
Artificial Intelligence and Fourier-Transform Infrared Spectroscopy for Evaluating Water-

mediated degradation of Lubricant Oils 

Christian Chimeno-Trinchet, Clarissa Murru, Marta Elena Díaz-García, Alfonso Fernández-

González*, Rosana Badía-Laíño. 

Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Asturias, 

33006, Spain. 

*corresponding author: fernandezgalfonso@uniovi.es 

Abstract 

The presence of water in lubricant oils is a parameter related to the lubricant deterioration, which 

can be indicative of a serious loss of tribological efficiency and, therefore, an increase in 

maintenance costs.  Likewise, controlling the aging of the lubricant oil is a keynote issue to 

prevent damage on the lubricated surfaces (e.g. engine pieces). The combination of Attenuated 

Total Reflectance (ATR) techniques with Fourier-Transform Infrared Spectrometry (FTIR) result 

in an easy, simple, fast and non-destructive way for obtaining accurate information about the 

actual situation of a lubricant oil. The analysis of this ATR-FTIR information using Artificial 

Neural Networks (ANN) as well as Linear Discriminant Analysis (LDA) results in the proper 

classification of lubricant oils regarding the presence/absence of water, age and viscosity. The 

methodology proposed in this work describes procedures for identifying the deterioration degree 

of oils with as high as 100% success (aging week) or 97.7% (for viscosity and water presence). 
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Introduction 

Friction causes important losses of money. It is estimated that friction and related phenomena in 

industrialized countries cost up to €450 billion annually, despite the wide use of lubricants [1]. 

According to Webster dictionary, a lubricant is “a substance (such as grease) capable of reducing 

friction, heat, and wear when introduced as a film between solid surfaces”[2]. The idea behind a 

lubricant, therefore, is the creation of a film between the sliding parts of an engine (or other 

moving device), filling the space between the surfaces and keeping them apart. A lubricant 

material has to achieve some objectives: it has to improve machine-performance by reducing 

mechanical energy, withstand high temperatures, maintain its viscosity and clean up the 

impurities that are generated during the sliding of mechanical parts. 

Basically, a lubricant consists in a base oil and a series of additives, which depend on the use the 

lubricant is designed for. Currently, three main types of base oils that differ from each other by 



their origin can be considered: mineral oils, synthetic oils and semi-synthetic oils. i) Mineral oils 

that proceed from the fractional distillation of crude oil and are elaborated through multiple 

processes that generate adequate products to form base oil. ii) Synthetic lubricants (such as poly-

α-olefins) can be manufactured using chemically modified petroleum components or synthetic 

esters produced from other raw materials. Synthetic oils are used in those applications with 

specific equipment demands that conventional mineral oil do not fulfil and when economic 

benefits are offered [3]. iii) The composition of a semi-synthetic lubricating oil comprises a major 

portion of a synthetic lubricant or a mixture of a synthetic lubricant plus a hydrocarbon mineral 

base oil, and a minor portion of various additive components [4]. Mineral oils are one of the main 

liquid lubricants used in industrial machinery and in automotive industry with an annual 

expenditure of approximately 9000 million liters [5]. 

Corrosion and degradation behavior of oil lubricants is critically related to water content. Water 

contamination in lubricant oils may coexist in a combination of forms: free water, dissolved in oil 

and emulsified. Free water is that which exists in excess of its equilibrium concentration in 

solution. Dissolved water is simply water in solution and its concentration in oil depends on the 

oil hygroscopic properties, temperature and humidity. Water out of the limits imposed by these 

conditions is free water. If the free water content increases the lubricant oil becomes saturated 

with enough water molecules to a point that water is suspended in micro/nanoscopic droplets 

giving rise to an emulsion, often undesirable. Free water and emulsified water are the most 

damaging of all water-lubricant mixtures. So, free water may settle on machinery surfaces 

displacing any protective lubricant film, thus contributing to the corrosion of the surface [6]. On 

the other hand, emulsified lubricants exhibit reduced load carrying capacity due to a change in 

the compressibility of the oil. Besides, the emulsified water has a tendency to trap dirt and 

particulates creating a sludge that may grind the contacting surfaces creating more particulates. 

