
RESEARCH ARTICLE

PyDSLRep: A domain-specific language for

robotic simulation in V-Rep

Andrés C. Jiménez1☯, John P. AnzolaID
1☯, Vicente Garcı́a-Dı́az2☯, Rubén González

CrespoID
3☯*, Liping ZhaoID

4☯

1 Department of Electronic Engineering, Los Libertadores Foundation University, Bogotá, Colombia,

2 Department of Computer Science, University of Oviedo, Asturias, Spain, 3 Department of Computer

Science, International University of the Rioja, Avenida de la Paz, Logroño La Rioja, Spain, 4 Department of

Computer Science, University of Manchester, Manchester, United Kingdom

☯ These authors contributed equally to this work.

* ruben.gonzalez@unir.net

Abstract

Calculating forward and inverse kinematics for robotic agents is one of the most time-inten-

sive tasks when controlling the robot movement in any environment. This calculation is then

encoded to control the motors and validated in a simulator. The feedback produced by the

simulation can be used to correct the code or to implement the code can be implemented

directly in the robotic agent. However, the simulation process executes instructions that are

not native to the robotic agents, extending development time or making it preferable to vali-

date the code directly on the robot, which in some cases might result in severe damage to it.

The use of Domain-Specific Languages help reduce development time in simulation tasks.

These languages simplify code generation by describing tasks through an easy-to-under-

stand language and free the user to use a framework or programming API directly for testing

purposes. This article presents the language PyDSLRep, which is characterized by the con-

nection and manipulation of movement in mobile robotic agents in the V-Rep simulation

environment. This language is tested in three different environments by twenty people,

against the framework given by V-Rep, demonstrating that PyDSLRep reduces the average

development time by 45.22%, and the lines of code by 76.40% against the Python frame-

work of V-Rep.

Introduction

Robotic agents are widely used for industrial, surveillance, and search and rescue tasks. How-

ever, these applications have increased their development complexity in both hardware and

software, as they rely on increasingly complex algorithms to perform them. This has moved

developers to use techniques and tools that enable robotic agents to have more autonomy,

depending on the environment in which they are deployed.

Currently, developers need to calculate and assess the development of a robotic agent, and

this has a direct impact in the increase of development time, due the generation of a simulation

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Jiménez AC, Anzola JP, Garcı́a-Dı́az V,

González Crespo R, Zhao L (2020) PyDSLRep: A

domain-specific language for robotic simulation in

V-Rep. PLoS ONE 15(7): e0235271. https://doi.

org/10.1371/journal.pone.0235271

Editor: Gerhard Hartwig Buck-Sorlin, IRHS, INRA,

AGROCAMPUS-QUEST, Universite d’Angers, SFR

4207 QUASAV, FRANCE

Received: September 13, 2019

Accepted: June 12, 2020

Published: July 1, 2020

Copyright: © 2020 Jiménez et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: S1 Dataset. Results

from the two test groups. https://doi.org/10.6084/

m9.figshare.11678085 (xlsx). S1 Fig. Figures used

in the paper. https://doi.org/10.6084/m9.figshare.

11959308 (zip). S1 Models. Models of the robotic

agents and environments used in the simulation.

https://doi.org/10.6084/m9.figshare.11959317

(zip).

Funding: The author(s) received no specific

funding for this work.

http://orcid.org/0000-0001-8503-5410
http://orcid.org/0000-0001-5541-6319
http://orcid.org/0000-0001-8556-8655
https://doi.org/10.1371/journal.pone.0235271
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235271&domain=pdf&date_stamp=2020-07-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235271&domain=pdf&date_stamp=2020-07-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235271&domain=pdf&date_stamp=2020-07-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235271&domain=pdf&date_stamp=2020-07-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235271&domain=pdf&date_stamp=2020-07-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235271&domain=pdf&date_stamp=2020-07-01
https://doi.org/10.1371/journal.pone.0235271
https://doi.org/10.1371/journal.pone.0235271
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.11678085
https://doi.org/10.6084/m9.figshare.11678085
https://doi.org/10.6084/m9.figshare.11959308
https://doi.org/10.6084/m9.figshare.11959308
https://doi.org/10.6084/m9.figshare.11959317


model, which in several cases is independent of the software models implemented in physical

agents, increasing the designer’s work.

The design of this type of tests is usually done using Domain-General Languages (DGLs)

that extend APIs or high-level libraries for robotic applications development. However, these

Domain-General Languages lack the required semantics or abstractions needed to develop

movement actions, making it necessary to debug the code before the simulation stage [1].

There are languages capable of increasing the abstraction level and reducing development

time by representing clearer semantics and allowing more simplicity in writing code. These

languages, which rely on model generation and domain-specific concepts, are known as

Domain-Specific Languages (DSLs). Domain-Specific Languages are becoming popular in

robotics due to their flexibility, automation, and encapsulation of repetitive tasks, which results

in a decrease of common errors in code generation. DSLs can also generate code that can be

integrated easily to a GPL to handle API’s or libraries for specific use in platforms for real-

world environments [2–5].

There are several tools that can be used to generate DSLs. These are divided into internal

and external tools. Internal tools are extensions of GPLs like LUA or RUBY by adding new

expressions or functionality. One example is the virtual simulation environment V-REP,

which uses LUA to describe and control the environment and robotic agents being simulated

[6].

External DSLs define their own syntax and concepts, which must be related to the desired

application domain. For this type of DSLs, there are editors like Xtext, which allow the creation

of a language grammar by designing its syntax and creating rules through a language called

Xtend, which is used to implement grammar definitions, design the interpreter, and generate

the DSL code [7].

Dejanovic et al. create a language based in Xtext called textX, to build a DSL in Python.

This DSL allows to create Python code and presents an example of robotics application to sim-

ulate movements in a discrete environment. However, it does not demonstrate a direct appli-

cation or the kinematic modeling of the robotic agent [1].

Currently, DSLs are oriented to manipulating robotic arms and describing the parts or

robotic agents [8]. The goal of DSLs in the control of robotic arms in focused on generating

movements to manipulate elements by allowing the modification of kinematic parameters.

Conversely, DSLs such as the Universal Robotic Description Format (URDF) by ROS, allow

describing all the parts of the robotic agents, specifying dynamic and kinematic parameters

and allowing to model robotic agents for displacement in a real environment. However, it does

not model the interaction of the robotic agent with obstacles in the environment [9].

This limitation prompted the development of an internal DSL called, to code movement

tasks in robotic agents, and oriented to their validation using the V-REP simulation environ-

ment. This language offers a set of rules that abstract the kinematic behavior of the robot, help-

ing reduce complexity in code development and testing by abstracting the functional and

software architecture of the robotic agent, avoiding errors in the generation of the kinematic

model. As it was developed using Xtext, it can be easily used in any operating system. Its text

editor features auto-complete, highlights reserved words, and shows errors. Furthermore, gen-

erates the connection to V-REP’s proxy through a Python script, which can be easily modified

by the user to embed it directly in a differential robotic platform, ensuring applicability and

reusability in physical robotic agents.

