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Nahuel Costaa and Jesús Fernándezb and Inés Cousoc and Luciano Sáncheza
aUniversidad de Oviedo, Departamento de Informática. [UO251652,luciano]@uniovi.es
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Abstract

Logs of arrhythmia episodes in patients with
pacemakers are used to estimate the tempo-
ral progression of atrial arrhythmia. In or-
der to attain an early detection, a stream of
dates and episode lengths are fed to an array
of detectors, each of which is responsive to a
narrow range of arrhythmias. The outputs of
these detectors are organized on a projection
map, used by the specialist to assess the risk
in the evolution of the patient. Each of the
mentioned detectors is a Recurrent Neural
Network(RNN), that is in turn the discrim-
inating element of a Generative Adversarial
Network (GAN) that has been trained to gen-
erate temporal sequences of values of the de-
grees of truth that the arrhythmia episodes
are not isolated.

Keywords: Heart Disease, Generative Ad-
versarial Network, Time Series

1 Introduction

Atrial fibrillation (AF) is an abnormal heartbeat, com-
mon in the elderly, that sometimes progresses from
paroxysmal arrhythmia (episodes of arrhythmia that
end spontaneously) to persistent arrhythmia (episodes
that last more than seven days and do not end without
external intervention) or permanent arrhythmia (un-
interrupted episodes). It is common for paroxysmal
arrhythmia to progress to persistent or permanent ar-
rhythmia [7]. There are numerous risk factors that
influence the progress [8], and early diagnosis is bene-
ficial for optimal treatment.

The treatment of AF often involves the use of pace-
makers or ICDs (Implantable Cardiac Defibrillators).
These devices keep a record of the dates and lengths
of the episodes, and (to a certain extent) intracardiac

electrograms (iECGs) of these. Although surface elec-
trograms are a potential source of information about
the evolution of the arrhythmia [6], the morphology of
the heartbeat in iECGs is lost in the high-pass filtering
at the ICD electrode and the only relevant information
is kept in the instantaneous frequencies of atrium and
ventricle (see Figure 1). On the other hand, an early
diagnosis is needed, thus the working records are nec-
essarily short (see Figure 2), and it may well happen
that the number of available episodes for a given pa-
tient is not large enough to fit a non-trivial model.
This is aggravated by the fact that the data is non-
stationary and it is precisely the change in the prop-
erties of this data (from paroxysmal to permanent)
that we want to predict on the basis of a short sam-
ple of data. Additional complications exist, because
the algorithm that the pacemaker uses for determin-
ing episode lengths is not reliable and clusters of short
episodes are wrongly reported sometimes instead of
long AF episodes. All in all, sequences of episode
lengths cannot be used isolatedly; a model that jointly
depends on both the lenghts and the time lapses be-
tween episodes is needed.

Unfortunately, although the progression of AF is a
complex process that depends on many different fac-
tors, each patient is associated to only a few tens of
pacemaker records. There are not many different tech-
niques for classifying short time series [5] and, to the
best of our knowledge, a model that is simple enough
to be learnt from a small set of data while at the same
time it is able to extrapolate the break point between
paroxistic and permanent AF has not been found yet.

Unlike this kind of model, this paper follows a different
approach. A set of dynamical models that are able to
capture the key features of the different AF progres-
sions will be used, but these models will not be fitted
to the data, but used to enlarge the training sample.
An array of learning detectors of AF are trained with
model-generated data, so that each of the detectors is
only exposed to arrhythmias of a certain type. When



Figure 1: Top: Surface ECG (taken from reference
[1]). Bottom: Intracardiac ECG. The morphology of
the surface ECG is not kept in the iECG, where there
is only one peak for each heartbeat.

this array is fed with pacemaker records from a real
patient, it is expected that only a few detectors will
recognize that the patient’s arrhythmia is the same
type as the arrhythmia with which they were trained.

Key to the success of this idea is the specificity of the
detectors, that must only react to episodes matching a
compact set of clinical situations. In this paper it was
considered that detectors obtained from Generative
Adversarial Networks (GANs) can be highly specific.
In particular, two recurrent neural networks will be
used as generator and discriminator, and trained until
the generator is able to produce realistic sequences of
arrhythmia episodes and the discriminator efficiently
separates these sequences from “actual” sequences (in
this case, “actual” series are synthesized with the dy-
namical models mentioned before).

In any case, when these detectors are fed with insuf-
ficient data (short pacemaker records) it is expected
that many of them recognize the arrhythmia as its
own, thus the output of the set of detectors will not
be too specific. It is also proposed that these detectors

are organized in a map [4]. If detectors tuned to ar-
rhythmias with similar properties are adjacent in the
map, the output of the map can be regarded as a pro-
jection of the available data on the parameter space of
the dynamical models. This projection provides a de-
piction of the parameters of the model that best fit the
patient and also gives insight about the narrowness of
the estimation that is possible with the available data.

