
Reasoning About Strong Inconsistency in ASP ?

Carlos Menćıa1 and Joao Marques-Silva2

1 University of Oviedo, Spain menciacarlos@uniovi.es
2 ANITI, University of Toulouse, France joao.marques-silva@univ-toulouse.fr

Abstract. The last decade has witnessed remarkable improvements in
the analysis of inconsistent formulas, namely in the case of Boolean Sat-
isfiability (SAT) formulas. However, these successes have been restricted
to monotonic logics. Recent work proposed the notion of strong incon-
sistency for a number of non-monotonic logics, including Answer Set
Programming (ASP). This paper shows how algorithms for reasoning
about inconsistency in monotonic logics can be extended to the case
of ASP programs, in the concrete case of strong inconsistency. Initial
experimental results illustrate the potential of the proposed approach.

1 Introduction

The last decade and a half witnessed a remarkable evolution in algorithms for
reasoning about inconsistency. This is the case with algorithms for the extraction
and enumeration of minimal unsatisfiable subsets (MUSes) [4–6,8,9,33,34,37,42]
and minimal correction subsets (MCSes) [3, 6, 21, 26, 27, 36, 39, 40, 45], but also
algorithms for maximum satisfiability (MaxSAT) [1,2,18,35,41]. This work was
motivated by earlier important advances [7, 17, 28, 29, 32, 48]. Although most of
this work was proposed in the context of propositional formulas it is also the
case that most of the algorithms are amenable to generalization for different
fragments of First-Order Logic (FOL). These algorithms specifically addressed
monotonic logics, with propositional logic as a concrete example.

In the case of non-monotonic logics, minimal inconsistency is uninterest-
ing [16], because of non-monotonicity. Recent work proposed the concept of
strong inconsistency for non-monotonic logics [15, 16], which enabled demon-
strating that well-known properties of inconsistent sets in monotonic logics also
apply in the case of strong inconsistency, with a reference example being the
minimal hitting set relationship between minimal inconsistent subsets and min-
imal correction subsets [46]. Nevertheless, a limitation of this earlier work is
that the algorithms proposed aim at being illustrative, consisting of simple set
enumeration approaches, known not to scale in practice [34].

This paper changes this state of affairs. Concretely, the paper proposes novel
simple insights, which enable any algorithm for reasoning about inconsistency

? This research is supported by the Spanish Government under project TIN2016-
79190-R, by the Principality of Asturias under grant IDI/2018/000176, and by AN-
ITI, funded by the French program “Investing for the Future – PIA3” under Grant
agreement no ANR-19-PI3A-0004.

mailto:menciacarlos@uniovi.es
mailto:joao.marques-silva@univ-toulouse.fr

2 Menćıa and Marques-Silva

in the monotonic cases, to also be applicable to reasoning about strong inconsis-
tency in the non-monotonic cases. The paper demonstrates the proposed ideas
in the concrete setting of Answer Set Programming (ASP) [14, 22], but these
can be applied in other settings provided mild conditions hold. The significance
of being able to reason efficiently about (strong) inconsistency in ASP should
be highlighted. Whereas SAT reasoners represent a remarkable (and unique)
problem solving technology, ASP blends efficient problem solving (by exploiting
the technologies that are the hallmark of SAT solvers) with a well-established
and widely used knowledge representation paradigm. The proposed algorithms
enable new applications of ASP based on reasoning about (strong) inconsistency.

2 Preliminaries

Boolean Satisfiability. We consider definitions and notation standard in Boolean
Satisfiability (SAT) [10]. Concretely, we consider propositional formulas in con-
junctive normal form (CNF), defined as a conjunction, or set, of clauses F =
{c1, ..., cm} over a set of variables V (F) = {x1, ..., xn} where a clause is a disjunc-
tion of literals, and a literal is a variable x or its negation ¬x. An interpretation
is a mapping µ: V (F)→ {0, 1}. If µ satisfies F , it is referred to as a model of F .
F �G means that all the models of F are models of G. A minimal (resp. maximal)
model is such that the set of variables assigned value 1 (resp. 0) is irreducible.
A formula is satisfiable (F 2⊥) if it has a model; and otherwise unsatisfiable
(F �⊥). In the latter case, the following definitions apply:

Definition 1 (MUS/MCS).M⊆ F is a minimal unsatisfiable subset (MUS)
if and only if M�⊥ and for all M′ (M, M′ 2⊥. C ⊆ F is a minimal correc-
tion subset (MCS) if and only if (F \ C)2⊥ and for all C′ (C, F \ C′ �⊥.

