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Abstract

Fall detection (FD) using wearable devices has been the focus of many re-
search studies during the last years. Solutions are expected to work au-
tonomously and securely; however, even the commercial products are still
far from being reliable in elderly people autonomously everyday life. This
research focuses on developing a FD method valid to be deployed on a wear-
able device with tri-axial accelerometer as sensing unit, and working au-
tonomously without external services. Moreover, each fall type is considered
independently and the solution adapts to its current user. The proposal in-
cludes three stages: a novel event detection stage followed by a one-class
problem classification and a final classifier that labels the anomaly events as
Fall or Normal. The process starts gathering data from the current user’s
wearable provided the data does not include any fall; this data is used to tune
the event detection and to train a one-class classifier. Two different methods
are tested: a One-Class Support Vector Machine and a classifier based on the
centroid of the normal activities’ instances. The detected anomaly events are
then classified as Fall or Normal; this second classifier is previously obtained
from data from other users’ past experiences. For this two-class model, two
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González), javier.sedano@uniovi.es (Javier Sedano),
samad.khojasteh@lisansustu.selcuk.edu.tr (Samad B. Khojasteh)

Preprint submitted to NeuroComputing January 22, 2020



different options are tested as well: a Support Vector Machine and a feed-
forward Neural Network. The experimentation stage includes two different
published simulated falls data sets. The obtained results show that filtering
the detected peaks corresponding to normal activities of the current user
helps the two-class classifier for some types of fall events, suggesting to intro-
duce specific one-class filtering per fall type. However, the number of false
alarms is still high, and the two-class classifiers have a high variability in
their performances according to the user, which still needs further research.
The results suggest that it might be interesting to obtain a more accurate
two-class classifier using data only from subjects with similar activity levels;
the use of online learning might also improve the general performance in the
classification stages.

Keywords: Fall Detection, Machine Learning, One-class Classifier, Event
Detection, Elderly Population

1. Introduction

Fall Detection (FD) refers to the detection of fall events of human beings
while performing their usual Activities of Daily Living (ADL); it might be
considered as part of the Human Activity Recognition. FD can be applied in
several different fields, being the support for the elderly population among
them [1]. It has been reported that one out of three elderly people suffer a fall
[2]. Whenever a senior suffers a fall, the faster the assistance the better [3].
Moreover, falls have a direct consequence in the confidence and the ability
of living autonomously of the subject.

Consequently, FD is a topic that has been researched for more than a
decade. There are commercial devices using different technology, such as yell
detection [4], video and radar [4, 5] or smart tiles [6]. However, either the
false alarm rate is high or they are severely constrained (restricted to specific
parts of the home or not allowing to have pets). There are also wearable
devices, either personal emergency response systems (PERS) [7] or smart
watches [8]. Nevertheless, PERS are found useless (high false alarm rate, the
need of the person to be conscious), or their use undesirable. In the case of
smart watches, they are only designed to detect ”high impact falls”, but the
performance is still poor [9, 10].

Concerning the scientific literature, the different studies also focus on
different technologies: surveillance or 3D range cameras [11, 12, 13, 14],
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motion sensors [15, 16] or floor and sound sensory systems [17, 18, 19]. As
before, the main problem with these solutions are that they are constrained
to specific rooms in a home; therefore, there is no FD whenever the user
is out of coverage. Also, some solutions introduce more constrains in the
number of people in a room, or pets, etc.

This study is focused on autonomous FD using wearable devices: this
type of devices allows to continuously monitor the activity of the user in
their everyday life, they are both ergonomic and appealing while at the same
time the privacy is not in compromise. There is a wide literature on the
topic of FD (interested readers might find worthy reviews such as [2, 20,
21, 22, 23]); the majority of the studies make use of tri-axial accelerometers
(3DACC) [24, 25, 26, 27, 28], although different types of sensors have been
also used: barometer [29, 30], gyroscope [31, 32, 29, 30, 33], electromyography
[34] or angle [35]. Some of the studies also perform a fusion of several sensors
[36, 31, 37, 29, 30].

In this research, we propose a FD approach using a single 3DACC placed
on a wrist, which is easier to conceal as a smart watch or an intelligent
bracelet. The main contributions of this study include an enhancement in
the event detection stage and the collaboration between user-centred and
generalized models in order to correctly classify a peak candidate. The aim
is to produce an autonomous solution that does not rely on external services.
In this study, we propose an approach that makes use of both user centered
and generalized models: the former is devoted to detect anomalies in the
user behaviour, while the latter considers the previous a priory knowledge
extracted from the available fall data sets in order to classify these anomalies.
To our knowledge, this is the first solution that mixes both types of modelling,
which takes the best of both. The solution includes three stages: a novel event
detection, an anomaly user centered classification and a final generalized
classifier to discriminate the anomalies. The solution is evaluated using two
different publicly available simulated falls data sets, the experimentation is
exhaustively detailed. The results show that filtering those peaks generated
from the peak detection helps the two-class classifier for the forward fall
type. Furthermore, the event detection designed in this research shows a
robust performance for different types of falls.

The structure of this study is as follows. The next section details the
related work. Sect. 3 explains all the details of this study: the data sets, the
modelling techniques and the experimentation stages. The obtained results
from the experimentation are clearly shown and discussed in Sect. 4, extract-
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ing the main ideas and consequences from the performance measurements.
Finally, the study draws the conclusions.

2. Related work

One of the first 3DACC researches concerning FD was proposed in [38].
The authors proposed a 3DACC sensor placed on a belt of participants (some
of them were elderly people) while performing several ADLs; they also used a
dummy to simulate the falls. A One Class Support Vector Machine (OSVM)
model classifies the time window as normal, signaling the remaining cases as
fall alarms. The series of studies of Bourke et al started with two 3DACC
(one placed on the chest and one on the thigh) and simple detection methods
based on thresholds [39, 40]. Recently, the authors [31] analyzed the real fall
data set from patients of Parkinson [41], where the patients wore a 3DACC
plus a gyroscope on either the waist or the thigh. The event detection was
performed through a threshold and several features were calculated for each
detected event. The generated data set was balanced using SMOTE and a
C4.5 decision tree classifier was proposed.

Several different measurements of the fall dynamics were used in [42]
with data gathered from a 3DACC on the waist (or head). Thresholding was
the decision making algorithm to decide whether the current instance corre-
sponds or not with a fall event. Using this solution, the authors compared
the dynamic of real and simulated fall events [43].

Hidden Markov Models have been also proposed to continuously analyze
the acceleration values [27, 28] labelling the samples correspondingly as fall
or normal. Besides, [24] proposed a 3DACC placed on a wrist while con-
tinuously analyzing the acceleration values using either a Support Vector
Machine (SVM), a Neural Network (NN) or K-Nearest Neighbour (KNN).

Moreover, 3DACC has also been combined with barometric sensors to
detect fall events in [36]; in this case, the sensor was placed on the waist. An
heuristic set of rules and thresholds were proposed to determine whether there
is a fall or not. Besides, Sorvala et al ([33]) combined 3DACC on the waist
and a gyroscope on the ankle, using the magnitude of the acceleration and the
angular velocity together with an heuristic algorithm based on thresholds to
classify the signals. In addition, 3DACC was also combined with gyroscope in
[44], where a study of the performance of several threshold based FD methods
were analyzed when running on a Smartwatch and on a Smartphone. The
threshold based methods were also used to change the current state, similar
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to a Finine State Machine (FSM). The same combination of sensors but
placed on the chest are used in [32] for FD. The decision was based on
three thresholds: if a small acceleration magnitude is followed by a high
acceleration magnitude and a high angular velocity, then a fall alarm is fired.

