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Abstract

Modern science frequently involves the study of complex relationships among ef-
fects and factors. Flexible statistical tools are commonly used to visualize non-linear
associations. When our interest is to study the discrimination capacity of a multi-
variate marker on a binary outcome, the theoretical transformation leading to the
optimal results in terms of sensitivity and specificity has already been settled. It is
particularly useful to know this function, not only to allocate items to groups, but also
to understand the relationship between the multivariate marker and the outcome. In
this paper, we explore the use of the multivariate kernel density estimator in order
to approximate such transformation. Large sample properties of the finally derived
estimator are outlined while its finite sample behavior is studied via Monte Carlo sim-
ulations. We consider six different bivariate and three additional higher dimensional
scenarios. The performance of the estimator is studied by using four different tuning
parameters computed automatically. Besides a cross-validation algorithm is incorpo-
rated with the aim of reducing the potential overfitting. The proposed methodology
is applied in order to study the capacity of two molecular characteristics to predict
the toxicity of some chemical products. Results suggest that smoothing techniques
are promising classical and simple statistical tools which can be used for a better
understanding of some current scientific problems. However, the incorporation of
additional machine learning techniques such as cross-validation is advisable in order
to control the frequently over optimistic results, specially in those cases with small
sample size. The function implementing the proposed methodology is provided as
supplementary material.
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1 Introduction

Studying associations among some substances and outcomes frequently involves dealing

with complex structures, embracing interactions, non-linear and/or non-additive relation-

ships. Examples include the estimation of the effects of multi-pollutant mixtures such

as chemical products, air pollution or mixtures of toxic waste on population health [42].

Also the use of microRNAs (evolutionarily conserved small noncoding RNAs that post-

transcriptionally regulate gene expression) as diagnostic and prognostic markers for diverse

cardiovascular and metabolic disorders. The strong and complex internal structure of those

microRNAs makes that standard linear statistical analyses potentially do not capture their

optimal classification capacity [9].

Standard parametric statistical techniques do not address these challenges and, in these

contexts, the performance of more flexible procedures should be explored. Bobb et al. [1]

proposed the use of kernel machine regression for estimating the health effects of multi-

pollutant mixtures with a previous hierarchical Bayesian variable selection in the so-called

Bayesian kernel machine regression (BKMR) algorithm. de Gonzalo-Calvo et al. [10] ex-

plored the application of statistical-learning algorithms, particularly classification tree mod-

els [3], in order to consider high-order interactions among the microRNAs and traditional

clinical markers for identifying risk groups. One of the common underlying features of

those procedures is the consideration of more flexible relationships among the markers and

the outcome while providing hints about the direction and shape of these relations.

We consider here the case in which we have a continuous multivariate marker and a bi-

nary outcome determining whether the subjects have the studied characteristic (frequently

a disease) or not and we are interested in studying the ability of such multivariate marker

to correctly classify the subjects. There are several machine learning procedures [20] which

explore complex relationships among the marker components and the outcome in order

to get accurate classification processes. These techniques include support vector machine

(SVM) [8], boosting [16] or perceptron [6], among others. The CARET [24] package imple-

ments in R most of these algorithms. The common goal of all those techniques is to get an

accurate classification while, in the underlying algorithms, the rules which lead to allocate

one item to one particular group are usually relegated to the so-called black box step. Be-

sides, some of these procedures report only the predicted group. Therefore, any preference
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for reducing the false-negative or the false-positive rate has to be previously included in

the method.

We focus on the case in which we have a relatively low dimensional marker and we are

interested in getting some understanding of the underlying classification rules. That is,

those reasons that make an item be more likely to be within a group. With this goal, the

overwhelming procedure is to reduce the marker from multivariate to a univariate score

based on some linear combination of the original components. Such score is frequently

computed via logistic regression although other techniques such as discriminant analysis

have also been employed [34] (see Pérez-Fernández et al. [36] for a recent revision of this

topic). In order to get the score, we can assume, without loss of generality, that higher

values are associated with having a higher probability of being a positive subject (with the

characteristic). The pairs formed by the sensitivity and the specificity for all possible de-

rived classification rules are plotted in the so-called receiver-operating characteristic (ROC)

curve [17]. The area under this curve (AUC) is frequently used as an index of the overall

classification capacity [19]. Reaching an AUC as large as possible has become the final

objective (see, for instance, Huang et al. [22] and references therein). McIntosh and Pepe

