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Abstract—Geodesic lenses are a class of rotational-symmetric
lenses that recently regained interest for the design of multiple
beam antennas. Key features of these lenses include mechanical
simplicity, wide scanning range and high efficiency. In this paper,
a hybrid model to analyze focusing geodesic lens antennas is
described. The method combines a ray tracing analysis and a
point source array model. This model allows to calculate the
near and far fields of a geodesic lens antenna in few seconds.
Some results of a lens antenna in the Ka-band are compared
with full-wave simulations, validating the model despite small
differences in the main beam. This paper also discusses the ability
of geodesic lenses to focus the energy in the near field which could
be of interest for some applications.

Index Terms—Lens antennas, geodesic lenses, parallel plate
waveguide, ray-tracing, near and far fields analysis, multiple
beam antennas.

I. INTRODUCTION

Next generation communication satellites [1] and future
5G mobile networks [2], [3] require higher data rates and
low cost antenna systems. Multiple beam antennas based on
lenses can fulfill these requirements at mm-wave frequencies
while covering a wide field of view [4]. These antennas may
generate multiple simultaneous beams from a same aperture,
subdividing the service area and enabling spectrum re-use in
non-adjacent cells.

For some applications, a planar (e.g. azimuthal) beam
scanning is sufficient. Rotman lens antennas [5] manufactured
in printed technology are reported in the literature for such ap-
plications with a scan angle of about ±30◦ [6], [7]. Although
attractive for their low cost, these solutions suffer from high
losses due to the use of dielectric materials inside the lens.
Fully-metallic parallel plate waveguide (PPW) technology is
preferred at mm-wave frequencies. In [8], [9], the authors
present a ray-tracing analysis of a continuous PPW beam-
former based on the propagation inside a transversal cavity
operating as a continuous delay lens. This solution is attractive
for its mechanical simplicity. However, its scanning range re-
mains in the order of ±30◦. Rotman lenses may be modified to
extend their scanning range to about ±50◦ [10]. Beyond that,
only Luneburg lenses [11] provide suitable scanning properties
thanks to their inherent rotational symmetry. Various designs
of Luneburg lens antennas were recently investigated [12]-
[15]. These antennas demonstrate good scanning properties
up to ±60◦. The designs in [12]-[14] rely on sub-wavelength

Fig. 1. 3D view of a focusing geodesic lens antenna.

elements (e.g. holes or pins) to emulate the behavior of the
reference Luneburg lens, resulting in mechanical complexity
and higher manufacturing cost. The design reported in [15]
is a lot simpler but it uses the dispersive behavior of the
TE mode in a PPW cavity. Hence, its operation is inherently
limited in bandwidth. In this context, geodesic lenses, and in
particular, the Rinehart-Luneburg lens [16], [17], are attractive
solutions since they combine both mechanical simplicity and
true-time-delay operation. Recent works have investigated the
possibility to fold or modulate the profile of geodesic lenses
to reduce their height [18]-[20]. To further investigate these
solutions, there is an interest in developing efficient analysis
tools enabling a quick assessment of the focusing properties
of geodesic lenses.

In this contribution, a hybrid model to analyze geodesic
lenses is described. The model uses a ray-tracing method to
evaluate the path of the rays inside the lens. The radiation
patterns in the far field (FF) and near field (NF) of the lens are
studied using a point source array approximation. In particular,
geodesic lenses with NF focusing properties are investigated.
The model provides more incite in the focusing properties of
such lenses.



II. FOCUSING GEODESIC LENS DESIGN

In Fig. 1, a 3D view of a focusing geodesic lens antenna
is presented. A TEM wave, generated by a waveguide feed,
travels through a curved PPW cavity. The lens antenna opens
smoothly to the open space through a flare on the opposite side
of the feeds. The geodesic lens presents a rotational symmetry
around the Z-axis, providing the desired stability of focusing
properties across a wide angular range, only limited by the
implementation of the feeds. This structure can be modeled
(Fig. 2) as a point source at the position, P1(ρ1 = 1, θ1 = −π),
from where several rays emerge, travel on a geodesic surface
and focus at the point P2(ρ2, θ2 = 0), where ρ is the radial
coordinate normalized to the lens radius (Rlens) and θ the
angular position with reference to the X-axis in the XOZ
plane.

The optimal contour of a geodesic lens can be calculated
using the function s(ρ) [21], the length of surface measured
along the meridian from the axis Z to a given point:

s(ρ) = A(ρ)ρ+B arcsin(ρ) + C(ρ) (1)

where
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This equation ensures that all rays emerging from P1 arrive
at P2 traveling the same distance, thus adding up in phase.
The value of P2 varies from r2 = 1 (Maxwell fish eye lens) to
r2 =∞ (Rinehart-Luneburg lens). Some examples are plotted
in Fig. 3.
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Fig. 2. Schematic representation of ray tracing in a geodesic lens.