To improve code generation, PyDSLRep divides code description into 4 stages. The first

stage is modeling the differential robot, taking as a variable the size of the wheels to generate

the model for forward and inverse dynamics. The second stage is declaring the robotic agent

instances. The third is describing the movements that the robotic agents can perform, either

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 2 / 24

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0235271


serialized or concurrent, according to the user’s needs. Finally, the fourth stage groups the

robotic agents in the environment and executes the movements.

The rest of the article is structured as follows. Section 2 presents the works performed in the

implementation of DSLs oriented to robotic systems. Section 3 describes the kinematic model

of the robotic agent modeled in PyDSLRepCode. The creation of the development environ-

ment is explained in Section 4. Section 5 presents the evaluation and discussion of the results

obtained with, compared to the Python framework. Finally, Section 6 presents conclusions.

Related works

Robotic agents have been employed for a wide variety of work domains, ranging from plan-

ning, mapping, locations, and assistance tasks. Several design architectures have been used for

development in these work areas, with the goal of reducing software development time.

Silva et al. [10] establish a metamodel for the requirements analysis and software develop-

ment for a generic system of robotic agents. This metamodel establishes a methodology based

in software engineering, for the study of the agents’ requirements, by implementing different

roles for the agents and how they have to share information. However, this metamodel only

provides guidelines for roles and information specifications among different levels.

Like Silva, other authors have established frameworks and methodologies for the control

[11–15], planning [16–18], and communications [19–21] of robotic agents, but they present

the characteristics of DSLs to reduce development time in a flexible and efficient manner, and

at the same time, increasing autonomy between hardware and software [8]. This autonomy is

dependent on the domain knowledge for which the robotic agents are being used; this is, the

problem requirements, proposed objectives, and system restrictions.

Klotzbücher et.al. [22] establishes an internal DSL based on LUA, based on the Model

Driven Engineering (MDE) approach, to standardize the representation of Task Frame For-

malism (TFF) for industrial robotic arms, by modeling the language through hierarchical

definitions and orienting the user intuitively, without direct influence of hardware during pro-

gram design. This is achieved by implementing the design flow through DSL representation,

according to the four levels of standardization of the OMG group, applying the MDE

approach. In this case, the level M0 is in charge of manipulating the robotic arm. Although

software design in the previous case is not directly related to hardware, it depends on pre-exist-

ing frameworks or libraries for manipulating robotic arms [23].

Frigerio et al. [22] present a DSL focused on reducing the calculation of transformation

matrices required to control actuators in robotic arms, by generating models to be imple-

mented according to the kinematic parameters of the robotic arm. This DSL develops code

generation for implementation in positioning tasks for a robotic arm inside a simulation,

emphasizing the use of models to be reused in physical robots. However, this is only possible

in agents that have the same kinematics.

The previous works present DSLs oriented to application in robotic arms, which prevents

them to be used in other types of mobile platforms such as differential or wheeled robots.

Loetzsch et al. [24] propose a DSL called XABSL, for implementation in autonomous agents in

complex environments. XABSL minimizes the developer’s role in code creation by using finite

state machines to represent the actions to be executed by the robotic agent. The language pre-

sented by Loetzsch has been used in RoboCup, showing good results in the team that imple-

mented it. However, robotic platforms must have a framework compatible with the language,

which prevents implementation in proprietary platforms. Furthermore, it cannot model the

entire agent, as it only provides selection mechanisms by action, and it does not allow the pos-

sibility of performing simulation tests prior to implementation.

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 3 / 24

https://doi.org/10.1371/journal.pone.0235271


Similar to Loetzsch, Campusano et al. [25] design a DSL that represents code functionality by

finite state machines, but in this case, they can take four possible states, as chosen by the user. It

also allows the programmer to see the solution deployment in real-time by using live program-

ming, which reduces programming time by allowing code debugging without the need for com-

pilation or sending the code to a test unit. Conversely, the language can generate code to create

communication nodes with the Robotic Operating System (ROS) and use the implemented

algorithms directly. The drawback of this language is that it avoids evaluating proprietary algo-

rithms and, like XABSL, it is not compatible with simulators for testing the generated program.

DSLs have also been oriented to graphical programming. In these cases, the user programs

using blocks that contain pre-programmed routines. Pot et al. [26] developed Choregraphe, a

development environment that includes the characteristics presented by Campusano by show-

ing the results of the programs developed by users in real-time and inside a virtual environ-

ment. Each of the blocks contained in Choregraphe can be modified through a Python script,

allowing the user to implement their own algorithms or libraries for remote information pro-

cessing. However, as this software is dedicated to NAO humanoid robots, it cannot be used for

programming other robotic agents.

Another advantage of Choregraphe is the use of Python scripts. Blasco et al. [27] highlight

the importance of using this high-level language to control robotic agents in high-complexity

tasks. In contrast with the previous works mentioned, PyDSLRepCode is a language oriented

to movement control in mobile robotic agents. This language features a simple user syntax,

simplifying the connection and direct verification with V-REP before direct implementation

in the test agent. Another great advantage of PyDSLRepCode is the generation of organized

code in Python, which allows the user to reuse the code to add the robotic agent’s API for

direct motor manipulation or to implement navigation algorithms directly.

PyDSLRepCode kinematic description

Every movement of a robotic agent is represented by its kinematic description, which describes

the position in which the robot can be according to the speed of its wheels (forward kinemat-

ics) or the speed that every wheel should have to achieve the desired orientation and position

(inverse kinematics.) In every case in which the developers wish to control the movement of

the robotic agent, they must calculate the forward and inverse kinematics of the robotic agents

to generate the software code to manipulate the agent’s motors. Errors might be introduced

during the execution of this task, resulting in the execution of movements with errors by the

robotic agents and preventing the completion of the desired navigational tasks.

PyDSLRepCode simplifies writing code to control the robotic agent’s movements. This lan-

guage embeds the kinematic description of the differential robotic agent, as this is one of the

most commonly used structures for navigational tasks [28]. To achieve this, PyDSLRepCode

describes code development in four stages: 1) Describes the robotic agent components to cal-

culate forward kinematics. 2) Instances the robotic agents. 3) Assigns to each agent the move-

ment actions required by the developer (inverse kinematics.) 4) Creates the environment to

contain the robotic agents and assigns the execution order of the movements developed in

stage 2.

Down below is a description of each of PyDSLRepCode’s coding stages, demonstrating the

abstraction capability to describe movement in differential robotic agents.

Direct kinematic in PyDSLRepCode

Differential robots are characterized by having two wheels, which are placed parallel to each

other along the same axis and separated from each other by a distance d. Each of the wheels

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 4 / 24

https://doi.org/10.1371/journal.pone.0235271


has an autonomy of movement represented by a velocity vector vw. This allows controlling the

rotational movement of the robot. As both wheels are placed along the same axis, the rotational

movement has a common rotation point for both wheels, which is where the agent presents

rotation. This point is known as Instantaneous Center of Rotation (ICR).