Furthermore, [30] combined 3DACC together with gyroscope and barom-
eter, placing the sensory system on the waist. Thresholds on the vertical
speed were used to detect the events: whenever an increase in this signal
is observed, up to 7 different combinations of the acceleration, posture and
height are surveyed; if any of these combinations is higher than the corre-
sponding threshold, an alarm is signaled. [29] combined 3DACC and barom-
eter sensors on a device; this device was placed on a wrist. In this study, the
acceleration magnitude drives the peak event detection. Three features were
computed for each detected peak using a 6 second length pressure window
centered on the peak. Then, the features are classified using a SVM.

Using a single 3DACC on the waist, the study in [45] proposed a FD
system based on an event detection plus a classifier. The event detection
stage was a peak detection based on a FSM and predefined thresholds; then,
a feature extraction is performed on the time slice surrounding the detected
peaks. Finally, a NN is used to classify each instance of 8 transformations.
Previously, the authors performed an in-depth analysis of the falls and their
dynamics, taxonomy and causes [46].

The solution of Abbate et al in [45] was extended in [47] and [48]. In the
former, kNN was used instead of NN. In the study in [48], the approach was
adapted to be used with the sensor on a wrist, several features were revised
and, finally, different models were evaluated (NN, SVN, kNN, Decision Trees
-DT- and Rule Base Systems -RBS-). The same research team analyzed the
use of kNN with a reduced data set including selected instances from cluster-
ing [49]. In [50], the authors proposed a one-class SAX-based dictionary to
learn the user behavior; this dictionary was developed for each specific user
considering only the ADLs.

FSM were also used as event detection in [51]; whenever a peak was
detected, the surrounding window was analyzed and several transformations
were computed. The classification of these features was performed using
a classification and regression tree, a kNN, LR and a SVM. Instead of a
FSM, [52] proposed to detect high peaks, low peaks and the time between a
sequence of a high and low consecutive peaks. They developed an Android
Wear app to use the 3DACC measurements from a Smartwatch.

An FSM is also proposed to detect the fall events if the subject does not
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move after the fall [52]. Thresholds of the acceleration and the angle of the
gravity are used together with the time in each state to drive the FSM. The
3DACC sensor is located on the waist in this study. Similarly, thresholds are
used to detect fall events in [53]; if a fall event is followed by a 20 seconds
calm period (that is, with a reduced amount of movement), then the fall
alarm is signaled. Thresholds were also used for FD in [54], the sensor was
the 3DACC signal from a Smartphone.

A comparison of several published simulated falls data sets presented in
[55] used a threshold on the acceleration magnitude to detect fall candidates;
afterwards, 6 seconds windows are classified using either SVM or NN. NN
have been used in [56] too. In this study, a 3DACC was located on a writs and
three different NN models were obtained: i) using 3 seconds of acceleration
magnitude windows as inputs of the NN, ii) the acceleration magnitude peak
and the times of the fall event as the input features of the NN and, iii) these
three features plus the mean and deviation were the inputs of the NN. In all
the cases, Multi-layer perceptrons were proposed.

Furthermore, Medrano et al [57] analyzed the 3DACC signals from Smat-
phones placed inside the frontal pockets reporting the use of three different
models (kNN, SVM and OSVM). Thresholds were used to detect peaks; the
three acceleration components’ values within a 6 seconds length sliding win-
dow centered on the peak were used as the inputs of the classification models.
Similarly, Ngu et al proposed to classify 250 milliseconds windows of the ac-
celeration magnitude; these windows were transformed into a 4 dimensional
vector and considered the inputs of the two modeling techniques (SVM and
kNN) [24].

Finally, Deep Learning is currently being employed in FD, although devel-
oping such models on wearable devices will need more powerful Smartwatches
than the ones in the market nowadays. Nevertheless, the study in [58] pro-
posed to pair the Smartwatch to a Smartphone, which is the responsible of
running the Recurrent Neural Network. Autoencoders have been proposed
as a feature extraction technique before a classification stage based on SVM
[59]. For a more in-depth review on this topic, please refer to [23]. However,
because nowadays Deep Learning is not feasible to be deployed on wearable
devices such as Smartwatches (as stated in [58]), we do not develop on this
type of solutions further.

Concerning the experimentation, the studies make use of their own data
set or evaluate their solutions using several published data sets of simulated
falls. In some cases, extra data sets are used in order to evaluate the approach
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with different ADL coming from different sources and participants. Almost
all the solutions propose generalized models (that is, learning a model that
cope with the complete population), either for all type of falls or for specific
type of falls. Only the studies in [44, 57, 50] propose user-centred solutions.
In this case, a model is learned for each specific user, allowing the model to
adapt to the variability of behaviours. Nevertheless, the problem is still a
challenge due to the lack of robustness of the outcome of the solutions when
evaluated with different data sets [50].

3. Materials and methods

This research is focused on training a set of fall-detection classifiers using
data gathered from participants’ ADLs. This is a three-stage process: a
fall-event detection, a one-class classifier to mark those events that differs
from the normal behaviour of the user, and a final classifier that labels each
anomaly event as FALL (F) or NOT FALL (NF). An overview of the solution
is depicted in Fig. 1. The proposal is instantiated for each type of fall to be
identified; therefore, if we consider two types of falls then the structure in
the figure is duplicated, one for each type of fall.

Interestingly, this approach includes a mixture of user centered and gen-
eralized solutions. We refer to user centered solutions those that develop
specific models for the current user, aiming to adapt to the particularities of
his/her behaviour. Conversely, generalized solutions develop a general model
for the whole population, assuming the problem presents similar implications
for all the subjects.

It is worth mentioning that because we are designing a solution that can
be deployed on wearable devices, the modelling techniques should keep a
low computing demanding profile. In other words, current wearable devices
cannot deploy Deep Learning models because this type of models would
eventually drain the battery in a short period of time.

Thus, the one-class classifier models the behavior of the current user,
gathering data from an unsupervised training stage that the user must per-
form previous to the exploitation of the solution. On the other hand, the
multi-class classifier is obtained from historical data of ADLs and fall events
that would have been gathered from a sampling population.

Therefore, the solution includes gathering data from the current user
and exploiting data from a sampling population. To evaluate the solution,
we have included several publicly available simulated fall data sets. The
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Figure 1: Simplified block diagram of the solution. The samples are analyzed to detect
the events from a suspicious behaviour. Several features are extracted from the window
of data and a one-class SVM determines whether it is normal or not. In case of abnormal
scenario, a second classifier labels the event as F or NF.
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solution is evaluated independently for each of them, introducing a complex
experiment design to allow developing both the user centered and generalized
parts.

In the next subsections we will be covering all of these issues. Firstly
we will start with the description of the data sets used for in this research,
then each of the main stages of the solution will be detailed (in this order,
the event detection, and pre-processing, the features extraction, the one-class
classifier and the multi-class classifier). Finally, the experimental design will
be completely explained.