MUSes are minimal explanations of unsatisfiability, while MCSes are irre-
ducible sets of clauses whose removal renders satisfiability. The complement of
an MCS is a maximal satisfiable subset (MSS). MUSes and MCSes are hitting set
duals: Every MCS is a minimal hitting set of all MUSes and vice versa [11,46].

Example 1. Let Fex = {(¬x1), (x1), (x1 ∨x2), (¬x2)}. Fex is unsatisfiable. It has
two MUSes: M1 = {(x1), (¬x1)}, M2 = {(¬x1), (x1 ∨ x2), (¬x2)}; and three
MCSes: C1 = {(¬x1)}, C2 = {(x1), (x1 ∨ x2)}, C3 = {(x1), (¬x2)}.

Minimal Sets over a Monotone Predicate. Several problems in propositional
logic can be reduced to computing a minimal set over a monotone predicate
(MSMP) [37, 38]3. In this setting, a predicate p: 2R → {0, 1}, defined over a
reference set R, is monotone if whenever p(R0) holds, then p(R1) also holds,
with R0 ⊆ R1 ⊆ R. M ⊆ R is a minimal set over a predicate p if p(M)
holds and, for all M′ (M, p(M′) does not hold. As an example, given F �⊥,
by setting R , F , the MUSes of F are the minimal sets over the monotone
predicate p(W) , ¬SAT(W), with W ⊆ R. The MCSes of F are the minimal
sets over p(W) , SAT(R \W), with W ⊆ R.

3 MSMP was proposed in [37,38], but it was inspired by earlier work [12,13].

Reasoning About Strong Inconsistency in ASP 3

Answer Set Programming & Strong Inconsistency. We review basic concepts in
ASP. A more detailed account can be found in [14,22].

A (normal) logic program P = {r1, ..., rn} is a finite set of rules of the fol-
lowing form: a ← b1, ..., bm, not cm+1, ..., not cn, where a, bi and ci are atoms.
A literal is an atom or its default negation not a. Extended logic programs
may include classical negation (¬). For a rule r, body(r) denotes the literals
b1, ..., bm, not cm+1, ..., not cn and head(r) denotes the literal a. We write B+(r)
for b1, ..., bm and B−(r) for cm+1, ..., cn. A rule is a fact if it has an empty body.
Further, we allow choice rules of the form n ≤ {a1, ..., ak}, with n ≥ 0. A
program is ground if it does not contain any variables. A ground instance of a
program P , denoted grd(P), is a ground program obtained by substituting the
variables of P by all constants from its Herbrand universe.

The semantics of ASP programs can be defined via a reduct [25]. A set I of
ground atoms is a model of a program P if head(r) ∈ I whenever B+(r) ⊆ I and
B−(r)∩I = ∅ for every r ∈ grd(P). The reduct of P w.r.t. the set I, denoted P I ,
is defined as P I = {head(r)← B+(r) | r ∈ grd(P), I ∩B−(r) = ∅}. The set I is
an answer set of P if I is a minimal model of P I . The inclusion of choice rule
n ≤ {a1, ..., ak} guarantees that any answer set contains at least n atoms from
{a1, ..., ak}. A program P is consistent if it has at least one consistent answer
set; otherwise, P is inconsistent.

This paper focuses on the analysis of inconsistent ASP programs. Through-
out, we will consider that programs are partitioned into two subsets: P = B∪S,
where B denotes background knowledge, assumed to be consistent and which
cannot be relaxed, and S denotes the set of rules that can be dropped to achieve
consistency. In contrast to propositional logic, logical entailment is not mono-
tonic in ASP. Hence, supersets of an inconsistent program are not necessarily
inconsistent, and a subset of a consistent program may be inconsistent. This
way, MUSes and MCSes as defined for propositional logic do not capture their
intended meaning and properties. To overcome this drawback, the notion of
strong inconsistency [15,16]4 was recently proposed: Given an inconsistent pro-
gram P = B∪S, P ′ = B∪S′, with S′ ⊆ S, is strongly P -inconsistent if for all S′′,
with S′ ⊆ S′′ ⊆ S , B ∪ S′′ is inconsistent. In other words, strong inconsistency
denotes that all supersets (up to P) of a given subprogram are inconsistent. Min-
imal explanations and corrections of inconsistent ASP programs can be defined
in terms of strong inconsistency, as follows:

Definition 2 (MSIS/MSICS). Given an inconsistent program P = B ∪ S,
the subset M ⊆ S is a minimal strongly P -inconsistent subset (MSIS) iff B ∪
M is strongly P -inconsistent and, for all M ′ (M , B ∪ M ′ is not strongly
P -inconsistent. C ⊆ S is a minimal strong P -inconsistency correction subset
(MSICS) iff B ∪ (S \ C) is not strongly P -inconsistent and, for all C ′ (C,
B ∪ (S \ C ′) is strongly P -inconsistent.