[33] proved that the optimal transformation of a multivariate continuous marker, in terms

of getting the optimal binary classification capacity among those reported by any other

transformation (and in consequence the largest AUC), is determined by the ratio between

the distributions of the marker on the groups defined by the binary outcome. This ratio

allows to: i) know the relationship between the marker and the outcome and, ii) know the

classification accuracy that one can reach based on such marker. The objective of this pa-

per is to examine the use of multivariate kernel density estimators [41] to find the optimal

transformation of multivariate markers in binary diagnostic tasks. With this goal, we use

the results reported by McIntosh and Pepe [33] to get the optimal theoretical transforma-

tion first, and then smooth statistical techniques [2] for its practical estimation. Notice

that, in this sense, our primary objective is not to reach a large AUC but the adequate

one. Besides, it is known that the AUC does not identify the ROC curve [26, 27] and that

some procedures, such as linear logistic regression, can provide correct AUCs but based on

wrong classification rules (see, for instance, Dı́az-Coto et al. [12]). Therefore, our focus is

to get adequate ROC curve approximations based on a smooth estimator for the optimal

transformation. The rest of the paper is organized as follows. In Section 2, we present the
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theoretical framework including both the uniform consistency and the pointwise asymp-

totic normality of the resulting estimator for the optimal transformation. In Section 3, we

study the finite sample behavior of the proposed procedure via Monte Carlo simulations.

We report those results in terms of distances to the real ROC curve. The potential influ-

ence of the bandwidth on the obtained estimation is explored by using different estimation

procedures [14], while the potential impact of the overfitting is corrected through a stan-

dard k-fold cross-validation procedure. Section 4 is devoted to explore the use of molecular

characteristics in order to predict the toxicity (defined as high values of LC50 96 hours) for

diverse organic molecules towards the fathead minnow (Pimephales promelas). Finally, in

Section 5, we summarize our conclusions. The R code used for the implementation of the

proposed methodology is provided as online supplementary material. The main R function

included, optimalT, incorporates a cross-validation procedure which controls the potential

overfitting, as well as a flexible choice of the bandwidth computation among those proposed

by Duong [14].

2 Theoretical framework

We consider Y a binary variable indicating whether a subject has the characteristic in

study (Y “ 1) or not (Y “ 0) and a multivariate random variable, X, modeling the

behavior of the multivariate continuous marker. Using the celebrated Neyman-Pearson

lemma, McIntosh and Pepe [33] proved that, in terms of sensitivity and specificity, the op-

timal classification rules based on the marker X are those derived from the transformation

T pXq “ fpXq{gpXq or, equivalently,

T pXq “
fpXq

fpXq ` gpXq
, (1)

where fp¨q and gp¨q are the multivariate density functions of the marker X in the pos-

itive (Y “ 1) and the negative (Y “ 0) populations, respectively. It should be noted

that the decision rules for the marker fpXq{gpXq are equivalent to those for the score

fpXq{pfpXq`gpXqq since the latter is an increasing monotone transformation of fp¨q{gp¨q

and the ROC curve is invariant to this type of transformations.

This Neyman-Pearson approach has already been considered in the literature. For

instance, Scott and Nowak [40] connected the used terminology with Statistical Learning
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nomenclature. Qin and Zhang [37] considered the problem of estimating fpuq{gpuq by

assuming
fpuq

gpuq
“ exptα ` βJ ¨ γpuqu,

where α is a scalar, β is a vector and γp¨q is a smooth vector function. Chen et al. [5]

considered the estimation under the assumption that

fpuq

gpuq
“ ψpβJ ¨ γpuqq,

where ψp¨q is an unknown monotonic nondecreasing function. The function γp¨q is prede-

termined in both papers and no hints about its computation are provided.

We consider applying a plug-in method to estimate the function T p¨q. Particularly, given

a generic independent and identically distributed (i.i.d.) random vector, tZ1, ¨ ¨ ¨ ,Znu,

from a d-dimensional random variable, Z, with density function `p¨q, the multivariate

kernel density estimator [39] is defined by,

ˆ̀
npuq “

1

n

n
ÿ

i“1

KHpu´Ziq, (2)

where, in KHpuq “ |H |
´1¨KpH´1

¨uq, Kp¨q is a kernel function andH is a dˆd nonsingular

matrix containing the tuning parameters or bandwidth. The kernel function, Kp¨q, is

assumed to be a multivariate probability density centered in zero and with covariance

matrix the identity, that is, Kp¨q satisfies:

a)
ş

Rd Kpuqdu “ 1,

b)
ş

Rd u ¨Kpuqdu “ 0, and

c)
ş

Rd uu
T ¨Kpuqdu “ Id.

