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An artificial neural network 
approach for predicting 
hypertension using NHANES data
Fernando López‑Martínez1,3, Edward Rolando Núñez‑Valdez1, Rubén González Crespo2* & 
Vicente García‑Díaz1

This paper focus on a neural network classification model to estimate the association among gender, 
race, BMI, age, smoking, kidney disease and diabetes in hypertensive patients. It also shows that 
artificial neural network techniques applied to large clinical data sets may provide a meaningful data-
driven approach to categorize patients for population health management, and support in the control 
and detection of hypertensive patients, which is part of the critical factors for diseases of the heart. 
Data was obtained from the National Health and Nutrition Examination Survey from 2007 to 2016. 
This paper utilized an imbalanced data set of 24,434 with (69.71%) non-hypertensive patients, and 
(30.29%) hypertensive patients. The results indicate a sensitivity of 40%, a specificity of 87%, precision 
of 57.8% and a measured AUC of 0.77 (95% CI [75.01–79.01]). This paper showed results that are to 
some degree more effectively than a previous study performed by the authors using a statistical model 
with similar input features that presents a calculated AUC of 0.73. This classification model can be used 
as an inference agent to assist the professionals in diseases of the heart field, and can be implemented 
in applications to assist population health management programs in identifying patients with high risk 
of developing hypertension.

Currently, the use of neural network models for disease classification is increasing rapidly, not only because of 
a significant amount of data available that is being generated by healthcare devices and systems but also for the 
magnitude of computational resources available for data calculation and processing1, 2. This immense volume 
of data is utilized to train models importantly, and facilitates the use of expert systems, NLP techniques3, 4 and 
classification techniques for finding trends and patterns in the evaluation and classification of several diseases. 
Hypertension is considered in the group of risk factors for cardiovascular disease that caused 17.7 million deaths 
in the world in 20155–7. In the United States, hypertension is contemplated as the primary determinant of decease 
among U.S. adults even with the existence of practical and low-cost treatments8–10, with significant public health 
risks and economic implications for U.S. population. The National Health and Nutrition Examination Survey 
(NHANES) conducted by the National Center for Health Statistics is one of the principal sources for tracking 
hypertension in the U.S. population11 with vast amounts of features and data related to cardiovascular diseases.

In this paper, we develop a neural network classification model to predict hypertension with non-invasive 
risk factors applying healthcare data from the NHANES. A multi-layer neural network architecture was used to 
identify hypertensive patients at risk of developing hypertension. Our primary goal in this paper was to train 
a classifier that will identify hypertensive patients in a highly imbalanced NHANES data set. Additionally, we 
aspire to achieve lower error rate with a neural network architecture compared to the logistic regression model 
developed in a previous paper12 by using the same set of input features. The motivation to develop a new model 
was the non-linearity of the input features, and neural networks are usually trained to treat non-linearity due to 
the non-linear nature of them13, making the model more flexible compared to logistic regression.

This paper is organized along these sections. Second section describes related work and literature research 
of various models that implemented neural networks for cardiovascular disease classification. Third section 
introduces the elaboration of the model, population, data source, and validation. Fourht section combines sta-
tistical and clinical analysis. Fifth section presents our results and limitations. Finally, sixth section presents 
conclusions and future work.
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Related work
We reviewed a few published papers adopting neural networks models to infer hypertension, and some other 
studies that compared classification performance and accuracy with logistic regression14–16. In every paper, the 
development process, feature selection, ground truth definition, training data sets, test data sets, overfitting 
prevention, error assessment, and accuracy information were reviewed. We also reviewed if the models were 
validated or not, either by an unseen data set or by a panel of experts in the domain17–20.r Some of the models 
are shown in Table 1.

LaFreniere et al.21 presented an artificial neural network (ANN) to predict hypertensive patients utilizing 
the Canadian Primary Care Sentinel Surveillance Network (CPCSSN) data set. The independent features used 
were age, gender, BMI, systolic and diastolic blood pressure, high and low-density lipoproteins, triglycerides, 
cholesterol, microalbumin, and urine albumin–creatinine ratio. Confusion matrix and Receiver Operating Char-
acteristic (ROC) curve were utilized to measure the accurateness of the model. This paper used an extensive data 
set to train the model compared with other studies.

