
Advances in Data Analysis and Classification manuscript No.
(will be inserted by the editor)

M-Estimators and Trimmed Means:

From Hilbert-Valued to Fuzzy Set-Valued Data

Beatriz Sinova · Stefan Van Aelst ·

Pedro Terán

Received: date / Accepted: date

Abstract Different approaches to robustly measure the location of data as-
sociated with a random experiment have been proposed in the literature, with
the aim of avoiding the high sensitivity to outliers or data changes typical for
the mean. In particular, M-estimators and trimmed means have been stud-
ied in general spaces, and can be used to handle Hilbert-valued data. Both
alternatives are of interest due to their success in the classical framework.
Since fuzzy set-valued data can be identified with a convex cone of a sepa-
rable Hilbert space, the previous concepts have been recently applied to the
one-dimensional fuzzy case. The aim of this paper is to extend M-estimators
and trimmed means to p-dimensional fuzzy set-valued data, and to theoreti-
cally prove that they inherit robustness from the real settings. Some of such
theoretical results are more general and directly apply to Hilbert-valued esti-
mators and, in consequence, to functional data. A real-life example will also
be included to illustrate the computation and behaviour of these estimators
under contamination.

Keywords Robust location · Finite sample breakdown point · Functional
data · Random fuzzy sets · Random sets

Mathematics Subject Classification (2010) 62G35 · 62-07 · 03E72

The research of Beatriz Sinova and Pedro Terán was supported by the Spanish Ministry
of Economy and Competitiveness under Grant MTM2015-63971-P; and the Principality of
Asturias/FEDER Funds under Grants GRUPIN14-101 and GRUPIN-IDI2018-000132. The
research of Stefan Van Aelst was supported by Internal Funds KU Leuven (Belgium) under
Grant C16/15/068. Their support is gratefully acknowledged.

B. Sinova (corresponding author) · P. Terán
Department of Statistics and O.R. and D.M., University of Oviedo, 33007 Oviedo, Spain
E-mail: sinovabeatriz@uniovi.es, teranpedro@uniovi.es

S. Van Aelst
Department of Mathematics, KU Leuven, 3001 Leuven, Belgium
E-mail: stefan.vanaelst@kuleuven.be



2 Beatriz Sinova et al.

1 Introduction

Two successful alternatives in the classical framework,M-estimators and trimmed
means, have already been proposed to handle Hilbert-valued data and avoid
the high sensitivity to outliers or data changes when summarizing the loca-
tion. In Sinova et al. (2018), the properties of these M-estimators are studied,
but some of the properties these trimmed means satisfy, even those related
to their robustness, have not been theoretically proven yet. Due to the per-
spective of considering functional data as realizations of Hilbert space valued
random variables, the proof of such results would be interesting for the func-
tional data framework as well, whose importance is vastly increasing (see, for
instance, Valencia et al., 2019, Aneiros et al., 2019 and Hubert et al., 2017,
for some recent studies about functional data).

Recently, M-estimators and trimmed means have also been applied to the
one-dimensional fuzzy case thanks to the isometrical embedding which identi-
fies fuzzy set-valued data with a convex cone of a separable Hilbert space (see
Sinova et al., 2016, and Colubi and González-Rodŕıguez, 2015, respectively).
Since fuzzy set theory was introduced in the sixties (Zadeh, 1965), many stud-
ies developing statistical techniques to analyze fuzzy-valued data have been
published in the literature. This kind of data is becoming more widely used
to model the output of real-life experiments since “paradoxically, one of the
principal contributions of fuzzy logic is its high power of precisiation of what
is imprecise”, as pointed out by Zadeh (2008).

Formally, fuzzy set-valued data are assumed to be realizations of a random
fuzzy set (fuzzy random variable in the sense of Puri and Ralescu, 1986). Many
methods for the statistical analysis of random fuzzy sets are based on the well-
known Aumann-type mean as measure of the location of the distribution of
a random fuzzy set, but its high sensitivity, inherited from that of the mean
of random variables, makes it desirable to introduce more robust alternatives,
such as location M-estimators and trimmed means.

Properties of location M-estimators for fuzzy number-valued data (i.e., one-
dimensional fuzzy set-valued data) have been studied in Sinova et al. (2016),
but some of them will be generalized in this paper to cover more choices of the
loss function. Moreover, we will show that such results still remain valid for the
p-dimensional case of fuzzy set-valued data (and, in particular, for compact and
convex random sets). On the other hand, the analogous properties concerning
trimmed means for fuzzy set-valued data have not been tackled yet. Trimming
has been proven to be a successful alternative not only for the study of the
location (see e.g. Cuesta-Albertos et al., 1997), but also for other applications,
like regression and clustering methods (see Rivera-Garćıa et al., 2019, Alfons
et al., 2013 and Garćıa-Escudero et al., 2010, among others). The properties
of trimmed means will be analyzed in this paper and, even while they will be
formalized for the p-dimensional fuzzy set-valued data framework, they are still
valid when Hilbert-valued or, in particular, functional data are considered. The
comparison of location M-estimators and trimmed means under contamination
is approached theoretically by means of their finite sample breakdown point.



M-Estimators and Trimmed Means for Fuzzy Set-Valued Data 3

To illustrate and compare both measures in the fuzzy set-valued framework,
a real-life example will be used.