Since the impact of the kernel function on the obtained estimations is not relevant (see,

for instance, Silverman [43]), for simplicity sake, hereafter, Kp¨q is chosen to be the density

function of a standard d-dimensional normal variable (thus satisfying the assumptions b)

and c)). Devroye and Penrod [11] proved that, for K satisfying a) and b) and if H “ b ¨D,

where D is a dˆ d matrix with |D| “ 1 and with b satisfying

d) b “ Cte ¨ n´1{pd`4q with Cte a positive constant,
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then, assuming that the real density function, `p¨q, is smooth enough (having at least two

continuous and bounded derivatives is required), we have that

sup
uPRd

|ˆ̀npuq ´ `puq| ÝÑn 0 a.s. (3)

Furthermore, for any fixed u P Rd, Hall [18] proved that

?
nbd

σdpuq
¨

!

rˆ̀npuq ´ `puqs ` b
2Bdpuq

)

ÝÑn N p0, 1q, (4)

where σ2
dpuq “ `puq

ş

Kpuq2du and Bdpuq “ ´1{2 ¨ trtDDTO2`puqu are the asymptotic

variance and bias of the kernel density estimator, respectively. Condition d) is stronger

than it is required; theoretical results allow a wider range for the convergence ratio of the

bandwidth. However, H is usually selected to minimize the mean integrated square error

and, in this case, the optimal convergence ratio is the one asked in the condition d) [41].

The problem of selecting the optimal bandwidth is reduced to the estimation of the value

of Cte and the elements of the matrix D. Different procedures have been proposed with

this goal (see, for instance, Duong [13]) although, unfortunately, there is not a uniformly

best solution.

Given an i.i.d. random vector, tpX1, Y1q, ¨ ¨ ¨ , pXN , YNqu, with n “
řN

i“1 Yi and m “

N ´ n, for each u P Rd, we propose to estimate the optimal transformation T through its

natural smooth estimator, that is

T̂Npuq “
m ¨

řN
i“1KH1pu´X iq ¨ Yi

m ¨
řN

i“1KH1pu´X iq ¨ Yi ` n ¨
řN

i“1KH0pu´X iq ¨ p1´ Yiq
, (5)

where H0 and H1 are the matrices containing the bandwidths for the negative and the

positive population, respectively. If i) gp¨q has two continuous and bounded derivatives; ii)

Kp¨q satisfies a), b) and c); iii) both H0 and H1 satisfy d); and iv) n{m Ñn τ ą 0, we

have that, from Eq. (4), for a fixed u P Rd,

f̂npuq “fpuq ` oP pN
´2{pd`4q

q,

ĝmpuq “gpuq ` oP pN
´2{pd`4q

q.
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Therefore,

T̂Npuq ´ T puq “
f̂npuq ¨ rfpuq ` gpuqs ´ fpuq ¨ rf̂npuq ` ĝmpuqs

rf̂npuq ` f̂npuqs ¨ rfpuq ` gpuqs

“
f̂npuq ¨ gpuq ´ fpuq ¨ ĝmpuq

rfpuq ` gpuqs2 `OP pN´2{pd`4qq

“
gpuqrf̂npuq ´ fpuqs ´ fpuqrĝmpuq ´ gpuqs

rfpuq ` gpuqs2
` oP pN

´2{pd`4q
q. (6)

Then, if fp¨q has two continuous and bounded derivatives, both the uniform consistency

and the pointwise weak convergence of T̂Np¨q can be derived from (3) and (4), respectively.

Large sample properties for the resulting empirical ROC curve estimator [21] are straight-

forward. Let RT p¨q be the ROC curve associated with the marker T pXq and R̂T p¨q its em-

pirical estimator (for T p¨q fixed). Notice that, with this notation, RT̂ p¨q and R̂T̂ p¨q denote

the real and the empirical estimator for the ROC curve, respectively, associated with the

marker T̂NpXq (T̂Np¨q estimated). For each t P p0, 1q, we have that

R̂T̂N
ptq ´RT ptq “ R̂T̂N

ptq ´RT̂N
ptq `RT̂N

ptq ´RT ptq. (7)

Under assumptions a), b), c) and d) and assuming that both fp¨q and gp¨q have two con-

tinuous and bounded derivatives, ROC curve properties guarantee the uniform consistency

for |R̂T̂N
ptq´RT̂N

ptq|, while Rp¨q continuity and kernel density estimator consistency guar-

antee the uniform consistency for |RT̂N
ptq ´ RT ptq|. Hsieh and Turnbull [21] guarantees

the asymptotic normality for

?
N ¨ rR̂T̂N

ptq ´RT̂N
ptqs,

and, since T̂Np¨q converges slower than R̂T p¨q, the regularity conditions satisfied by fp¨q and

gp¨q imply that

?
N ¨ rRT̂N

ptq ´RT ptqs ÝÑN 0,

and therefore, we have then the asymptotic normality for
?
N ¨ rR̂T̂N

ptq ´RT ptqs.

3 Monte Carlo simulation study

The practical behavior of the proposed procedure is studied via Monte Carlo simulations.