Polak and Mendyk22 improve and validate an artificial neural network for high blood pressure risk, using data 
from the Center for Disease Control and the National Center for Health Statistics (CDC-NCHS). The independ-
ent features used in this model were age, sex, diet, smoking and drinking habits, physical activity level and BMI 
index. ROC curve was utilized to measure the accurateness of the model, and they performed a comparison with 
a logistic regression classification model.

Tang et al.23 presented an artificial neural network for classification of cardiovascular disease including hyper-
tension; this paper used a Chinese population. Statistical analysis indicated that 14 risk factors showed statistical 
importance with cardiovascular disease. The ROC curve is utilized to measure the performance of the model.

Ture et al.24 implemented a multilayer perceptron for the classification of hypertensive patients. The independ-
ent features utilized were age, sex, family history of hypertension, smoking habits, lipoprotein, triglyceride, uric 
acid, total cholesterol, and body mass index (BMI). ROC curve is utilized to measure the accuracy of the model.

Lynn et al.25 constructed a neural network model to simulate the geneendophenotype-disease relationship for 
Taiwanese hypertensive males. Sixteen genes, age, BMI, fasting blood sugar, hypertension medication, no his-
tory of cancer, kidney, liver or lung. Classification accuracy is utilized to measure the performance of the model.

Sakr et al.6 built an artificial neural network to compares the performance of it with different machine learn-
ing techniques on predicting the risk of developing hypertension. Age, gender, race, a reason for the test, stress 
tests and medical history used for classification. ROC curve is utilized to measure the accuracy of the model.

We identified other studies for predicting hypertension using ANN, and all of them have advantages and 
disadvantages. However, the above mentioned are the most relevant. Our paper did not use data from any medical 
facility as the studies mentioned earlier. However, our model used a data sample more significant that the majority 
of them, collected from a national examination survey. The number of predictors was small and non-invasive, 
in comparison with the cited studies that used lab and exam data.

The national examination survey was designed to assess the health and nutritional status of adults and chil-
dren in the United States, the data on this survey is unique because it combines social determinants of health data 
such as smoking, alcohol consumption and dietary habits, and physical examinations. This survey emphasized 
data regarding the prevalence of major diseases and risk factors for diseases for a broader population than just 
data from a medical facility, which contains only data for a small subset of the population that does not represent 
the entire picture of significant disease. In addition, historically, disease trends in the United States have been 
assessed by surveys.

We achieve an AUC of 0.77 which is acceptable and close to all the studies, considering the imbalanced data 
used in our paper. The results in our paper and the cited studies could be successfully utilized in hypertension 
classification, and can be included as inference engines in expert systems for hypertension screening tools. Our 
paper also includes more hidden layers that the others and we determined the number of hidden layers through 

Table 1.   Related work.

Author Input features n Total Type of model AUC (%)

Artifical neural network models comparison

LaFreniere et al.21
Age, gender, BMI, sys/diast BP, high and low density lipo-
proteins, triglycerides, cholesterol, microalbumin, and urine 
albumin creatinine ratio

379,027 Backpropagation neural network 82

Polak and Mendyk22 Age, sex, diet, smoking and drinking habits, physical activity 
level and BMI 159,989 backpropagation (BP) and fuzzy network 75

Tang et al.23 Sys/diast BP, fasting plasma glucose, age, BMI, heart rate, 
gender, WC, diabetes, renal profile 2,092 Feed-forward, back-propagation neural network 76

Ture et al.24 Age, sex, hypertension, smoking, lipoprotein, triglyceride, uric 
acid, total cholesterol, BMI 694 Feed-forwardneural network 81

Lynn et al.25 Sixteen genes, age, BMI, fasting blood sugar, hypertension 
medication, no history of cancer, kidney, liver or lung 22,184 genes, 159 cases One-hidden-layer neural network 96.72

Sakr et al.6 Age, gender, race, reason for test, stress, medical history 23,095 Backpropagation neural network 64

López-Martínez et al.12 Age, gender, ethnicity, BMI, smoking history, kidney disease, 
diabetes 24,434 Three-hidden layer neural network 77
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cross-validation experiments. Not evidence of the number of layers and hidden nodes selection techniques are 
present in the studies.

