so trying to add additional jobs to these sets does not seem to
lead to any improvements if the same procedure is used for testing the feasibility
of a given subset of the jobs. In contrast, our approach consists in iteratively sub-
stituting one job in the current solution by another one with a greater weight and
such that it is not contained in the corresponding FSJ. However, such substitu-
tions may lead to unfeasible problem instances and so not all posible substitutions
may lead to new actual solutions (i.e. FSJs).



10 Raúl Menćıa et al.

Algorithm 4: Procedure ComputePotentialNeighbors.

Data: An unfeasible instance I = (J , C), an FSJ S ( J
Result: Set of pairs representing potential neigboring FSJs improving S
N ← ∅;
for s ∈ S do

for u ∈ J \ S do
if w(u) > w(s) then
N ← N ∪ {(s, u)};

end

end

end
return N ;

Algorithm 5: Local search algorithm.

Data: An unfeasible instance I = (J , C), an FSJ S ( J
Result: An FSJ S′ with w(S′) ≥ w(S)
S′ ← S;
stop← false;
while ¬stop do

stop← true;
N ← ComputePotentialNeighbors(I,S′);
for (s, u) ∈ N do
S′′ ← (S \ {s}) ∪ {u};
if Feasible(S′′) then
S′ ← S′′;
stop← false;
break;

end

end

end
return S′;

In this respect, we define a neighborhood structure by first identifying all the
pairs of jobs that represent potential neighboring solutions. For a given solution,
i.e. an FSJ S of J , a pair (s, u) with s ∈ S and u ∈ J \ S, represents the set of
jobs obtained by substituting s by u in S. Since substituting a job by another one
with a lower or equal weight cannot lead to improving the quality of an FSJ in a
single step, we only consider pairs (s, u) such that w(u) > w(s).

For the sake of clarity, the way all pairs representing potential neighboring
solutions are computed is depicted in Algorithm 4. As can be observed, the number
of potential neighboring solutions is quadratic at most. Any of such pairs (s, u)
giving rise to an actual solution, i.e., a set of jobs S′ = (S \ {s}) ∪ {u} such that
the instance (S′, C) is feasible, are of higher quality than the original one. Indeed,
it is easy to observe that w(S′) = (w(S) − w(s)) + w(u). Since w(u) > w(s), it
follows that w(S′) > w(S).

The neighborhood structure described above is exploited by the proposed local
search algorithm, which is shown in Algorithm 5. Given an FSJ S′ of J , the
method considers all potential neighbors of S′ until finding one representing an
actual solution, which by definition is of higher quality than S′. At this point, the
new solution replaces S′ and the process is repeated until no further improvements
are achieved. Notice that the algorithm terminates either when the current solution



A memetic algorithm for restoring feasibility in scheduling with limited makespan 11

does not have any potential neighboring solutions or when none of the potential
neighbors results in an actual solution.

The local search algorithm, as described in Algorithm 5, follows a hill climbing
search approach: at each iteration the first neighboring solution found improving
the current one replaces it. This may lead to improvements smaller than possible,
and so a gradient descent approach may be preferable, in which the current solution
is replaced by the best neighboring solution improving it. Noticeably, Algorithm 5
can be easily instrumented to perfom such search by just considering the pairs
(s, u) ∈ N in non-decreasing order of the values w(u) − w(s). This way, the first
actual neighboring solution found in the inner for loop is guaranteed to be the one
with the highest quality. We will consider both approaches in the experimental
study.

We remark that the local search algorithm has been devised in order to be
integrated in the GA described in the previous section, so the feasibility tests are
performed in the same way, by using the G&T algorithm guided by an operation
sequence encoded in a chromosome. More details are given in the next section.

5 Memetic algorithm

Memetic algorihms are metaheuristics aiming at an adequate balance between
exploration and intensification of the search by means of a combination of genetic
algorithms and local search approaches [25]. In this setting, the GA is responsible
for exploring diverse and promising regions in the search space, whereas local
search intensifies the search in such regions, leading to higher quality solutions.

