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ABSTRACT

Mastitis is an infectious-contagious disease that causes an inflammation of the udder that affects a high proportion
of dairy cows throughout the world. The difficulty of its diagnosis (which requires culture media especially for
its isolation) and inefficiency of antibiotics in your treatment, what become a fearsome enemy if detected its
presence in a dairy farm, since only very rigorous hygiene and disposal measures of the positive cows, are the
measures known for controlling it. While it is true that subclinical mastitis does not usually increase in greatly
the amount of colony forming unit (CFU)/ml (x1000) of tank milk, can contribute some bacteria potentially
harmful to human health, also alters the composition of milk. This research introduces the development of an
analytical methodology for on-site monitoring the CFU/ml in raw milk at farm level by using a portable NIR
sensor MicroPhazirTM NIR spectrometer, using a total of 1266 liquid milk samples, scanned at room temperature
without pre-treatment. Samples were divided into two sub-sets. The training set composed of 1197 samples, and
a set of 69 samples to external validation. Classification models were used for the prediction of CFU/ml in milk
at legal level: < 400 and ≥ 400 CFU/ml(x1000), achieving less than 3% of penalties.
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1. INTRODUCTION

Several factors can affect bovine mammary gland health, although bacterial mastitis is the most studied and
reported cause. Mastitis is an infectious-contagious disease that causes an inflammation of the udder. Mastitis,
in particular the subclinical type, is one of the most persistent and widely spread disease conditions of importance
to milk hygiene and quality among dairy cattle worldwide.1 The difficulty of its diagnosis (which requires culture
media especially for its isolation) and inefficiency of antibiotics in the treatment, what become a fearsome enemy
if detected its presence in a dairy farm. In cows, the somatic cell count (SCC) is a useful predictor of mastitis,
the most widely accepted criteria for measuring udder health and milk quality in all major milk-producing
countries throughout the world2 and therefore, it is an important component of milk in terms of hygiene, and
mastitis control,3 because it is a useful indicator for concentration of leukocytes in milk. Elevated milk SCC is
associated with altered protein quality, change in fatty acid composition, lactose, ion and mineral concentration,
increased enzymatic activity, and a higher pH of raw milk.1 In most dairy systems it is assumed that the farmer,
informed by the official organizations in his country, has the responsibility to deliver milk of sufficient quality.
In order to deliver milk with a low SCC, attention should be given to an adequate detection and prevention of
mastitis.4 The total economic losses of mastitis (subclinical and clinical) per cow present in a default situation
varied between 65e and 182e /cow per year depending on the bulk tank somatic cell count and due to its cost,5

this disease has been the first focus of sensor developments in the dairy sector. The performance of the sensors
currently used in practice (mostly based on electrical conductivity of milk), should be improved considerably.
Especially the large number of false positive alerts is a concern for many dairy farmers.4 In this sense, Near
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infrared reflectance (NIR) spectroscopy is a technology capable of covering current analytical applications due to
its speed, being nonpolluting, non-destructive and easy to use, and diverse authors have shown the application
of NIR technology to milk analysis.6 The advances in NIRS instrumentation in recent years, the availability
of portable NIR instruments, allowed in previous researchers developed a methodology based on the use of
hand-held portable NIRS for the analysis of major components (fat, protein and solids-non-fat) in raw milk.7

Besides, Internet possibilities and remote NIR spectral management joining the development of more powerful
and versatile treatment software provided by handheld NIR sensors, and machine learning algorithms, were
possible to enable the real-time management and optimisation of the chemical quality control of milk production
for each cow individually, through development of a mobile application useful as prediction tool that make it
possible to get an in-situ real-time estimation of chemical quality control parameters of individual cow milk at
farm level.8 The objective of this study was to develop an analytical methodology for on-site monitoring SCC
as CFU/mL (colony-forming unit/mL) in raw milk at farm level by using a portable NIR sensor to control of
mastitis of individual cow milk through the integration of NIR spectral data, provided by a handheld NIR sensor,
and machine learning algorithms.