The complement of an MSICS is a maximal consistent subset. Besides, every
MSIS is a minimal hitting set of the set of all MSICSes and vice versa [15,16].

4 This notion was defined for arbitrary non-monotonic logics. We show it for ASP.

4 Menćıa and Marques-Silva

Example 2. Consider the inconsistent program Pex = Bex ∪ Sex, with Bex = ∅
and Sex = {r1 : a ← not a, not b., r2 : b ← not a., r3 : ¬b.}. There are
two MSISes: M1 = {r1, r3}, M2 = {r2, r3}; and two MSICSes: C1 = {r1, r2},
C2 = {r3}. Notice that although {r1} is inconsistent, it is not strongly Pex-
inconsistent, since {r1, r2} is consistent (with the only answer set {b}).

Related Work. Debugging ASP programs has attracted a large body of research
(see [20] for a survey). Systems as spock [24] or Ouroboros [43, 44], based on
meta-programming, enable pinpointing errors causing inconsistency, as unsup-
ported atoms or unsatisfied rules. On the other hand, DWASP [19] allows for inter-
actively debugging ASP programs by exploiting unsatisfiable cores. In contrast,
our goal is computing MSISes and MSICSes, in the case of strong inconsistency.
Our work is closely related to [30,31], which extended a number of algorithms for
MSSes in SAT to maximal consistent subsets in ASP (and so MSICSes). Herein,
we focus on computing MSISes as well, and on enumerating both kinds of sets. To
our best knowledge, the only proposed approach for computing MSISes [15, 16]
relies on exhaustive set enumeration and was not evaluated empirically.

3 Reasoning About Strongly Inconsistent ASP Programs

3.1 Strong Inconsistency & MSMP

Strong inconsistency exhibits a monotonicity property, that all the supersets (up
to P) of a strongly P -inconsistent program are strongly P -inconsistent too:

Proposition 1. Let P = B ∪ S, and PU = B ∪ U , with U ⊆ S, be strongly P -
inconsistent. Then, for all U ⊆ U ′ ⊆ S, PU ′ = B∪U ′ is strongly P -inconsistent.

Proof. Since PU is strongly P -inconsistent, for all U ′ with U ⊆ U ′ ⊆ S, B ∪ U ′
is inconsistent. Hence, for any superset U ′ with U ⊆ U ′ ⊆ S, it holds that for
all U ′ ⊆ U ′′ ⊆ S, B ∪ U ′′ is inconsistent. So, PU ′ is strongly P -inconsistent.

Throughout, for a given program P = B ∪ S, and R ⊆ S, SAT+(B,S,R)
indicates whether there is a superset of R (up to S) that together with B is
consistent, i.e. it is true iff there exists R′, with R ⊆ R′ ⊆ S, such that P ′ =
B ∪ R′ is consistent. Noticeably, SAT+(B,S,R) is false iff B ∪ R is strongly
P -inconsistent. We show that computing an MSIS is an instance of MSMP.

Proposition 2. Computing an MSIS is an instance of the MSMP problem.

Proof. Let p(W) , ¬SAT+(B,S,W) with W ⊆ R, and R , S. We prove that p
is monotone and that any minimal set over p is an MSIS of P = B ∪ S.
Monotonicity : If p(W) holds, B∪W is strongly P -inconsistent. By Proposition 1,
for allW ′, withW ⊆W ′ ⊆ S, B∪W ′ is strongly P -inconsistent, so p(W ′) holds.
Correctness: LetM be a minimal set for which p(M) holds, i.e. B∪M is strongly
P -inconsistent. SinceM is minimal, for anyM′ (M, p(M′) does not hold, i.e.
B∪M′ is not strongly P -inconsistent. Thus, by Definition 2,M is an MSIS.