Fig 1 shows the action of velocity vectors in each of the wheels, with respect to the ICR.

Each of these velocities has a direct effect on the trajectory of the robotic agent, generating the

same angular velocity ω(t) in both wheels with respect to the ICR. Eq (1) presents the calcula-

tion of velocities in the wheels, according to the curvature radius R with respect to the ICR

point.

vr;l ¼ oðtÞ R�
d
2

� �

ð1Þ

From Eq (1), we can clear the curvature radius R and the angular velocity ω(t) generated by

the rotational movement, obtaining Eqs (2) and (3).

R ¼
dðvlðtÞ þ vrðtÞÞ
2ðvrðtÞ � vlðtÞÞ

ð2Þ

Fig 1. Kinematic representation of a two-wheeled differential drive robot.

https://doi.org/10.1371/journal.pone.0235271.g001

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 5 / 24

https://doi.org/10.1371/journal.pone.0235271.g001
https://doi.org/10.1371/journal.pone.0235271


oðtÞ ¼
vrðtÞ � vlðtÞ

d
ð3Þ

Using trigonometric properties, and assuming that the point d/2 is located at the position

(x, y) with an angle θ respect the x-axis, we obtain the position ICR = [x − Rsin(θ), y + Rcos(θ)].

Taking this into account, if the robot moves at a speed ω(t) for a time tα (Fig 2), its new posi-

tion can be calculated with Eq (4).

_x

_y

_y

2

6
6
6
4

3

7
7
7
5
¼

cosðytaÞ � sinðytaÞ 0

sinðytaÞ cosðytaÞ 0

0 0 1

2

6
6
6
4

3

7
7
7
5

RsinðyÞ

� RcosðyÞ

y

2

6
6
6
4

3

7
7
7
5
þ

x � RsinðyÞ

yþ RcosðyÞ

yta

2

6
6
6
4

3

7
7
7
5

ð4Þ

As is shown in Eq (4), both the angular velocity ω(t), the position of the robot in the Carte-

sian plane, and the reference point in the rotational movement ICR, depend directly on the

velocity of each wheel and on the time in which energy is applied to the motors. Using this

information, PyDSLRepCode builds a model of the robotic agent by asking the developer the

wheels included in the robot model, in which the input of the radius and the port number

through which communication will be made are mandatory.

To identify each wheel and the robotic agents using them, PyDSLRepCode requires each

wheel to have a unique identifier, which is represented by a string (Fig 3).

Fig 2. Direct kinematic movement after tα time.

https://doi.org/10.1371/journal.pone.0235271.g002

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 6 / 24

https://doi.org/10.1371/journal.pone.0235271.g002
https://doi.org/10.1371/journal.pone.0235271


Another important aspect of PyDSLRepCode is that if the user characterizes more than one

robotic agent, and these agents share the same wheel type, PyDSLRepCode allows the creation

of a single instance of the wheel, which can be assigned to all the agents.

The abstraction power of PyDSLRepCode exempts developers from representing Eqs (1)–

(4), taking the value d of separation between wheels directly from the references acquired

through V-Rep, and effectively reducing the number of variables the user is required to

encode.

Inverse kinematic in PyDSLRepCode

By knowing the velocity of a robotic agent, its position can be calculated after a time tα, as

shown in Eq (4). However, to move to a location or configuration in the environment (x, y, θ),

the velocity and orientation of the robotic agent must be controlled. This problem can be

solved by breaking down the velocity vector v(t) in (x, y), integrating it with respect to time t
(Eq (5).) From this, to simplify the displacement calculations and avoiding the problem of per-

pendicular displacement in differential robots, the speeds of the wheels are equalized by gener-

ating the movement matrix of Eq (6), where ϕ is the desired angle of rotation.

xðtÞ ¼
1

2

Z t

0

vrðtÞ þ vlðtÞð ÞcosðytÞdt

yðtÞ ¼
1

2

Z t

0

vrðtÞ þ vlðtÞð ÞsinðytÞdt

yðtÞ ¼
Z t

0

oðtÞdt

ð5Þ

Fig 3. Class diagram direct kinematic behaviour PyDSLRepCode.

https://doi.org/10.1371/journal.pone.0235271.g003

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 7 / 24

https://doi.org/10.1371/journal.pone.0235271.g003
https://doi.org/10.1371/journal.pone.0235271


_x

_y

_y

2

6
6
6
4

3

7
7
7
5
¼

cosðyÞ 0

sinðyÞ 0

0 1

2

6
6
6
4

3

7
7
7
5

~r

y

" #

þ

x

y

�

2

6
6
6
4

3

7
7
7
5

ð6Þ

To save the designer from having the calculate the integrals (5) and the calculation of veloci-

ties in the matrix (6), PyDSLRep groups the movement actions in a way that the user is only

required to input the displacement distance and the velocity for the movement of the robotic

agent, separating the movement actions in straight lines and turns, and thus avoiding the dis-

placement problems in horizontal agents (Fig 4) During the input of information to instantiate

a collection of movements, PyDSLRep requests two parameters. The first parameter is the

assignment of a unique name, and the second is that the collection is related to a single robotic

agent. This is to ensure the execution of actions by the robotic agent at the desired moment.

In addition to the differential model presented above, PyDSLRep also includes two addi-

tional models. The first one is a four-wheel robot Fig 5a, n which the calculations for inverse

and direct kinematics are based on the article by Maulana et.al. [29]. While the second model

is also four-wheeled, the motion of its wheels is omnidirectional or holonomic, which is

Fig 4. Class diagram inverse kinematic behaviour PyDSLRep.

https://doi.org/10.1371/journal.pone.0235271.g004

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 8 / 24

https://doi.org/10.1371/journal.pone.0235271.g004
https://doi.org/10.1371/journal.pone.0235271


possible when using mecanum wheels Fig 5b, The inverse and direct kinematics of this second

model are based on the work of Zimmermann et.al. [30].

Creation of the development environment

The work environment in PyDSLRep contains the robotic agents’ instances and the collection

of movements they will perform. This is possible by starting the development of each of the

components of the robotic system. The creation process of the environment is done in four

steps, which are described as follows. The steps follow the bottom-up architecture pattern, as

shown in Fig 6:

1. Instantiating the components of the wheels. This requires the creation of at least two of

these components. If necessary, as is the case if the robotic agent will connect to a remote

host, an additional IP component is created, containing its respective IPv4 address.

2. Declaring and instantiating the robotic agents, which must contain the wheels, to generate

their kinematic model.

3. Creating the collection of movements for each of the robotic agents that were instantiated.

4. Finally, creating the environment component, which contains the robotic agents and the

movements desired, which were instantiated in previous stages.