3.1. Publicly available data sets

Two publicly available simulated falls data sets are used in this experi-
mentation. Each of these data sets includes data from several participants
wearing, at least, a 3DACC sensor placed on a wrist. However, all of them
include data from more than one sensor. Each participant performed several
repetitions from a certain catalog of ADLs and fall types. Each of the repe-
titions is stored as a multivariate TS with the three acceleration axis, along
with the corresponding label of the ADL or fall type.

Unfortunately, in the publicly available data sets there is a lack ”of a com-
mon experimental bench-marking procedure and, consequently, the large het-
erogeneity of the data sets from a number of perspectives (length and number
of samples, typology of the emulated falls and ADLs, characteristics of the
test subjects, features and positions of the sensors, etc.)” [60]. Therefore, in
this study we will manage each data set independently.

The data sets that are going to be considered are:

UMAFall data set [61] : including TS from up to 17 participants with
3DACC placed on the wrist, on the waist and on the ankle; the sampling
frequency is 20 Hz. Each participant performed a set of ADL (such as
running, walking, siting, hopping, etc.) and staged three types of falls
(lateral, forward and backwards falls); however, not all the participants
did the same number of repetitions (even several participants did not
stage falls). There is a total of 531 TS (208 of them are labelled with one
of the possible fall types). We have only considered those participants
with more than 20 TS, provided that at least 9 of them are simulated
falls. Although participant 17 did not performed any backward fall, we
kept it due to the number of falls of other types.
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Özdemir&Barshan [62] : includes 17 participants with 3DACC placed on
the wrist, on the waist and on the ankle; the sampling frequency is 25
Hz. There is a catalog of ADL (running, walking, hopping, etc.) and a
catalog of fall types (up to 20 different fall types, forward, backwards
and lateral falls among them). There is up to 3060 TS (1700 of them
labelled as FALL). Each participant performed 5 runs on average of
every ADL and FALL simulation.

There are more simulated falls data sets published in the community [60];
however, many of them do not include sensors on a wrist. Moreover, some of
the data sets that include sensors on the wrist introduced protocols for several
activities that were different than normal behaviour. For instance, the TST
data set [63] includes walking patterns that are peculiar (the patterns are
really different from those of walking measured with a 3DACC on a wrist);
as it is going to be stated afterwards, the walking activity was chosen as the
standard activity for computing thresholds and TS normalization. Therefore,
we discarded this data set as part of the test bed.

From now on, we are going to focus on three types of falls: those that are
common to all the data sets. Therefore, only forward, backward and lateral
falls, when the participant is standing still upright, are considered.

3.2. Event detection and pre-processing

As a consequence of all the previous reasoning, we propose to use an
event detection method per fall type. Evidently, the event detection method
is highly dependent of the context, so it is not possible to have a general
event detection method able to cope with high intensity falls (say, walking
and then falling) and at the same time low intensity falls (say, seated and
then fainting).

In this study we have decided to use the peak detection method detailed
in [45] and slightly modified in [48] to detect the high intensity events for
each of the considered type of fall. Nevertheless, some modifications are
introduced.

The event detection is a very simple finite state machine that tries to
find acceleration peaks to detect the high intensity falls (refer to Fig. 2).
Let us assume that gravity be g = 9.8m/s. Let also assume that we use
the acceleration magnitude at (see Eq. 1), where atx, aty and atz are the
components of the acceleration in each axis at time t.
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Figure 2: State Machine proposed in [45]. At time t, a peak is detected in tp = t−2500ms
if acc(tp) is the latest value higher than th1 and no acceleration value is higher than th1

in the period (tp, t].

at =
√
a2tx + a2ty + a2tz (1)

A peak is defined as the time stamp for which the acceleration is higher
than th1, but there is no acceleration value higher than th1 during the next
following period of 2500 milliseconds (ms), with th1 being a predefined peak
threshold (see Abbate et al, [45]). A second threshold th2 was predefined
and used to obtain the limits of the fall window (the window of acceleration
values surrounding the peak time). In their original study, Abbate et al set
these threshold values th1 and th2 to 3.0× g and 1.5× g, respectively.

We propose to smooth the 3DACC TS by computing the mean value of a
sliding window of size 1

4
s to filter the signal. Furthermore, we do not use the

Abbate et al method for determining the fall window. Instead, we propose to
directly use the limits stated in Fig. 3, setting the fall window as the interval
[tp − 200, tp + 1000] ms. Whenever a peak is detected, the data from the fall
window is used to compute several features. Consequently, in this research
we do not make use of th2 anymore, simplifying the threshold setting.

Moreover, the thresholds proposed in the original work have been studied
so far in previous work [50, 49]. As a conclusion, these values must be specific
for each user and fall type. Also, they must be automatically determined
according to the intensity of the user’s activity. We decided to use the walking
activity of a subject as the standard activity to determine these thresholds.
To do so, the user must walk during a certain predefined time TrainT ime,
which must be defined according to the specific population that is being
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Figure 3: Dynamic of a fall event. A peak due to a fall is determined as an acceleration
value higher or equal than th1 followed by a relatively calm period of time. The fall window
is the period surrounding the peak time at t− 2500 ms.

studied. The th1 threshold is computed as stated in Eq. 2, where maxWalk
is the mean value of the set of the 1000 highest 3DACC values while walking.

thpeak = 0.9×maxWalk (2)

Finally, all the samples in a TS must be z-scored; again, the walking
activity is proposed as the standard. The mean and the deviation (wkmean
and wkstd) of the acceleration magnitude computed when carrying on with
this ADL will be used to perform these pre-processing tasks on the TS for
a user, independently of the type of fall. Obviously, the thresholds must be
normalized as well.

3.3. Feature extraction

The feature extraction is executed whenever a peak is detected and tries
to represent the information related with the dynamics within a fall. Given
the current timestamp t, we find a peak at peak time pt = t − 2500ms if
at time pt the magnitude of the acceleration at -see Equation 1- is higher
than th1 and there is no other peak in the period (t− 2500ms, t] (no other a
value higher than th1). If this condition holds, then it is stated that a peak
occurred at pt. Finding a peak also induces the fall window, as explained
before. The impact end (ie) denotes the end of the fall event; it is fixed to
pt + 1000 ms. The impact start (is) denotes the starting time of the fall
event, which is equal to pt− 200 ms.
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With these three times -is, pt, ie- calculated, the following transforma-
tions should be computed:

• Average Absolute Acceleration Magnitude Variation (AAMV) calcu-
lated as stated in Eq. 3, where N is the number of samples in the
interval.

AAMV =
ie∑

t=is

|at+1 − at|
N

(3)

• Maximum Peak Index (MPI), measuring the maximum in the fall win-
dow, Eq. 4.

MPI = maxt∈[is,ie](at) (4)

• Minimum Valley Index (MVI), measuring the minimum in the fall win-
dow, Eq. 5.

MV I = mint∈[is−500,ie](at) (5)

• Pre-impact Activity Index (PrAI), measuring the AAMV in the part
of the fall window before the peak, Eq. 6.

PrAI =
pt∑

t=is

|at+1 − at|
N

(6)

• Post-impact Activity Index, PoAI, measuring the AAMV in the part
of the fall window after the peak, Eq. 7.

PoAI =
pt+500∑
t=pt

|at+1 − at|
N

(7)

• Long-term Activity Index, LAI, measuring the AAMV in the interval
where the user must be more or less still after a fall, Eq. 8.