The consequent lubricant failure is then followed by permanent damage to the operating surfaces 

[7,8]. Besides, water contamination promotes chemical and physical changes in the lubricant oil 

properties. In fact, water plays a key role in the increase of lubricant aging rate, depletion of 

additives and destruction of base oils causing acid formation [9,10]. In some instances, there is a 

need to replace the lubricant oil or use demulsifiers. For those applications where the lubricant 

must be regularly replaced, there is a direct relationship between lubricant deterioration and 

consumption, along with the environmental impact of lubricant disposal [11].  Consequently, if 

an adequate control of the water content and lubricant stability is made before it reaches the point 

of causing corrosion or losing effectiveness, a better lubricant economy, a reduction in friction 

losses and hence decreased environmental hazards are possible [12,13]. 

The development of effective and efficient methods to assess the aging of lubricant is important 

to the lubrication industry.  It is desirable that the methods do not require sample preparation and 



produce rapid results and information on multiple parameters simultaneously. Among the 

techniques that provide functional-group information Fourier Transform Infrared Spectroscopy 

(FTIR) allows to ascertain their presence in a sample, as each group absorb in defined wavelength 

regions. So, chemical changes taking place in lubricant oils over time are associated with the 

formation of new or loss of particular functional groups due lubricant oil aging. FTIR is rapid and 

non-destructive technique. However, FTIR is not sufficient to provide a plausible differentiation 

criterion if chemical mapping is applied to large data sets that include spectra from many lubricant 

oils.  In the last ten years, research has been carried out to apply FTIR combined with 

chemometrics to address this shortcoming by analyzing large amounts of spectral information.  

The viscosity index (VI) and the base number (BN) of motor oils were successfully determined 

using the FTIR analyses along with the PLS-1 calibration. Gracia et al. applied FTIR spectroscopy 

combined to Principal Component Analysis (PCA) in order to extract chemical information 

during oil oxidation process in the presence of iron as a catalyst. Results demonstrated that the 

presence of iron did not lead to significant change in the global chemical composition as revealed 

by the first principal component. However, the second principal component indicated clearly that 

the initial formation of alcohols and esters was favored by the presence of iron. The influence of 

iron was highlighted by PCA analysis of on-line FTIR data [14]. In other study, Nguele et al. [15] 

studied the depletion of additives in lubricating oils due to their degradation through a series of 

chemical reactions which resulted in loss of their primary functions. To tackle the subject, authors 

used FTIR-ATR spectral data combined with a curve fitting technique and mathematical models, 

that describe the behavior of additives within the engine. Results showed that depletion of 

additives   followed an exponential regression rather than polynomial and that the chemical 

breakpoint (the initiation of deterioration of additives) depended on the composition of the base 

stock. The breakpoint was found to be two times higher in a fully synthetic model lubricating oil 

than a semi synthetic model one.  In 2018, Hossain et al. [16], applied FTIR in connection with 

Artificial  Neural Network  (ANN),  Principal  Component  Regression  (PCR)  and Partial  Least-

Square  Regression  (PLSR)  for  determination  of VI  of  motor  oils.  Results showed that among 

the calibration techniques studied, PLSR provided the best prediction results with Savitzky-Golay 

smoothed FTIR spectral data, the method requiring shorter turnaround times and lower expenses 

than conventional approaches. 

In this work, we compared the performance of non-linear (ANN) and linear calibration techniques 

(Linear Discrimination Analysis, LDA) for prediction of the aging degree of lubricant oils from 

Attenuated Total Reflectance-Fourier-Transform Infrared Spectroscopy (ATR-FTIR) spectra. 

The model was created for four important lubricant oils properties: water content, viscosity, 

oxidation and time of the experiment. ANN demonstrated to be a good chance to identify base 

oils according to their viscosity, as well as to detect the presence/absence of water with a fast, 

simple and non-destructive ATR-FTIR measurements. Also, ANNs have an outstanding 



performance for detecting the aging time of the base oil.  ANN classify without error samples in 

periods of one week and show a good trend to group samples in shorter periods of times. Results 

thrown by LDA were compatible and coherent with those obtained by ANN. In our knowledge, 

ATR-FTIR aided by ANN has never been used to predict the   contamination by water and the 

aging time of lubricant base oils. 