Fig 5. Four wheeled robots implemented in PyDSLRep (a) non holonomic (b) holonomic using mecanum wheels.

https://doi.org/10.1371/journal.pone.0235271.g005

Fig 6. Code architecture of an environment.

https://doi.org/10.1371/journal.pone.0235271.g006

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 9 / 24

https://doi.org/10.1371/journal.pone.0235271.g005
https://doi.org/10.1371/journal.pone.0235271.g006
https://doi.org/10.1371/journal.pone.0235271


The grammar created in PyDSLRep is shown in Table 1. This is used to instantiate compo-

nents and declare instructions to complement the usability for each of them.

Fig 7 shows a differential robotic two-wheel agent that must travel a total distance of 12

meters to reach its final objective. To model this task in PyDSLRep, the grammar rules of

Table 1 are applied, with the bottom-up design architecture, as shown in Table 2.

Table 3 shows the the bottom-up architecture for a four wheeled robotic agent, meanwhile,

Table 4 shows the implementation using an holonomic four wheeled robotic agent in the same

environment Fig 7 Same as the differential robotic agent.

In case the robotic agent needs to make turns at angles different than 90 degrees, as shown

in Fig 8, turn commands must be implemented, specifying the direction and angle of rotation.

Table 5 shows the development of the path using a two-wheel differential robotic agent. Four-

wheel robotic agents are also capable of executing these motions.

PyDSLRep supports distance sensors, which can be used directly by robotic agents to gener-

ate motion autonomously. Table 6 shows the results of using a robotic agent with three frontal

distance sensors, which are used to determine how much of the path should the agent rotate

autonomously to continue with the following motion instruction.

Finally, PyDSLRep contains an instruction for generating a topological SLAM, as demon-

strated in et.al. [31]. For its use, the robotic agent needs to be equipped with at least five dis-

tance sensors, as shown in Fig 7. The generation of the map requires that the environment be

Table 1. Grammar implemented in PyDSLRep.

Keyword Feature Grammar rule

wheel Creates a wheel component wheel wheel_name with radius (float in cm)

wheelH Creates an holonomic wheel component wheelH wheel_name with radius (float in cm)

robot Creates a robot component robot type_declaration robot_name with port (int) has {wheel_name_Lx
wheelR_name_Rx}wheels with sensors {sensor_name_1 . . . sensor_name_5}

type two_wheels Creates a two wheels differential robot component type tw

type

four_wheels

Creates a four wheels robot component type fw

type

four_wheelsH

Creates a four wheels holonomic robot component type fwh

sensor Declares a distance sensor sensor senor_name

movement Creates a collection of movements of a specific robot movement mov_name of robot_name {move (float) meters at (float) turn right (int)}

parallel

movement

Creates a collection of movements that are concurrent parallel movement mov_name of robot_name {move (float) meters at (float) turn
right (int)}

slam Declares a movement to create a map slam
environment Creates a collection of robots with a specific collection of

movements

environment area_name has {robot_name_1 . . . robot_name_n} robots with
{mov_name_1 . . . mov_name_n} moves

ip Creates an IP component as IPv4 ip ip_name (int). (int). (int). (int)

move Creates a linear movement component with a specific

velocity

move (float) distance_ declaration at (float)

turn Creates a rotatory movement component turn rotatory_declaration
left Declares the orientation of the turn component 90 degrees to

its left if there is not an angle_declaration
turn right (int)

right Declares the orientation of the turn component 90 degrees to

its right f there is not an angle_declaration
turn left (int)

turn until Creates a rotatory movement component turn rotatory_declaration until {sensor_name}

port Declares the port number of each robotic agent port (int)

meters Declares the linear distance traveled in meters move (float) meters at (float)

centimeters Declares the linear distance traveled in centimeters. move (float) centimeters at (float)

https://doi.org/10.1371/journal.pone.0235271.t001

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 10 / 24

https://doi.org/10.1371/journal.pone.0235271.t001
https://doi.org/10.1371/journal.pone.0235271


closed. Table 7 shows the bottom-up architecture implemented for map generation. The gen-

erated map result is shown in Fig 9.

Evaluation and discussion

It is necessary to propose testing environments to assess PyDSLRep’s usability as compared to

the native framework used for the simulation of robotic agents in V-Rep. To this end, this

Fig 7. First basic environment created in V-Rep.

https://doi.org/10.1371/journal.pone.0235271.g007

Table 2. Bottom-Up architecture design in PyDSLRep two wheel differential robot.

Step Code

1 wheel wheelR with radius 4.5

wheel wheelL with radius 4.5

2 robot robot_1 type tw with port
19999 has {

wheelL

wheelR }wheels
3 movement mov_1 of robot_1 {

move 4.0 meters
turn right
move 4.0 meters
turn right
move 400.0 centimeters }

4 environment area_1 has {

robot_1 } robots with {

mov_1 }moves

https://doi.org/10.1371/journal.pone.0235271.t002

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 11 / 24

https://doi.org/10.1371/journal.pone.0235271.g007
https://doi.org/10.1371/journal.pone.0235271.t002
https://doi.org/10.1371/journal.pone.0235271


section presents two stages for the testing process. The first stage presents the methodology for

conducting experiments using PyDSLRep and the Python framework. The second presents the

results obtained and a discussion of the results. The PyDSLRep repository can be found in [32].

Methodology

To validate the usability of PyDSLRep and the Python framework in the V-Rep simulator,

three scenarios are introduced. The first two scenarios contains obstacles with robotic agents

Table 3. Bottom-Up architecture design in PyDSLRep four wheeled robot.

Step Code

1 wheel wheelR0 with radius 4.5

wheel wheelR1 with radius 4.5

wheel wheelL0 with radius 4.5

wheel wheelL1 with radius 4.5

2 robot robot_1 type fw with port
19999 has {

wheelL0 wheelL1

wheelR0 wheelR1}wheels
3 movement mov_1 of robot_1 {

move 4.0 meters
turn right
move 4.0 meters
turn right
move 400.0 centimeters }

4 environment area_1 has {

robot_1 } robots with {

mov_1 }moves

https://doi.org/10.1371/journal.pone.0235271.t003

Table 4. Bottom-Up architecture design in PyDSLRep holonomic four wheeled robot.

Step Code

1 wheelH wheelR0 with radius 4.5

wheelH wheelR1 with radius 4.5

wheelH wheelL0 with radius 4.5

wheelH wheelL1 with radius 4.5

2 robot robot_1 type fw with port
19999 has {

wheelL0 wheelL1

wheelR0 wheelR1}wheels
3 movement mov_1 of robot_1 {

move 4.0 meters
turn right
move 4.0 meters
turn right
move 4.0 meters
turn right }

4 environment area_1 has {

robot_1 } robots with {

mov_1 }moves

https://doi.org/10.1371/journal.pone.0235271.t004

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 12 / 24

https://doi.org/10.1371/journal.pone.0235271.t003
https://doi.org/10.1371/journal.pone.0235271.t004
https://doi.org/10.1371/journal.pone.0235271


Fig 8. Second basic environment created in V-Rep.

https://doi.org/10.1371/journal.pone.0235271.g008

Table 5. Bottom-Up architecture design in PyDSLRep two wheel differential robot third environment.