2. METHODOLOGY

2.1 Milk samples

A total of 1266 liquid milk samples, were collected from individual Holstein-Friesian dairy cows and bulk tank
of the experimental farm located in the Regional Institute for Research and Agro-Food Development (SERIDA)
under different feeding experiments, and from diverse farms located in the North of Spain (Asturias, Spain)
over a longer period from 2015 until 2019, to consider changes in the matrix composition, including temporal
changes of the biological material, in order to develop robust models that provide independent results including
instrument drifts. The individual milk samples from experimental cows of SERIDA were taken from each cow
by using the automatic sampler of automatic milking system (DeLaval, Spain) and in farms by the farmer using
different milking systems. From the initial dataset of samples were divided into two sub-sets. The training set
used to develop and optimise the model by internal validation was composed of 1197 samples, and a set of 69
samples to external validation.

2.2 NIRS and reference analysis

The collection of NIRS spectra data were carry on immediately after milking by using a handheld MEMS digital
transform spectrometer (1.8 kg weight) from Polychromix PHAZIRTM (PhIR, Phazir 1624, Polychromix Inc.,
Wilmington, MA, USA), with a scanning window of 4 mm diameter (sampling area of 0.13 cm2). All diffuse
reflectance spectra were computed in a wavelength range between 1600 and 2400 nm, with a non-constant interval
of around 8 nm (pixel resolution 8 nm, optical resolution 12 nm) being an hand-held micro-electro-mechanical
system (MEMS) digital transform. In this instrument spectra were collected using externally a liquid opaque
cuvette (FOSS. Ref US-ISIH-0398), with dimensions of 4.5 cm height, 2.5 cm wide and a 17mm pathlength, with
aluminum backside for trans-reflectance measurements (which combines reflectance and transmittance together
into a single mode). The samples were homogenized by hand mixing during 20-30 sec and analyzed in triplicate
being each spectra the average of 80 scans for collecting one spectra. The final spectrum was the average of all
of them. All spectra data were recorded in reflectance mode (log 1/R).

The same portion of the sample used to collect spectra in NIRS instrument was used for reference data analysis
of SCC as CFU/mL. Reference analyses were carried out using a Fossomatic instrument (Foss Electric, Hillerod,
Denmark) in the Professional Milk and Agro-food Laboratory of Asturias. This laboratory is accredited under
UNE-EN ISO/IEC 17025: 2005 (246/LE476). The laboratory error was calculated as repeatability according
to ISO 57259,10 definitions: (i) repeatability, indicates the variability observed within a laboratory, over a short
time, using a single operator, item of equipment etc., employing six bulk tank samples analyzed five times each
and calculates according to Eq. 1:

r = Sr · 2
√

2 (1)

where; r= repeatability; Sr= standard deviation of repeatability.



2.3 Prediction model

The collected spectral data were converted into a data matrix suitable to be used as the input to a model
generator. The X and Y variables were defined as: X = λ and Y = log 1

R . At first, non-linear models (Neural
Networks) and linear ones based on partial least squares (PLS) but they obtained results were far from being
successful. They were obtained by applying different pre-treatments, such as the standard normal variate (SNV),
multiplicative scatter correction (MSC) and first and second Savitzky and Golay (SG) as derivative mathematical
treatments, to the spectral data to quantify SCC using the Unscrambler v. 9.8 application.11The final choice
was the SNV + first derivative (SG) treatment.

As it is more relevant to determine if the levels are above or below a given legal threshold, a classification
approach was followed. In order to generate a dataset suitable to obtain a binary classifier, the Y column was
replaced by 0s (CFU/ml < threshold) and 1s (CFU/ml ≥ threshold), where threshold was set as 400 CFU/ml
which is the legal level in Spain.