Material and methods 

Oils samples and instrumentation 

Base oils with different viscosities were kindly provided by REPSOL S.A. A Varian 670-IR 

spectrometer equipped with a DLaTGS detector and a diamond-based Golden Gate ATR device, 

with an internal reflection (crystal area 1 x 1 mm), was employed for all the measurements. The 

spectrometer was completely software-controlled by the Varian Resolutions Pro software 

provided by Varian Inc. Mathematical data processing and calculations were performed with 

MatLab©. Linear Discriminant Analysis and statistical analyses were carried out with Origin by 

Origin Lab Corporation. 

Oil samples aging 

The study of degradation of lubricant oils is usually carried out on artificially aged oils which are 

subjected to experimental conditions simulating the working circumstances of the lubricant. 

These simulations can be performed at small or large scale, and have proven to be a reliable tool 

for the study of aging according to different parameters like oxidation, viscosity and water 

content.  Good correlations between the values obtained in the simulations and those collected 

from reference lubricants in use can be obtained [17].  In this work, the accelerated aging of the 

oils was carried out employing a small-scale simulation of the thermal degradation of three base 

oils with different viscosity: Base 68, Base 46 and Base 32, the higher the number, the higher the 

viscosity. Each oil was aged from two different perspectives, a dry aging, where the oil was heated 

in absence of water, and a wet aging, where the oil was saturated with water previously to the 

heating. 

Dry aging was performed by keeping the oil under constant stirring 30 mL of oil at 100°C in a 

spherical flask for three weeks; wet aging was carried out by adding 1 mL of ultrapure water to 

30 mL base oil and keeping the emulsion under constant stirring at 100°C in a spherical flask for 

three weeks. 

Measurement protocol 

Daily, several aliquots of each base oil were collected and their infrared spectra were acquired in 

triplicate in the ATR-FTIR device, which allowed the oils to be analyzed without any previous 

treatment of the sample. Each spectrum (as average of 32 scans) was taken from 600 cm-1 to 4000 



cm-1 with a resolution of 2 cm-1. A total of 487 spectra were obtained to perform the study, 

according to the sampling scheme shown in Supplementary Information. 

Selection of input variables 

The variables used for the ANN and MA calculations were selected according to the Mid-Infrared 

(Mid-IR) absorption maxima shown in Figure 1, which are also listed in Table 1. 

Figure 1. Average absorption spectra of the three lubricating oil employed in this study (Base 68, 

46 y 32) 

 

 

 

  



Table 1. Identification of FTIR peaks and their vibrational intensity. 

 

Artificial Neural Network (ANN) training 

The 85% of the data were used to train the neural network and 15% to test datasets (spectra of 

every dataset chosen with dividerand function of MatLab®). The performance was checked with 

cross-validation (15%) of training dataset. The selected ANN for this work is a three-layer-feed-

forward network with a simple perceptron with sigmoidal activation [18], and the network was 

trained with a scaled conjugate gradient backpropagation. Several neural networks were prepared 

for different sample identifications, the main ones were: classification of the base oils by their 

viscosity grade (vs-ANN) and the identification of the degree of degradation according to the 

degradation time (number of weeks undergoing heating), (aw-ANN). Each of the networks 

consisted of an input layer of 18 neurons, a hidden layer with 17 neurons [19] and an output layer 

with 6 neurons for the degree of viscosity and with 3 neurons for classification per week of 

degradation. The 18 neurons in the input layer corresponded to the areas of the 18 peaks selected 

from the FTIR spectra. Samples were not centered, although every peak was normalized with the 

MatLab mapminmax function, so the input data were in the range [−1, 1]. Every spectrum was 

Wave number, cm-1 Functional groups Vibrational intensity 

2952 C-H stretching of alkyl chains (CH2) Strong 

2852 C-H stretching of alkyl chains (CH2) Strong 

1458 bending C-H Strong 

1378 bending C-H Strong 

723 
C-H asymmetry bending of alkyl chains 

(CH2 and CH3) 
Medium 

3410 O-H stretching of water Varied 

2920 C-H stretching of CH3 Strong 

2871 C-H stretching of CH3 Medium 

2729 C-H bending of aldehyde groups Medium 

1610 C=C bending of aromatic groups Weak/ medium 

1305 C=C stretching Weak/ medium 

1157 C=C stretching Weak/ medium 

1032 C=C bending Weak 

967 C=C bending Weak 

889 C-H bending Medium 

812 C-H bending Medium 

752 C-H bending Medium 

701 Out-of-plane aromatic ring C – H flections Medium 



taken as the average of 32 scans, providing a good signal-to-noise ratio. Furthermore, the use of 

peak areas instead of heights contributed to minimize the effect of the noise in the signal. 