In Section 2, the notions and results related to the space of fuzzy sets
and random fuzzy sets used in this work are recalled. In Section 3, fuzzy-
valued location M-estimators are generalized to the p-dimensional case, and
their robustness properties are studied. Analogously, trimmed means for fuzzy
set-valued data are dealt with in Section 4 and their robustness is proven.
Proofs of the theoretical results can be found in the supplementary material
(Online Resource). The two approaches are illustrated by means of a real-
life example, consisting of 2-dimensional fuzzy set-valued data, in Section 5.
Examples which are available in the literature usually involve conical data,
whereas our example analyzes more complex data, which is of high importance.
Finally, some concluding remarks are given in Section 6.

2 The fuzzy setting

2.1 The space Fc(R
p)

In this section, the space Fc(R
p) of fuzzy sets is recalled, in order to give the

basic definitions and results required for the understanding of the following
sections.

The origin of the concept of fuzzy sets is related to the difficulties attached
to the procedure of expressing intrinsically imprecise attributes or measure-
ments, involving some error margins, as fixed values in a precise scale. Fuzzy
sets formally introduce gradualness to reflect different levels of imprecision.
With this idea in mind, it is easy to understand why fuzzy sets have become
so useful in analyzing human opinions, ratings, perceptions..., which are nat-
urally imprecise and subjective.

Definition 1 A fuzzy set value (or fuzzy vector) is a normal, upper semi-

continuous and quasi-concave mapping Ũ : Rp → [0, 1]. That is, for all α ∈
(0, 1] the α-level

Ũα = {x ∈ R
p : Ũ(x) ≥ α}

is a nonempty compact convex set, and the 0-level, Ũ0 = cl{x ∈ Rp : Ũ(x) >
0} is a nonempty convex set.

The class of all such fuzzy sets is denoted by Fc(R
p). The interpretation

of this notion is the following: Ũ(x) informs of the ‘degree of compatibility’

of x with the quality/property Ũ represents or, in other words, the ‘degree of

truth’ of the assertion “x is Ũ”.

The most important operations from the statistical point of view, the sum
and the product by scalars, can be naturally defined as a level-wise general-
ization of the usual set arithmetic by means of Zadeh’s extension principle.
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Definition 2 Let Ũ , Ṽ ∈ Fc(R
p). The sum of Ũ and Ṽ is defined as the fuzzy

set Ũ + Ṽ ∈ Fc(R
p) whose α-levels are given by

(Ũ + Ṽ )α =
{
y + z : y ∈ Ũα, z ∈ Ṽα

}

for all α ∈ [0, 1]. More generally, if Ũi ∈ Fc(R
p) for i ∈ {i1, . . . , im}, with

m ∈ N, we denote ∑

i∈{i1,...,im}

Ũi = Ũi1 + . . .+ Ũim .

Let Ũ ∈ Fc(R
p) and γ ∈ R. The product of Ũ by the scalar γ is defined

as the fuzzy set γ · Ũ ∈ Fc(R
p) whose α-levels are given by

(γ · Ũ)α =
{
γy : y ∈ Ũα

}

for all α ∈ [0, 1].

In order to characterize fuzzy set values, the support function used in the
set-valued setting (Minkowski, 1903, see also Castaing and Valadier, 1977, for
more details) has been extended to Fc(R

p) by Puri and Ralescu (1985) and
Bobylev (1985).

Definition 3 The support function of Ũ ∈ Fc(R
p) is given by the mapping

sŨ : (0, 1]× S
p−1 → R, sŨ (α,u) = sup

x∈Ũα

〈u,x〉,

where 〈·, ·〉 is the inner product on Rp and Sp−1 the unit sphere of Rp.

The space (Fc(R
p),+ , · ) is not linear because of the lack of opposite el-

ement for the sum, so metrics between fuzzy sets play a crucial role when
analyzing fuzzy set-valued data statistically. In particular, an always well-
defined notion of difference between fuzzy sets that preserves the properties it
has in connection with the sum in the real settings is lacking. To avoid this
drawback, differences will be replaced by distances in the statistical develop-
ments. Using the representation of fuzzy sets recalled above, it is possible to
define L2-type metrics to measure the distance between elements of Fc(R

p).
The choice for L2-type metrics is due to the isometrical embedding that can
then be established to identify a subspace of Fc(R

p) with a convex cone of a
separable Hilbert space in the following way.

Let F2
c (R

p) = {Ũ ∈ Fc(R
p) : sŨ ∈ H2}, where H2 = L2((0, 1]× Sp−1, λ ⊗

λp) is the separable Hilbert space of the L2-type real-valued functions defined
on the Cartesian product of Sp−1 and the interval (0, 1], λ denotes the Lebesgue
measure on (0, 1] and λp denotes the normalized Lebesgue measure on Sp−1.
Along the paper we consider a generic metric D defined on F2

c (R
p)×F2

c (R
p)

which satisfies

• D is an L2-type metric,
• the metric space (F2

c (R
p), D) is separable,
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• the metric space (F2
c (R

p), D), endowed with the arithmetic explained above,
can be isometrically embedded into a convex cone of a Hilbert space (whence
the associated norm through the isometrical embedding, ‖ · ‖D, fulfills the
parallelogram law).