Step Code

1 wheel wheelR with radius 4.5

wheel wheelL with radius 4.5

2 robot robot_1 type fw with port
19999 has {

wheelL0 wheelL1

wheelR0 wheelR1}wheels
3 movement mov_1 of robot_1 {

turn right 45

move 4.0 meters
turn left
move 0.5 meters
turn left 45

move 4.0 meters
}

4 environment area_1 has {

robot_1 } robots with {

mov_1 }moves

https://doi.org/10.1371/journal.pone.0235271.t005

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 13 / 24

https://doi.org/10.1371/journal.pone.0235271.g008
https://doi.org/10.1371/journal.pone.0235271.t005
https://doi.org/10.1371/journal.pone.0235271


and two groups of users with knowledge of the Python programming language. The differenti-

ating factor of the first group against the second group is the lack of knowledge about the

Python framework for V-Rep. The third scenario is a non uniform environment, with obsta-

cles with different shapes.

The first testing scenario is shown in Fig 10. This is a simple scenario, as it contains a single

robotic agent. The second scenario contains 4 robotic agents that must be controlled concurrently

Table 6. Bottom-Up architecture design in PyDSLRep two wheel differential robot with sensors.

Step Code

1 wheel wheelR with radius 4.5

wheel wheelL with radius 4.5

2 sensor fSensor

sensor lSensor

sensor rSensor

3 robot robot_1 type tw with port
19999 has {

wheelL

wheelR }wheels with sensors
{fSensor, lSensor, rSensor}

4 movement mov_1 of robot_1 {

move 4.0 meters
turn right until {fSensor, rSensor}

move 4.0 meters
turn right until {fSensor, rSensor}

move 400.0 centimeters }

5 environment area_1 has {

robot_1 } robots with {

mov_1 }moves

https://doi.org/10.1371/journal.pone.0235271.t006

Table 7. Bottom-Up SLAM architecture design in PyDSLRep.

Step Code

1 wheel wheelR with radius 4.5

wheel wheelL with radius 4.5

2 sensor fSensor0

sensor fSensor1

sensor fSensor2

sensor lSensor

sensor rSensor

3 robot robot_1 type tw with port
19999 has {

wheelL

wheelR }wheels with sensors
{fSensor0,fSensor1,fSensor2,

lSensor, rSensor}

4 movement mov_1 of robot_1 { slam }

5 environment area_1 has {

robot_1 } robots with {

mov_1 }moves

https://doi.org/10.1371/journal.pone.0235271.t007

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 14 / 24

https://doi.org/10.1371/journal.pone.0235271.t006
https://doi.org/10.1371/journal.pone.0235271.t007
https://doi.org/10.1371/journal.pone.0235271


Fig 9. Topological map of the first test environment.

https://doi.org/10.1371/journal.pone.0235271.g009

Fig 10. First test environment created in V-Rep.

https://doi.org/10.1371/journal.pone.0235271.g010

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 15 / 24

https://doi.org/10.1371/journal.pone.0235271.g009
https://doi.org/10.1371/journal.pone.0235271.g010
https://doi.org/10.1371/journal.pone.0235271


to complete the objectives (Fig 11) As this DSL is designed as a script, both scenarios will measure

lines of code (LOC), the time to complete the tasks and the ability to create connections to remote

hosts to manipulate agents. The third scenario is presented in Fig 12, it has an area of 7m × 7.7m.

Results

This section will discuss all the test environments. For this, it presents three subsections to ana-

lyze the results of each test environment independently. For the first two test and group of peo-

ple presented, they were presented with the V-Rep work environment already initialized, a

tutorial of the Python framework for the group that had not used it before. Each group was

also presented with a PyDSLRep manual. For the third test, only the result map is presented.

First environment. Table 8 presents the results of both groups using the Python frame-

work for robotic agent manipulation in V-Rep. The results show that the first group took an

average of 26.94 minutes to solve the problem, with a standard deviation of 5.21 minutes, and

the second group showed a shorter average time of 16.53 minutes, with a standard deviation of

6.12 minutes (Fig 13a.)

In the task of connecting with a remote host to conduct the test, 40% of the first group were

able to create a successful connection. This result reached 80% in the second group.

Finally, the first group showed an average of 178.9 lines of code, and the second group gen-

erated fewer lines of code, with an average of 164.1 (Fig 13b.)

On the other hand, Table 9 shows the results for both groups using PyDSLRep, in which

the first group took an average of 13.39 minutes to solve the problem, with a standard devia-

tion of 5.21 minutes, which is a reduction of 50.29% of the time. Group 2 was also able to

Fig 11. Second test environment created in V-Rep.

https://doi.org/10.1371/journal.pone.0235271.g011

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 16 / 24

https://doi.org/10.1371/journal.pone.0235271.g011
https://doi.org/10.1371/journal.pone.0235271


reduce the average time to 12.76 minutes with a standard deviation of 6.32 minutes, which is

22.82% as compared to using the Python framework (Fig 14a.)

In the task of connecting with a remote host, the first group increased their connection suc-

cess to 70%, while the second group decreased by 10%. When the second group was asked

about their perception of ease to connect to remote hosts, they replied that they were used to

using the Python framework, which made it more difficult to understand the connection with

an IP address other than localhost.

Finally, both groups showed a reduction in lines of code used to solve the problem. The

first and second group used an average of 22.40 lines of code. For the first group, this

Fig 12. Third test environment created in V-Rep.

https://doi.org/10.1371/journal.pone.0235271.g012

Table 8. Results from the first environment using the python framework.

Subject Group 1 Group 2

LOC Time (hh:mm:ss) Remote host LOC Time (hh:mm:ss) Remote host

1 163 00:25:32 yes 162 00:10:48 yes

2 210 00:23:51 no 158 00:27:53 no

3 161 00:21:43 no 162 00:22:47 yes

4 143 00:33:56 no 168 00:13:43 yes

5 207 00:32:51 no 163 00:24:38 yes

6 155 00:33:50 no 172 00:11:69 no

7 175 00:18:39 no 161 00:11:62 yes

8 194 00:30:39 no 162 00:11:51 yes

9 201 00:25:48 yes 165 00:18:52 yes

10 180 00:22:40 yes 168 00:10:40 yes

https://doi.org/10.1371/journal.pone.0235271.t008

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 17 / 24

https://doi.org/10.1371/journal.pone.0235271.g012
https://doi.org/10.1371/journal.pone.0235271.t008
https://doi.org/10.1371/journal.pone.0235271


represents a reduction of 87.47%, and for the second, it is a reduction of 86.34%, on average

(Fig 14b.)