Materials and methods
We present and discuss an alternative approach, using artificial neural network to classify hypertensive patients. 
We build, trained, and evaluated the model with the Sklearn of Python programing language package26, Microsoft 
Cognitive Toolkit (CNTK) from Microsoft, and Azure Machine Learning Studio27, 28.

A cross-sectional analysis comes from the collection of health examination data for a representative sample 
of noninstitutionalized U.S. residents, questionnaires administered in the home of the residents. The interview 
collects demographic, health, and nutrition information, as well as information about the household. This exami-
nation includes physical measurements such as blood pressure, dental examination, and the collection of blood 
and urine specimens for lab testing.

Data source.  We collected NHANES data sets from NHANES 2007–2008 to NHANES 2015–2016. This 
dataset is intended for public access and health care utilization. This datasets are prepared and published through 
the Centers for Disease Control and Prevention (CDC) to provide full access. Statistic characterizing human 
populations, laboratory data, blood pressure, body measures data and questionnaires linked to diabetes, smok-
ing, and kidney conditions are part of the data set. The original data set consists of five folders from 2007 to 
2016, each one of them contains a pdf file with statistics of the response rates of the NHANES survey and the 
SAS Transport files for all the survey measure variables. After imported the original data sets in python, data 
extraction and transformation were necessary to select and categorize the input features. We created a repository 
in Github with the original files from NHANES, the final data set used to run the model and the notebooks used 
for the data preparation29.

Ethic review board approval.  For the use of NHANES data, the Institutional Review Board (IRB) 
approval and documented consent was obtained from participants. The description of the survey name and 
data, and the NCHS IRB/ERB Protocol Number or Description can be found in Centers for Disease Control and 
Prevention30. In 2003, the NHANES Institutional Review Board (IRB) changed its name to the NCHS Research 
Ethics Review Board (ERB). The National Center for Health Statistics (NCHS) offered downloadable public-use 
data files through the Centers for Disease Control and Preventions (CDC) FTP file server. NHANES survey 
is a public-use data files prepared and disseminated to provide access to the full scope of the data. This allows 
researchers to manipulate the data in a format appropriate for their analyses. In our study, by using these data we 
signify our agreement to comply with the data use restrictions to ensure that the information will be used solely 
for statistical analysis or reporting purposes. The data use restrictions can be found in National Center for Health 
Statistics31. In this study, all experiments were performed in accordance with relevant guidelines and regulations.

Study population and analysis.  Healthcare survey data collected in the course of 2007–2016 was used to 
train and evaluate the classification model. A neural network model was developed to assess the importance of 
several factors and their relation with prevalence of hypertension with a symbolical sampling of adults ≥ 20 years 
in the United States (n = 24,434). Table 2 shows the grouping of the hypertensive patients by race and gender.

Input features.  Several studies in the US integrated healthcare system in cardiovascular research with inci-
dent hypertension showed association between race, age, smoking, BMI, diabetes, and kidney conditions with 
hypertension32–34. Among different cohorts of patients with hypertension, during the follow up, individuals pre-
sent more kidney disease, diabetes problems and remarkable association with smoking habits. In addition, these 
studies shown that effective BMI management decrease the incidence of hypertension, hypertension prevalence 
increase with age, and race is a significant factor of prevalence of hypertension.

For this paper, and based on the previous analysis, the selected input features are race, age, smoking, body 
mass index (BMI), diabetes, and kidney conditions. Participants admit to have diabetes if the answer presents 
“Yes or “Borderline” to the question “Doctor told that you have diabetes?”35. Smokers defined as individuals 
having smoked ≥ 100 cigarettes during their lifetime, and currently smoke some days or every day36. Chronic 
kidney disease (CKD) defined as “yes” response to the question “Have you ever told by a health care provider you 
have weak or failing kidneys?” during the interview, and for NHANES 2015–2016, CKD defined as a glomerular 
filtration rate (GFR) ≤ 60 ml/min/1.73 m237 and albumin–creatinine ratio ≥ 30 mg/g38. Body mass index and age 
transformed from continues features to Categorical features to understand the relationship among the features. 
Blood pressure is utilized to generate the dependent feature.Hypertension category designated as systolic blood 
pressure of ≥ 130 mmHg, previously define as ≥ 140 mmHg by the American Heart Association39. Table 3 show 
the independent features and the dependent feature.