Examples of metrics fulfilling the preceding conditions are the L2-type
distance by Klement et al. (1986), which for any fuzzy values Ũ , Ṽ ∈ Fc(R

p)
is given by:

d2(Ũ , Ṽ ) =

√∫

(0,1]

sup
u∈Sp−1

(sŨ (α,u)− sṼ (α,u))
2 dλ(α),

and the generalized metric by Trutschnig et al. (2009), which for a weighting

parameter θ > 0 and for any fuzzy values Ũ , Ṽ ∈ Fc(R
p) is given by the

following expression:

Dθ(Ũ , Ṽ ) =

[ ∫

(0,1]×Sp−1

((mid Ũα
(u)−mid Ṽα

(u))2

+ θ (spr Ũα
(u)− spr Ṽα

(u))2) dλp(u) dλ(α)

] 1
2

,

where mid Ũα
(u) = (sŨ (α,u) − sŨ (α,−u))/2 and spr Ũα

(u) = (sŨ (α,u) +
sŨ (α,−u))/2 indicate the ‘center’ and the ‘shape’, respectively. Metrics d2

and Dθ are topologically equivalent. In particular, the space (F2
c (R

p), Dθ),
endowed with the above-mentioned arithmetic, can be isometrically embedded
into a convex cone of H2.

2.2 Random fuzzy sets

The concept of a random fuzzy set (or a fuzzy random variable in the sense
of Puri and Ralescu, 1986) mathematically formalizes the random mechanism
producing fuzzy set-valued data. It is indeed a well-stated and supported model
that combines randomness affecting the generation of the data and imprecision
regarding its nature (see, e.g., Gil et al., 2013, for a recent overview).

The notion of a random (compact convex) set, which is involved in the
definition of a random fuzzy set, will be now presented.

Definition 4 Let Kc(R
p) denote the space of nonempty compact convex sub-

sets of Rp. Given a probability space (Ω,A, P ), a mapping X : Ω → Kc(R
p) is

said to be a random compact convex set if X is measurable with respect
to the Borel σ-algebra generated by the topology induced by the Hausdorff
metric on Kc(R

p), which is defined as follows:

dH(K,K ′) = max
{
sup
x∈K

inf
y∈K′

‖x− y‖, sup
y∈K′

inf
x∈K

‖x− y‖
}

for any K,K ′ ∈ Kc(R
p).
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The random closed set is defined as follows.

Definition 5 Let Z be a separable metric space and let X be a function on
a probability space (Ω,A, P ) with values in the family of closed subsets of Z.
The function X is said to be a random closed set or Effros-measurable if
{ω : X(ω) ∩G 6= ∅} ∈ A for every open G ⊂ Z.

Definition 6 Let (Ω,A, P ) be a probability space. A mapping X : Ω →
Fc(R

p) is said to be a random fuzzy set value (or random fuzzy vector,
in short RFV) if it is a Borel-measurable function (i.e., a random element in
Fréchet’s sense) with respect to the Borel σ-field generated by the topology
induced by any metric D fulfilling the conditions given above.

For the particular cases of the metrics mentioned in this work, it holds
that X : Ω → Fc(R

p) is a random fuzzy set value if for each α ∈ (0, 1] the
set-valued mapping Xα, with Xα(ω) = (X (ω))α for all ω ∈ Ω, is a random
compact convex set.

The Borel-measurability of an RFV implies that notions like the induced
distribution of a random fuzzy set value or the stochastic independence of ran-
dom fuzzy set values follow directly without having to define them explicitly.

Regarding the location or central tendency of the (induced) distribution
of an RFV, the best-known measure is the Aumann-type mean introduced by
Puri and Ralescu (1986).

Definition 7 Let (Ω,A, P ) be a probability space and X : Ω → Fc(R
p) an as-

sociated random fuzzy set value which is integrably bounded (i.e., E(sup{‖x‖ :
x ∈ X0}) < ∞). The Aumann-type mean of X is the unique fuzzy set value

Ẽ(X ) ∈ Fc(R
p) such that for all α ∈ (0, 1]

(Ẽ(X ))α = E[Xα] = {E(f) | f : Ω → R
p, f ∈ L1(Ω,A, P ), f ∈ Xα a.s.[P ]}.

The Aumann-type mean preserves all the main properties of the mean of a
random variable from both the statistical and probabilistic points of view. For
example, it is consistent with the usual fuzzy arithmetic and it is supported by
Strong Laws of Large Numbers and by the Fréchet approach (Fréchet, 1948).
Unfortunately, as is the case with the mean of a real-valued random variable,
the Aumann-type mean is highly sensitive to outliers or data changes. This
important drawback motivates the search of more robust location measures by
extending successful measures from the real-valued case, such as M-estimators
and trimmed means. These extensions will be detailed in the next two sections.

3 Location M-estimators for fuzzy set-valued data

M-estimation was introduced by Huber (1964) with the aim to limit the influ-
ence of outliers on estimators. Many methods, like least squares or maximum
likelihood, evaluate “errors” of the data by means of a squared function, which
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assigns outliers an excessive weight. Huber’s idea of replacing the squared er-
ror by another (usually less rapidly increasing) loss function applied to the
errors has proven to be successful in the classical framework. Recently, Kim
and Scott (2012) studied M-estimators in the kernel density estimation con-
text. Their results remain valid for Hilbert-valued random elements and also
for the one-dimensional RFV (as stated in Sinova et al., 2016).

In this section, the notion of location M-estimator is extended to cover
p-dimensional fuzzy set-valued data. In this paper, M-estimators are based on
a non-negative valued loss function ρ defined on R which is assumed to satisfy
the following condition.

(C.1) ρ vanishes at 0 and it is an even, continuous function which is nonde-
creasing on the positive real line.

Definition 8 Let (Ω,A, P ) be a probability space, ρ be a loss function satis-
fying C.1 and X : Ω → F2

c (R
p) an associated RFV. The fuzzy M-location

value is any element g̃M (X ) in F2
c (R

p) given by

g̃M (X ) = arg min
g̃∈F2

c (R
p)
E(ρ(D(X , g̃)),

if it exists.