LAI =
ie∑

t=pt+500

|at+1 − at|
N

(8)

• Free Fall Index (FFI), the average magnitude in the interval [tFFI , pt].
The value of tFFI is the time between the first acceleration magnitude
below thFFI = 0.8 × g occurring up to 200 ms before pt; if not found,
it is set to pt− 200 ms.
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• Step Count Index (SCI), that counts how many steps the user hypo-
thetically has done before a fall. To compute SCI we use the number
of the peaks that are followed by a valley in the interval [pt− 2200, pt].

This set of features differs from those proposed in [45] and used in our
previous research [48, 64, 50, 49]. The change is due to several reasons. On
the one hand, fixing the fall window limits instead of dynamically determining
them made several of the original features meaningless. On the other hand,
the original set of features introduced a big number of thresholds; the new
features have considerably reduced this amount.

3.4. The one-class classifier

This model is responsible of identifying normal or common values of the
features that have been computed for a fall window. Moreover, this model is
specific for the current user as it is expected to get data from normal user’s
behaviour in order to learn the classifier. Therefore, the user must perform
a training stage using the sensor during his/her everyday life; the detected
peaks will help in learning the classifier.

For sure, the training of the model is not expected to be done in the wear-
able device: this task must be performed on the cloud (through web services)
or on the edge (specific near the edge computing resources) or even on the
fog (if we consider the user’s smart phone as a candidate). Nevertheless, the
study of where to perform the training of the models is out of the scope of
this research.

Two different solutions are tested in this study as the one-class classifier:
a One-class Support Vector Machine (OCSVM) and a very simple classifier
using the centroid of the instances and the mean distance (here in after, we
refer to this classifier as CENTROID).

OCSVM is used to identify the normal behavior; we have selected it for
several reasons. Firstly, because it is a very simple model that can be easily
deployed in a wearable. Secondly because it has been successfully applied
in anomaly detection [38, 65]. The latter of these two studies use OCSVM
to detect anomalies in sound recordings, while the former is highly related
with this work. The authors proposed gathering data from a 3DACC, low
pass filtering the acceleration and then using a SVM to detect anomalies;
these anomalies are then classified using a K-Nearest Neighbour (KNN) and
a Kernel Fisher Discriminant model. Nevertheless, the main drawback of
this approach is that KNN models tend to drain the battery, thus is not
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suitable unless the number of samples is kept reduced. Moreover, the use of
the acceleration magnitude directly may also introduce a high ratio of errors.
Finally, the OCSVM is a generalized approach, which also might induce an
increment in the false alarm ratio.

To overpass these drawbacks, the current OCSVM only analyzes the fea-
tures extracted from a fall window. We consider one OCSVM per user and
type of fall; therefore, the variability in the intensity of the movements from
one user to another gets reduced. Finally, the design of this solution avoids
analyzing every single sample, only those that are identified as a peak are
analyzed. It is worth mentioning that all the instances of features computed
for each peak should be also z-scored previous to the training of the OCSVM.
The mean and standard deviation used in this z-score will be later on used
to z-score the new instances to classify as normal or anomalies; we call them
ocmean and ocstd, respectively, and are specific for each user and fall type.
In this research, we have chosen the OCSVM implemented in [66, 67] and
described in [68].

The CENTROID classifier is a very simple solution. Its gathers the de-
tected peaks from all the ADL’s TS for the current user, compute the centroid
and the mean distance from the centroid to each instance. An incoming in-
stance is classified as an anomaly if it is out of the hypersphere centered
in the centroid and radius the mean distance. All the previous discussion
concerning the z-scoring and the calculation of ocmean and ocstd still holds,
so these values are stored for later use.

3.5. The multi-class classifier

The features extracted from a fall window due to the detection of a peak,
which have been labelled as anomaliy (using either the OCSVM or the CEN-
TROID) are then analyzed in a second classifier. In this case, we propose
to use all the knowledge extracted from past experiences in the form of data
from other users, so a two-class model can be used to label new samples.
These samples will later be classified as Fall (F) or Not Fall (NF), corre-
spondingly.

Let us assume the existence of a data set with TS recorded from different
users performing ADLs but also with real falls. For all these TS we apply
the same event detection and features extraction as explained in the previous
sub-sections (including the threshold automatic learning and the scaling and
standardization of the data); in doing so, we obtain a new data set with the
features extracted from the fall window of each of the detected peaks, a label
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is also given to the data as we a priory know whether each peak comes from
a fall event or not.

With this new data set we learn a two-class classifier. Actually, we test
two different solutions: a Two-Class Support Vector Machine (TCSVM) [66,
67] and a feed-forward Neural Network (TCNN) [66, 69]. The use of SVM
and NN for this kind of task has been reported profusely in the literature
[45, 54, 55, 29, 48, 25, 49]. However, the main difference is that this solution is
specific for each type of fall, and that it is intended to classify samples that
have been already detected as anomalies. Again, as before, the instances
must be z-scored, the values of the mean and standard deviation are stored
for their use as tcmean and tcstd, respectively.

3.6. Experimentation setup

The following rules apply in the experimentation design:

• The experiments are instantiated independently for each data set. There-
fore, we do not mix the data from users belonging to different data sets.

• The experiments are instantiated independently for each user and fall
type.

The experimentation is split in two main parts: the first one is devoted
to learning the generalized TCSVM/TCNN model, while the second aims to
evaluate the complete solution. For the first stage, called the Two-Class ex-
perimentation, we are going to measure the performance of the TCSVM and
TCNN using 10-fold cross validation. For the second stage, called the Com-
plete Solution Experimentation, we are going to measure the performance
of the OCSVM, the CENTROID and also the performance of the complete
solution.

The description of the two stages is included next. For the sake of com-
prehension, these descriptions are presented as algorithms because we do
think it is the best way to explain how to evaluate each part of the proposal,
and to also contribute to the explanation of the whole solution. In all the
cases, the performance of the methods is measured using the Sensitivity and
Specificity.

The Two-class experimentation is divided in three main parts: i) initial-
ization of data sets, peak thresholds, and walking statistics, ii) evaluation of
a peak detection method and iii) two-class classifier learning and evaluation.
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Result: TCdatasetfd,u, thd,u
1 , walkmeand,u, walkstdd,u ∀d, f, u

for each data set d do
for each fall type f do

for each user u do

TCdatasetfd,u ← Φ;

temp ← Retrieve all the walking TSwalking
u for user u;

Compute walkmeanu and walkstdu for temp;
Compute thu

1 follownig Eq. 2;

end

end

end
Algorithm 1: Initialization of data sets, peak thresholds, and
walking statistics. TCdatasetfd,u is the data to train and test the Two-
Class classifiers, thu

1 is the threshold used in peak detection, walkmeanu

and walkstdu are the mean and standard deviation measured on the walk-
ing TS.

Each of these parts is described in Algorithms from 1 to 3, correspondingly.
Stages ii) and iii) will produce results to be shown in the results section.

The second experimentation part (the Complete Solution Experimenta-
tion) evaluates how the complete method performs for each of the partici-
pants included in the data sets. The proposed solution is compared with a
base-line method: the on-wrist Abbate et al method proposed in [45] and
adapted to the wrist in [64]. Again, the explanations of this experimentation
are presented in three algorithms: Algorithm 4 split the TS from a partici-
pant in train and test, Algorithm 5 is devoted to learn the anomaly detector
(the OCSVM or the CENTROIDS) and Algorithm 6 evaluates the perfor-
mance of the anomaly detection together with the best Two-Class model
found so far. The two latter algorithms produce numerical outcome that is
going to be shown in the results section.