First, we consider a two-dimensional marker following a bivariate normal distribution with
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mean vector zero and covariance matrix the identity, I2, for the negative (without the

characteristic) population and five different bivariate distributions for the positive (with the

characteristic) population. In models I and II, the only difference between the distribution

in the positive and the negative populations is in the covariance matrix. In model I, we

introduce a positive correlation coefficient, ρ; and in model II, joint with this correlation

parameter, the variances of the marginal markers are 3. Different values for ρ are selected

in order to obtain different classification accuracy. In models III and IV, the positive

distribution is also normal, but we consider some differences in the location parameter. In

model III, the covariance matrix has 1 in the main-diagonal and the correlation is 1/4, while

the mean vector is pµ1, µ1q. In model IV, the covariance matrix has 2 in the main-diagonal

and the correlation is also 1/4, while the mean vector is pµ2, µ2). Values for µ1 and µ2 are

selected to have different discrimination accuracy. In model V, we consider an asymmetric

distribution for the positive population. Particularly, we compute the first component as

Q1 “ p1{
?

8q ¨ pχ2
4r1s ´ 4q ` µ, where χ2

4r1s represents a chi-2 variable with four degrees

of freedom, and the second component by Q2 “ ρ ¨ pQ1 ´ µq ` pp1 ´ ρ2q{8q1{2 ¨ pχ2
4r2s ´

4q ` µ, with χ2
4r2s another chi-2 distributed random variable with four degrees of freedom

independently drawn from χ2
4r1s, ρ “ 0.3 and µ chosen to obtain different classification

accuracy. Finally, in model VI, we study the situation in which the distribution in both

the negative and the positive populations follow the structure of the real dataset considered

in this document (see Section 4). We first center both the negative and the positive samples

and then we compute the densities (considered as real) by using the bivariate kernel density

estimator with biased cross-validation bandwidths (BCV). Finally, we run samples from

those densities adding the quantity p´µ, µq to the positive sample, where µ is selected to

obtain different discrimination capacities.

Figure 3 shows the contour plots for the function fp¨q{pfp¨q`gp¨qq where fp¨q and gp¨q are

the density functions in the positive and in the negative populations, respectively. Darker

colors indicate a higher probability of being within the positive population. Following, a

schematic description of the considered models:

Model I.- Normal: mean zero, variances 1 and correlation ρ (“ 0.68, 0.87).

Model II.- Normal: mean zero, variances 3 and correlation ρ (“ 0.01, 0.88).
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Figure 1: Contour plots for the function fp¨q{pfp¨q`gp¨qq where fp¨q and gp¨q are the density

functions in the positive and in the negative populations. Darker colors indicate a higher

probability of being within the positive population.

Model III.- Normal: mean µ1 ¨ p1, 1q (“ 0.53, 0.88), variances 1 and correlation 1{4.

Model IV.- Normal: mean µ2 ¨ p1, 1q (“ 0.78, 1.33), variances 2 and correlation 1{4.

Model V.- Asymmetric distribution based on translated chi-2: µ “ ´0.30, ´0.91 and

correlation 0.3.

Model VI.- Real problem (Section 4) based samples: µ “ 0.49, 0.61.
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Table 1 shows the mean of the integrate absolute error (Integ. absolute error) between

the real ROC curve, RT p¨q, and its estimation, R̂T̂N
p¨q (

ş1

0
|R̂T̂N

ptq ´ RT ptq|dt), and the

mean of the estimated AUCs based on 2,000 Monte Carlo simulations drawn from the six

previously described models. Additionally, the case in which both the positive and the neg-

ative populations follow a standard bivariate normal distribution (model 0) is also shown.

We consider different sample sizes for the positive, n, and the negative, m, populations and

different real AUCs (A). Besides, four different procedures for estimating the multivariate

bandwidth are considered: smooth cross-validation (SCV), plug-in (PI), normal scale (NS)

and biased cross-validation (BCV). A fully description of all these procedures can be found

in Duong [13]. The estimation procedure includes a 2-fold cross-validation algorithm: the

data are randomly split in two halves and the value of the function for each subject is

based on the estimation obtained from the half in which such subject is not included. As

a reference method, we compute the ROC curve (and its AUC) for the predictive model

based on the linear combination of the two components resulting from a binary logistic

regression (RL), applying a similar 2-fold cross-validation procedure.

As it was expected, logistic regression-based procedure does not detect complex classi-

fication rules. It fails to find any classification capacity of the marker when this is based

on differences in the variance (model I and II). It performs better when these differences

are based on location parameters (model III) and does similar when they are mainly based

on the location parameter but also include other components (model IV). In the last two

studied models, the structure of data is more complex. In model V, the logistic regression

approach does not capture all the differences and the proposed methodology gets better

results, but still slightly far away from the real ROC curves. In model VI, all the pro-

cedures, including logistic regression, report good results. It is worth mentioning that

the proposed smooth estimator always under-estimates the real discrimination accuracy.