Herein we describe the memetic algorithm (MA) proposed for the problem of
approximating weighted-maxFSJs of a given unfeasible problem instance. The pro-
posed memetic algorithm combines the genetic algorithm described in Section 3
and the local search algorithm depicted in Algorithm 5. It follows the same evolu-
tionary scheme as shown in Algorithm 3, but after the decoding phase is performed
obtaning a solution to the problem, the local search method is applied to the com-
puted solution, potentially improving its quality. If such improvement is achieved,
the fitness value of the chromosome is updated with the total weight of the new
solution.

As pointed out above, the procedure Feasible used by the local search al-
gorithm when combined with GA is the same as the one used by the decoding
algorithm of GA. This way, the operation sequence encoded in a chromosome cor-
responding to the solution to be improved by local search is used to guide the
G&T schedule builder (Algorithm 2). If the schedule computed has a makespan
not exceeding the maximum limit C, the given problem instance is declared fea-
sible, while it is treated as unfeasible by Algorithm 5 otherwise. This way, the
running times of the local search procedure are kept short.

6 Experimental results

We conducted an experimental study in order to assess the performance of the
methods proposed in this work. To this aim, we coded a prototype in C++ and



12 Raúl Menćıa et al.

ran a series of experiments on a Linux cluster (Intel Xeon 2.26 GHz, 128 GB
RAM).

The experiments were performed over a set of unfeasible instances derived
from classical JSP instances from the OR-library [5] as well as some Taillard’s
instances [24]. Concretely, the benchmark set consists of instances with a different
number of jobs n ∈ {10, 15, 20, 50} and machines m ∈ {5, 10, 15, 20}. For each JSP
instance, we created a new instance by assigning a random weight to each job,
following a uniform distribution in the interval [1, 100]. Among the JSP instances
considered, there are 21 instances with n = 10: LA01-05 (m = 5), FT10, ORB01-
10 and LA16-20 (m = 10); 15 instances with n = 15: LA06-10 (m = 5), LA21-25
(m = 10) and LA36-40 (m = 15); 11 instances with n = 20: LA11-15, FT20
(m = 5) and LA26-30 (m = 10); and 20 instances with n = 50: tai50 15 01-10
(m = 15) and tai50 20 01-10 (m = 20). Finally, we built three unfeasible instances
by imposing different values for the makespan limit C to be 70%, 80% and 90%
of the optimal makespan Copt for the instance. So, there are 201 instances in all.

Our goal is to evaluate the performance of the proposed methods. Bearing
this in mind, we compare three algorithms: the original genetic algorithm (GA),
and two memetic algorithms that use the local search approaches described in
Section 4, namely a MA with hill climbing as local search approach (MA-HC),
and a MA that uses gradient descent (MA-GD). We hypothesize that both MA-
HC and MA-GD will reach better results than GA, and that they will take more
time as well.

We divided the experimental analysis in two parts. First, we evaluate the ef-
fectiveness of the local search approaches. Then, we compare GA, MA-HC and
MA-GD. The results are reported in the two following subsections.

6.1 Assessment of the local search

The objective of the first series of experiments is to evaluate the effectiveness of
the local search approaches at improving solutions built by the solution builder
(No LS), comparing the hill climbing (LS-HC) and the gradient descent (LS-GD)
approaches.

For this purpose, we generated 100 random solutions for three instances and
solved them with the two local search methods. The chosen instances were LA16
(n = 10), LA21 (n = 15) and LA26 (n = 20), imposing a makespan limit C of
80% of their optimal makespan.

The results are presented in Table 2, which reports the value of the best and
the average solutions, over the 100 considered, obtained by each method, averaged
for each considered instance. As we can observe, for every instance, local search
allows us to find (much) better solutions in average. When comparing the two local
search approaches, we see that gradient descent improves random solutions to a
greater extent than hill climbing. We can also see that the differences grow with
the number of jobs, which suggests that local search is more effective for larger,
and harder, instances.

Figure 2(a) shows a scatter plot comparing No LS and LS-GD regarding the
total weight of the computed solutions. The points that are on the main diagonal
line represent random solutions that were not improved by LS-GD, whereas the
points above this line represent solutions improved by LS-GD. Noticeably, many



A memetic algorithm for restoring feasibility in scheduling with limited makespan 13

Table 2 Comparison between No LS, LS-HC and LS-GD

No LS LS-HC LS-GD
Instance Best Avg. Best Avg. Best Avg.