4. Results and discussion

The results are grouped according to the defined experimentation; how-
ever, and for the sake of clarity, three subsections are included to show these
results. The next subsection deals with the two-class model learning, in-
cluding the performance of the TCSVM and TCNN. The results from the
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Result: TCdatasetfd,u, tcmeanu, tcstdu, TP f
d,u, TN f

d,u, FP f
d,u and

FN f
d,u ∀d, f, u

for each data set d do
for each fall type f do

for each user u do

tempDTSf
d,u ← Φ;

for each TSd,u do
for each detected peak in TSd,u do

Determine the fall window;
Compute the feature set;

Add instance to tempDTSf
d,u;

end

Update the TP f
d,u, TN f

d,u, FP f
d,u and FN f

d,u counters;

end

Compute tcmeanu and tcstdu from tempDTSf
d,u;

tempDTSf
d,u ←z-score(tempDTSf

d,u, tc−meanu, tc− stdu
);

Add tempDTSf
d,u to TCdatasetfd,u;

end

end

end
Algorithm 2: Evaluation of the peak detection method. This
algorithm updates TCdatasetfd,u data set, computes the tcmean and tcstd
for each tuple < d, f, u > and evaluates the peak detection method for
each fall type by updating the TP, TN, FP and FN counters.
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Result: TCMODELf
d,u, TCPARAMSf

d,u, RESULTSf
d,u ∀d, f, u

for each data set d do
for each fall type f do

for each user u do

Retrieve TCdatasetfd,U ∀U ! = u;

Perform 10-fold cv to obtain the best TCPARAM f
d,u;

RESULTSf
d,u ← results of best model;

Train TCMODELf
d,u with TCPARAM f

d,u and the

complete data set;

end

end

end
Algorithm 3: Two-class classifier learning and evaluation. The
Two-Class Model (TCMODELf

d,u) will be used later in the second part

of the experimentation. TCPARAM f
d,u and RESULTSf

d,u will be shown
in the results section.

Result: trainf
d,u, testfd,u ∀d, f, u

for each data set d do
for each fall type f do

for each user u do

begin Split all the TSf
d,u in two: train and test

testfd,u includes all the falls plus 10% of ADL;

trainf
d,u includes the remaining TS;

end

end

end

end
Algorithm 4: The Complete Solution Experimentation: splitting
the TS from a participant in train and test.
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Result: OCMODELd, uf , OCPARAM f
d,u, ocmmeanf

d,u, ocmstdfd,u,

RESULTSf
d,u ∀d, f, u

for each data set d do
for each fall type f do

for each user u do
Retrieve th1, walkmeand,u, walkstdd,u;

Retrieve trainf
d,u;

for each TS in train do
ocDTS ← Φ;
zscore TS with walkmeand,u and walkstdd,u;
for each detected peak in TS do

Determine the fall window;
Compute the feature set;
Add instance to ocDTS;

end

end

Compute ocmeanf
d,u and ocstdfd,u from ocDTS;

ocDTS ← zscore(ocDTS, ocmeanf
d,u, ocstdfd,u);

(OCPARAMSf
d,u, RESULTSf

d,u)← Find the best
parameter set for the one-class model using 10-fold cv on
ocDTS;

Train the OCMODELf
d,u with the OCPARAMSf

d,u and

ocDTS;

end

end

end
Algorithm 5: The Complete Solution Experimentation: learn-
ing the anomaly detection method. The One-Class model
OCMODELf

d,u will be used in the next algorithm, as well as ocmeanf
d,u

and ocstdfd,u. OCPARAMSf
d,u and RESULTSf

d,u will be depicted in the
results section.
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Result: RESULTSf
d,u ∀d, f, u

for each data set d do
for each fall type f do

for each user u do
Retrieve th1, walkmeand,u, walkstdd,u;

Retrieve OCMODELf
d,u, ocmeanf

d,u, ocstdfd,u;

Retrieve TCMODELf
d,u, tcmeanf

d,u, tcstdfd,u;

Retrieve testfd,u;

for each TS in test do
zscore TS with walkmeand,u and walkstdd,u;
for each detected peak in TS do

Determine the fall window;
Compute the feature set → features;

oc feats←zscore features with ocmeanf
d,u and

ocstdfd,u ;

if OCMODELf
d,u(oc feats) is anormaly then

tc feats← zscore features with tcmeanf
d,u and

tcstdfd,u;

Update RESULTSf
d,u with

TCMODELf
d,f (tc feats);

end

end

Update RESULTSf
d,u when no alarm is found for TS;

end

end

end

end
Algorithm 6: The Complete Solution Experimentation: evalu-
ation of the complete solution. This stage includes the event de-
tection, the anomaly detection and the Two-Class classification steps for
each user. The RESULTSf

d,u will be shown in the results section.
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solution experimentation are split in two, the first one showing the results
from the learning of the one-class models (Subsect. 4.2), while the second one
is devoted to depicting the performance of the complete solution (Subsect.
4.3). Each subsection includes the discussion on the results.

4.1. Two-class experimentation’s results

For the sake of readability, only the forward fall results are included in this
section (Table 1 for the TCSVM and Table 2 for the TCNN); the results for
the other types of fall are available under request for interested readers. These
tables show the best parameter subset for each participant, the mean and
standard deviation of the statistical measurements ROC, Sensitivity (Sens)
and the Specificity (Spec) for each data set and participant. They also include
the global mean, median and standard deviation among the participants for
each data set.

In general, the TCNN shows better performance than the TCSVM, sug-
gesting that the extracted features are not clearly divisible by boundaries.
Moreover, the performance of the models when working with participants
from the Özdemir & Barshan data set are better than when using the UMAFall.
This comparison is interesting, suggesting that the Özdemir & Barshan’s
participants ran their ADLs and fall simulations systematically, while the
UMAFall’s participants were free to perform the ADLs and simulations more
freely.

Unfortunately, the experimentation results can not be directly compared
to those obtained in other research studies because of their considerably
different experimentation design; however, what is remarkable is that the
models are very robust independently of the participant within each data
set, especially for the TCNN. This means that the two models performed
similarly for all the individuals, with a highly small value of the standard
deviation.

4.2. Performance of the one-class classifiers

This section shows the results from the learning of the one-class models
for each participant and data set. Due to the poor OCSVM performance,
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Table 1: Forward Falls results for the TCSVM experimentation. The acronym ID stands
for participant ID.