Results and discussion 

Mid-IR spectra provide information about the functional groups present in the different lubricant 

oils. The assignation of the most intense bands in the Mid-IR spectra of the base oils to the 

different functional groups is listed in Table 1. These data demonstrate the aliphatic nature of the 

hydrocarbon chains in the base oils (bands at 2952, 2920, 2871, 2852, 1458, 1378, 723 cm-1), as 

well as the presence of water (3410 cm-1), aldehyde groups (2729 cm-1), double bonds C=C (1610, 

1305, 1157, 1032, 967 cm-1) and aromatic groups (889, 812, 752, 701 cm-1). 

Since the chemical composition of the tested base oils is very similar, we did not expect many 

differences in the Mid-IR absorption spectra. In order to check the similarity of the different oils 

the correlation degree (Equation 1) was used, which corresponds to Pearson's product moment 

correlation coefficient. 

𝜌𝑎,𝑏 =
𝑐𝑜𝑣(𝐴, 𝐵)

𝜎𝑎𝜎𝑏
=
𝐸((𝐴 − 𝐸(𝐴))(𝐵 − 𝐸(𝐵)))

𝜎𝑎𝜎𝑏
 

Equation 1 

Where E(x) and cov (x) indicate the expected value of the variable and means covariance, 

respectively. We used the number of wavenumbers scanned (3528) as degrees of freedom. Using 

Li et al.’s approximation [20], the null hypothesis (H0 = 'the spectra have no correlation') is 

discarded whenever p value falls below 0.05. The value of p was calculated from Student's t 

related to the correlation coefficient determined (Table 2). The probability associated for the t-

values resulted to be lower than 0.001 in all cases and, consequently, the spectra are correlated. 

Table 2. Similitude of IR absorbance spectra of the different lubricant oil according to COR and 

Student’s t. BO means Base Oil. 



 

 

In order to know whether the Mid-IR spectrum of a given oil was statistically undistinguishable 

from that of the others, the spectra were compared using a Kruskal-Wallis test, assuming as null 

hypothesis H0 ‘the spectra come from the same distribution’. The comparison was carried out 

using the mean of all the spectra of the same category (B68, B46, B32, B68w, B46w and B32w) 

as a representative of the category. Furthermore, spectra were normalized to mean 0 and standard 

deviation 1 before calculations. When comparing the six different categories (dry and wet oils 

different physical and chemical properties) the null-hypothesis was rejected with p<10-6, what 

suggested that the spectra were different. The same kind of test was applied independently to the 

spectra set of wet oils (B68 wet, B46 wet and B32 wet) and to those of the dry oils (B68, B46 and 

B32), obtaining in both cases p<10-3. A less significant dissimilitude was obtained when using 

Kruskal-Wallis to compare the dry and wet condition of each oil, although in any case p was 

lower than 10-2 (see Table 3). These results seem to indicate that the spectra were indeed different. 

 

Table 3. p-values for the Kruskal-Wallis test performed on different sets of spectra 

Spectra sets p 

The six different categories (B68, B46, B32, 

B68w, B46w and B32w) 
1.02·10-7 

Dry base oils (B68, B46 and B32) 10-4 

Wet base oils (B68w, B46w and B32w) 1.6·10-5 

Base oil 68 wet and dry (B68, B68w) 1.8·10-3 

COR 

t 
BO46 BO32 Wet BO68 Wet BO46 Wet BO32 

BO68 
0.99975 

21.56 

0.9998 

37.66 

0.99975 

23.35 

0.99994 

77.64 

0.99992 

42.96 

BO46 --- 
0.99988 

14.72 

0.99993 

101.62 

0.99983 

12.36 

0.99983 

68.73 

BO32 --- --- 
0.99983 

75.34 

0.9999 

3.18 

0.9999 

105.24 

Wet BO68 --- --- --- 
0.99977 

56.28 

0.99988 

7.00 

Wet BO46 --- --- --- --- 
0.99991 

87.39 



Base oil 46 wet and dry (B46, B46w) 8.4·10-3 

Base oil 32 wet and dry (B32, B32w) 2·10-3 

 