LA16 3971 2631.41 3971 2884.98 3971 2905.33
LA21 4603 3131.64 4890 3761.05 4890 3831.33
LA26 6987 4743.60 7228 5809.46 7268 5971.19

0 1000 2000 3000 4000 5000 6000 7000 8000
No LS

0

1000

2000

3000

4000

5000

6000

7000

8000

LS
-G

D

(a) No LS vs. LS-GD

0 1000 2000 3000 4000 5000 6000 7000 8000
LS-HC

0

1000

2000

3000

4000

5000

6000

7000

8000

LS
-G

D

(b) LS-HC vs. LS-GD

Fig. 2 Scatter plots comparing the considered approaches.

of the solutions were improved by LS-GD, in many cases by a wide margin. On the
other hand, Figure 2(b) shows a comparison between LS-HC and LS-GD. As we
can observe, LS-GD is better than LS-HC in more cases, although the differences
are not as significant as before. From these experiments we can conclude that the
local search approaches are effective.

6.2 Assessment of the memetic algorithms

The following series of experiments was conducted to evaluate the performance of
GA, MA-HC and MA-GD. In all the experiments, GA, MA-HC and MA-GD evolve
a population of 100 individuals with crossover probability of 0.9 and mutation
probability of 0.1 until a stopping criteria is met. The algorithm was run 20 times
on each instance, recording the best and average solutions found, as well as the
running times.

First, we carried out a series of experiments with the termination condition of
completing 250 generations. The results of these experiments are shown in Table
3. For each number of jobs n, the table shows the error of the best and average
solutions found over the 20 runs, as well as the running times of GA, MA-HC and
MA-GD, averaged for each C. The average values for all the experiments is also
shown in the last row of the table. The best value for each category is highlighted
in bold. The errors are calculated w.r.t. the best solution found for each instance
in all of the experiments.

Let us first compare GA with the two memetic algorithms. As can be observed,
both MA-HC and MA-GD return better best and average values for all the sets
of instances. We can point out as well that the difference seems to grow with the



14 Raúl Menćıa et al.

Table 3 Summary of results after 250 generations.

GA MA-HC MA-GD
n %Copt Best Avg. Time (s) Best Avg. Time (s) Best Avg. Time (s)

10

70 0.55 1.23 0.50 0.00 0.85 0.66 0.00 0.90 0.66
80 0.10 2.31 0.68 0.10 1.71 0.88 0.11 1.78 0.88
90 0.07 2.00 0.85 0.00 1.31 1.04 0.02 1.18 1.03

Avg. 0.24 1.85 0.67 0.03 1.29 0.86 0.05 1.29 0.86

15

70 0.00 2.32 1.55 0.44 1.84 2.28 0.00 1.61 2.27
80 1.19 3.65 2.05 0.80 3.10 2.84 0.35 2.97 2.82
90 1.59 3.71 2.57 1.45 3.40 3.41 1.55 3.34 3.37

Avg. 0.92 3.23 2.06 0.90 2.78 2.84 0.63 2.64 2.82

20

70 1.87 3.91 3.39 1.51 3.55 4.98 1.47 3.42 4.83
80 1.17 3.05 4.05 1.24 2.96 5.66 1.23 2.76 5.50
90 0.92 1.91 4.58 0.70 1.82 6.13 0.99 1.72 5.99

Avg. 1.32 2.96 4.01 1.15 2.77 5.59 1.23 2.64 5.44

50

70 2.73 7.58 63.86 1.20 3.62 138.83 0.22 2.48 125.02
80 1.95 6.22 80.69 0.97 2.60 164.72 0.14 1.69 150.03
90 1.31 4.54 95.94 0.53 1.70 177.18 0.07 1.13 165.33

Avg. 2.00 6.11 80.16 0.90 2.64 160.24 0.14 1.77 146.79
Average 1.10 3.61 25.26 0.67 2.27 49.66 0.40 1.95 45.61

number of jobs. In addition, as expected, GA is less time consuming than MA-
HC and MA-GD, especially for the large instances. Comparing the two memetic
algorithms, MA-GD seems to return better best and average values than MA-HC,
and also smaller running times. So, in average, there is no reason to doubt that
MA-GD performs better than MA-HC. However, there are a few instances for
which MA-HC reaches better solutions than MA-GD. Regarding how the methods
behave depeding on the imposed C, it can be noticed that the running times grow
with it.

