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PREVIOUS RESEARCH
Wearable sensors and illness and abnormalities detection

• Stroke movement detection [1,2] • Sleep apnea detection, SAX dictionaries [3]
1. Data pre-processing

2. Posture identification

3. Breath-cycle identification

4. Apnea identification

3



FROM  FD TO  TS
CLUSTERING

PREVIOUS RESEARCH
Wearable sensors and illness and abnormalities detection

• Tonic-Clonic Epilepsy seizure detection [4]
• Finding the most interesting features that could 

be computed  from a sliding window. A TS is 
represented with the most relevant features.

• The main problem here was the availability of 
data.

• Generalized models for abnormal 
movement detection [5]
• Is it possible to extract features and learn 

generalized models to identify abnormal 
movements?

• PCA and Local PCA have been found suitable, 
while LLE did not.
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PREVIOUS RESEARCH
Wearable sensors and illness and abnormalities detection

• Tonic-Clonic Epilepsy seizure detection
• Not so many calculations to avoid draining the battery sliding window and a restricted set of features.

• Ant-Colony Optimization and Fuzzy Rule Based Systems [6]

• Comparison of SVM, KNN, DT and Fuzzy Rule System [7]
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PREVIOUS RESEARCH
Wearable sensors and illness and abnormalities detection

• Tonic-Clonic Epilepsy seizure detection
• A wearable seizure epilepsy detection platform [8].
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A REASON FOR A 
CHANGE

sometimes life turns in 
unexpected whirls
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Get to know the problem with the 
elder
• Falls occur everyday: one of three elderly people 

suffer a fall [9].
• The sooner the detection the better.
• Confidence is all.
• The ergonomic factor.

Hey, is fall detection still a 
CHALLENGE???
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COMMERCIAL DEVICES
Video, sound, radar…
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COMMERCIAL DEVICES
Personal emergency response systems (PERS) - Necklaces

Types of PERS Characteristics
• False alarms: the price to pay. 

• Access to health services 24/7 [16,17].

• Well, let's accept it: they are not nice to use… 
''That is a really neat feature at our age, 
instead of a necklace, says John Helmus, 76 
[19].

• Confidence reinforcement.

• The person needs to be conscious and able to 
reach the button [9].

• 80% of older adults wearing a PERS did not 
use their alarm system to call for help after 
experiencing a fall [9].
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COMMERCIAL DEVICES
Wearables and smartwatches

• Well-known trademarks are pursuing 
wearable fall detection systems. 

• Apple Watch Series 4 [18]
• Alarms when hard falls only. 

• If you are immobile → a Heatlh service call in 1 
minute time.

• If you keep moving, the call is delayed until a 
positive feedback. 

”Apple says it studied the falls of 2,500 people 
of varying ages. Yet the company hasn’t said 
how often it catches real falls or sets off false 
alarms.

Apple’s disclaimer says: “Apple Watch cannot 
detect all falls. The more physically active you 
are, the more likely you are to trigger Fall 
Detection due to high impact activity that can 
appear to be a fall.”[19,20] 
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SCIENTIFIC LITERATURE
Video and motion sensor based solutions

3D Range cameras Video and sound [25]
• Video and sound pre-

processed 
independently.

• Event detection by 
determining the 
acceleration and speed 
of a subject PLUS a 
peak in the sound.

• Features are classified 
using a SVM.
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• Video surveillance systems with/without 
sound.

• Simulated falls using stuntmen or 
volunteers.

• Participants are relatively young.
• Some studies analyse different types of fall 

events.
• All studies performed heuristic rules [23] 

or matching of specific patterns [24].
• Indoor only Privacy, Occlusions …
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SCIENTIFIC LITERATURE
Video and motion sensor based solutions

Video and Deep Learning [26]

Motion sensors
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Perhaps video approaches need to 
focus on normal behavior: any other 
activity might be anomalous [30].

• Kinect and LiDAR have been reported 
[27,28]. 

• Spatio-temporal fall event  detection using 
DeepLearning might solve part of the 
problem [29].
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SCIENTIFIC LITERATURE
Sound and floor solutions

[32]

[31]

[34]

[33]
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SCIENTIFIC LITERATURE
Wearables

• Wearables makes the use 
easier

• The focused population 
infers the sensor or sensors 
selection.

• The focused population 
infers the sensory location.