As ANN have been successfully exploited in comparable scenarios [21,22], it could be a plausible 

choice in the present study. However, taking into account that the similarities of the Mid-IR 

spectra of the oils with different viscosity could somehow mask the capabilities of the ANN to 

identify the aging process of the oils, we first checked if ANN were able of identifying the type 

of the base oil and the presence of water using the FTIR absorbance at different wavenumbers as 

input variables. To do that, the ANN (vs-ANN) was trained and results presented in the confusion 

matrix (Table 4). The data state the successes (percentage of base oil’s classes correctly classified) 

and reliability (percentage of base oils classified in the right category, or 100 - percentage of false 

positives) of the vs-ANN, obtaining a percentage of total accuracy of 97.7%. On the other hand, 

from the data collected in Table 4, vs-ANN was unable to recognize the presence of water in the 

oil samples with the lowest viscosity, misclassifying the moisture in eight of them. Moreover, 

there is a certain degree of confusion between the dry base oil 46 and the wet oil 68, as well as 

between the wet oil 68 and the dry oil 46. Notwithstanding, the total number of erroneously 

classified samples is not significant.    

Table 4. Confusion matrix considering training, validation and test data for vs-ANN 

 

 



Consequently, we decided to generate a model for the determination of the degree of degradation 

by grouping the samples every four days, creating a neural network for the base oil 68 with 18 

inputs, 17 neurons in the hidden layer and 6 output categories (fd68-ANN). Although the training 

of this network showed interesting results, the limited number of data for the validation and the 

test of the generated model caused that areas under the ROC curve had values equal to zero. In 

order to have a higher number of spectra which allowed both the validation and the test of the 

model, a new network (aw-ANN) was trained, classifying the oils according to the aging week 

(week in which the samples were collected) using all the spectra taken. Table 5 shows the 

confusion matrix corresponding to aw-ANN displaying a good capacity to classify the data groups 

according to 3 different weeks with a total accuracy percentage of 97.3%, a percentage similar to 

that obtained for vs-ANN. Taking into account that the error rate was similar to that in vs-ANN, 

we considered that the misclassifications appearing in vs-ANN could be affecting the results of 

aw-ANN. Since the type of the oil (32, 46 or 68) is known in actual situations, we trained six 

different ANN in order to identify the aging week, knowing the oils viscosity and if they were 

dry or wet. So we got aw32-ANN, aw46-ANN, aw68-ANN, aw32w-ANN, aw46w-ANN and aw68w-

ANN, all them showing a 100% accuracy and 100% reliability. Table 5 records the confusion 

matrixes for aw-ANN, aw32-ANN, aw46-ANN and aw68-ANN. 

Table 5. Confusion matrices considering training, validation and test data for aw-ANN, aw32-

ANN, aw46-ANN and aw68-ANN 



 

With these promising results, we tried to combine both ideas in a single network classifying the 

samples according both to the aging week and viscosity (w1-B68, w2-B68, w3-B68, […], w2-

B32W, w3-B32W), aw&vs-ANN. The percentage of total accuracy of the aw&vs-ANN was 

92.4% with values of the area under the ROC curve (AUC) above 0.97 in all cases, indicating a 

good classification performance. The base oil 32 of the first week was the most affected by false 

positives, as can be seen in Table 6 with a success rate of only 63.6%. This result is consistent 

with that found previously in the case of vs-ANN where the identification of wet samples in the 

case of base oil 32 provided the worst results. The capacity of aw&vs-ANN to classify the samples 

was great, although the percentage of success and reliability in the classification of some 

categories were less than 90%. 