Features selection.  Clinical importance was pertinent plus the statistical significance of the features to 
choose the final inputs. For this paper, we utilized chi-square because previous work indicates that this statisti-
cal test performs well to evaluate sets of categorical features40–43. Some heuristic methods were investigated to 
confirm the usefulness and relevance of the features. Genetic algorithm with other machine learning methods 
probably generates better results42, and produce adequate time complexity to find optimal solutions44, 45. We will 
consider it and discuss it in forthcoming studies. For this paper, we utilized statistical methods between each 
feature due to the nature of the inputs. Table 4 shows all features with their p values and scores. Based on the 
clinical significance of all input features, our clinical expert decided not to exclude any variable from the paper 
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Table 2.   n samples by hypertensive class, gender and race.

Class Gender Race n

Hypertension, adults 20 and over: 2007–2016

Hypertensive

Female

Mexican American 464

Non-Hispanic black 925

Non-Hispanic white 1,433

Other Hispanic 368

Other race—including multi-racial 277

Male

Mexican American 575

Non-Hispanic black 1,039

Non-Hispanic white 1,582

Other Hispanic 371

Other race—including multi-racial 365

Non-hypertensive

Female

Mexican American 1,461

Non-Hispanic black 1,676

Non-Hispanic white 3,663

Other Hispanic 1,084

Other race—including multi-racial 1,038

Male

Mexican American 1,275

Non-Hispanic black 1,465

Non-Hispanic white 3,585

Other Hispanic 820

Other race—including multi-racial 968

Total 24,434

Table 3.   Variables included in the model.

Variable name Description Code Meaning

Gender Gender
1 Male

2 Female

Agerange Age at screening adjudicated—date of birth was used to calculate AGE

1 20-30

2 31–40

3 41–50

4 51–60

5 61–70

6 71–80

Race Race/Hispanic origin

1 Mexican American

2 Other Hispanic

3 Non-Hispanic white

4 Non-Hispanic black

5 Other race—including multi-racial

BMXBMI Body mass index (kg/m2)

1 Underweight = < 18.5

2 Normal weight = 18.5–24.9

3 Overweight = 25–29.9

4 Obesity = BMI of 30 or greater

Kidney Ever told you had weak/failing kidneys
1 Yes

2 No

Smoke Smoked at least 100 cigarettes in life
1 Yes

2 No

Diabetes Doctor told you have diabetes

1 Yes

2 No

3 Borderline

Hypclass Systolic: blood pres (mean) mm Hg
0 Non-hypertensive

1 Hypertensive
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due to the relationship among features in previous studies. In addition, one of the options we used to get the 
feature importance or the influence of a given parameter in the classification model is to obtain and examine 
the coefficient of the parameters with the provided dataset as shown in López-Martínez et al.12 Coefficients and 
Odds Ratio. Features using the same scale with larger coefficients are more important because they represent 
more significant changes in the dependent variable.

Neural network model.  An artificial neural network describes a machine learning algorithms that are 
made of layers of nodes, usually, an input layer, hidden layers46 and an output layer47. Figure 4 shows the form of 
the neural network architecture developed for this paper. The input nodes values are encoded and normalized 
with gaussian normalization48 in order to improve the computation.

The non‑linearity of the model.  The motivation of developing this neural networks model is the ability 
to use non-linear activation functions to eliminate the non-linearity of the input features. The data used to train 
the model is not linearly separable, this means that there is no line that separates the data points easily as shown 
in Figs. 1 and 2 where we plot several input variables and the decision boundary using logistic regression.

This non separability can be seen also if we plot three input variables such as gender, age and bmi as shown 
in Fig. 3. The Neural network model learn a new representations of the data which makes the classification more 
approachable with respect to this representation. A non-linear activation function allows non-linear classification 
with a non-linear decision boundary which will be a hyperplane that is orthogonal to the line.