Definition 9 Let (Ω,A, P ) be a probability space and X : Ω → F2
c (R

p)
an associated RFV. Moreover, let ρ be a loss function satisfying C.1, and
(X1, . . . ,Xn) a simple random sample from X (that is, X1, . . . ,Xn are inde-
pendent RFVs identically distributed as X ). Then, the fuzzy M-estimator

of location is any fuzzy set-valued statistic ̂̃gM [(X1, . . . ,Xn)] given by

̂̃gM [(X1, . . . ,Xn)] = arg min
g̃∈F2

c (R
p)

1

n

n∑

i=1

ρ(D(Xi, g̃)),

if it exists.

Notice that neither the fuzzy M-location value nor the fuzzy M-estimator
of location are necessarily unique.

The following theorem gives some sufficient conditions which guarantee
that fuzzy M-estimators of location are indeed statistics.

Theorem 1 Consider the metric space (F2
c (R

p), D). Let (X1, . . . ,Xn) be a
simple random sample from an RFV X : Ω → F2

c (R
p) on a complete probabil-

ity space (Ω,A, P ). Let ρ be a loss function satisfying C.1. If ̂̃gM [(X1, . . . ,Xn)]
is unique (for all ω ∈ Ω), then the fuzzy M-estimator of location is well-defined.

Remark 1 It should be pointed out that Theorem 1 holds for any separable
metric space (not only for (F2

c (R
p), D)), the proof being trivially generalizable.
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Since Theorem 1 provides us with some sufficient (and not necessary) con-
ditions for the measurability of M-estimators of location, the completeness of
the probability space will not be required in the following results, but it will
be assumed that the corresponding M-estimator of location is measurable and,
then, well-defined.

The following result is an adaptation of Kim and Scott’s Representer The-
orem (see Kim and Scott, 2012, Theorems 2 and 3), RT for short, which
provides conditions to ensure the existence and uniqueness of M-estimators
of location, to the fuzzy set-valued case. The proof is omitted because it is a
rather straightforward extension from the corresponding result in Sinova et al.
(2016) for the one-dimensional case.

Theorem 2 Consider the metric space (F2
c (R

p), D). Let (X1, . . . ,Xn) be a
simple random sample from an RFV X : Ω → F2

c (R
p) on a probability space

(Ω,A, P ). Moreover, let ρ be a loss function which satisfies C.1 and the fol-
lowing assumptions

(C.2) limx→0 ρ(x)/x = 0,
(C.3) Set φ(x) = ρ′(x)/x and φ(0) ≡ limx→0 φ(x), then φ(0) exists and it is

finite.

Then, the fuzzy M-estimator of location exists and it can be expressed as

̂̃gM [(X1, . . . ,Xn)] =

n∑

i=1

ui · Xi

with ui ≥ 0,
∑n

i=1 ui = 1. Furthermore, ui ∝ φ(D(Xi, ̂̃gM [(X1, . . . ,Xn)])).
Moreover, if the function Jn(g̃) = 1

n

∑n
i=1 ρ(D(Xi, g̃)) is strictly convex, i.e.

whatever λ ∈ (0, 1) and Ũ , Ṽ ∈ Fc(R
p) with Ũ 6= Ṽ may be, Jn(λŨ + (1 −

λ)Ṽ ) < λJn(Ũ) + (1− λ)Jn(Ṽ ), then the conditions

• ̂̃gM [(X1, . . . ,Xn)] =
∑n

i=1 ui · Xi

• ui ∝ φ(D(Xi, ̂̃gM [(X1, . . . ,Xn)]))
•
∑n

i=1 ui = 1

are sufficient to guarantee that ̂̃gM [(X1, . . . ,Xn)] is the unique fuzzy M-estimator
of location.

Remark 2 Theorem 2 guarantees that location M-estimators for fuzzy set-
valued data are well-defined, as they can be expressed as weighted linear
combinations of the sample observations they will also belong to the space
F2

c (R
p).

Remark 3 Conditions C.1-C.3 (in short denoted as RTC, from Representer
Theorem’s Conditions) are quite general and they are fulfilled by well-known
families of loss functions, such as the Huber (1981) family of loss functions

ρa(x) =





x2/2 if |x| ≤ a

a(|x| − a/2) otherwise,
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with a > 0 a tuning parameter, or the Hampel (1974) family of loss functions,
given by

ρa,b,c(x) =





x2/2 if 0 ≤ |x| < a
a (|x| − a/2) if a ≤ |x| < b
a(|x| − c)2/(2b− 2c) + a(b+ c− a)/2, if b ≤ |x| < c
a(b+ c− a)/2 if c ≤ |x|,

with tuning parameters c > b > a > 0.

3.1 Equivariance and symmetry properties for fuzzy M-estimators

The following results show how some of the convenient properties of the (non-
fuzzy) M-estimators of location, like their translation equivariance and their
behaviour for symmetric distributions, are preserved in the fuzzy-valued set-
ting.