 

Table 6. AUC values considering training, validation and test data for aw&vs ANN and their 

corresponding success and reliability percentages 



 

 

Based on the results obtained a new approach was carried out to evaluate which ones of the 

selected peaks of the Mid-IR spectra influenced the most each one of the trained ANN. Several 

algorithms with this purpose have been described being the algorithm of the weight connection 

proposed by Olden et al. [23] the most accurate. Table 7 (up) collects the five most influencing 

variables to identify a category with vs-ANN. In the classification of the base oils with this ANN, 

the variables with the highest weight were 1157 cm-1 and 2852 cm-1 for the identification of dry 

oils while 967 cm-1, 812 cm-1 and 752 cm-1 were for the identification of wet oils. Taking the 

results as a whole, the most weight fell on 1157 cm-1, 967 cm-1, 2852 cm-1 and 812 cm-1 (Table 7, 

up). The main errors in Table 6 appeared for the misclassification of base oil 32 dry as it were wet 

and vice-versa, thus suggesting that the confusion arose from the band at 967 cm-1, with a strong 

influence in both categories. It was evident that for dry oils the main variable was 1157 cm-1, 

corresponding to C = C stretching vibrations whereas for wet oils the 967 cm-1 band was the most 

important one, assigned to C = C bending vibrations, which have been assigned to out-of-plane 

bending vibrations of the trans –HC=CH– group present in disubstituted olefins [24,25]. The 

higher influence of the olefin-related absorptions in the identification of the viscosity is in 

Dry aged oils 

Aw&vs ANN AUC Success Reliability 

w1-B68 0.997 ± 0.006 97.0 % 91.4 % 

w2-B68 0.998 ± 0.003 90.5 % 100 % 

w3-B68 1 ± 0 100 % 100 % 

w1-B46 0.999 ± 0.002 93.9 % 93.9 % 

w2-B46 0.998 ± 0.003 90.5 % 95.0 % 

w3-B46 0.999 ± 0.002 96.3 % 92.9 % 

w1-B32 0.97 ± 0.02 63.6 % 95.5 % 

w2-B32 0.995 ± 0.006 90.5 % 79.2 % 

w3-B32 0.998 ± 0.005 96.4 % 90.0 % 

Water aged oils 

Aw&vs ANN AUC Success Reliability 

w1-B68W 0.999 ± 0.002 90.9 % 90.9 % 

w2-B68W 0.998 ± 0.002 95.2 % 95.2 % 

w3-B68W 1 ± 0 100.0 % 100.0 % 

w1-B46W 0.9995 ± 0.0006 97.0 % 94.1 % 

w2-B46W 0.999 ± 0.001 95.2 % 100.0 % 

w3-B46W 1 ± 0 100.0 % 100.0 % 

w1-B32W 0.99 ± 0.01 90.9 % 83.3 % 

w2-B32W 0.99 ± 0.01 81.0 % 77.3 % 

w3-B32W 0.997 ± 0.009 96.3 % 89.7 % 



agreement with the fact that unsaturated content is related to the viscosity [26]:  the higher the 

olefin content, the more viscous the base oil is [27]. Taking this in consideration, less viscous base 

oils were expected to have a lower unsaturated content and, therefore, a poorer interaction with 

water, thus explaining the difficulties of the ANN to identify wet or dry B32 samples. On the other 

hand, it is remarkable the similitude in oils B46 and B68, which share four variables (Table 7, up) 

but were not misclassified by vs-ANN, indicating a strong discriminant power in the absorbance 

at 701 cm-1 and at 2920 cm-1, ascribed to C-H aromatic and C-H stretching, respectively. The 

importance of these two variables can also explain why B68w is misclassified with B46 but not 

with B68: three out of the five most important variables according to Olden’s procedure for B68w 

are related to C=C (1032 cm-1, 967 cm-1 and 1157 cm-1). Thus, since the aromatic moieties (which 

contain C=C bonds) are capital for identifying B46, but not B68, it is more likely that the 

algorithm gets confused more easily between B46 and B68w rather than between B68 and B68w. 

The four most important variables for the identification of the week for each one of the awoil-ANN 

are summarized in Table 7 (down). The two most repeated variables were 889 cm-1 and 2920 cm-

1 which, in turn, have the strongest relationship with the aging week. 2920 cm-1 along with 812 

cm-1 were the main variables for classifying in the first and the third aging week, while the 889 

cm-1 variable was ranked highly for recognizing the second aging week. These vibrations are 

ascribed to C-H bonds in the alkyl chain (Table 1), which confirmed that oil aging results in 

chemical modifications of the carbon chains. 