To train and validate the classifier, the TensorFlow12 framework from Google was used. Using this tool
a Neural Network-based classifier was defined by using a very simple and well-known topology: a multilayer
perceptron with the following structure:

1. Input layer with a size equal to the number of input variables (wavelengths).

2. One hidden layer with a number of neurons half the size of the number of inputs.

3. Output layer with just a single neuron as we are building a binary classifier.

To train the model the binary cross-entropy function was used (Eq. 2), in combination with the Adam
algorithm as optimizer.13

Hp(q) = − 1

N

N∑
i=1

yi · log (p(yi)) + (1− yi) · log (1− p(yi)) (2)

Table 1. Statistic descriptive values for milk samples in calibration and external validation sets.

Calibration set (N=1197) Validation set (N=69) Repeatibility of reference method
CFU∗/ml(x1000) Range Mean SD† Range Mean SD Range Mean SD

8-2327 197 381 4-2467 212 441 13-49 30 17.6

3. RESULTS AND DISCUSSION

In Fig. 1 is shown spectra collected with NIRS handheld instrument after combining scatter correction and
mathematical derivation (SNV and 1st derivative). As can be seen in Fig. 1, the strong NIR absorption bands
attributed to water due to the hydrogen bonds have led a high value for log (1/R) around 1940 nm (water band),
representing the O-H second overtone bending.

In order to test the performance of the classifier obtained in 2.3, a calibration and a validation set were used,
as shown in Table 1. This table show values for number of samples, range, mean and standard deviation for the
parameters analysed for the calibration and validation sets, as well as for the repeatibility of reference method.
Two different tests were carried out: one training the classifier with the calibration set and testing it with the
external validation set, and another one using the whole calibration set for cross validation. Table 2 shows
the misclassified samples in the first experiment. The overall success rate was 83% and the 95% correspond to

∗colony-forming unit/mL
†Standard Deviation



Table 2. Misclassified samples in the first experiment (accuracy=83%).

Real value Predicted Cell count
0 0.99 206.80
1 0 1347.00
1 0 699.00
1 0 1055.00
0 0.99 62.00
1 0 2467.00
1 0 1480.00
1 0.044 446.00
1 0 654.00
0 0.98 193.60
1 0 632.00
1 0 1725.00

Figure 1. Average spectra for milk samples in external validation set measured using a portable NIR sensor MicroPhazirTM.
Spectra pre-processed by SNV and 1st derivative (SG)

samples from class healthy correct classified. The NIRS estimation achieved a low penalties where threshold was
set as 400 CFU/ml.

As the number of samples in the validation set is not very high compared to the size of the calibration set, it
was opted to perform a cross validation on that set in order to properly validate the performance of the obtained
classifier. In this case the achieved success rate was 100%.

Different research works employing near-infrared (NIR) spectra have established the usefulness of NIRS
technology for mastitis diagnosis based on SCC level in milk,14 developing a ”leave-one-cow-out” cross-validation
PLS regression model for quantification of somatic cells in milk in the raw milk obtained a moderate correlation
(R2=0.76). In this sense15 employing spectra of quarter for milk of cows and soft independent modelling of class
analogy (SIMCA) got 72.15% of specificity and 69.44% of sensitivity using the single threshold method which
yielded its best result at 200,000 cells ml-1 SCC level and improved the accuracy with double threshold which
had 80.56% of specificity and 77.78% of sensitivity when the healthy and mastitis levels were set at 20,000 cells
ml-1 and 200,000 cells ml-1, respectively. However, none of them used a portable instrument as in this work.

Related to the results obtained with the portable analyzer used for healthy quality analysis of raw milk
during milking in this work, the classification model shows more optimistic values for detection the presence of
subclinical mastitis. In large cow herds, 80% of uninfected animals will have a CFU of less than 200,000 cells/mL



and 50% of less than 100,000 cells/mL. All of them less than 400,000 cells/mL as threshold settled down.

4. CONCLUSIONS

The obtained results show the opportunity to use classifiers for the identification of raw milk samples infected
with bacteria, ultimate cause for the mastitis in cows in a dairy farm. Near infrared spectroscopy in combination
with neural networks setup up for classification, offers an alternative approach to traditional methods for an
in-situ and reliable application in bio-diagnostics and food control.
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