The structure of this paper is as follows: in Section
2, pacemakers and the dynamical model of the AF
episodes are described. In Section 3, the GAN used
as a detector is introduced and the map arrangement
described. In Section 4 some preliminary results about
the specificity of the detectors and the application of
this technique to actual patients are given. The paper
concludes in Section 5 with a discussion about the po-
tential advantages and drawbacks of this idea and the
areas of further development.

2 A model of pacemaker-detected
arrhythmia events

A surface electrogram (ECG) is the representation of
cardiac electrical activity from two electrodes placed
on the surface of the body which are located apart from
the heart (see Figure 1, upper part). With this type of
derivation, all kinds of electrical activity are recorded,
including non-cardiac electrical activity. On the con-
trary, an intracardiac electrocardiogram (iECG) (re-
call Figure 1, lower part) is the representation of the
potential difference between two points in contact with
the myocardium in space over time. iECGs are ob-
tained from pacemakers or ICDs logs and are less in-
formative. The purpose of this study is to anticipate
arrhythmia progress on the basis of these pacemakers
or ICDs logs.

Pacemakers do not store a continuous stream of data,
but there are certain events that trigger that data is
recorded. The primary purpose of a pacemaker is to
release an electrical current between two points to ac-
tivate the cardiac cells and therefore facilitate cardiac
contraction. Depending on the electrical signal that
is measured through the leads, the pacemaker will re-
spond in order to stimulate, inhibit, or change its op-
eration mode. In particular, in the presence of cardiac
arrhythmia, if a patient experiences a high intrinsic
atrial heart rate the pacemaker does not try to match
the ventricle to the atrial rate. Instead, the pace-
maker changes its operation mode and uses a different
algorithm for generating the excitation of the ventri-
cle. This process is called Automatic Mode Switching
(AMS) [3]. AMS events are stored in the pacemaker
memory and are used to mark the beginning of AF
episodes (recall Figure 2, upper part). The lengths of



Figure 2: Top: Dates of pacemaker mode changes dur-
ing a year (beginning of AF episodes, see also Figure
1). Bottom: Recorded length of the AF episodes.

the AF episodes are stored along with the AMS dates
in the pacemaker memory.

Although AMS is a simple concept, the mode switch-
ing depends on a large number of variables that depend
on the patient. It is possible that the peacemaker al-
gorithm prematurely concludes that the AF event has
ended, only to discover past a few seconds that an AF
is still taking place. In this case, a second AMS event
is generated and the pacemaker mode is restored. This
has not relevant consequences for the efficiency of the
device, but the stored information is inaccurate, as
there may be cases where a cluster of short arrhyth-
mias is reported instead of a long event.

2.1 Dynamical model of AMS events

A simplified model of the temporal sequence of AMS
events associated to a patient is depicted in Figure 3.
This is a continuous time Markov model with three
states: (1) normal/out of arrhythmia, (2) arrhythmia
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Figure 3: State diagram of the dynamical model of the
beginning of AF episodes.

and (3) gap. The third state is associated to those
cases where the pacemaker has detected a non-existent
ending of the event and a new AMS event is going to
happen. Observe that there are AMS events in the
transitions from normal to arrhythmia but also in tran-
sitions from gap to arrhythmia.

The times at states “normal” and “gap” follow expo-
nential distributions with parameters λNA and λGA,
respectively. The time at the state “arrhythmia” fol-
lows an exponential distribution with parameter λA.
The probability that the next state after “arrhythmia”
is “gap” is pAG and the probability that this transition
ends in “normal” is pAN = 1− pAG.

The progression of the AF from paroxysmal to perma-
nent is introduced by letting the parameter λNA change
with time. The speed of the progression is modelled
by a parameter α ∈ [0, 1],

λNA(t) = λNA(0) · αt, (1)

where α = 1 is an stable patient and lower values of
α are patients with a quick progression to permanent
arrhythmia.

3 GAN-based detector

The simple Markov model described in the preceding
section captures the essence of the pacemaker opera-
tion: it takes into account the frequency of the AF
events, its length, the inaccuracies of the pacemaker
and the speed of the progression. However, there are
patients that do not fit this model, because the time
between AF episodes does not always follow an expo-
nential distribution. Also, as mentioned in the intro-
duction, a large set of AF episodes is not compatible
with an early diagnosis thus the numerical estimation
of the five parameters λNA, λGA, λA, pAG and α would
not be reliable even in the case that the patient fits
the model.