Model training.  The generated probabilities need to be as proximate as possible to the observed features. 
The loss function calculated as the difference between the learned model against the generated by the training 

Table 4.   Chi-squared between each variable.

Feature p value Score

Gender 0.3988107 0.711909

Agerange 0.000000 1,965.607023

Race 0.008822 6.858521

BMIrange 0.0172385 5.67193

Kidney 0.3546428 0.856775

Smoke 0.0975246 2.745566

Diabetes 0.0012164 10.465222

Fig. 1.   Decision boundary.

Fig. 2.   Draw test points.
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set49. Cross-entropy with Softmax is utilized, but the mathematical computation of the derivative is not pre-
sented in this paper50 (Fig. 4).

Random initialization of the parameters is the first step, and the network produces a new set of parameters 
after each evaluation. In this network, He initialization51 is utilized. This type of initialization is comparable with 
the Xavier initialization excepting Xavier uses a different weights scaling factors W in layer l, and the author 
recommended for layers with ReLU activation. Mini-batches are utilized to train the model. Learning rate52 is 
a factor that balances how much the parameters change in every iteration. Each iteration works on ten samples, 
and the model is trained on 70% (17,104) of the data set. Table 5 presents the parameters of the architecture, and 
Figs. 5 and 6 present the training loss and classification error of the mini-batch run for the model.

Model evaluation.  To evaluate the classification model, computation of the average test error is utilized. 
The algorithm finds the position of the highest value in the output array, and compares it to the actual label. The 
evaluation of the network is performed on data never used for training, and coincide with the 30% (7,331) of the 
data set. The resulting error is compared with the training error and the results indicates that the model presents 
a useful generalization error. Our model can meritoriously deal with unseen observations, and this is one of the 
keys to avoiding overfitting53.

For each observation, our model use softmax as the evaluation function that returns the probability distribu-
tion across all the classes. In our paper, it would be a vector of 2 elements per observation. The output nodes in 
our model convert the activations into a probability and map the aggregated activations across the network to 
probabilities across the two classes. Figure 7 shows the test classification error for our model.

Fig. 3.   Relation between BMI and age by gender and hypertension class.

X1

X2

X3

X4

X5

X6

X7

0
1

Hidden

layer1

64 nodes

Hidden

layer2

32 nodes

Hidden

layer3

16 nodes

Input

layer

Output

layer

Fig. 4.   Multilayer perceptron architecture.
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In this paper, we utilized a few evaluation metrics to evaluate the model. Results are show in Table 6. Summary 
of the actual label versus the predicted. True positive value (887), True Negative value (4,477), False Negative 
(1,318) and False Positive value (648).

Table 7, shows the classification report with the sensitivity, precision, and the harmonic mean. The low 
precision and sensitivity on the hypertensive label is caused because of the large presence of false positives, and 
imbalanced of the testing data set.

Table 5.   Model architecture parameters.

Parameter Value

Input dimension 7

Num output classes 2

Num hidden layers 3

Hidden layer1 dimension 64

Activation func layer1 Relu

Hidden layer2 dimension 32

Activation func layer2 Relu

Hidden layer3 dimension 16

Activation func layer3 Relu

Minibatch size 10

Num samples to train 17,104

Num minibatches to train 1,710

Loss function Cross entropy with softmax

Eval error Classification error

Learner for parameters Momentum sgd

Learning rate 0.01

Momentum 0.9

Eval metrics Confusion matrix, AUC​

Fig. 5.   Training error.

Fig. 6.   Loss error.
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The sensitivity of the model moderately acceptable due to the imbalanced testing data set, and this reveals a 
high number of false negatives.

Comparison of the model with alternative techniques
Conducting data analysis in a highly imbalanced data set is not trivial and often leads to obtain low sensitivity 
results. A comparison of our proposed ANN with other highly interpretable methods will allow us to compare 
the AUC curves of the models and to validate the performance and sensitivity of disease diagnostic. Five machine 
learning algorithms were identified and compared using the NHANES data. These algorithms not only accu-
rately classify hypertensive patients, but were able to identify key features useful for hypertension diagnostic. 
A Two-Class Decision Jungle that represents an ensemble of decision directed acyclic graphs (DAGs), a Two-
Class Boosted Decision Tree, an ensemble learning method. A Two-Class Bayes Point Machine, that efficiently 
approximates the Bayesian average of linear classifiers by choosing one “average” classifier, the Bayes Point. A 
Two-Class Support Vector Machine, and a Two-Class Logistic Regression.