UMAFall data set

ID sigma C
ROC Sens Spec

mean std mean std mean std

1 0.650 3.25 0.8190 0.1602 0.7350 0.2212 0.7700 0.2111
2 0.650 3.00 0.8718 0.0913 0.7200 0.1932 0.8650 0.1180
3 0.650 3.00 0.8460 0.1423 0.7150 0.1857 0.8300 0.1767
4 0.700 4.50 0.8417 0.1316 0.7350 0.2310 0.8067 0.2443
9 0.800 3.25 0.8700 0.1436 0.8400 0.2066 0.7600 0.2196
16 0.775 3.00 0.9222 0.1213 0.8000 0.1721 0.8250 0.1942
17 0.800 3.00 0.8692 0.1216 0.8950 0.1739 0.7550 0.2061

mean 0.8628 0.7771 0.8017
median 0.8692 0.7350 0.8067
std 0.0325 0.0696 0.0414

Özdemir & Barshan data set

ID sigma C
ROC Sens Spec

mean std mean std mean std

1 0.650 5.00 0.9428 0.0140 0.9039 0.0195 0.8791 0.0360
2 0.650 3.00 0.9429 0.0152 0.8997 0.0313 0.8842 0.0160
3 0.650 3.00 0.9368 0.0158 0.8975 0.0244 0.8696 0.0318
4 0.650 3.25 0.9390 0.0155 0.9021 0.0271 0.8652 0.0207
5 0.650 3.25 0.9416 0.0098 0.9006 0.0183 0.8695 0.0263
6 0.650 3.50 0.9414 0.0074 0.9100 0.0261 0.8700 0.0273
7 0.650 3.25 0.9374 0.0148 0.8953 0.0220 0.8623 0.0194
8 0.650 3.00 0.9391 0.0118 0.9019 0.0319 0.8747 0.0218
9 0.650 6.00 0.9408 0.0129 0.9027 0.0160 0.8687 0.0289
10 0.650 3.25 0.9390 0.0147 0.9039 0.0266 0.8682 0.0245
11 0.650 3.00 0.9386 0.0163 0.8971 0.0225 0.8689 0.0322
12 0.650 4.50 0.9411 0.0148 0.8960 0.0268 0.8808 0.0289
13 0.650 3.25 0.9364 0.0253 0.8967 0.0358 0.8700 0.0311
14 0.650 3.75 0.9419 0.0167 0.9004 0.0222 0.8753 0.0319
15 0.650 5.00 0.9388 0.0164 0.9021 0.0238 0.8774 0.0408
16 0.650 3.00 0.9386 0.0089 0.8975 0.0183 0.8648 0.0188
17 0.650 3.00 0.9353 0.0195 0.9058 0.0200 0.8593 0.0260

mean 0.9393 0.9006 0.8706
median 0.9390 0.9005 0.8696
std 0.0022 0.0040 0.0066
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Table 2: Results for the Two-class experimentation using a TCNN classifier; Forward Falls
results. The acronym ID stands for participant ID.

FORWARD FALLS
UMAFall data set

ID size decay
ROC Sens Spec

mean std mean std mean std

1 10.0000 2.0000 0.9220 0.1315 0.7550 0.3122 0.9200 0.1033
2 20.0000 0.8750 0.9150 0.0782 0.8800 0.1398 0.8650 0.1180
3 10.0000 1.1250 0.9290 0.0745 0.8300 0.2003 0.8750 0.1087
4 10.0000 0.7500 0.9460 0.0962 0.8600 0.1350 0.8833 0.2139
9 10.0000 0.1250 0.9207 0.0846 0.9000 0.1054 0.8700 0.1989
16 15.0000 0.1250 0.9222 0.0960 0.8667 0.1721 0.8500 0.1610
17 10.0000 0.7500 0.9533 0.0898 0.8950 0.1462 0.9200 0.1687

mean 0.9297 0.8552 0.8833
median 0.9222 0.8667 0.8750
std 0.0143 0.0501 0.0270

Özdemir & Barshan data set

ID size decay
ROC Sens Spec

mean std mean std mean std

1 15.0000 0.1250 0.9534 0.0111 0.9151 0.0250 0.8630 0.0350
2 25.0000 0.1250 0.9551 0.0118 0.9127 0.0238 0.8726 0.0162
3 25.0000 0.1250 0.9508 0.0126 0.9136 0.0222 0.8587 0.0249
4 10.0000 0.1250 0.9522 0.0122 0.9183 0.0242 0.8583 0.0233
5 25.0000 0.2500 0.9519 0.0107 0.9156 0.0225 0.8613 0.0286
6 25.0000 0.1250 0.9551 0.0073 0.9253 0.0204 0.8666 0.0246
7 20.0000 0.1250 0.9502 0.0074 0.9024 0.0195 0.8636 0.0164
8 20.0000 0.1250 0.9540 0.0102 0.9134 0.0234 0.8685 0.0208
9 25.0000 0.2500 0.9515 0.0064 0.9209 0.0203 0.8542 0.0189
10 15.0000 0.1250 0.9502 0.0109 0.9193 0.0295 0.8606 0.0275
11 20.0000 0.1250 0.9525 0.0105 0.9079 0.0227 0.8648 0.0243
12 20.0000 0.2500 0.9522 0.0109 0.9080 0.0244 0.8671 0.0357
13 15.0000 0.1250 0.9502 0.0144 0.9121 0.0237 0.8576 0.0299
14 25.0000 0.2500 0.9548 0.0108 0.9148 0.0279 0.8678 0.0321
15 25.0000 0.1250 0.9524 0.0123 0.9135 0.0265 0.8603 0.0429
16 25.0000 0.2500 0.9489 0.0098 0.9151 0.0192 0.8525 0.0189
17 20.0000 0.1250 0.9463 0.0144 0.9086 0.0246 0.8551 0.0361

mean 0.9518 0.9138 0.8619
median 0.9520 0.9135 0.8610
std 0.0024 0.0056 0.0057
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the results for this one-class classifier have not been included. On the other
hand, the CENTROIDS classifier performed really well, especially for the
forward fall type (see Table 3). The performance of the CENTROIDS is far
from ideal but might work well in this anomaly detection: high Sensitivity
and low Specificity induces high percentage of false alarms. Nevertheless, the
low rate filtering can be enough to improve the overall performance of the
solution. This will be analyzed in the next subsection.

4.3. Results for the solution experimentation

This last section focuses on the evaluation of the complete solution; the
main question is whether the one-class stage collaborates in an ulterior en-
hancement of the two-class classifier. The obtained results will be compared
with the base-line solution proposed in [45, 48], referred as on-wrist Abbate.
Because of the poor results of the OCSVM and the better performance of
the TCNN, only the results for the combination of the CENTROIDS and the
TCNN are included. Table 4 and Table 5 depict the figures obtained with
the UMA Fall and the Özdemir & Barshan data sets, respectively.

What is most remarkable is that the one-class filtering does not improve
the general performance of the two-class method but for the forward falls.
In this case, the CENTROIDS + TCNN is better than the TCNN alone. In
general, the outcome from the combination of these two techniques is similar
to that of the on-wrist Abbate, but with a small reduction of the number
of false alarms but at the price of a worse alarm detection. This finding,
a so simple classifier as the CENTROIDS helps the TCNN, suggests that
the filter might be specific to each type of fall, and that this stage would
help the final classifier filtering some conflicting cases. As shown in [50], the
introduction of online learning to enhance the performance of the anomaly
filters or the two-class classifiers can also empower the final results.

Moreover, it is probable that if the learning of the two-class classifier
uses data from participants that behave similarly to the current user, the
classification results will be enhanced. This idea has been also proposed
in [50]; however, the difficulty relies on determining the participants with
similar behavior, that is, how to measure similarities in the behavior of two
participants.
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Table 3: Performance of the One-Class classifiers. Results for all the types of fall obtained
from learning the CENTROIDS classifier. ID stands for the participant ID within each
data set.