Figure 3(a) shows a boxplot comparing the three methods. As can be observed,
both MAs perform better than GA and MA-GD performs better than MA-HC.

The results above indicate that MA-HC and MA-GD return solutions of higher
quality at the cost of increased running times. It is interesting to see how the
algorithms compare if instead of stopping at a given number of generations, we
have a time limit as stop condition. So, we carried out a new series of experiments,
having a time limit of 60 seconds. Table 4 shows the results of these experiments.
The results show that GA is still worse than MA-HC and MA-GD, and that MA-
GD is still better than MA-HC, even though now the difference is smaller, mainly
due to the small instances.

Figure 3(b) shows a boxplot summarizing the results in Table 4. If we compare
it with Figure 3(a), we see that the algorithms rank in the same order, but now
the difference is smaller.

In all, we can conclude that the memetic algorithms perform better than the
genetic algorithm, and that gradient descent seems to be a better local search
strategy than hill climbing in most cases.

7 Conclusions

This paper addresses the task of repairing unfeasible job shop scheduling problems
with a hard constraint on the maximum makespan allowed. To this aim, we con-



A memetic algorithm for restoring feasibility in scheduling with limited makespan 15

Table 4 Summary of results after 60s.

GA MA-HC MA-GD
n %Copt Best Avg. Best Avg. Best Avg.

10

70 0.00 0.92 0.00 0.80 0.00 0.72
80 0.06 1.64 0.00 1.30 0.04 1.42
90 0.00 1.50 0.00 0.96 0.07 0.96

Avg. 0.02 1.35 0.00 1.02 0.04 1.03

15

70 0.00 1.47 0.00 1.24 0.44 1.09
80 0.31 2.64 0.59 2.34 0.28 2.14
90 1.24 3.01 0.37 2.43 0.21 2.39

Avg. 0.52 2.37 0.32 2.00 0.31 1.87

20

70 0.91 2.68 1.07 2.46 0.04 2.09
80 0.65 2.13 0.02 1.74 0.41 1.68
90 0.24 1.22 0.11 1.07 0.00 1.04

Avg. 0.60 2.01 0.40 1.75 0.15 1.60

50

70 2.77 7.55 2.38 4.52 1.30 3.21
80 2.67 6.73 1.84 3.43 1.39 2.71
90 2.15 5.12 1.45 2.44 0.89 1.94

Avg. 2.53 6.47 1.89 3.47 1.19 2.62
Average 0.98 3.22 0.70 2.09 0.46 1.79

GA MA-HC MA-GD
0

2

4

6

8

10

12

14

er
ro

r(
%

)

(a) Generations

GA MA-HC MA-GD
0

2

4

6

8

10

12

14

er
ro

r(
%

)

(b) Time

Fig. 3 Boxplots comparing the considered approaches.

sider a setting in which the problem can be relaxed by dropping some of the jobs.
In this context, we face the problem of computing a feasible subset of the jobs that
maximizes their weighted sum. This problem generalizes the problem considered
in [17], which aimed at maximizing cardinality. Building on the genetic algorithm
proposed in [17], we propose a memetic algorithm that combines the GA with a lo-
cal search method, also proposed in the paper. Experimental results show that the
proposed approaches are effective at solving the problem, and that the memetic
algorithm bring significant gains in the quality of the solutions computed.

As future work, we plan to study alternative solution builders for the problem,
as well as alternative local search algorithms. Besides, considering hard constraints
on metrics different from the makespan, such as the total tardiness [15] seems a
promising line of research.



16 Raúl Menćıa et al.

Acknowledgements

This research is supported by the Spanish Government under project TIN2016-
79190-R and by the Principality of Asturias under grant IDI/2018/000176.