III. POINT SOURCE CIRCULAR ARRAY MODEL

A ray tracing tool has been developed, following the equa-
tions described in [21], to calculate the total length travel by
the ray (σi) and the angle of arrival at the end of the lens (φi).
Each ray arrives at that point forming an angle θi with the
X-axis. The lens aperture can be modeled as a point source
array, where each source radiates proportional to cosp(θ−θi).
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Fig. 3. Different lens profiles as a function of the radial position of the image
focusing point.

The electric field created by the lens antenna in the point
(x̄, ȳ), normalized to the wavelength, can be calculated as the
sum of the contributions of all the point sources.

Ez(x̄, ȳ, z̄ = 0) ∝
n∑

i=1

cosq(αi
0) · exp(−j2πσi) ·

exp(−j2πR) · cosp(θ − θi)/Ri (5)

where

Ri =
√

(x̄−Rlens cosφi)2 + (ȳ −Rlens sinφi)2). (6)

The source in P1 is modeled as a cosq(αi
0) feed, with αi

0

the angle between the emerging ray and the meridian of the
lens. This simplified model provides an efficient analysis tool
and better insight on the operation of a geodesic lens. The
model requires only a few seconds to provide the radiation
pattern of the antenna in a laptop.
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Fig. 4. Schematic representation of the point source circular array model.

IV. VALIDATION OF THE HYBRID MODEL

A. Pattern Analysis

A specific geodesic lens antenna is defined with the purpose
of comparing the results from the hybrid model described
above and a commercial full-wave tool [23]. The geodesic
lens has a radius of Rlens = 4λ and the working frequency
is 30 GHz. The focusing point is r2 = 4 · Rlens = 160 mm.
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Fig. 5. Far field radiation pattern of a geodesic lens antenna Rlens = 4 · λ
and r2 = 4 ·Rlens.
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Fig. 6. Normalized NF pattern at R = 4 ·Rlens of a geodesic lens antenna
with Rlens = 4 · λ and r2 = 4 ·Rlens.

The following set of parameters was used in the hybrid model:
q = 1.7, p = 1 and n = 31. Slight changes to these parameters
have limited impact on the numerical results.

A comparison of the FF radiation patterns obtained with
the hybrid model and the full-wave simulator is provided
Fig. 5. Small differences (less than 0.5 dB) appears in the
main beam. The differences increase from angles greater than
20◦. However, they are secondary lobes below -20 dB. These
discrepancies are mostly due to the real size of the feed (non
punctual) and the transition between the lens and the open
space (flare), which are not accounted for in the hybrid model.

This antenna is also studied in the NF. The normalized
electric field at R = r2 = 4 · Rl, the focusing distance, is
illustrated in Fig. 6. The geodesic lens can focus the field
within less than 8 degrees (±4◦) half-power beamwidth. The
differences between the model and the simulation results are
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Fig. 7. Normalized NF pattern at R = 2 ·Rlens of a geodesic lens antenna
with Rlens = 4 · λ and r2 = 4 ·Rlens.

very similar to the previous case, with a reasonably good
agreement within the main beam and some discrepancies that
increase as the side lobe level decreases. Closer to the lens,
the main beam widens and the secondary lobes increase.
Numerical results are provided for the normalized electric field
at R = 2 ·Rl in Fig 7.

B. Planar Near Field Analysis

The model allows to study the planar NF distribution of the
lens in few seconds. As in the previous section, a geodesic
lens with Rl = 4λ is studied. The focusing capability of
geodesic lenses with r2 = 2 ·Rl and r2 = 4 ·Rl are reported in
Fig. 8 and Fig. 9, respectively. In the lens with r2 = 2λ, a
spot is formed very close to the desired image point. However,
in the antenna with r2 = 4 · Rl, a spot of energy appears
in a position closer to the lens (around x = 120 mm) than
expected (x = r2 = 160 mm). This effect is due to the finite
dimensions of the lens and also appears in NF planar arrays
[24]. The planar NF is also analysed for a Rinehart-Luneburg
geodesic lens (r2 =∞) and the results in amplitude and phase
are reported in Fig. 10 and Fig. 11, respectively. As expected,
no NF focusing point appears, while the generated plane wave
is clearly visible in the phase response.

V. CONCLUSION

We proposed here a simple model to calculate the FF
and the NF of focusing geodesic lenses. The comparison
with full-wave simulation results both in the FF and NF
validates the proposed approach for the purposes of quick
performance assessment (e.g. antenna optimisation, system
analyses). This method is used to study the planar NF of
this kind of antennas. It is shown that these antennas are
able to focus the energy close to the designed position with
a precision equivalent to what was demonstrated with planar
arrays. These antennas could find applications in short-range
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Fig. 8. Normalized planar NF (dB) pattern of a geodesic lens antenna with
Rlens = 4 · λ and r2 = 2 ·Rlens.
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Fig. 9. Normalized planar NF (dB) pattern of a geodesic lens antenna with
Rlens = 4 · λ and r2 = 4 ·Rlens.

wireless communications, wireless power transfer or mm-wave
imaging sensing systems.
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