The implemented 2-fold algorithm solves the common overfitting problem, even when the

marker does not distinguish between the two populations (model 0) or for smaller sample

sizes (see Table S2 in the supplementary material). Remark that the proposed estimator

without this 2-fold algorithm always overestimates the results (see Table S1 and S3). The

overfitting problem is not surprising and does not seem to be very serious when the real

capacity of the marker to classify is medium-large; however, it could be problematic for
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Table 1: Means for the integrate absolute error (Integ. absolute error) between the real ROC curve, RT p¨q,

and its estimation, R̂T̂N
p¨q (

ş1

0
|R̂T̂N

ptq ´RT ptq|dt) and for the AUC from 2000 Monte Carlo simulations

for the six considered models by using 2-fold cross-validation procedure. Sample sizes were n and m for

positive and negative groups, respectively, A is the real AUC. Considered bandwidths were smooth cross-

validation (SCV), plug-in (PI), normal scale (NS) and biased cross-validation (BCV). RL stands for model

based on standard binary logistic regression.

AUC Integ. absolute error

n m A SCV PI NS BCV RL SCV PI NS BCV RL

Model 0

400 400 0.50 0.501 0.501 0.502 0.502 0.493 0.028 0.028 0.028 0.028 0.026

600 0.50 0.501 0.501 0.501 0.501 0.492 0.024 0.024 0.024 0.024 0.023

Model I

400 400 0.70 0.681 0.678 0.679 0.673 0.491 0.029 0.030 0.030 0.034 0.210

600 0.70 0.682 0.680 0.681 0.674 0.491 0.026 0.028 0.027 0.032 0.210

400 400 0.80 0.790 0.789 0.789 0.779 0.491 0.021 0.022 0.022 0.028 0.311

600 0.80 0.791 0.790 0.790 0.781 0.492 0.019 0.020 0.020 0.025 0.311

Model II

400 400 0.75 0.735 0.733 0.734 0.736 0.494 0.024 0.025 0.025 0.024 0.255

600 0.75 0.735 0.734 0.734 0.736 0.492 0.024 0.024 0.024 0.023 0.257

400 400 0.80 0.788 0.787 0.787 0.769 0.492 0.022 0.022 0.022 0.034 0.306

600 0.80 0.789 0.787 0.788 0.769 0.492 0.020 0.020 0.020 0.034 0.307

Model III

400 400 0.70 0.677 0.674 0.675 0.677 0.684 0.030 0.032 0.031 0.030 0.025

600 0.70 0.681 0.679 0.679 0.682 0.687 0.026 0.027 0.026 0.025 0.022

400 400 0.80 0.786 0.785 0.785 0.787 0.792 0.022 0.023 0.023 0.022 0.020

600 0.80 0.790 0.789 0.789 0.791 0.794 0.020 0.020 0.020 0.019 0.018

Model IV

400 400 0.75 0.732 0.730 0.730 0.733 0.716 0.028 0.029 0.029 0.027 0.038

600 0.75 0.735 0.734 0.734 0.736 0.719 0.025 0.026 0.025 0.024 0.034

400 400 0.85 0.839 0.837 0.838 0.840 0.839 0.021 0.021 0.021 0.020 0.020

600 0.85 0.842 0.841 0.841 0.843 0.842 0.019 0.019 0.019 0.019 0.018

Model V

400 400 0.75 0.707 0.708 0.705 0.701 0.627 0.044 0.044 0.046 0.050 0.121

600 0.75 0.706 0.706 0.703 0.699 0.630 0.045 0.045 0.047 0.051 0.119

400 400 0.85 0.825 0.824 0.825 0.825 0.810 0.028 0.029 0.028 0.027 0.040

600 0.85 0.825 0.824 0.825 0.825 0.811 0.028 0.028 0.027 0.027 0.038

Model VI

400 400 0.80 0.783 0.782 0.784 0.785 0.785 0.025 0.026 0.025 0.024 0.023

600 0.80 0.786 0.785 0.786 0.788 0.787 0.023 0.023 0.023 0.022 0.021

400 400 0.85 0.836 0.836 0.837 0.838 0.840 0.021 0.021 0.021 0.020 0.018

600 0.85 0.839 0.838 0.839 0.840 0.842 0.019 0.019 0.018 0.018 0.016
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markers with small diagnostic capacity.

In addition, it should be highlighted that the results observed by using the proposed

estimator are quite stable with respect to the different bandwidth matrices considered.

Those results can vary slightly with the bandwidth selection, but it is relevant that, with

reasonable and standard automatic selections, the results are quite similar.