Computing an MSICS can also be reduced to MSMP. The proof is analogous,
by defining p(W) , SAT+(B,S, S \W) with W ⊆ R, and R , S.

Reasoning About Strong Inconsistency in ASP 5

Algorithm 1: Deletion-based minimal set computation

Input: p: Monotone predicate, R: Reference set
Output: M: Minimal set

1 M←R; // M is over-approximation

2 foreach u ∈M do // Inv: p(M)
3 if p(M\ {u}) then // Do we need u?
4 M←M\ {u}; // If not, drop it

5 returnM; // Final M is a minimal set

3.2 Computing Minimal Explanations and Corrections

The reductions above enable computing MSISes and MSICSes by using any
algorithm for MSMP and an oracle implementing SAT+(B,S,R).

Extracting a Single Minimal Set. Algorithms for computing a single minimal
set in MSMP include Deletion [17], Progression [37] or QuickXplain [32], among
others [8]. Herein we focus on the deletion-based approach, shown in Algorithm 1.

Given an inconsistent program P = B∪S, by setting the predicate to p(W) ,
¬SAT+(B,S,W) with W ⊆ R, and R , S, Algorithm 1 proceeds as follows:
Starting with M = R, the algorithm iteratively picks a rule u ∈ M and tests
whether B ∪ (M\{u}) is strongly P -inconsistent. If it is, u is removed fromM;
otherwise u is kept in M. After considering all the rules in R, M is an MSIS.

An MSICS of P can be computed using basic linear search (BLS) [6, 36]:
Starting with S = ∅, iteratively pick a rule in u ∈ S \ S and test whether
SAT+(B,S,S∪{u}) holds. If it does, B∪(S∪{u}) is not strongly P -inconsistent,
and u is added to S. On termination, the set of rules not added to S is an MSICS
(and S is a maximal consistent subset). Besides, if the oracle for SAT+(B,S,S ∪
{u}) returns a witness after positive answers, all the elements in S satisfied can
be added to S, saving some predicate tests. BLS is equivalent to Algorithm 1
using the predicate p(W) , SAT+(B,S, S \W), with W ⊆ R, and R , S.

Enumerating Minimal Sets. MARCO [33] is a successful approach for enumerat-
ing MUSes and MCSes of CNF formulas. This algorithm exploits the hitting set
duality between MUSes and MCSes. Since this relationship also holds between
MSISes and MSICSes, MARCO can be adapted to ASP, as shown in Algorithm 2.

For a given inconsistent program P = B ∪ S, the algorithm associates a
propositional variable pi with each rule ri ∈ S, and maintains a CNF formula H
defined on these variables. The formulaH, initially empty, serves to subsequently
avoid considering any superset (resp. subset) of previously found MSISes (resp.
MSICSes). Iteratively, a maximal model MxM of H is computed, which induces
the set of rules R whose associated variables are set to 1 in MxM . Then, if the
program B∪R is strongly P -inconsistent (i.e. if SAT+(B,S,R) does not hold), an
MSIS M ⊆ R of P is extracted (e.g. by using Algorithm 1, with R , R), whose
supersets are blocked by adding a negative clause on its associated variables to
H. Otherwise, R is a maximal consistent subset, and so S \R is an MSICS of P ,
whose subsets are blocked by adding a positive clause on its associated variables

6 Menćıa and Marques-Silva

Algorithm 2: Minimal set enumeration

Input: P = B ∪ S: Inconsistent ASP program
Output: MSISes and MSICSes of P

1 I ← {pi | ri ∈ S};
2 H ← ∅; // Block MSISes and MSICSes

3 while true do
4 (st,MxM)← ComputeMaximalModel(H);
5 if not st then return;
6 R← {ri | pi ∈MxM}; // Pick selected rules

7 if not SAT+(B,S,R) then
8 M ← ComputeMSIS(B,S,R); // Extract MSIS from R
9 ReportMSIS(M);

10 b← {¬pi | ri ∈M}; // Block the MSIS

11 else
12 ReportMSICS(S \R);
13 b← {pi | pi ∈ I \MxM}; // Block the MSICS

14 H ← H∪ {b};

to H. The process is repeated until H becomes unsatisfiable, with the guarantee
that all MSISes and MSICSes of P have been computed.

Algorithm 2 is organized to give (heuristic) preference to finding MSISes
quickly. We refer to it as eMax. A variant giving preference to finding MSICSes
can be easily obtained, by computing minimal models of H (instead of maximal
ones) and extracting an MSICS whenever SAT+(B,S,R) holds. This variant is
referred to as eMin.