The procedure that is proposed in this study relies
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Figure 4: GAN architecture for obtaining one of the discriminant elements

in an array of discriminant elements, tuned to spe-
cific sets of values of the five parameters that define
an instance of the Markov model. The output of
these elements is a projection of the episode in a five-
dimensional space whose coordinates are the values of
λNA, λGA, λA, pAG and α. λGA and pAG depend on the
pacemaker algorithm, while λNA, λA and α measure
the condition of the patient. In particular, α measures
the progression of the AF. Each of these elements is
trained with different sequences of AF episodes gen-
erated by means of a model that depends on a given
tuple of values of the parameters. If these discrimi-
nant elements are specific enough (i.e. if they only re-
act to sequences of values that are generated with the
same or similar parameters as the training sequences)
it is immediate that, when confronted to a time series
that follows the model in Section 2.1, only one ele-
ment of the map will be active. When a sequence of
AF episodes of a patient whose progression do not ex-
actly matches the model is fed to the map, a pattern
of activations will be displayed that allows to assess
the progression speed of the arrhythmia.

In order to obtain the discriminant elements, a GAN
is used with the architecture described in Figure 4.
Both the generator and the discriminator are LSTM
networks. The output of the discriminator is a voting
combination of all the nodes in the LSTM network,
that is compared to a threshold in order to decide
whether the input is one of the true sequences or it
is the output of the generator LSTM. The input to
the net is a sequence of fuzzy memberships of the as-
sert “the AMS event is isolated”, which measures how
many events are present in a soft window (with Gaus-
sian membership) that spans a few days before and
after the data and moves along with the data (see Fig-
ure 5) [9].

Figure 5: Top: Synthetic sequence of episodes (simula-
tion time: 10 years), showing the evolution to perma-
nent AF. Bottom: Sequence comprising the degrees of
truth that AF events are isolated (input to the GAN
network)

4 Numerical results

Properties of the GAN discriminators are analyzed
first in terms of the sensibility of the nets to changes
in the parameters, namely the ability of an LSTM net-
work for correctly classifying Markov model-produced
sequences in terms of the generating model parame-
ters. At the end of this section two maps are shown,
measuring both a synthetic sequence of AMS events
and a true patient.



The experimental setup is as follows: the code for
training GAN recurrent networks for time series has
been adapted from the publicly available code at
https://github.com/ratschlab/RGAN [2]. The in-
put to the net has a batch size of 28, sequence length
of 73 and one feature. The loss function of the discrim-
inator net is the fraction of misclassifications. A total
of 14000 sequences have been generated for each com-
bination of parameters chosen for the Markov model.

4.1 Sensibility of the LSTM detector

A brief study about the sensibility of the LSTM detec-
tor has been included in Tables 1 and 2. The first table
collects the results for α = 0.998 (fast progression),
and the second table contains the same experiments
for α = 0.999 (slow progression).

The meaning of the rows and columns of these tables is
as follows: each column contains the fraction of correct
classifications of a discriminator that has been trained
with sequences produced by the Markov model seen
before. The values of λNA(0) used for computing these
sequences are indicated in the column labels. The first
and second rows, “Train” and “Test” are the percent-
age of correct detections of “True” sequences (Markov
models) vs. “False” sequences (produced by the gen-
erator net). The rows labelled α = 0.997 . . . 0.999 are
the fraction of sequences with the same parameters as
those used for training the net but a different param-
eter α. The remaining rows are the fraction of correct
classifications when the net is fed with sequences with
a different value of λNA.

These results show that the detectors are highly re-
sponsive when the arrhythmia is paroxysmal (low val-
ues of λNA, thus time between episodes is high). This
is the desired result, because these are the cases with
clinical interest. The net is less capable when λNA is
high, however these are the cases where the patient is
in a permanent arrhythmia condition at the beginning
of the experiments thus the evolution of the patient is
self-evident.

4.2 Projection map

Two maps (see Figure 6) were selected for illustrating
the method. The horizontal axis is labelled β, which
is the inverse of the parameter λNA, and can be un-
derstood as the expected number of days between two
AF episodes at time t = 0. The vertical axis is la-
belled α and measures the speed of the progression.
The lower the value of α, the quickest the progression
to permanent AF.