Finally, in order to check the behavior of the procedure in higher dimensional markers,

we consider d “ 4, 6 and 8 dimensional situations. The marker in the negative populations

follows a normal distribution with mean vector zero and covariance matrix the identity,

Id (d “ 4, 6, 8). In models 4D-0, 6D-0 and 8D-0, the positive subjects follow the same

distribution as the negative ones (A “ 1{2). In model 4D-I, they follow the distribution

described in models I and II with the parameters adjusted to have an AUC of 0.80. Same

structure for models 6D-I and 8D-I, where the positive population follows the distribution

described in models I, II and III (and IV for d “ 8) such that A “ 0.80. The procedure

described by Su and Liu [44] (SL) is included as a reference method.

Table 2 is equivalent to Table 1 for higher dimensional models, considering just three

different bandwidths and the model proposed by Su and Liu [44] (SL) as a reference.

The proposed algorithm always performs adequately when the marker may have some

ability to discriminate between the populations. Even though it reports slightly under-

estimated values, it always reaches better results than those reported by SL. The well-

known difficulties estimating a high dimensional density with a relatively small sample size

should be remarked.

4 Detecting toxicity of chemical products

New regulations [38] oblige both manufacturers and importers to empirically test the

safety of their products for human health and environment. In this context, the ne-

cessity of generating new data to support this statement arises. In silico and in vitro

methodologies allow to study the toxicity of particular chemical compounds based on the-

oretical or experimental variables called molecular descriptors. We consider the assess-

ment of toxicity towards the fathead minnow (Pimephales promelas) of 908 chemicals,

based on two univariate variables: the 2D matrix-based descriptors (2D descriptors) and

the Information indices. We define the toxicity as those values of LC50 96 hours above
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Table 2: Means for the integrate absolute error (Integ. absolute error) between the real ROC curve, RT p¨q,

and its estimation, R̂T̂N
p¨q (

ş1

0
|R̂T̂N

ptq ´RT ptq|dt) and for the AUC from 2,000 Monte Carlo simulations

for the six considered models by using 2-fold cross-validation procedure. Sample sizes were n and m for

positive and negative groups, respectively, A is the real AUC. Considered bandwidths were smooth cross-

validation (SCV), plug-in (PI) and normal scale (NS). SL stands for model based on Su and Liu (1993)

optimal linear transformation.

AUC Integ. absolute error

n m A SCV PI NS SL SCV PI NS SL

Model 4D-0

400 400 0.50 0.499 0.499 0.499 0.502 0.027 0.027 0.027 0.026

600 0.50 0.498 0.499 0.498 0.501 0.025 0.025 0.025 0.025

Model 4D-I

400 400 0.80 0.754 0.723 0.753 0.502 0.047 0.077 0.048 0.297

600 0.80 0.759 0.726 0.758 0.502 0.042 0.074 0.043 0.297

Model 6D-0

400 400 0.50 0.499 0.499 0.499 0.495 0.025 0.025 0.025 0.028

600 0.50 0.499 0.500 0.500 0.500 0.023 0.023 0.023 0.023

Model 6D-I

400 400 0.80 0.718 0.692 0.719 0.628 0.081 0.106 0.080 0.170

600 0.80 0.725 0.696 0.726 0.632 0.074 0.103 0.073 0.166

Model 8D-0

400 400 0.50 0.501 0.501 0.501 0.499 0.027 0.026 0.027 0.029

600 0.50 0.502 0.502 0.502 0.502 0.022 0.023 0.023 0.024

Model 8D-I

400 400 0.80 0.704 0.691 0.707 0.507 0.096 0.109 0.093 0.292

600 0.80 0.709 0.692 0.712 0.507 0.091 0.108 0.088 0.292

4.0 (median value for the considered sample). The used dataset is freely available at

http://archive.ics.uci.edu/ml/datasets/QSAR+fish+toxicity#. More information

about this problem can be found in Cassotti et al. [4].

In the positive samples, Information indices ranges between 0.67 and 5.93 with a

mean˘standard deviation (sd) of 3.08˘0.80 (median value of 3.17); in the negative sam-

ples, it ranges from 0.96 to 4.81 with mean˘sd of 2.72˘0.66 (median of 2.75). Figure

2, at top-right, depicts the boxplot for this variable. On the other hand, 2D descriptors

mean˘standard deviation are 0.37˘0.31 and 0.78˘0.47 in the negative and the positive

samples, respectively. It ranges from 0 to 2.17 with a median of 0.41 in the negative samples
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Figure 2: Boxplots for the 2D descriptors, al left, and the Information Indices, at right.

At bottom, scatter plot for those variables: in gray, the negative samples, in black, the

positive ones.

and from 0 to 2.07 with a median of 0.81 in the positive ones. Figure 2, at top-left, depicts

the corresponding boxplot. At bottom, the scatter plot for those variables is shown: in

gray, the negative samples, in black, the positive ones.