Implementing SAT+(B,S,R). It remains to discuss the way SAT+(B,S,R) can
be implemented in ASP. We invoke an ASP solver on an modified program which
includes selector atoms and choice rules. This approach was used in [30, 31] to
compute maximal consistent subsets. For a set of atoms A, choice(A) denotes
the rule 0 ≤ {a1, .., ak}, with ai ∈ A. Modern ASP solvers allow choice rules,
and their inclusion does not increase the complexity beyond NP [47].

For a given program P = B ∪ S, we first build the program Ps = B ∪ Ss,
where Ss is obtained from S as follows: for each rule ri ∈ S we introduce a fresh
atom si, and add the rule head(ri)← body(ri), si to Ss. Note that if the fact si
is added to Ps, the rule ri is activated, and relaxed otherwise. For a given subset
R ⊆ S, we use s(R) to denote the set of selector atoms for rules in R in Ss, i.e.
s(R) = {si | ri ∈ R}. Then, the test SAT+(B,S,R) is solved by invoking an ASP
solver on the program P ′ = Ps ∪∪s∈s(R){s}∪ choice(s(S \R)). Notice that each
rule r ∈ R is active in P ′. Besides, the inclusion of the rule choice(s(S\R)) allows
for activating any (or none) of the rules in S \R when looking for answer sets of
P ′. Hence, P ′ is consistent iff the program B ∪R is not strongly P -inconsistent.

Example 3. Let P = B ∪ S be the program in Example 2, and consider the test
SAT+(B,S, {r1}). We first build Ps = {a← not a, not b, s1., b← not a, s2., ¬b←
s3.}. Then, we define P ′ = Ps∪{s1.}∪choice({s2, s3}). P ′ is consistent (with the
unique answer set {b, s1, s2}), indicating that {r1} is not strongly P -inconsistent.

Reasoning About Strong Inconsistency in ASP 7

4 Preliminary Results

This section reports an initial experimental assessment of the proposed ap-
proaches. We implemented a prototype in Python 2.7, interfacing the ASP
solver clingo [23] (v. 5.4.0), and ran a series of experiments on a Linux ma-
chine (2.26GHz, 128GB). Each process was limited to 3600s and 4GB. Below,
ComputeMSIS (resp. ComputeMSICS) is Algorithm 1 using the predicate shown in
Section 3 for computing an MSIS (resp. MSICS). Besides, witnesses are used in
the extraction of MSICSes as an optimization, as described earlier. On the other
hand, eMax corresponds to Algorithm 2, giving preference to finding MSISes
quickly, and eMin is the variant that gives preference to MSICSes. In these
cases, maximal and minimal models are computed using the tool mcsls [36]5.

Similarly to earlier work [31], we built a number of instances. We considered
three problem domains (common in ASP competitions): Graceful graphs, Knight
tour with holes and Solitaire. Each instance is an inconsistent ASP program
P = B ∪ S, where B contains the rules encoding the problem domain (assumed
correct) and S contains the facts specific for each instance. Given the complexity
of the tasks to solve, the instances are reasonably small. The benchmarks are
as follows: 1) Graceful graphs: Given a graph (V,E) the goal is to label its
vertices with distinct integers in the range 0..|E| so that each edge is labeled
with the absolute difference between the labels of its vertices and all edge labels
are distinct. S contains the facts indicating the edges, so |S|= |E|. We considered
values of |V |∈ {10, 20} and |E|∈ {10, 20, 50}. 2) Knight tour with holes: Given
an N ×N board with H holes, the problem asks if a knight chess piece can visit
all non-hole positions of the boards exactly once returning to the initial position.
S consists of facts with the positions of holes, so |S|= H. We considered values
of N ∈ {7, 8} and H ∈ {10, 20, 30}. 3) Solitaire: Given a 7× 7 board, with 2× 2
corners removed (i.e. with 33 squares), an initial configuration is specified by
facts empty(L) and full(L), indicating if each square L is empty or contains
a stone. A stone can be moved by two squares if it jumps over another stone,
which is removed. The goal is to perform T steps. S contains the facts empty(L)
and full(L), so |S|= 33. We considered values of T ∈ {8, 10, 12, 14, 16, 18}. For
each configuration, we built 20 random instances, making 360 in all.