1. Record data using the sensory 
system.

2. Pre-process and feature 
extraction.

3. Learning a model.
4. Deployment.

The computation is run on the 
device, on the edge or on the 
cloud.
The data come from an ad-hoc 
dataset, a published dataset or a 
combination of both.
Generalized Vs user-centered 
modelling.
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Why and where General procedure
Design and learning

Sensor type

• 3DACC: [35,36,37,38,39, 
41,42,43,44,45,46,47,48,49, 
50,51,52,53,54,55,56,59]

• Barometer:[45,52] 
• Gyroscope:[38,43,45,52,53]
• Electromyography:[60]
• Sensor fusing:[36], angle 

[58]

Modelling technique

• SVM: [42,44,45,49,50,51, 56] 
• KNN: [42,49,50,51,54,57, 59]
• NN: [35,40,44,49]
• Trees: [38,42,51]
• Rule Set: [39,41,46,47,48,52, 

53,55]
• Heuristics:[36,43]
• HMM

• Wrist: [36,37,39,40,41,42, 
43,44,48,50,52,54,55,59]

• Waist: [35,38,45,46,47,53, 
54,56,58]

• Thigh: [37,39,49,51,58] 
• Other: chest [51], ankle 

[53]

Sensor location
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FALL DETECTION: OUR ML DEVELOPMENTS
The publication path
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Abbate
PC2012

HAIS 
2018

SOCO 
2018

ICCCBDA 
2018

CEA 
BIOING 
2018

SENSORS 
2018

ICMA 
2018

FINO 
2018

NEURO
COM 
2018

PAI 2019

ES 2019

SOCO 
2019

ICAE 
2019

IGPL 
2019

NEURO
COM 
2019

?? 2019

[35] [61] [64] [62]

[63][65][66]

[67]

[70]
[68]
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FALL DETECTION: OUR ML DEVELOPMENTS
The publication path
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Abbate
PC2012

HAIS 2018

ICCCBDA 
2018

CEA BIO 
2018

SOCO 2018

ICMA 2018

Sensor on the waist
Finite State Machine for Event Detection
Feature extraction 
Neural Network

Highly imbalanced data
Too many thresholds and timers
Seems logical

Sensor on the wrist  more challenging
Finite State Machine for Event Detection
Feature extraction but changing a bit
Neural Network

Data Normalization
SMOTE 60/40 to balance the classes
UMA Fall
5x2 and 10-f cv

Reducing the computational cost of 
model evaluation: C5.0 decision trees.

Model tuning: fog/cloud computing.
Basic requirements for the design of a fall 
detection platform.

Developed platform to deploy at a Senior 
Residence Hall in Burgos (Spain), belonging 
to the Health Care System.

Analysis of the 5x2 cv results  poor generalization capabilities.
The models can not cope with the whole solution  new solutions are needed: i) user 
centred design, ii) ensemble of classifiers, iii) divide and conquer: a model per fall type.
Can a smartwatch analyse so many models?
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FALL DETECTION: OUR ML DEVELOPMENTS
The publication path

SENSORS 
2018

FINO 2018

NEURO 
COM 2018

Participant based cross validation.
More models: NN, DT, RBS & NN.
Threshold analysis and optimization.
Are simulated falls similar to real?

UMA Fall
DaLIAC
UNIOVI EPILEPSY
FARSEEING

Participant-based 5x2 cv.
DT (C5.0), NN, RBS, SVM.
Ensemble basic voting.

UMA FALL – TST – UNIOVI EPILEPSY –
DaLIAC
Esemble (voting &weighted): RBS, SVM, 
NN. Also, Random Forest.

ICMA 2018

Solutions are far to be reliable. 
Ad-hoc datasets allow smooth results.
User centred solutions might be helpful.
Data from real falls are needed.

PAI 2018
User centred.
* Supervised: KNN and SAX-TFIDF
* On-line learning & Transfer learning: 
SAX-TFIDF

More analysis on thresholds: 3 scenarios.
UMA FALL – TST
Too many false alarms but OL-TL SAX-TFIDF 
showed the best fall detection rate!
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FALL DETECTION: OUR ML DEVELOPMENTS
The publication path

NEURO 
COM 2018

SOCO 2019

NEURO 
COM 2019

FALLOVI draft 1 released.
4 Clustering scenarios
• F & NF  + SVM on mixed clusters
• NF clusters + SVM for each cluster containing both F & NF
• NF clusters + F assignment and centroid recalculation + SVM 

for each cluster containing both F & NF
• F clusters + NF clusters + centroids KNN 

Three stage solution: Event 
Detection + SVM one class + 
SVM on suspicious
Automatic threshold setting