Proposition 1 (Translation equivariance) Consider the metric space (F2
c (R

p), D)
and let (X1, . . . ,Xn) be a simple random sample from an RFV X : Ω → F2

c (R
p)

on a probability space (Ω,A, P ). Moreover, let ρ be a loss function fulfilling
assumptions C.1-C.3, such that the corresponding fuzzy M-estimator of loca-
tion is unique. Let Ũ ∈ F2

c (R
p). Then, the M-estimator of location based on

the simple random sample (X1 + Ũ , . . . ,Xn + Ũ), ̂̃gM [(X1 + Ũ , . . . ,Xn + Ũ)],

is equal to ̂̃gM [(X1, . . . ,Xn)] + Ũ , where

i) ̂̃gM [(X1, . . . ,Xn)] =
∑n

i=1 ui · Xi,

ii) ui ∝ φ(D(Xi, ̂̃gM [(X1, . . . ,Xn)])),
iii)

∑n
i=1 ui = 1.

Remark 4 Unluckily, fuzzy M-estimators of location are only scale equivariant
when the loss function ρ is a power function, which is a too strong require-
ment. This inconvenience is inherited from the classical setting, and a way
to overcome it could be to choose the loss function for the computation of
M-estimators such that it takes into account the distribution of the distances.
More details will be given in Subsection 3.2.

The notion of symmetry of a random fuzzy set value around a vector value
is stated as follows: an RFV X : Ω → F2

c (R
p) is said to be symmetrically

distributed about c ∈ Rp if and only if X − c := X + (−c) and c − X :=
c+ (−1) · X are identically distributed.

Proposition 2 Consider the metric space (F2
c (R

p), D). Let X : Ω → F2
c (R

p)
be an RFV associated with the probability space (Ω,A, P ) which is symmetri-
cally distributed for some c ∈ Rp. Moreover, let ρ be a loss function fulfilling
C.1. If the associated M-location value g̃M (X ) is unique, then g̃M (X ) is a sym-
metric fuzzy set about c (that is, in fuzzy terminology, g̃M (X ) is ‘additively
equivalent to’ c).
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3.2 Algorithmic computation of fuzzy M-estimators under RT conditions

Regarding the practical computation of fuzzy M-estimators of location, the
standard iteratively re-weighted least squares algorithm (see, for example, Hu-
ber, 1964) can provide us with an approximation, as follows:

Step 1. Select initial weights ω
(0)
i ∈ R, for i ∈ {1, . . . , n}, such that ω

(0)
i ≥

0 and
∑n

i=1 ω
(0)
i = 1 (e.g. weights corresponding to a robust estimator of

location chosen to initialize the algorithm).
Step 2. Generate a sequence {g̃M(k)}k∈N by iterating the following proce-

dure:

g̃M(k) =

n∑

i=1

ω
(k−1)
i Xi, ω

(k)
i =

φ(D(Xi, g̃
M
(k)))∑n

j=1 φ(D(Xj , g̃M(k)))
.

Step 3. Terminate the algorithm when

| 1n
∑n

i=1 ρ(D(Xi, g̃
M
(k+1)))−

1
n

∑n
i=1 ρ(D(Xi, g̃

M
(k)))|

1
n

∑n
i=1 ρ(D(Xi, g̃M(k)))

< ε,

for some desired tolerance ε > 0.
In case the scale equivariance does not hold (see Remark 4), measurement

units can have too much influence on the output. In order to avoid this, if the
loss function ρ involves some tuning parameters (as is the case for the well-
known Huber and Hampel families of loss functions), they will be selected
based on the distribution of the distances from each sample observation to an
initial robust estimator of location (e.g., the fuzzy trimmed mean estimator
studied in Section 4), as suggested by Kim and Scott (2012).

3.3 Consistency and robustness properties of fuzzy M-estimators

The consistency of fuzzy M-estimators can be guaranteed under rather general
conditions. First, instead of considering (F2

c (R
p), D) we consider (F2

c (A), D)
with A a non-empty compact convex subset of Rp (notice that, in practice,
it is very common to work with bounded referentials, like in Hesketh et al.,
1988). The proofs of the consistency and finite-sample breakdown point in
Theorems 3 and 4 can be rather straightforwardly adapted from those for the
one-dimensional case in Sinova et al. (2016) and hence are omitted.

Theorem 3 Consider a locally compact metric space (F2
c (A), D), where A is

a non-empty compact convex subset of Rp. Let X : Ω → F2
c (A) be an RFV

associated with the probability space (Ω,A, P ). For any n ∈ N, let (X1, . . . ,Xn)
be a simple random sample from X . Let ρ be a loss function which satisfies
C.1 and either is subadditive and unbounded, or admits upper and lower linear
bounds with the same slope, or is bounded. Then, if we assume that the fuzzy M-
location value g̃M (X ) is unique, the fuzzy M-estimator of location is a strongly
consistent estimator of the fuzzy M-location measure, i.e.,

lim
n→∞

D( ̂̃gM [(X1, . . . ,Xn)], g̃
M (X )) = 0 a.s.[P ].
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Remark 5 Conditions to ensure the strong consistency are not very restrictive
in practice. Indeed, the local compactness of (F2

c (A), D) is fulfilled for many
known metrics, like Dθ or d2, as will be shown elsewhere. Furthermore, the
additional conditions for the loss function are fulfilled for well-known functions
like Huber’s, Hampel’s and Tukey’s.

The finite sample breakdown point of fuzzy M-estimators of location is
derived now. As indicated by Cuevas et al. (2007), this notion can be adapted
to estimators taking values in general metric spaces. Following Donoho and
Huber (1983), the finite sample breakdown point (denoted fsbp) of the fuzzy
M-estimator of location corresponding to a sample of size n from an RFV
X : Ω → F2

c (R
p), where (Ω,A, P ) is a probability space and (F2

c (R
p), D) is a

metric space such that sup
Ũ,Ṽ ∈F2

c (R
p)

D(Ũ , Ṽ ) = ∞, is given by

fsbp( ̂̃gM [(X1, . . . ,Xn)], x̃n, D)

=
1

n
min

{
k ∈ {1, . . . , n} : sup

ỹn,k

D( ̂̃gM [x̃n], ̂̃gM [ỹn,k]) = ∞

}
,

where x̃n denotes the considered sample of n observations from X and the
samples ỹn,k are obtained from x̃n by perturbing up to k of its elements.