UMAFall data set

FORWARD FALLS BACKWARD FALLS LATERAL FALLS

ID
Sens Spec Sens Spec Sens Spec

mean / std mean / std mean / std mean / std mean / std mean / std

1 1.000 / 0.000 0.000 / 0.000 1.000 / 0.000 0.000 / 0.000 1.000 / 0.000 0.000 / 0.000
2 1.000 / 0.000 0.000 / 0.000 1.000 / 0.000 0.000 / 0.000 1.000 / 0.000 0.000 / 0.000
3 1.000 / 0.000 0.200 / 0.447 1.000 / 0.000 0.200 / 0.447 1.000 / 0.000 0.200 / 0.447
4 1.000 / 0.000 0.000 / 0.000 1.000 / 0.000 0.000 / 0.000 1.000 / 0.000 0.000 / 0.000
9 1.000 / 0.000 0.000 / 0.000 1.000 / 0.000 0.000 / 0.000 1.000 / 0.000 0.000 / 0.000
16 1.000 / 0.000 0.000 / 0.000 0.955 / 0.015 0.000 / 0.000 1.000 / 0.000 0.000 / 0.000
17 1.000 / 0.000 0.000 / 0.000 - / - - / - 1.000 / 0.000 0.000 / 0.000

mn 1.0000 0.0286 0.9925 0.0333 1.0000 0.0286
mdn 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
std 0.0000 0.0756 0.0184 0.0816 0.0000 0.0756

Özdemir & Barshan data set

FORWARD FALLS BACKWARD FALLS LATERAL FALLS

ID
Sens Spec Sens Spec Sens Spec

mean / std mean / std mean / std mean / std mean / std mean / std

1 0.936 / 0.023 0.156 / 0.142 0.980 / 0.007 0.156 / 0.142 0.967 / 0.011 0.156 / 0.142
2 0.992 / 0.005 0.099 / 0.111 0.980 / 0.007 0.099 / 0.111 0.916 / 0.000 0.099 / 0.111
3 0.981 / 0.008 0.073 / 0.098 1.000 / 0.000 0.073 / 0.098 1.000 / 0.000 0.073 / 0.098
4 0.984 / 0.021 0.141 / 0.159 0.950 / 0.062 0.141 / 0.159 0.989 / 0.016 0.141 / 0.159
5 0.952 / 0.003 0.068 / 0.079 0.974 / 0.005 0.068 / 0.079 0.947 / 0.005 0.068 / 0.079
6 0.819 / 0.063 0.166 / 0.204 0.740 / 0.092 0.166 / 0.204 0.950 / 0.017 0.166 / 0.204
7 0.979 / 0.000 0.072 / 0.091 0.998 / 0.004 0.072 / 0.091 1.000 / 0.000 0.072 / 0.091
8 0.988 / 0.006 0.016 / 0.052 0.988 / 0.004 0.016 / 0.052 1.000 / 0.000 0.016 / 0.052
9 0.951 / 0.015 0.107 / 0.157 0.912 / 0.030 0.107 / 0.157 0.878 / 0.012 0.107 / 0.157
10 0.990 / 0.000 0.034 / 0.056 1.000 / 0.000 0.034 / 0.056 0.988 / 0.006 0.034 / 0.056
11 1.000 / 0.000 0.093 / 0.070 1.000 / 0.000 0.093 / 0.070 1.000 / 0.000 0.093 / 0.070
12 0.986 / 0.007 0.131 / 0.091 0.990 / 0.003 0.131 / 0.091 0.906 / 0.027 0.131 / 0.091
13 0.991 / 0.004 0.223 / 0.170 0.930 / 0.025 0.223 / 0.170 0.951 / 0.016 0.223 / 0.170
14 0.932 / 0.006 0.062 / 0.073 0.978 / 0.003 0.062 / 0.073 1.000 / 0.000 0.062 / 0.073
15 0.980 / 0.004 0.018 / 0.038 1.000 / 0.000 0.018 / 0.038 1.000 / 0.000 0.018 / 0.038
16 1.000 / 0.000 0.077 / 0.090 1.000 / 0.000 0.077 / 0.090 1.000 / 0.000 0.077 / 0.090
17 0.994 / 0.006 0.043 / 0.072 0.990 / 0.000 0.043 / 0.072 1.000 / 0.000 0.043 / 0.072

mn 0.9703 0.0894 0.9646 0.0894 0.9705 0.0894
mdn 0.9855 0.0756 0.9891 0.0756 0.9949 0.0756
std 0.0455 0.0554 0.0654 0.0554 0.0404 0.0554
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Table 4: Solution experimentation. Comparison results of the CENTROIDS+TCNN vs.
the on-wrist Abbate solution in [45] when evaluated with the UMAFall data set. ND
means the method did not detect any peak for the participant, while - means there were
no falls for this type of fall and participant.

New Features & feature selection + CENTROIDS + TCNN

FORWARD FALLS BACKWARD FALLS LATERAL FALLS

ID
Sens Spec Sens Spec Sens Spec

mean / std mean / std mean / std mean / std mean / std mean / std

1 1.000 / 0.000 1.000 / 0.000 1.000 / 0.000 0.857 / 0.378 1.000 / 0.000 0.714 / 0.488
2 1.000 / 0.000 1.000 / 0.000 0.600 / 0.000 0.333 / 0.577 0.666 / 0.000 0.666 / 0.577
3 1.000 / 0.000 0.800 / 0.447 0.428 / 0.000 0.800 / 0.447 0.500 / 0.000 0.800 / 0.447
4 1.000 / 0.000 1.000 / 0.000 0.666 / 0.000 1.000 / 0.000 0.428 / 0.000 0.500 / 0.500
9 0.750 / 0.000 1.000 / 0.000 0.428 / 0.000 0.250 / 0.500 0.857 / 0.000 0.500 / 0.577
16 0.900 / 0.000 0.733 / 0.335 0.450 / 0.000 0.550 / 0.416 0.882 / 0.000 0.783 / 0.333
17 0.714 / 0.000 0.750 / 0.500 - / - - / - 0.750 / 0.000 0.750 / 0.500

mn 0.909 0.898 0.596 0.632 0.726 0.674
mdn 1.000 1.000 0.525 0.675 0.750 0.714
std 0.127 0.129 0.222 0.302 0.208 0.126

on-wrist Abbate et al solution

FORWARD FALLS BACKWARD FALLS LATERAL FALLS

ID
Sens Spec Sens Spec Sens Spec

mean / std mean / std mean / std mean / std mean / std mean / std

1 0.800 / 0.000 0.600 / 0.547 0.833 / 0.000 0.200 / 0.447 0.750 / 0.000 0.800 / 0.447
2 ND / ND ND / ND ND / ND ND / ND ND / ND ND / ND
3 0.750 / 0.000 0.400 / 0.418 0.750 / 0.000 0.500 / 0.500 0.750 / 0.000 0.600 / 0.547
4 ND / ND ND / ND ND / ND ND / ND ND / ND ND / ND
9 ND / ND ND / ND ND / ND ND / ND ND / ND ND / ND
12 ND / ND ND / ND 0.481 / 0.055 0.888 / 0.333 ND / ND ND / ND
16 0.681 / 0.000 0.500 / 0.500 0.857 / 0.000 0.857 / 0.378 0.882 / 0.000 0.785 / 0.393
17 ND / ND ND / ND - / - - / - ND / ND ND / ND

mn 0.744 0.500 0.731 0.612 0.794 0.729
mdn 0.750 0.500 0.792 0.679 0.750 0.786
std 0.059 0.100 0.172 0.326 0.076 0.112

5. Conclusion

This study proposes a three-stage process to detect fall events using a
3DACC wearable. The main contributions of this research are the event de-
tection method and the combination of user-centred models and generalized
models working together in order to detect the falls. The experimentation
has been focused on three types of falls: forward falls, backward falls and
lateral falls. A first stage is the event detection that identifies the relevant
peaks of activity; for each detected peak several features are computed. In-
terestingly, the thresholds in this event detection are specifically calculated
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Table 5: Solution experimentation. Comparison results of the CENTROIDS+TCNN vs.
the on-wrist Abbate solution in [45] when evaluated with the Özdemir & Barshan data
set.