The first map (Figure 6, left) depicts the output of an
array of discriminators when the input is a synthetic
sequence of AMS events, generated by means of the

Markov model, with λNA = 1/90 and α = 0.999. It is
expected that only one of the detectors reacts to this
artificial sequence, and this is in fact the result (dark
red area at β = 90 and α = 0.999)

In the right part of the same Figure there is a second
map with a projection of a sequence of AMS events
taken from an actual pacemaker (see also Figure 7,
where these episodes are shown). The dates of these
AMS events are shown in the lower part of the same
figure. The sequence of events does not follow the
Markov model anymore, thus a clear identification as
that shown in the map to the left is nowhere to be
found, but nonetheless the projection of the sequence
in the parameter spaces gives us a clear insight about
the evolution of the patient. In particular, the dark
red area in the bottom part of the map is compat-
ible with a value of λNA ≈ 1/200 and also with a
fast progression to permanent AF, α = 0.998. The
red region is also compatible with arrhythmias in the
range of 100 < β < 250, i.e. slower evolutions from
starting points with more frequent episodes cannot be
discarded because the number of episodes is not too
high, but the most probable diagnosis is that of quick
progression to permanent AF.

5 Concluding remarks and future
work

We have shown that iECGs from ICDs and pacemak-
ers can be used to a certain extent for predicting the
change from paroxysmal to permanent AF. The main
difficulty is with the short length of the pacemaker
records, that has been addressed here by means of a
graphical projection of the sequence of AMS events
in the parameter space of a continuous-time Markov
model. If the data is enough for a clear diagnosis,
the map produces an estimation of the patient con-
dition and future evolution, and in those cases where
the data is insufficient the map produces a set of esti-
mations that can be subjectively assessed in order to
determine whether the evolution is positive or not.

This is a work in progress and there are some unsolved
difficulties. There are five variables, thus each pa-
tient produces a hyper-cube that has to be sliced and
presented to the user in different graphics. A second
projection that puts all the information in a 2D map
would be preferred. On the other hand, the degrees of
truth of the detectors are not easily equalized and a
method different that the weighted vote of the LSTM
elements should be studied. Lastly, the use of GANs
has an intrinsic advantage, that is the obtention of
the generator network. This second network has not
been used yet in this study, but we intend to use it
to extend the pacemaker records into the future and



λNA = 1.0/10 λNA = 1.0/30 λNA = 1.0/90 λNA = 1.0/180 λNA = 1.0/260
train 0.9794 0.9804 0.9830 0.9868 0.9800
test 0.9779 0.97978 0.9811 0.9847 0.9797
α = 0.997 0.5299 0.2523 0.5373 0.4324 0.4878
α = 0.999 1.0000 1.0000 0.9979 0.3475 0.4424
λNA = 1/5 0.3333 1.0000 1.0000 1.0000 1.0000
λNA = 1/10 - 0.8162 1.0000 1.0000 1.0000
λNA = 1/30 0.9967 - 0.9505 0.9970 0.9983
λNA = 1/90 1.0000 0.9703 - 0.1369 0.1969
λNA = 1/180 1.0000 0.9994 0.0914 - 0.0312
λNA = 1/260 1.0000 1.0000 0.1494 0.0008 -

Table 1: Sensitivity of the discriminator for α = 0.998.

λNA = 1.0/8 λNA = 1.0/30 λNA = 1.0/90 λNA = 1.0/145 λNA = 1.0/180
train 0.9832 0.9823 0.9809 0.9825 0.9838
test 0.9821 0.9818 0.9818 0.9853 0.9783
α = 0.997 0.9986 0.9987 0.9986 0.9986 0.9997
α = 0.998 0.9998 0.9998 0.9956 0.9485 0.9809
λNA = 1/5 0.1543 1.0000 1.0000 1.0000 1.0000
λNA = 1/8 - 1.0000 1.0000 1.0000 1.0000
λNA = 1/30 1.0000 - 0.9988 0.9997 0.9996
λNA = 1/90 1.0000 0.9978 - 0.1703 0.2002
λNA = 1/120 0.9800 0.9800 0.0012 0.0516 0.0566
λNA = 1/145 1.0000 1.0000 0.0001 - 0.0357
λNA = 1/260 1.0000 1.0000 0.0000 0.0008 0.0089

Table 2: Sensitivity of the discriminator for α = 0.999.

Figure 6: Left: projection of a sequence of AMS events generated by means of the Markov model, with λNA = 1/90
and α = 0.999. Right: Projection of a sequence of AMS events from an actual pacemaker (see Figure 7). The
map is compatible with a value of λNA ≈ 1/200 and a fast progression to permanent AF, α = 0.998



Figure 7: Dates of the AMS events for the patient in
the right part of Figure 6

combine these extrapolated records with the estima-
tion of α to improve the reliability of the estimation of
the most important parameter, the speed of progress
of the arrhythmia. In any case, a method is needed to
prime the LSTM generator that can synchronize the
state of this network with the sequence of measured
records, and this method has yet to be developed.
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