Two‑class decision jungle.  This algorithm is a development of decision forest that lie on ensemble of deci-
sion directed acyclic graphs (DAGs), used to obtain accurate classifiers54. Decision jungles are very comparable 
to random forests, but it uses DAGs instead of trees as base learners. This structure is more memory-efficient 
because it eliminates the need for repeating leaf nodes, but it needs more computing time.

This method is selected because decision jungles are models that can express non-linear selection bounda-
ries, and they are strong in the existence of noisy features. Table 8 shows the parameters and Table 14 shows the 
classification report.

Two‑class logistic regression.  Logistic regression is a well-known classification technique especially used 
for classification tasks. The algorithm tries to find the optimal values by maximizing the log probability of the 
parameters given the inputs. Maximization is performed by using a method for parameter estimation called 
Limited Memory BFGS55. Table 9 shows the parameters and Table 14 shows the classification report.

Fig. 7.   Test prediction error.

Table 6.   Confusion matrix.

Predicted

Non-hypertensive Hypertensive

True

Non-hypertensive 4,477 648

Hypertensive 1,318 887

Table 7.   Classification report.

True positive False negative Precision Accuracy

887 1,318 0.578 0.732

False positive True negative Recall f1-score

648 4,477 0.402 0.474

Positive label: 1 Negative label: 0
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Two‑class support vector machine.  The Support Vector Machine algorithm is a supervised learning 
model that evaluates input data in a multi-dimensional label zone called the hyperplane. The inputs are points in 
this zone or space, and are mapped to outputs that are divided as clear as possible56. Table 10 shows the param-
eters and Table 14 shows the classification report.

Two‑class boosted decision tree.  A boosted decision tree, ensemble learning method where the trees 
corrects for the errors of the previous trees. Predictions are established on the full ensemble of trees57. Table 11 
shows the parameters and Table 14 shows the classification report.

Two‑class Bayes point machine.  This method approximates the optimal Bayesian average of linear clas-
sifiers by choosing the Bayes Point. This method created by Microsoft Research has shown that no external 
hyper-parameters are needed and the model can be trained in a single pass, without over-fitting, and without 
needing pre-processing steps such as data re-scaling58. Table 12 shows the parameters and Table 14 shows the 
classification report.

Synthetic minority oversampling technique.  In addition to the previous methods, we have decided to 
solve the imbalance problem by using the Synthetic Minority Oversampling Technique (SMOTE) and compare 
the performances with all the methods. This statistical technique increase the number of underrepresented cases 

Table 8.   Decision jungle parameters.

Parameter Value

Two-class decision jungle parameters

Resampling method Bagging

Trainer mode Single parameter

Number of decision DAGs 8

Maximum depth of the decision DAGs 32

Maximum width of the decision DAGs 128

Number of optimization steps per layer 2,048

Table 9.   Logistic regression parameters.

Parameter Value

Two-class logistic regression parameters

Optimization tolerance 1.00E−07

L1 regularization weight 1

L2 regularization weigh 1

Memory size for L-BFGS 20

Table 10.   Support vector machine parameters.

Parameter Value

Two-class support vector machine parameters

Lambda—weight for L1 regularization 1.00E−03

normalize features before training Yes

Table 11.   Boosted decision tree parameters.

Parameter Value

Two-class boosted decision tree parameters

Maximum number of leaves per tree 20

Minimum number of training instances 10

Learning rate 0.2

Number of trees constructed 100
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in the dataset used in the study. This method returns a dataset that contains the original samples, plus an addi-
tional number of synthetic minority samples. In our case we have increase the number of cases 200% (module 
doubles the percentage of minority cases compared to the original dataset) and the number of nearest neighbors 
used was 5 (A nearest neighbor is a a case that is very similar to some target case. The distance between any two 
cases is measured by combining the weighted vectors of all features)59. Increasing the number of cases using 
this technique is not guaranteed to produce more accurate results. We experimented with different percentages, 
different feature sets, and different numbers of nearest neighbors to find the best results. Table 13 shows the 
parameters and Table 14 shows the classification report.