Individually, markers show a moderate overall classification accuracy. Classifications

based on 2D matrix-based descriptors achieve an AUC of 0.67 (95% confidence interval of

(0.64-0.71)), while for those based on the Information indices it is 0.63 (0.59-0.67) (the

complete ROC curves are shown in Figure 5, dashed and continuous black-thin lines, re-

spectively). When we combine both markers in a logistic regression and use the resulting

score (1.28 ¨ Information indices + 2.90 ¨ 2D descriptors), the overall classification capacity

achieves an AUC of 0.80 (0.77-0.82) (the ROC curve is displayed in Figure 5, gray-thick

line). When we estimate the optimal transformation from T̂Np¨q with the biased cross-

validation (BCV) bandwidth, the AUC obtained is 0.84 (0.81-0.86) (ROC curve in Figure

5, black-thick line). Notice that the confidence intervals for the multivariate model do not

consider the additional variability due to the model estimation. When we consider this
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Figure 3: At left, contour plot for f̂p¨q{pf̂p¨q ` ĝp¨qq where f̂p¨q and ĝp¨q are the smooth

kernel density function estimations for the positive and negative populations, respectively.

At right, the function f̂p¨q{pf̂p¨q ` ĝp¨qq : r1, 4.5s ˆ r0, 2s ÝÑ r0, 1s. In both estimations we

used the biased cross-validation (BCV) procedure for computing the bandwidth matrices.

variability by using a standard bootstrap procedure (5,000 iterations), the 95% confidence

intervals are the same in both the optimal transformation and the logistic regression-based

models. Results are also similar when different criteria for computing the bandwidth are

used. When we include a k-fold cross-validation algorithm for controlling the potential over-

fitting, the two-fold procedure (k “ 2) reports an average (based on 500 iterations) AUC

of 0.81 (0.80-0.82). The logistic regression-based procedure gets similar AUCs, around 0.79

(0.78-0.80).

Figure 3 represents the contour plot (left) and the 3D function (right) for the function

f̂p¨q{pf̂p¨q ` ĝp¨qq with f̂p¨q and ĝp¨q being the multivariate kernel density estimates for the

positive and the negative population, respectively, obtained by considering the BCV band-

width. Both plots suggest that higher values of 2D matrix-based descriptors are associated

with a higher likelihood of being a positive subjects, but the role of Information indices

changes with the value of 2D matrix-based descriptors. Figure 4 shows the average effect

of Information indices at different levels of 2D matrix-based descriptors (particularly at its

quartiles) determined by both the proposed estimator and the linear logistic regression.

Its impact on the score f̂p¨q{pf̂p¨q ` ĝp¨qq is scarce for higher values of 2D matrix-based

descriptors, where the values of the score are already high, but clearly relevant for the rest.
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Figure 4: Average effect of Information indices (at different levels of 2D matrix-based

descriptors) on the score f̂p¨q{pf̂p¨q ` ĝp¨qq (in blue) and on the punctuation derived from

the logistic regression (red).
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Figure 5: At left, histograms for the score, defined as f̂p¨q{pf̂p¨q` ĝp¨qq, distribution in both

the negative (blue) and the positive (red) groups. At right, ROC curves for the individual

markers (thin lines) and for the bivariate models based on T̂Np¨q (black-thick line) and on

standard logistic regression (gray-thick line).
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This trend is confirmed in the left panel of Figure 3, where for higher levels of the second

component (2D matrix-based descriptors), the subjects are mostly classified as positive,

whereas for lower levels, the decision rule clearly depends on the value of the first compo-

nent (Information indices). This reflects the importance of the visualization in having a

clear knowledge of the problem under study, highlighting the classification rules over the

domain of the bivariate marker; that is, studying both markers simultaneously and thus

considering the associations between them. Notice that, in spite of the fact that the logistic

regression reaches similar overall classification capacity, the information derived from this

procedure does not lead to the same conclusions and does not allow us to understand the

interaction between the different components of the marker neither the different impact of

these values on the likelihood of being in the positive group. In this case, the linearity re-

striction leads to similar overall diagnostic capacity but it misunderstands the relationship

between the outcome and the marker.

5 Discussion

Making binary classifications based on indirect information (other than the gold standard)

implies the definition of binary decision rules. When the indirect information is given in

terms of continuous measures, there is a continuous number of those decision rules. The

receiver-operating characteristic, ROC, curve graphically represents the classification ca-

pacity of the underlying decision rules in terms of their sensitivity and specificity. Standard

univariate ROC curves assume that the classification subsets (those classifying a subject in

the positive group) are intervals of the form pc,8q with c P R. In more general cases, the

usual practice is to look for an appealing transformation of the marker which improves its

discrimination ability. In this respect, Mart́ınez-Camblor et al. [32] compared the overall

classification performance of the so-called gROC curve [28, 30], which keeps the inter-

pretability of the underlying classification rules versus a quite free transformation of the

marker. Results indicated that, in terms of overall diagnostic accuracy measured through

the area under the curve, the marker free transformation was only at a small advantage

over the gROC curve in the considered case. With the same philosophy, for multivariate

markers, a usual practice is to look for an adequate or simple transformation to get proper

univariate decision rules. The optimal linear transformation have been deeply considered
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in the specialized literature [23, 45, 36].