To tell if the differences are significant between the results in the first environment, we

apply the ttest. This test is calculated measuring the t-score using (7) and the critical value by

(8). If the t-score is greater than the critical value, the non null hypotheses is approved, that in

this case is that PyDSLRep has better results.

t score ¼
Mx � My
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sx2

Nx
þ

Sy2

Ny

r
ð7Þ

cv ¼
g

dfþ1

2

� �

ffiffiffiffiffiffiffiffiffi
p:df

p
:g

df
2

� �
:ð1þ ð1 � aÞ

2
Þ

dfþ1

2ð Þ
ð8Þ

Using the ttest, shows that the first group has a significant variation when they develop the

task using PyDSLRep with a t score = 5.815493492345903 > cv = 1.7340636066175354. While

Fig 13. Results from the first environment using the framework in Python (a) Time of completion (b) Lines of code to fulfill the experiment.

https://doi.org/10.1371/journal.pone.0235271.g013

Table 9. Results from the first environment using PyDSLRep.

Subject Group 1 Group 2

LOC Time (hh:mm:ss) Remote host LOC Time (hh:mm:ss) Remote host

1 20 00:12:9 yes 21 00:7:19 yes

2 27 00:11:12 yes 23 00:16:3 no

3 23 00:15:14 no 23 00:14:22 yes

4 21 00:19:21 yes 21 00:14:17 yes

5 24 00:21:16 yes 22 00:26:28 no

6 21 00:1:20 no 26 00:8:5 yes

7 24 00:16:15 yes 19 00:8:10 no

8 22 00:10:22 no 25 00:2:18 yes

9 19 00:14:19 yes 22 00:14:18 yes

10 23 00:12:27 yes 22 00:16:14 yes

https://doi.org/10.1371/journal.pone.0235271.t009

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 18 / 24

https://doi.org/10.1371/journal.pone.0235271.g013
https://doi.org/10.1371/journal.pone.0235271.t009
https://doi.org/10.1371/journal.pone.0235271


the second group doesn’t show a great improvement with a t = 1.3774471037866356 < cv =

1.7340636066175354.

Second environment. The second testing scenario presented to both groups has three dif-

ferentiating factors as compared to the first scenario. First, they must manage 4 agents, which

requires more planning. Second, the movement actions must be executed in parallel. Finally,

the distances traveled by the agents vary, which prevents the use of recursive functions.

Table 10 presents the results of both groups using the Python framework for manipulating

robotic agents in V-REP. The results show that the first group took an average of 49.82 minutes

to solve the problem, with a standard deviation of 5.00 minutes. Group 2 required a shorter

average time to solve the problem of 40.08 minutes, with a standard deviation of 5.31 minutes

(Fig 15a.)

In the task of connecting with a remote host, for the first group, 30% were capable of estab-

lishing a successful connection. For the second group, this percentage rose to 70%.

Finally, the first group used an average of 342 lines of code, and group 2 generated fewer

lines of code, with an average of 303.5 lines (Fig 15b.)

Fig 14. Results from the first environment using PyDSLRep (a) Time of completion (b) Lines of code to fulfill the experiment.

https://doi.org/10.1371/journal.pone.0235271.g014

Table 10. Results from the second environment using the python framework.

Subject Group 1 Group 2

LOC Time (hh:mm:ss) Remote host LOC Time (hh:mm:ss) Remote host

1 333 00:50:54 yes 314 00:42:44 yes

2 353 00:55:34 no 298 00:48:73 no

3 337 00:49:55 no 304 00:37:48 yes

4 334 00:51:51 no 297 00:48:37 yes

5 347 00:47:52 no 286 00:44:66 yes

6 336 00:49:50 no 312 00:34:51 no

7 362 00:54:53 no 314 00:46:53 no

8 366 00:43:56 no 302 00:32:46 yes

9 344 00:38:44 yes 300 00:39:55 yes

10 308 00:54:48 yes 308 00:36:47 yes

https://doi.org/10.1371/journal.pone.0235271.t010

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 19 / 24

https://doi.org/10.1371/journal.pone.0235271.g014
https://doi.org/10.1371/journal.pone.0235271.t010
https://doi.org/10.1371/journal.pone.0235271


Table 11 shows the results of both groups using PyDSLRep, in which the first group took an

average time to solve the problem of 24.47 minutes, with a standard deviation of 4.73 minutes,

which is a 50.89% reduction of time. Group 2 was also able to reduce the average time to 17.30

minutes, with a standard deviation of 3.66 minutes, which is 56.85% of the time required using

the Python framework (Fig 16a.)

In the task of connecting with a remote host, both groups increased the percentage of cases

in which they were able to establish a successful connection with the remote host. The first

group increased the successful connections to 80%, and the second to 90%.

Finally, both groups showed a reduction in the number of lines of code used to solve the

problem. The first group used an average of 107.6 lines of code, which is a reduction of

68.54%. The second group used an average of 110.6 lines of code, which is 63.26% less than

using the Python framework (Fig 16b.)

Using the ttest (7, 8), shows that the first group has a significant variation when they develop

the task using PyDSLRep with a t score = 11.336864645923933 > cv = 1.330390943569909.

While the second shows a great improvement with a t = 9.592773733982149 > cv =

8.434164477932882e − 09.

Fig 15. Results from the second environment using the framework in Python (a) Time of completion (b) Lines of code to fulfill the experiment.

https://doi.org/10.1371/journal.pone.0235271.g015

Table 11. Results from the second experiment using PyDSLRep.

Subject Group 1 Group 2

LOC Time (hh:mm:ss) Remote host LOC Time (hh:mm:ss) Remote host

1 106 00:19:21 yes 113 00:17:25 yes

2 110 00:23:20 yes 110 00:10:27 yes

3 109 00:25:21 no 114 00:21:26 yes

4 108 00:30:21 yes 112 00:19:23 yes

5 106 00:31:32 yes 109 00:23:18 yes

6 106 00:26:11 yes 114 00:14:25 yes

7 106 00:28:25 yes 108 00:13:19 no

8 106 00:21:20 no 115 00:19:25 yes

9 109 00:15:25 yes 111 00:17:26 yes

10 110 00:23:25 yes 110 00:16:23 yes

https://doi.org/10.1371/journal.pone.0235271.t011

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 20 / 24

https://doi.org/10.1371/journal.pone.0235271.g015
https://doi.org/10.1371/journal.pone.0235271.t011
https://doi.org/10.1371/journal.pone.0235271


Third environment. The third testing scenario was not presented to the testing groups,

this si beacuse PyDSLRep only uses one line of code in the movements declaration to create

the map, as it was explained in the Table 7. The map generated by PyDSLRep is presented in

the Fig 17.