Table 15 presents the result of comparing six methods with our ANN proposed method. We presented the 
AUC and the corresponding accuracy rates. We observed that the accuracy of the methods are very similar with 
imbalanced dataset, but the AUC and f1-score of our method are slightly higher and competitive; except for the 
technique used to solve the imbalance of the dataset which shows a higher AUC. however, no one is statistically 
better than the others. We utilized cross-validation to measure the performance of the models, and performed 
several train-score-evaluate operations (10 folds) on different subsets of the input data. An statistical significance 
test, proposed by Giacomini and White60 was utilized. Where the predictive ability of the presented model for 
the Cross-entropy loss function showed better performance than the others. We performed a pairwise test of 
predictive ability of the five models using the Cross-entropy loss function. Table 16 shows the results for the 

Table 12.   Bayes point machine parameters.

Parameter Value

Number of training iterations 30

bias to be added to each instance in training Yes

Table 13.   Synthetic minority oversampling parameters.

Parameter Value

SMOTE percentage 200

Number of nearest neighbors 5

Table 14.   Classification report.

Method True positive False negative False positive True negative Precision Accuracy Recall f1-score

Our model 887 1,318 648 4,477 0.578 0.732 0.402 0.474

Decision jungle 540 912 390 3,045 0.581 0.734 0.372 0.453

Logistic regression 557 895 389 3,046 0.589 0.737 0.384 0.465

Support vector 
machine 556 896 387 3,048 0.59 0.737 0.383 0.464

boosted decision tree 568 884 439 2,996 0.564 0.729 0.391 0.462

Bayes point machine 543 909 388 3,047 0.583 0.735 0.374 0.456

Synthetic minority 
oversampling 3,645 789 1,326 2,086 0.73 0.73 0.82 0.77

Positive label: 1 Negative label: 0

Table 15.   Classification methods comparison.

Method Precision Accuracy f1-score AUC​

Our model 0.578 0.732 0.474 0.77

Decision jungle 0.581 0.734 0.453 0.769

Logistic regression 0.589 0.737 0.465 0.764

Support vector machine 0.59 0.737 0.464 0.759

Boosted decision tree 0.564 0.729 0.462 0.765

Bayes point machine 0.583 0.735 0.456 0.763

Synthetic minority oversampling 0.73 0.73 0.77 0.8
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cases. The minus sign indicates that the model under performs the method in the row at the 5% significance 
level, evidenced by the value in parenthesis (critical value) greater than 1.

Results and analysis
The classification of hypertensive patients was carried out by using artificial neural network with back-propaga-
tion. Statistical and clinical analysis were performed to explain the results.

Statistical analysis.  In our paper, we used a non-linear model to determine the unidentified non-linearity 
of the input. The test data set of 7,330 includes 5,125 (69.9%) non-hypertensive samples and 2,205 (30.,1%) 
hypertensive samples. The model shows a sensitivity of 887/2,205 = 40% (positives properly classified), and a 
specificity of 4,477/5,125 = 87% (negatives properly classified).

A positive predicted value of 887/1,535 = 57%, and a negative predicted value of 4,477/5,795 = 77%. A false 
negative rate of 1,318/2,205 = 59%, and a false positive rate of 648/5,125 = 12%. A false alarm of 12%, and a 
likelihood ratio for negative patients of 0.68%. In this paper, the multi-layer neural network model exceed at clas-
sifying patients who will not develop hypertension than those that will develop hypertension. The area under the 
curve is shown in Fig. 8. Figure 9 shows the proportion of the true results of overall positives results in contrast 
with the fraction of all correct results.

Table 16.   Predictive ability tests.

DJ LR SVM BDT BPM

ANN 0.001- (3.65) 0.035- (1.80) 0.001- (4.03) 0.036- (1.80) 0.011- (1.67)

Fig. 8.   ROC curve.