Theorem 4 Consider the metric space (F2
c (R

p), D). Let X : Ω → F2
c (R

p)
be an RFV associated with the probability space (Ω,A, P ), let (X1, . . . ,Xn)
be a simple random sample from X and x̃n = (x̃1, . . . , x̃n) be a realization
of the simple random sample. If the loss function ρ fulfills RT conditions,
and the corresponding fuzzy M-estimator of location is unique, then the finite
sample breakdown point of the fuzzy M-estimator of location is at most 1

n⌊
n+1
2 ⌋.

Furthermore, under the additional conditions of

• ρ having linear upper and lower bounds with the same slope or
• ρ being bounded by a constant C such that

ρ

(
max

1≤i,j≤n
D(x̃i, x̃j)

)
<

n− 2⌊n−1
2 ⌋

n− ⌊n−1
2 ⌋ − 1

C,

the finite sample breakdown point is exactly given by

fsbp
( ̂̃gM [(X1, . . . ,Xn)], x̃n, D

)
=

1

n
⌊
n+ 1

2
⌋.

Since the finite sample breakdown point of the Aumann-type mean is 1
n , this

proves that fuzzy M-estimators of location are more robust.
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4 Fuzzy trimmed means for fuzzy set-valued data

Some robust location measures for general-valued data have already been pro-
posed in the literature, for instance, the usual functional median and the
trimmed mean in functional Hilbert spaces (see Cuesta-Albertos and Fraiman,
2006 and López-Pintado and Romo, 2009, among others). Based on Cuesta-
Albertos and Fraiman (2006), consider a Hilbert space-valued random ele-
ment X : Ω → H, where (Ω,A, P ) is a probability space, (H, ‖ · ‖) is a
separable Hilbert space and PX is the induced probability distribution on
the Borel σ-algebra on H. For any β ∈ (0, 1), the corresponding trimmed
mean is any gPX

∈ H such that there exists a trimming function τPX
∈ Pβ

= {τ :H → (0, 1] : τ measurable,
∫
τ(x)dPX(x) ≥ 1− β} satisfying that

∫
‖x− gPX

‖2τPX
(x)dPX(x) = inf

g ∈ H, τ ∈ Pβ

∫
‖x− g‖2τ(x)dPX(x).

This definition generalizes the notion of trimmed means based on trimming
regions, since that situation is equivalent to using as trimming function only
indicator functions of sets, i.e.

min
A∈E

∫

A

‖x− E(X|A)‖2dPX(x) = min
A ∈ E, g ∈ H

∫

A

‖x− g‖2dPX(x),

where E = {A ⊂ H : PX(A) = 1 − β}. However, it turns out that the best
trimming function essentially coincides with the indicator function of a set
(as proven in Cuesta-Albertos et al., 1997, for random vectors and in Cuesta-
Albertos and Fraiman, 2006, for Hilbert space-valued random elements), so
we can restrict ourselves to this case.

Definition 10 Let X : Ω → F2
c (R

p) be an RFV associated with a probability
space (Ω,A, P ). For any β ∈ (0, 1), the corresponding fuzzy trimmed mean
E[β](X ) = E(X|APX

) ∈ F2
c (R

p) of X is defined through

APX
= argmin

A⊂H2
PsX

(A)≥1−β

∫

A

(D(x̃, Ẽ(X|A)))2 dPsX (sx̃),

and PsX denoting the induced probability distribution on the Borel σ-algebra
on H2.

Remark 6 The particular case of the Hilbert space-valued trimmed means for
the fuzzy number-valued case, thanks to the embedding of the space of fuzzy
set values into a closed convex cone of a Hilbert space of functions, has been
first considered by Colubi and González-Rodŕıguez (2015) in terms of the
metric Dθ. Nevertheless, this notion can be extended to deal with the generic
metric D in this paper.
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Definition 11 Let X : Ω → F2
c (R

p) be an RFV associated with a probability
space (Ω,A, P ) and (X1, . . . ,Xn) be a simple random sample from X . For any
β ∈ (0, 1), the fuzzy trimmed mean estimator is

Xn,β =
1

h
·

∑

j∈Ê(X1 ,...,Xn)

Xj ,

and

Ê(X1,...,Xn) = arg min
E⊂{1,...,n}, #E=h

1

h

∑

i∈E


D


Xi,

1

h
·
∑

j∈E

Xj






2

and h = n− ⌊nβ⌋ is the cardinality of the trimming region Ê(X1,...,Xn).
Given a sample dataset x̃n = (x̃1, . . . , x̃n), the corresponding sample

trimming region will be

Êx̃n
= arg min

E⊂{1,...,n}, #E=h

1

h

∑

i∈E


D


x̃i,

1

h
·
∑

j∈E

x̃j






2

,

and the set E = {E ⊂ {1, . . . , n} : #E = h} consists of all the subsets of h
different natural numbers between 1 and the sample size n. The sample fuzzy
trimmed mean associated with the sample x̃n = (x̃1, . . . , x̃n) corresponds to
1
h ·

∑
j∈Êx̃n

x̃j .