Conclusions

DSLs increase the level of abstraction and reduce development time by allowing to generate

models and specific domain concepts, enabling developers to use clearer and simpler seman-

tics to write code. This article presents the development and usage of a DSL called PyDSLRep,

Fig 16. Results from the second environment using PyDSLRep (a) Time of completion (b) Lines of code to fulfill the experiment.

https://doi.org/10.1371/journal.pone.0235271.g016

Fig 17. SLAM in PyDSLRep (a) topolical map (b) overlapped result in the original environment.

https://doi.org/10.1371/journal.pone.0235271.g017

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 21 / 24

https://doi.org/10.1371/journal.pone.0235271.g016
https://doi.org/10.1371/journal.pone.0235271.g017
https://doi.org/10.1371/journal.pone.0235271


which enables semantic abstraction for navigation of robotic agents, saving the user from

having to generate the dynamic and kinematic models of the robotic agent by applying clear

grammar rules used in the specific domain of robotics and applying them to the integrated

simulation development environment V-Rep.

Unlike other DSLs, PyDSLRep is not oriented to controlling a specific robotic platform. It

also generates plain Python code that can be applied easily to a physical model.

The test performed in this article to validate the usability and effectiveness of PyDSLRep in

navigational tasks were done with a total of 20 people who had prior knowledge of the Python

programming language. However, only 10 users of this population had the knowledge to use

the Python framework to establish communication with robotic agents in V-Rep, allowing the

comparison of two groups.

The testing process had three stages. The first stage configured two testing environments

with multiple robotic agents, which had to be controlled by using V-Rep’s Python framework.

The second stage included the same two development environments, but the control of the

agents was done using PyDSLRep. And the last stage was used to perform SLAM in a closed

environment.

The results of the first two tests demonstrated that PyDSLRep simplifies the development of

navigational routine generation for multiple agents, regardless of having prior experience with

the V-REP platform. It reduced the average of generated lines of code by 76.40% and reduced

the average development time by 45.22%. And the last test, shows that PyDSLRep could be

used for SLAM task, only with a two wheeled differential robot.

Users were also required to connect with a remote host to emulate connection with a physi-

cal robotic agent. In this task, PyDSLRep enabled 80% of the users to connect successfully with

the remote host, as compared to just 40% of users being able to connect successfully when

using the Python framework.

For future work, PyDSLRep’s grammar will be expanded to control different mobile robots

and actuators, such as robot arms or Ackerman style robots, and to be capable of reading

LIDAR sensors, which would make it capable of generating 3D maps, expanding the language

for direct controller generation in physical platforms.

Author Contributions

Conceptualization: Andrés C. Jiménez.

Investigation: Andrés C. Jiménez.

Project administration: John P. Anzola.

Software: John P. Anzola.

Supervision: Liping Zhao.

Validation: Vicente Garcı́a-Dı́az, Rubén González Crespo, Liping Zhao.

Writing – original draft: Vicente Garcı́a-Dı́az.

Writing – review & editing: Rubén González Crespo, Liping Zhao.

References

1. Dejanović I., MilosavljevićG., Vaderna R., Arpeggio: A flexible PEG parser for Python, Knowledge-

Based Systems 95 (2016) 71–74. URL http://dx.doi.org/10.1016/j.knosys.2015.12.004

2. Mernik M., Heering J., Sloane A. M., When and how to develop domain-specific languages, ACM Com-

puting Surveys 37 (4) (2005) 316–344. URL http://portal.acm.org/citation.cfm?doid=1118890.1118892

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 22 / 24

http://dx.doi.org/10.1016/j.knosys.2015.12.004
http://portal.acm.org/citation.cfm?doid=1118890.1118892
https://doi.org/10.1371/journal.pone.0235271


3. V. Garcı́a-Dı́az, J. B. Tolosa, B. C. P. G-Bustelo, E. Palacios-González, Ó. Sanjuan-Martı́nez, R. G.

Crespo, TALISMAN MDE Framework: An Architecture for Intelligent Model-Driven Engineering, in: I.

W.-C. o. A. N. Networks (Ed.), International Work-Conference on Artificial Neural Networks, Interna-

tional Work-Conference on Artificial Neural Networks, 2009, pp. 299–306. URL http://link.springer.com/

10.1007/978-3-642-02481-8{_}43

4. Espada J. P., Garcı́a-Dı́az V., Crespo R. G., Martı́nez O. S., G-Bustelo B. C. P., Lovelle J. M. C.,

Mobile Web-Based System for Remote-Controlled Electronic Devices and Smart Objects, Mobile

Networks and Applications 19 (3) (2014) 435–447. URL http://link.springer.com/10.1007/s11036-

014-0510-2

5. Garcı́a-Dı́az V., Pascual-Espada J., Pelayo G-Bustelo C., M. Cueva-Lovelle J., Towards a Standard-

based Domain-specific Platform to Solve Machine Learning-based Problems, International Journal

of Interactive Multimedia and Artificial Intelligence 3 (5) (2015) 6. https://doi.org/10.9781/ijimai.2015.

351

6. E. Rohmer, S. P. N. Singh, M. Freese, V-REP: A versatile and scalable robot simulation framework, in:

2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2013, pp. 1321–

1326. URL http://ieeexplore.ieee.org/document/6696520/

7. Eysholdt M., Behrens H., Xtext: Implement Your Language Faster Than the Quick and Dirty Way,

Object Oriented Programming Systems Languages and Applications (OOPSLA) (2010) 307–309 URL

http://doi.acm.org/10.1145/1869542.1869625

8. A. Nordmann, N. Hochgeschwender, S. Wrede, A Survey on Domain-Specific Languages in Robotics,

2014, pp. 195–206. URL http://link.springer.com/10.1007/978-3-319-11900-7_17

9. O. S. R. Foundation, Unified Robot Description Format (URDF).) (2014). URL http://wiki.ros.org/urdf.

10. Silva D. C., Braga R. a. M., Reis L. P., Oliveira E., Designing a meta-model for a generic robotic agent

system using Gaia methodology, Information Sciences 195 (2012) 190–210. URL http://dx.doi.org/10.

1016/j.ins.2012.01.029

11. Development of a Comprehensive Software System for Implementing Cooperative Control of Multiple

Unmanned Aerial Vehicles, International Journal of Robotics and Automation 26 (1) (2011) 1629–

1634. URL http://www.actapress.com/PaperInfo.aspx?paperId=42180

12. Fruchard M., Morin P., Samson C., A Framework for the Control of Nonholonomic Mobile Manipulators,

The International Journal of Robotics Research 25 (8) (2006) 745–780. https://doi.org/10.1177/

0278364906068374

13. A. Angerer, R. Smirra, A. Hoffmann, A. Schierl, M. Vistein, W. Reif, A Graphical Language for Real-

Time Critical Robot Commands, Proceedings of the Third International Workshop on Domain-Specific

Languages and Models for Robotic Systems (DSLRob 2012) arXiv:arXiv:1303.6777v1.