The results are summarized in Fig. 1. Fig. 1a shows, for each instance, the
running times needed for computing a single MSIS and an MSICS. ComputeMSIS
and ComputeMSICS solved, respectively, 295 and 317 instances. The results vary
across the set of instances, although in more cases computing an MSICS was per-
formed faster than computing an MSIS. Fig. 1b compares eMax and eMin. In this
case, complete enumeration was achieved for 172 and 167 instances respectively.
However, as the plot indicates, there is no clear winner.

Fig. 2 shows the number of reported minimal sets over the whole benchmark
set. By the time limit eMax reports 9008 MSISes and 12081 MSICSes, whereas
eMin computes 5684 MSISes and 20057 MSICSes. As shown in Fig. 2a, eMax is

5 Computing a minimal/maximal model can be reduced to computing an MCS. For
this purpose, several alternatives can be used (e.g. [3, 36,39,40]).

8 Menćıa and Marques-Silva

10−1 100 101 102 103 104

ComputeMSICS

10−1

100

101

102

103

104

C
om

pu
te

M
SI

S

3600 sec. timeout

36
00

se
c.

tim
eo

ut

(a) ComputeMSIS vs. ComputeMSICS

10−1 100 101 102 103 104

eMax

10−1

100

101

102

103

104

eM
in

3600 sec. timeout

36
00

se
c.

tim
eo

ut

(b) eMin vs eMax

Fig. 1: Running times

0 2000 4000 6000 8000 10000
MSISes

0

500

1000

1500

2000

2500

3000

3500

C
PU

tim
e

(s
)

eMax
eMin

(a) Reported MSISes

0 5000 10000 15000 20000
MSICSes

0

500

1000

1500

2000

2500

3000

3500
C

PU
tim

e
(s

)

eMin
eMax

(b) Reported MSICSes

Fig. 2: Number of reported sets (eMin vs eMax)

much more efficient at computing MSISes, whereas eMin finds MSICSes faster
(see Fig. 2b). Thus, each variant is effective at its intended purpose. These results
suggest that a combination may be a good option for obtaning both sets quickly.

5 Conclusions

Recent work proposed the concept of strong inconsistency [15, 16], which pro-
vides a way of reasoning about inconsistency in non-monotonic logics. This paper
shows how the large body of work for reasoning about (minimal) inconsistency
in monotonic logics, originally developed in the context of SAT, can be readily
applied to the case of reasoning about strong inconsistency in non-monotonic
logics. Furthermore, the paper applies these insights to the case of ASP. Exper-
imental results illustrate the scope and applicability of the proposed approach.

Reasoning About Strong Inconsistency in ASP 9

References

1. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through
satisfiability testing. In: SAT. pp. 427–440 (2009)

2. Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell.
196, 77–105 (2013)

3. Bacchus, F., Davies, J., Tsimpoukelli, M., Katsirelos, G.: Relaxation search: A
simple way of managing optional clauses. In: AAAI. pp. 835–841 (2014)

4. Bacchus, F., Katsirelos, G.: Using minimal correction sets to more efficiently com-
pute minimal unsatisfiable sets. In: CAV. pp. 70–86 (2015)

5. Bacchus, F., Katsirelos, G.: Finding a collection of MUSes incrementally. In:
CPAIOR. pp. 35–44 (2016)

6. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: PADL. pp. 174–186 (2005)

7. Bakker, R.R., Dikker, F., Tempelman, F., Wognum, P.M.: Diagnosing and solving
over-determined constraint satisfaction problems. In: IJCAI. pp. 276–281 (1993)

8. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Com-
mun. 25(2), 97–116 (2012)

9. Bend́ık, J., Cerná, I., Benes, N.: Recursive online enumeration of all minimal un-
satisfiable subsets. In: ATVA. pp. 143–159 (2018)

10. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

11. Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure
and behaviour. J. Exp. Theor. Artif. Intell. 15(1), 25–46 (2003)

12. Bradley, A.R., Manna, Z.: Checking safety by inductive generalization of coun-
terexamples to induction. In: FMCAD. pp. 173–180 (2007)

13. Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation. For-
mal Asp. Comput. 20(4-5), 379–405 (2008)

14. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

15. Brewka, G., Thimm, M., Ulbricht, M.: Strong inconsistency in nonmonotonic rea-
soning. In: IJCAI. pp. 901–907 (2017)

16. Brewka, G., Thimm, M., Ulbricht, M.: Strong inconsistency. Artif. Intell. 267,
78–117 (2019)

17. Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in
linear programs. ORSA Journal on Computing 3(2), 157–168 (1991)

18. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: CP. pp. 225–239 (2011)

19. Dodaro, C., Gasteiger, P., Musitsch, B., Ricca, F., Shchekotykhin, K.M.: Interac-
tive debugging of non-ground ASP programs. In: LPNMR. pp. 279–293 (2015)

20. Fandinno, J., Schulz, C.: Answering the ”why” in answer set programming - A
survey of explanation approaches. Theory Pract. Log. Program. 19(2), 114–203
(2019)

21. Felfernig, A., Schubert, M., Zehentner, C.: An efficient diagnosis algorithm for
inconsistent constraint sets. AI EDAM 26(1), 53–62 (2012)

22. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
& Claypool Publishers (2012)

23. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control:
Extended report. Tech. rep., University of Potsdam (2014)

10 Menćıa and Marques-Silva

24. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique
for debugging answer-set programs. In: AAAI. pp. 448–453 (2008)

25. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP. pp. 1070–1080 (1988)

26. Grégoire, É., Izza, Y., Lagniez, J.: Boosting MCSes enumeration. In: IJCAI. pp.
1309–1315 (2018)

27. Grégoire, É., Lagniez, J., Mazure, B.: An experimentally efficient method for (MSS,
CoMSS) partitioning. In: AAAI. pp. 2666–2673 (2014)

28. Grégoire, É., Mazure, B., Piette, C.: Extracting MUSes. In: ECAI. pp. 387–391
(2006)

29. Hemery, F., Lecoutre, C., Sais, L., Boussemart, F.: Extracting MUCs from con-
straint networks. In: ECAI. pp. 113–117 (2006)

30. Janota, M., Marques-Silva, J.: On minimal corrections in ASP. CoRR
abs/1406.7838 (2014), http://arxiv.org/abs/1406.7838

31. Janota, M., Marques-Silva, J.: On minimal corrections in ASP. In: RCRA. pp.
45–54 (2017), http://ceur-ws.org/Vol-2011/paper5.pdf

32. Junker, U.: QUICKXPLAIN: preferred explanations and relaxations for over-
constrained problems. In: AAAI. pp. 167–172 (2004)

33. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints 21(2), 223–250 (2016)

34. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

35. Manquinho, V.M., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean
optimization. In: SAT. pp. 495–508 (2009)

36. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing
minimal correction subsets. In: IJCAI. pp. 615–622 (2013)

37. Marques-Silva, J., Janota, M., Belov, A.: Minimal sets over monotone predicates
in boolean formulae. In: CAV. pp. 592–607 (2013)

38. Marques-Silva, J., Janota, M., Menćıa, C.: Minimal sets on propositional formulae.
Problems and reductions. Artif. Intell. 252, 22–50 (2017)

39. Menćıa, C., Ignatiev, A., Previti, A., Marques-Silva, J.: MCS extraction with sub-
linear oracle queries. In: SAT. pp. 342–360 (2016)

40. Menćıa, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In: IJ-
CAI. pp. 1973–1979 (2015)

41. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: A survey and assessment. Constraints 18(4), 478–534
(2013)

42. Narodytska, N., Bjørner, N., Marinescu, M.V., Sagiv, M.: Core-guided minimal
correction set and core enumeration. In: IJCAI. pp. 1353–1361 (2018)

43. Oetsch, J., Pührer, J., Tompits, H.: Catching the ouroboros: On debugging non-
ground answer-set programs. Theory Pract. Log. Program. 10(4-6), 513–529 (2010)

44. Polleres, A., Frühstück, M., Schenner, G., Friedrich, G.: Debugging non-ground
ASP programs with choice rules, cardinality and weight constraints. In: LPNMR.
pp. 452–464 (2013)

45. Previti, A., Menćıa, C., Järvisalo, M., Marques-Silva, J.: Premise set caching for
enumerating minimal correction subsets. In: AAAI. pp. 6633–6640 (2018)

46. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

47. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artif. Intell. 138(1-2), 181–234 (2002)

http://arxiv.org/abs/1406.7838
http://ceur-ws.org/Vol-2011/paper5.pdf

Reasoning About Strong Inconsistency in ASP 11

48. de Siqueira N., J.L., Puget, J.: Explanation-based generalisation of failures. In:
ECAI. pp. 339–344 (1988)

	Reasoning About Strong Inconsistency in ASP