Therefore, the trimming region, for a fixed proportion of trimming β, can
be seen as the set containing the remaining proportion of sample data with
minimum variance. This problem has at least one solution since it is a finite
combinatorial problem. Once a trimming region Êx̃n

is determined, the asso-
ciated trimmed mean and variance are simply the mean and variance of the
sample conditioned to Êx̃n

.
Some properties of trimmed mean estimators that have not been analyzed

for Hilbert-valued random elements in the literature yet will now be studied. It
is very important to remark that, although these properties are formalized for
random fuzzy set values, the proofs remain valid when general Hilbert-valued
random elements are considered instead, so they are also applicable to, for
instance, functional data.

First, Theorem 5 provides us with some sufficient conditions which guar-
antee that the fuzzy trimmed mean estimator is well-defined.

Theorem 5 Consider a metric space (F2
c (R

p), D). Let (X1, . . . ,Xn) be a sim-
ple random sample from an RFV X : Ω → F2

c (R
p) on a complete probability

space (Ω,A, P ). For any trimming proportion β ∈ (0, 1), the fuzzy trimmed
mean estimator Xn,β is well-defined.

As commented for fuzzy M-estimators of location, the completeness of the
probability space will not be required in the following results since the condi-
tions in Theorem 5 are only sufficient, but it will be assumed that the corre-
sponding fuzzy trimmed mean estimator is well-defined.
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4.1 Equivariance and symmetry properties for fuzzy trimmed means

In this section, the translation and scale equivariance of fuzzy trimmed means
estimators is shown, as well as their behaviour when the RFV is symmetrically
distributed. As explained before, these results are indeed not only valid for the
fuzzy-valued setting, but also for Hilbert space-valued random elements.

Proposition 3 (Translation equivariance) Consider the metric space (F2
c (R

p), D)
and let (X1, . . . ,Xn) be a simple random sample from an RFV X : Ω → F2

c (R
p)

associated with a probability space (Ω,A, P ). For any trimming proportion
β ∈ (0, 1), the fuzzy trimmed mean estimator Xn,β is translation equivariant,

i.e., for any Ũ ∈ F2
c (R

p),

(X + Ũ)n,β = X n,β + Ũ .

Unlike fuzzy M-estimators of location, fuzzy trimmed mean estimators are
scale equivariant, which presents the advantage of not being influenced by the
choice of the measurement units.

Proposition 4 (Scale equivariance) Consider the metric space (F2
c (R

p), D)
and an RFV X : Ω → F2

c (R
p) on a probability space (Ω,A, P ). Moreover, let

(X1, . . . ,Xn) be a simple random sample from X and β ∈ (0, 1) the trimming
proportion. The fuzzy trimmed mean estimator X β is scale equivariant, i.e.,
for any c ∈ R,

(c · X )n,β = c · Xn,β .

With respect to symmetry, fuzzy trimmed mean estimators have the same
behaviour as fuzzy M-estimators of location, as shown by the next proposition.

Proposition 5 Consider the metric space (F2
c (R

p), D). Let X : Ω → F2
c (R

p)
be a random fuzzy set value associated with the probability space (Ω,A, P )
and symmetrically distributed for some c ∈ Rp. For any trimming proportion
β ∈ (0, 1), the fuzzy trimmed mean estimator X n,β is a symmetric fuzzy set
about c.

4.2 Algorithmic computation of fuzzy trimmed means

In Colubi and González-Rodŕıguez (2015), the Fast Minimum Covariance De-
terminant (for short, Fast-MCD) algorithm, which is an adaptation of the
well-known k-means algorithm, was rewritten to compute the trimmed mean
of a fuzzy-valued sample. We now present an adaptation of this algorithm
which tries to avoid, as much as possible, that any local minimum traps the
iterative process:

Step 1. Set h = n − ⌊nβ⌋ ∈ {1, . . . , n}, the size of the trimming region,
fix NS the number of starting points and nbest the number of best trimming
regions selected after nrep initial steps. Initialize MSE = ∞;
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Step 2. Choose at random either 3 observations from the sample (consid-

ered as seed) and compute their mean, f̃ , or an observation considered as an

initial mean, f̃ . It is then possible to build a first region of size h centered
around f̃ . Since the observation(s) is(are) chosen randomly, this first region
will also be random.

Step 3. Select the h observations closest to the mean f̃ (where closeness
refers to the distance corresponding to the norm associated with the inner
product of the Hilbert space):

{x̃k1 , . . . , x̃kh
};

Step 4. Compute the mean f̃∗ of the h observations in Step 3 , and then
calculate the corresponding mean squared error given by

f̃∗ =
1

h
·

h∑

i=1

x̃ki
, MSE∗ =

1

h

h∑

i=1

(D(x̃ki
, f̃∗))2;

In case MSE∗ is lower than MSE, update the value of the upper bound,
that is, set

MSE = MSE∗;

Step 5. Steps 3 and 4 are repeated nrep times.

Step 6. Repeat Steps 2-5 NS times and choose the nbest trimming re-
gions with lowest associated MSE∗.

Step 7. For each of the nbest trimming regions, repeat Steps 3-4 until
convergence.

Step 8. The estimate asociated with the smallest MSE∗ is the final esti-
mate of the fuzzy trimmed mean. Moreover, the corresponding value MSE∗

is the trimmed Mean Squared Error associated with it.

Notice that, due to Step 2, this new algorithm always performs at least as
well as Cuesta-Albertos and Fraiman’s alternative (see Cuesta-Albertos and
Fraiman, 2006). A weakness (fuzzy) trimmed means present is that a selection
procedure should be developed to select the optimal trimming proportion β ‘a
priori’.