References

1. Allahverdi, A., Aydilek, H.: Total completion time with makespan constraint in no-wait
flowshops with setup times. European Journal of Operational Research 238(3), 724 – 734
(2014)

2. Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196,
77–105 (2013)

3. Artigues, C., Lopez, P., Ayache, P.: Schedule generation schemes for the job shop problem
with sequence-dependent setup times: Dominance properties and computational analysis.
Annals of Operations Research 138, 21–52 (2005)

4. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints using
hitting set dualization. In: PADL, pp. 174–186 (2005)

5. Beasley, J.E.: Or-library: Distributing test problems by electronic mail. J Oper Res Soc
41(11), 1069–1072 (1990)

6. Bierwirth, C.: A generalized permutation approach to job shop scheduling with genetic
algorithms. OR Spectrum 17, 87–92 (1995)

7. Brucker, P., Knust, S.: Complex Scheduling. Springer (2006)
8. Choi, J.Y.: Minimizing total weighted completion time under makespan constraint for two-

agent scheduling with job-dependent aging effects. Computers & Industrial Engineering
83, 237 – 243 (2015)

9. Dawande, M., Gavirneni, S., Rachamadugu, R.: Scheduling a two-stage flowshop under
makespan constraint. Mathematical and Computer Modelling 44(1), 73 – 84 (2006)

10. Garey, M., Johnson, D., Sethi, R.: The complexity of flowshop and jobshop scheduling.
Mathematics of Operations Research 1(2), 117 – 129 (1976)

11. Giffler, B., Thompson, G.L.: Algorithms for solving production scheduling problems. Op-
erations Research 8, 487–503 (1960)

12. Graham, R., Lawler, E., Lenstra, J., Kan, A.: Optimization and approximation in deter-
ministic sequencing and scheduling: a survey. Annals of Discrete Mathematics 5, 287 –
326 (1979)

13. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal
correction subsets. In: Proc. of IJCAI, pp. 615–622 (2013)

14. Marques-Silva, J., Janota, M., Menćıa, C.: Minimal sets on propositional formulae. Prob-
lems and reductions. Artif. Intell. 252, 22–50 (2017)

15. Menćıa, C., Sierra, M.R., Menćıa, R., Varela, R.: Evolutionary one-machine scheduling
in the context of electric vehicles charging. Integrated Computer-Aided Engineering 26,
49–63 (2019)

16. Menćıa, C., Sierra, M.R., Varela, R.: Depth-first heuristic search for the job shop scheduling
problem. Annals OR 206(1), 265–296 (2013)

17. Menćıa, R., Menćıa, C., Varela, R.: Repairing infeasibility in scheduling via genetic algo-
rithms. In: From Bioinspired Systems and Biomedical Applications to Machine Learning -
8th International Work-Conference on the Interplay Between Natural and Artificial Com-
putation, IWINAC 2019, Almeŕıa, Spain, June 3-7, 2019, Proceedings, Part II, pp. 254–263
(2019)

18. Menćıa, R., Sierra, M.R., Menćıa, C., Varela, R.: Memetic algorithms for the job shop
scheduling problem with operators. Appl. Soft Comput. 34, 94–105 (2015)

19. Menćıa, R., Sierra, M.R., Menćıa, C., Varela, R.: Schedule generation schemes and genetic
algorithm for the scheduling problem with skilled operators and arbitrary precedence re-
lations. In: Proc. of ICAPS, pp. 165–173. AAAI Press (2015)

20. Nowicki, E., Smutnicki, C.: An advanced tabu search algorithm for the job shop problem.
Journal of Scheduling 8, 145–159 (2005)

21. Ono, I., Yamamura, M., Kobayashi, S.: A genetic algorithm for job-shop scheduling prob-
lems using job-based order crossover. In: Proceedings of 1996 IEEE International Confer-
ence on Evolutionary Computation, pp. 547–552 (1996)



A memetic algorithm for restoring feasibility in scheduling with limited makespan 17

22. Palacios, J.J., Vela, C.R., Rodŕıguez, I.G., Puente, J.: Schedule generation schemes for job
shop problems with fuzziness. In: Proc. of ECAI, pp. 687–692 (2014)

23. Previti, A., Menćıa, C., Järvisalo, M., Marques-Silva, J.: Premise set caching for enumer-
ating minimal correction subsets. In: Proc. of AAAI, pp. 6633–6640 (2018)

24. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Operational
Research 64(2), 278–285 (1993)

25. Talbi, E.: Metaheuristics - From Design to Implementation. Wiley (2009)
26. Van Laarhoven, P., Aarts, E., Lenstra, K.: Job shop scheduling by simulated annealing.

Operations Research 40, 113–125 (1992)
27. Zhang, C.Y., Li, P., Rao, Y., Guan, Z.: A very fast TS/SA algorithm for the job shop

scheduling problem. Computers and Operations Research 35, 282–294 (2008)