New Features & feature selection + CENTROIDS + TCNN

FORWARD FALLS BACKWARD FALLS LATERAL FALLS

ID
Sens Spec Sens Spec Sens Spec

mean / std mean / std mean / std mean / std mean / std mean / std

1 0.765 / 0.007 0.817 / 0.141 0.778 / 0.003 0.882 / 0.159 0.763 / 0.000 0.950 / 0.158
2 0.836 / 0.005 0.791 / 0.115 0.803 / 0.005 0.917 / 0.073 0.716 / 0.000 0.845 / 0.087
3 0.834 / 0.003 0.978 / 0.044 0.845 / 0.000 1.000 / 0.000 0.800 / 0.000 0.990 / 0.031
4 0.873 / 0.005 0.938 / 0.068 0.802 / 0.052 0.558 / 0.194 0.820 / 0.016 0.723 / 0.206
5 0.801 / 0.003 0.915 / 0.096 0.854 / 0.003 0.899 / 0.087 0.828 / 0.005 0.909 / 0.096
6 0.579 / 0.035 0.768 / 0.128 0.559 / 0.014 0.872 / 0.154 0.360 / 0.000 0.983 / 0.052
7 0.867 / 0.000 0.922 / 0.089 0.903 / 0.000 0.885 / 0.088 0.880 / 0.000 0.981 / 0.038
8 0.798 / 0.006 0.846 / 0.118 0.827 / 0.000 0.879 / 0.097 0.768 / 0.000 0.843 / 0.117
9 0.751 / 0.008 0.956 / 0.072 0.838 / 0.030 0.959 / 0.067 0.802 / 0.007 0.956 / 0.072
10 0.768 / 0.000 0.976 / 0.049 0.833 / 0.000 1.000 / 0.000 0.880 / 0.000 0.963 / 0.082
11 0.860 / 0.000 0.885 / 0.096 0.837 / 0.000 0.990 / 0.031 0.819 / 0.000 0.911 / 0.112
12 0.920 / 0.007 0.776 / 0.072 0.901 / 0.003 0.703 / 0.051 0.788 / 0.022 0.794 / 0.092
13 0.946 / 0.004 0.950 / 0.085 0.891 / 0.022 0.980 / 0.063 0.733 / 0.005 0.980 / 0.063
14 0.756 / 0.003 0.861 / 0.086 0.786 / 0.000 0.791 / 0.104 0.762 / 0.000 0.821 / 0.142
15 0.857 / 0.004 0.933 / 0.161 0.946 / 0.000 0.938 / 0.080 0.879 / 0.000 0.924 / 0.069
16 0.965 / 0.000 0.913 / 0.132 0.868 / 0.000 0.924 / 0.089 0.842 / 0.000 0.965 / 0.081
17 0.880 / 0.006 0.875 / 0.094 0.906 / 0.000 0.961 / 0.068 0.861 / 0.000 0.945 / 0.077

mn 0.831 0.893 0.838 0.891 0.784 0.909
mdn 0.847 0.914 0.842 0.921 0.811 0.935
std 0.092 0.068 0.086 0.119 0.124 0.080

on-wrist Abbate et al solution

FORWARD FALLS BACKWARD FALLS LATERAL FALLS

ID
Sens Spec Sens Spec Sens Spec

mean / std mean / std mean / std mean / std mean / std mean / std

1 0.611 / 0.000 0.796 / 0.151 0.833 / 0.000 0.808 / 0.117 0.816 / 0.000 0.929 / 0.079
2 0.847 / 0.000 0.929 / 0.086 0.804 / 0.000 0.957 / 0.060 0.806 / 0.000 0.991 / 0.026
3 0.744 / 0.000 0.916 / 0.090 0.791 / 0.000 0.976 / 0.055 0.887 / 0.000 0.964 / 0.060
4 0.858 / 0.000 0.900 / 0.179 0.826 / 0.000 0.842 / 0.217 0.783 / 0.000 0.954 / 0.108
5 0.804 / 0.000 0.851 / 0.111 0.728 / 0.000 0.873 / 0.040 0.766 / 0.000 0.895 / 0.076
6 0.777 / 0.000 0.773 / 0.127 0.844 / 0.000 0.912 / 0.083 0.850 / 0.000 0.938 / 0.078
7 0.694 / 0.000 0.949 / 0.045 0.781 / 0.000 0.980 / 0.041 0.869 / 0.000 0.960 / 0.069
8 0.648 / 0.000 0.877 / 0.106 0.689 / 0.000 0.833 / 0.102 0.777 / 0.000 0.904 / 0.092
9 0.800 / 0.000 0.864 / 0.067 0.863 / 0.000 0.870 / 0.056 0.824 / 0.000 0.880 / 0.066
10 0.814 / 0.000 0.978 / 0.046 0.903 / 0.000 0.978 / 0.046 0.847 / 0.000 0.954 / 0.049
11 0.847 / 0.000 0.988 / 0.035 0.895 / 0.000 1.000 / 0.000 0.718 / 0.000 0.977 / 0.070
12 0.800 / 0.000 0.848 / 0.114 0.771 / 0.000 0.892 / 0.095 0.783 / 0.000 1.000 / 0.000
13 0.875 / 0.005 0.904 / 0.083 0.854 / 0.000 0.935 / 0.118 0.666 / 0.000 0.929 / 0.063
14 0.833 / 0.000 0.877 / 0.089 0.833 / 0.000 0.910 / 0.064 0.683 / 0.000 0.912 / 0.103
15 0.858 / 0.000 0.945 / 0.048 0.895 / 0.000 0.962 / 0.048 0.758 / 0.000 0.960 / 0.074
16 0.759 / 0.000 0.949 / 0.075 0.903 / 0.000 0.971 / 0.065 0.902 / 0.000 0.956 / 0.077
17 0.827 / 0.000 0.971 / 0.048 0.953 / 0.000 0.971 / 0.048 0.932 / 0.000 0.961 / 0.051

mn 0.780 0.908 0.834 0.929 0.804 0.946
mdn 0.810 0.910 0.839 0.947 0.795 0.956
std 0.063 0.058 0.071 0.054 0.076 0.034
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for each user. The second stage includes a one-class classifier that aims to
filter the peaks that come from ADLs, while diverting those uncommon pat-
terns to a two-class classifier. This latter stage is the responsible of labelling
the fall events.

The experimentation included two publicly available data sets. The re-
sults show that for forward falls the one-class filtering enhances the per-
formance of the TCNN. This finding suggests that each type of fall would
eventually need a very specific filter, reinforcing the conclusion from [50]
about the need of online learning solutions for both the one-class methods
and the two-class classifiers: the more adapted to the current user the better
the solution is. The results also suggest that it might be interesting to obtain
a more accurate two-class classifier using data only from subjects with simi-
lar activity levels; the use of online learning might also improve the general
performance in the classification stages.
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