Fig. 9.   Precision/recall.
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Clinical analysis.  With a sensitivity of 40%, and specificity of 87%, the artificial neural network model 
demonstrates that it might be ineffective for healthcare diagnosis in detecting positive occurrences, but the true 
negative rate demonstrates that the model is effective at finding non-hypertensive patients. The high negative 
predicted value of 77% shows that our model can be used as an examination tool. The positive cases of 57% 
shows that our model is superior to a random inference with a low probability for negative test results. This 
model correctly identifies non-hypertensive patients with an accuracy of 73%.

Discussion and limitations
Even though a multi-layer neural network with one layer can model a vast variety of problems in the clinical 
domain, in our paper, a model with three hidden layers was advantageous to approximate the highly non-linear 
behavior of the input features. The result of the model was affected by the imbalanced data set, but we did not 
balance it to maintain the real distribution of the samples.

The current model configuration and size of the data source captured the complexity of the data. We used 
data augmentation to generate more input data from the already collected data, but the model was over-fitting 
and learned too many specific details about the training set. We reduced the number of training iterations to 
prevent over-fitting, and the accuracy was the same as the model without data augmentation.

The paper has shown that the classification capability of the model improved (AUC—0.77), based on the 
results of the statistical model utilized in a previous paper (AUC—0.73) when applied to the input features gen-
der, race, BMI, age, smoking, kidney conditions and diabetes. However, challenges in applying artificial neural 
networks to the clinical domain remain. The use of deep learning to analyze hypertension risk features can be 
considered as complementary for the traditional approach and might be considered to validate other statistical 
models.

Our model achieved an AUC of 0.77 and used a smaller network architecture than the architecture used by 
Polak and Mendyk22 obtaining an AUC of 0.73 and23 that achieves an AUC of 0.76. However, our model presents 
a bigger network than24 that developed a network that achieves an AUC of 0.81, LaFreniere et al.21 achieves an 
AUC of 0.82 and Lynn et al.25 achieves an AUC of 0.96.

One of the significant limitations of our model is that it was developed using a highly imbalanced data set 
from the CDC to which a high prevalence of non-hypertensive patients was observed. There was no significant 
increase in accuracy. And we are not relying on this measure. We have a severe class imbalance, and the model 
will maximize accuracy by simply always picking the most common class.

Therefore, our model must be validated in other clinical settings, and further studies should include other 
neural network architectures and socio-demographic information61 to improve the precision and recall of the 
model, and to consider the integration of this model to the clinical diagnostic scheme. Also, adequate training 
data volume will be needed to train a bigger model to improve the classification results.

Conclusions and future work
This paper presents a neural network approach to overthrown the non-linearity problem with the risk factors 
utilized as inputs for the model. This paper shows that the proposed model improves the accuracy and perfor-
mance of a previous paper that used the same input features and the results were better than logistic regression 
in a small percentage. The main contribution of this paper is the developed model and based on results showed 
that ANN was the proper model compared with the previously developed LR model.

Our multi-layer model confirmed the influence of the imbalanced data set to the class with more presence in 
the data. This paper showed that the proposed model could be a guide to the design of other models and inference 
engines for expert systems. This model cannot be used yet to provide the final diagnosis in developing hyperten-
sion in patients due that it requires clinician’s involvement for validation with real patients. However, this model 
can be used to make them aware that there is a probability that the patients could be developing hypertension.

Knowledge of the current model, and their parameters on risk-prediction models in general, is construc-
tive to determine how to best approach the build of prediction models for hypertension, design the study, and 
interpret its results. When there is a realistic chance to find an applicable positive effect on decision-making and 
patient outcome, this model on a new setting could be potentially useful. This paper outlines the process for the 
development of a neural network risk prediction model, from choosing a data source and selecting features to 
assess model performance, performing validation, and assessing the impact of the model outcomes.

For future work, this model will be apply and re-train if necessary to a real balanced data set, and bigger 
network architectures will be considered. Also, new risk factors can be used to better handle the distribution 
and behavior of the input features for the model, and a sensitivity analysis will be performed to determine 
which inputs in our ANN model are significant with respect to the output. This paper will be the ground for 
the construction of a decision supporting tool that may be useful to healthcare practitioners for contributing to 
decision making about the risk of developing hypertension in typical or atypical patient screening circumstances.
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