PAI 2019

IGPL 2019

NEURO 
COM 2018

User centred. UMA FALL – TST
SAX-MAX to reduce false alarm rate
On-line Learning & Transfer Learning but 
K-means to reduce the data base size

More clustering strategies
UMA FALL + TST + Oznedir
A model per fall type
Perhaps, new features

ICAE 2019
Hierarchical HMM
Activity Level + ADL + Peak
Classify sequences of states
UMA FALL + TST + Oznedir

?? 2019

Hierarchical HMM
Activity Level + ADL + Peak
Grammar of a fall
UMA FALL + TST + Oznedir
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FALL DETECTION: OUR ML DEVELOPMENTS
The publication path
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• Gathering data from real falls
• Presumably, the fall events will be unusual.

• From the ML point of view, is like no real 
data is given

• Need to generate almost real TS
• Considering the few TS from real falls

• What is ''an almost real TS''?

• Grouping or clustering TS
• Applications in many fields apart from fall 

detection

FALL DETECTION: OUR ML DEVELOPMENTS

CHALLENGES IN DEVELOPMENT
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MULTIVARIATE TS 
BALANCING

What is it?

What is it for? [72,73]
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[74]
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MULTIVATIATE TS BALANCING
From SMOTE to TS SMOTE
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MULTIVATIATE TS BALANCING
From SMOTE to TS SMOTE
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MULTIVATIATE TS BALANCING
From SMOTE to TS SMOTE
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STILL PENDING

• Outlier avoidance
• but needs a clear 

definition.
• Alternatives to the need of 

a guiding signal

WHERE TO USE

• Fall detection
• TS augmentation in user 

centred
• Evaluation of the 

robustness of TS clustering
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MULTIVARIATE TS 
CLUSTERING

To group mutually 
dependent variables
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MULTIVARIATE TS CLUSTERING
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WHOLE TS CLUSTERING

• Model based: Gaussian Mixture Models [83], FE + SOM [84]
• Features based: PCA [79], discords [80], hash functions [81], 

stats & patterns [78]
• Shape based: HMM [82], Dynamic Time Warping [77]
• Hybridized and multi-step

A PRELIMINARY STUDY [85]

• The prediction error of a Recurrent Neural Networks (RNN)
serves as a distance measurement to compare variables within 
an instance. 

• Transfer learning from one instance to others helps in relaxing 
the computational costs. 

TYPES OF mTS CLUSTER

• Whole TS clustering
• Subsequence m-TS 

clustering
• Time point clustering

CLUSTERING ISSUES

• TS representation: raw data
• RNN error prediction as 

distance measurement
• No prototyping needed
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MULTIVARIATE TS CLUSTERING
A preliminary study [85]

• Within-instance's similarities are 
converted to adjacency matrices
• if 𝑠𝑖𝑚 𝑗, 𝑘 ≤ 𝑡ℎଵ

• For example i, 𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑠 𝑥, denoted 
as 𝑘 ≪ 𝑗.

• And 𝑆𝐼𝑀 𝑗, 𝑘 = 1.

• Otherwise 𝑆𝐼𝑀 𝑗, 𝑘 = 0.

• Adjacency matrices from each 
instance are aggregated: 𝑆𝐼𝑀.

• Thresholding the 𝑆𝐼𝑀 matrix.
• If 𝑆𝐼𝑀 𝑗, 𝑘 ≥ 𝑡ℎଶ

• 𝑆𝐼𝑀 𝑗, 𝑘 = 1

• 𝑘 ≪ 𝑗

• Otherwise
• 𝑆𝐼𝑀 𝑗, 𝑘 = 0

• This final adjacency matrix allows to 
represent the dependency graph!
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MULTIVARIATE TS CLUSTERING
A preliminary study [85]

• Indoor and outdoor temperatures in the weather 
station (TIN, TOUT).        

• Horizontal  and Vertical Irradiance reference 
measurement (HIR and VIR).        

• The voltage at the weather station's battery 
(BV). 

• The temperature of 4 photovoltaic panels linked 
to an inverter (T1 to T4). 

• An In-panel Horizontal  and Vertical Irradiance 
measurement (PHI, VHI).
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A toy problem

• Formal definition of all the stages

• Developing a more optimized and robust method.

• Extending the solution to cluster similar instances.

• Developing of suitable distances and efficiency measurements.

• Testing with a complete battery of m-TS datasets.

STILL PENDING
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THIS IS OUR TEAM!
Of course, I am not alone!
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