 

Table 7. Variable importance for vs-ANN to evaluate factors related to water presence and 

absence (up) and evolution of variable importance for awoil-ANN to evaluate factors related to 

aging weak (down) 

 

 

  Wavenumbers / cm-1 

  1st 2nd 3rd 4th 5th 

v
s-

A
N

N
 

B32 1157 967 812 701 1375 

B46 1157 2852 701 2871 2952 

B68 1157 2852 2952 2920 2871 

B32w 752 889 967 1032 2920 

B46w 2852 1375 812 1305 967 

B68w 812 1032 752 967 1157 



 

 

 

Linear Discriminant Analysis (LDA) 

LDA is a widely used tool for data classification and dimensional reduction [28]. This method 

groups the samples into categories by reducing the variance within groups while maximizing the 

variance among different groups. The classification of the base oils was performed planning two 

LDA workouts using the same 18 areas corresponding to the peaks selected in the Mid-IR spectra. 

The first one, was designed for the classification of the base oils according to their viscosity (dry 

and wet), vs-LDA, and the second model was devoted to the categorization of the base oils 

according to their viscosity and degradation week, aw&vs-LDA. In both models, it was possible 

to calculate the canonical variables that best separated the different categories with a percentage 

of success lower than that obtained by artificial neural networks. 

The three-dimensional representation of the data according to the first three canonical variables 

showed a true separation in four groups (Figure 2): a) one mainly composed by B68 samples, b) 

a second one was mainly made up of wet B46, c) B46 and wet B68 samples, which are very close 

   Wavenumbers / cm-1 

   1st 2nd 3rd 4th 

A
N

N
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awB68-ANN 

1st week 1157 752 812 2920 

2nd week 1305 752 889 1375 

3rd week 1305 1157 1032 2920 

awB46-ANN 

1st week 2920 2729 2952 1375 

2nd week 2920 701 723 1610 

3rd week 1305 1157 1032 2920 

awB32-ANN 

1st week 1157 889 752 1032 

2nd week 889 1157 1610 1375 

3rd week 701 2729 967 2952 

awB68W-ANN 

1st week 701 967 2852 1032 

2nd week 2952 2852 701 889 

3rd week 2729 2852 889 723 

awB46W-ANN 

1st week 812 2920 2952 2871 

2nd week 2952 1305 2920 3410 

3rd week 2952 2871 701 2852 

awB32W-ANN 

1st week 889 812 723 1610 

2nd week 1157 889 1375 2952 

3rd week 889 1375 723 2920 



but slightly separated were part of a third group and d) a fourth group composed of samples dry 

and wet B32. Projections of the 3D-space into planes CV1-CV2, CV1-CV3 and CV2-CV3 are 

shown in the Supplementary Information. These results are coherent with those obtained 

previously using ANN, as the mixed categories in LDA are also the ones showing 

misclassification in ANN. 

For the sake of comparison, a LDA classification including both the viscosity, wetness and aging 

week was also evaluated. As expected, taking into account that the original data were the same, 

still four different zones appeared in the canonical variable space with a similar distribution than 

that previously shown in Figure 2. Misclassification in mixed zones were more frequent in B68 

or in wet B46. 

Figure 2. Graphical representation of the Canonical Variables for viscosity classification of the 

base oils B68, B46, B32, B68Wet, B46Wet and B32Wet. A color version of this figure is available 

online. 

 

 

 

 

Conclusions 



Artificial Neural Networks are a good chance to identify base oils according to their physical and 

chemical propierties, as well as to detect the presence/absence of water. This is an interesting tool 

to detect the oil contamination by water with a fast, simple and non-destructive FTIR 

measurements. Also, ANNs have an outstanding performance for detecting the aging time of the 

oils.  ANN classified without error samples in periods of one week and showed a good trend to 

group samples in shorter periods of times. The analysis of the most influencing variables of ANN 

showed that the presence of olefins in the samples played a capital role in the misclassification of 

oils B32 – 32w and 46 – 68w. Results thrown by Linear Discriminant Analysis were compatible 

and coherent with those obtained by ANN, finding four different zones in the Canonical Variables 

space. Two of these zones were formed only by a single oil (B68, red color in Figure 2 and B46W, 

blue color in Figure 2). These categories were also those classified with 100% success and 

reliability in ANN. On the other hand, LDA mixed B32 and B32W in a single spatial zone (orange 

and black respectively in Figure 2) and B68W and B46 (purple and green respectively in Figure 

2) which is consistent with the confusion matrix of ANN (Table 4). 
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