While in some practical problems it is of interest to keep some rationality (simplicity)

behind those decisions, when we consider multivariate markers with potentially complex re-

lationship among their components, the focus is frequently to develop a valuable univariate

score and to obtain information about the nature of the relationship between the marker

and the outcome. McIntosh and Pepe [33] found the theoretical multivariate transforma-

tion leading to the optimal classification rules; in this paper, we have proposed making use

of smooth techniques to estimate this transformation. We have outlined the large sample

properties of both the transformation and the resulting ROC curve estimates when the

plug-in method and the multivariate kernel density estimator are employed.

Selecting the smoothing parameter or bandwidth is one of the main handicaps against

the use of kernel techniques. Monte Carlo simulations results suggest that the estimation

is quite stable when we consider a reasonable (automatic) criterion to estimate the optimal

bandwidth. In our simulations, we have considered four different criteria based on minimiz-

ing the mean integrated squared error (MISE) in the estimation of the density functions.

Unfortunately, it is well-known that the optimal bandwidth strongly depends on the par-

ticular problem we are dealing with [29] and that there is not an easy or general solution for

this issue. Looking for an optimal bandwidth in the current context would involve complex

theoretical developments which are far from the goals of this paper. However, simulation

results suggest that the outcomes obtained through any of the proposed automatic band-

width selections are similar and close to the underlying real model. A second handicap

against the use of the estimator T̂Np¨q is the presence of a density estimate in the denom-

inator. This could be a source of instability when the value of the real density is close to

zero [25]. There is not an easy solution for that but to operate with the equivalent trans-

formation fp¨q{pfp¨q ` gp¨qq dilutes the problem. The third relevant issue is the potential

overfitting. In this respect, both the Monte Carlo simulations (see Table S1 and S2 in the

online supplementary material) and the real-world application suggest that, with enough

sample size and moderate-good classification performances, the overfitting problem is not

too serious. Nevertheless, it is worth to remark that this kind of procedures provide really

over-optimistic results when the associations are poor and/or the sample size is small. It

is not new that using flexible data analysis techniques is a risk when the sample size is not

large enough and that, in those cases, introducing some parametric restrictions is advisable.
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That is, smooth techniques detect, at least, weak classification capacities, even when there

is not any (see Copas and Corbett [7] for an overview of this problem in logistic regres-

sion). The use of machine learning techniques such as cross-validation or bootstrapping

may be integrated to improve the results obtained (see, for instance, Mart́ınez-Camblor

and Pardo-Fernández [31]), achieving adequate results even for small sample sizes (see Ta-

ble S2). Remark that, in our Monte Carlo study, these results under-estimate the real

discrimination ability.

In the considered real-world problem, the behavior of the two variables in the negative

and the positive populations differs in both mean and shape. The area under the ROC

curves based on the individual markers suggest a moderate classification capacity. When we

combine both markers in a simple logistic regression model, the AUC is almost 0.80 (0.79

after the 2-fold cross-validation correction). Optimal decision rules improve this number a

little bit (AUC of 0.81 after applying the 2-fold cross-validation procedure) but, perhaps,

the most relevant discovery is the interaction between the two variables in order to get the

optimal classification based on those markers. Information indices seems to have a small

effect on toxicity for moderate-high values of 2D matrix-based descriptors, but it plays

a relevant role when the latter take small values. These relationships are missing when

we perform simple linear logistic regression. The differences produced by using different

bandwidths criteria and the impact of the transformation estimation on the variability of

the overall discrimination capacity are negligible.

In summary, the proposed procedure, which includes the estimation of two multivariate

density functions by using bandwidths computed through an automatic selection criterion,

reports good results when the sample sizes are high enough and the classification criteria

accuracy obtained is moderate-high. Otherwise, we should double-check for potential over-

fitting and, in this case, the inclusion of a cross-validation procedure is advisable. With

certainty, different and complex simulations can help to have a better knowledge of the

estimator behavior. As supplementary material, we provide all the codes implemented for

doing these simulations.
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Supplementary Material

As supplementary material of this paper we provide the R code implemented to compute

plots and models reported herein. The main provided function, optimalT, incorporates

a general k-fold cross-validation procedure to control the potential overfitting. R pack-

ages nsROC (developed by Pérez-Fernández et al. [35]) and ks (developed by Duong [15])

are required. The used dataset is freely available at http://archive.ics.uci.edu/ml/

datasets/QSAR+fish+toxicity#. Results from additional simulations are provided in Ta-

bles S1, S2 and S3.
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