14. Cobos-Guzman S., Verdú E., Herrera-Viedma E., Crespo R. G., Fuzzy logic expert system for selecting

robotic hands using kinematic parameters, Journal of Ambient Intelligence and Humanized Computing

URL http://link.springer.com/10.1007/s12652-019-01229-x

15. Gargava P., Asawa K., Brain Computer Interface for Micro-controller Driven Robot Based on Emotiv

Sensors, International Journal of Interactive Multimedia and Artificial Intelligence 4 (5) (2017) 39. URL

http://www.ijimai.org/journal/node/1498

16. C. Amato, G. D. Konidaris, L. P. Kaelbling, Planning with Macro-Actions in Decentralized POMDPs,

Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems

(2014) 1273–1280.

17. D. Vanthienen, M. Klotzbuucher, J. De Schutter, T. De Laet, H. Bruyninckx, Rapid application develop-

ment of constrained-based task modelling and execution using domain specific languages (2013)

1860–1866.

18. Wächter M., Ovchinnikova E., Wittenbeck V., Kaiser P., Szedmak S., Mustafa W., Kraft D., Krüger N.,

Piater J., Asfour T., Integrating multi-purpose natural language understanding, robot’s memory, and

symbolic planning for task execution in humanoid robots, Robotics and Autonomous Systems 99

(2018) 148–165. URL https://doi.org/10.1016/j.robot.2017.10.012

19. C D. T. L. Mahmud Shakik, Ferdous Mohammad Farhan, Domestic Mechanization System with IoT and

Robotics, International Journal of Machine Learning and Networked Collaborative Engineering 2 (4)

(2018) 151–162.

20. Jiménez A., Garcı́a-Dı́az V., González-Crespo R., Bolaños S., Decentralized Online Simultaneous

Localization and Mapping for Multi-Agent Systems, Sensors 18 (8) (2018) 2612. URL http://www.mdpi.

com/1424-8220/18/8/2612

21. Rashid B., Rehmani M. H., Applications of wireless sensor networks for urban areas: A survey, Journal

of Network and Computer Applications 60 (i) (2016) 192–219. URL http://linkinghub.elsevier.com/

retrieve/pii/S1084804515002702

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 23 / 24

http://link.springer.com/10.1007/978-3-642-02481-8{_}43
http://link.springer.com/10.1007/978-3-642-02481-8{_}43
http://link.springer.com/10.1007/s11036-014-0510-2
http://link.springer.com/10.1007/s11036-014-0510-2
https://doi.org/10.9781/ijimai.2015.351
https://doi.org/10.9781/ijimai.2015.351
http://ieeexplore.ieee.org/document/6696520/
http://doi.acm.org/10.1145/1869542.1869625
http://link.springer.com/10.1007/978-3-319-11900-7_17
http://wiki.ros.org/urdf
http://dx.doi.org/10.1016/j.ins.2012.01.029
http://dx.doi.org/10.1016/j.ins.2012.01.029
http://www.actapress.com/PaperInfo.aspx?paperId=42180
https://doi.org/10.1177/0278364906068374
https://doi.org/10.1177/0278364906068374
http://link.springer.com/10.1007/s12652-019-01229-x
http://www.ijimai.org/journal/node/1498
https://doi.org/10.1016/j.robot.2017.10.012
http://www.mdpi.com/1424-8220/18/8/2612
http://www.mdpi.com/1424-8220/18/8/2612
http://linkinghub.elsevier.com/retrieve/pii/S1084804515002702
http://linkinghub.elsevier.com/retrieve/pii/S1084804515002702
https://doi.org/10.1371/journal.pone.0235271


22. M. Klotzbücher, R. Smits, H. Bruyninckx, J. De Schutter, Reusable hybrid force-velocity controlled

motion specifications with executable domain specific languages, IEEE International Conference on

Intelligent Robots and Systems (2011) 4684–4689.

23. OMG, OMG MDA Guide rev. 2.0, OMG Document ormsc 2.0 (June) (2014) 1–15. URL http://www.omg.

org/cgi-bin/doc?omg/03-06-01

24. M. Loetzsch, M. Risler, M. Jüngel, XABSL—A pragmatic approach to behavior engineering, IEEE Inter-

national Conference on Intelligent Robots and Systems (2006) 5124–5129.

25. M. Campusano, J. Fabry, Live Robot Programming: The language, its implementation, and robot API

independence, Science of Computer Programming 133 (June) (2017) 1–19. URL http://dx.doi.org/10.

1016/j.scico.2016.06.002

26. E. Pot, J. Monceaux, R. Gelin, B. Maisonnier, A. Robotics, Choregraphe: A graphical tool for humanoid

robot programming, IEEE International Workshop on Robot and Human Interactive Communication

(2009) 46–51.

27. Iigo-Blasco P., Diaz-Del-Rio F., Romero-Ternero M. C., Cagigas-Muiz D., Vicente-Diaz S., Robotics

software frameworks for multi-agent robotic systems development, Robotics and Autonomous Systems

60 (6) (2012) 803–821. URL http://dx.doi.org/10.1016/j.robot.2012.02.004

28. H. M. Becerra, J. Courbon, Y. Mezouar, C. Sagues, Wheeled mobile robots navigation from a visual

memory using wide field of view cameras, in: 2010 IEEE/RSJ International Conference on Intelligent

Robots and Systems, IEEE, 2010, pp. 5693–5699. URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=5650114

29. E. Maulana, M. Muslim, V. Hendrayawan, Inverse kinematic implementation of four-wheels mecanum

drive mobile robot using stepper motors. in: 2015 International Seminar on Intelligent Technology and

Its Applications, ISITIA 2015—Proceeding, pp. 51–55.

30. M. Abdelrahman, I. Zeidis, O. Bondarev, B. Adamov, F. Becker, K. Zimmermann, A description of the

dynamics of a four-wheel Mecanum mobile system as a basis for a platform concept for special purpose

vehicles for disabled persons. in: 58th Ilmenau Scientific Colloquium, 2014, pp. 1–10.

31. A. Jiménez, S. Bolaños, J. Anzola, Inverse kinematic implementation of four-wheels mecanum drive

mobile robot using stepper motors. in: 2017 IEEE International Conference on Power, Control, Signals

and Instrumentation Engineering (ICPCSI), pp. 216–221.

32. A. Jiménez, PyDSLRep core https://github.com/acjimeneza/PyDSLRepCode (2019). URL https://

github.com/acjimeneza/PyDSLRepCode

PLOS ONE PyDSLRep: A domain-specific language for robotic simulation in V-Rep

PLOS ONE | https://doi.org/10.1371/journal.pone.0235271 July 1, 2020 24 / 24

http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://dx.doi.org/10.1016/j.scico.2016.06.002
http://dx.doi.org/10.1016/j.scico.2016.06.002
http://dx.doi.org/10.1016/j.robot.2012.02.004
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5650114
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5650114
https://github.com/acjimeneza/PyDSLRepCode
https://github.com/acjimeneza/PyDSLRepCode
https://github.com/acjimeneza/PyDSLRepCode
https://doi.org/10.1371/journal.pone.0235271