4.3 Consistency and robustness properties of fuzzy trimmed means

Finally, some properties of the fuzzy trimmed mean estimator will be studied.
Recall that, even when these results are stated here for the fuzzy set-valued
setting, they are still valid for trimmed means of general Hilbert-valued random
elements.

The following result is an immediate application of the strong consistency
results by Cuesta-Albertos and Fraiman (2006, 2007) for general Hilbert-
valued random elements.
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Theorem 6 Consider a metric space (F2
c (R

p), D) that can be isometrically
embedded into a closed convex cone of a Hilbert space, and the RFV X : Ω →
F2

c (R
p) associated with the probability space (Ω,A, P ). For any n ∈ N, let

(X1, . . . ,Xn) be a simple random sample from X . Let β ∈ (0, 1) and assume
that the fuzzy trimmed mean E[β](X ) is unique. Then, the fuzzy trimmed mean
estimator is a strongly consistent estimator of the fuzzy trimmed mean, i.e.,

lim
n→∞

D(X n,β, E[β](X )) = 0 a.s.[P ].

The finite sample breakdown point of the fuzzy trimmed mean estimator
is now derived to show the robustness of this estimator.

Theorem 7 Consider the metric space (F2
c (R

p), D). Let X : Ω → F2
c (R

p)
be an RFV associated with the probability space (Ω,A, P ), (X1, . . . ,Xn) be a
simple random sample from X and x̃n = (x̃1, . . . , x̃n) be a realization of the
simple random sample such that all the sample observations are different. For
any trimming proportion β ∈ (0, 1), the finite sample breakdown point of the
fuzzy trimmed mean estimator is exactly given by

fsbp
(
X n,β, x̃n, D

)
=

{ ⌊nβ⌋+1
n if β < 0.5

n−⌊nβ⌋
n if β ≥ 0.5

Notice that the maximum, 1
n⌊

n+1
2 ⌋, will be attained when β = 0.5. For any

other value of β, the finite sample breakdown point of fuzzy trimmed means
is smaller and, therefore, their behaviour is less robust. Anyway, both location
M-estimators and trimmed means present a more robust performance than
the Aumann-type mean in terms of finite sample breakdown points.

5 Illustrative example

In this section, a two-dimensional real-life example is considered to illustrate
fuzzy M-estimators and fuzzy trimmed means. Both proposals will also be
compared to the location measure used in the literature, the Aumann-type
mean, in order to show their advantages. Examples which are available in the
literature for p = 2 usually involve conical data (see e.g. Sugano, 2011, Salski,
2007, and Celmiņš, 1987, among others), but we consider more complex data,
the Cartesian product of two trapezoidal fuzzy numbers, which models the
natural fuzzy relation between the answers given in terms of a fuzzy rating
scale (Hesketh et al., 1988) to two items of a questionnaire.

Example. 68 fourth grade students from Colegio San Ignacio school (Oviedo,
Spain) have been asked to answer some questions selected from the joint Stu-
dent questionnaire TIMSS (Trends in International Mathematics and Science
Study) - PIRLS (Progress in International Reading Literacy Study). Items
have been designed to use a fuzzy rating scale with referential [0, 10], instead
of a standard 4-point Likert scale.
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Statistical conclusions have been empirically shown to frequently differ de-
pending on the considered psychometric rating scale (see, for instance, Lubiano
et al., 2016). To simplify the instructions given to the 9-10 year-old students,
only trapezoidal fuzzy numbers have been considered, as it has been empiri-
cally shown that the shape is not statistically relevant (see, for instance, Lu-
biano et al., 2017). A trapezoidal fuzzy number will be denoted as Tra(a, b, c, d)
with a ≤ b ≤ c ≤ d, where for each α ∈ [0, 1],

(Tra(a, b, c, d))α = [αb+ (1− α)a, αc + (1− α)d].

For this study, we have considered the responses given by the 31 female
students about their degree of agreement with the following statements:

• “I like Mathematics” (question M1),
• “My Maths teacher is easy to understand” (question M2).

The joint/linked responses to both items can be properly modelled as two-
dimensional fuzzy set values by considering a natural fuzzy relation, namely,
the Cartesian product of the two trapezoidal fuzzy scores (see Zadeh, 1975,
for which the α-level corresponds to the cartesian product of the ‘individual’
α-levels), as displayed in Figure 1.

Fig. 1 The sample of 31 fuzzy set values built from the (joint/linked) fuzzy scores of the
girls to items M1 and M2. The z-axis represents the degree of compatibility (between 0 and
1) of the values x and y in [0, 10] with the students’ opinion regarding M1 and M2 items,
respectively.

The Aumann-type mean, the fuzzy trimmed mean with two common choices
for the trimming proportion, i.e. β = 0.15 and β = 0.2, and the fuzzy M-
estimator of location based on the Hampel loss function are compared by
means of the metric Dθ=1/3. The tuning parameters 0 < a < b < c involved in
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the Hampel loss function allow us to control the degree of suppression of the
outliers, since the smaller their values the greater such a degree. They have
been selected following the suggestion in Kim and Scott (2012), that is, by
considering the median, the 75th and the 85th percentiles of the distances be-
tween each observation and a robust seed (which, in this case, has been chosen
to be the fuzzy trimmed mean with β = 0.15). For this dataset, this yields
a = 5.633175, b = 7.278062 and c = 8.329507.

The computation of the considered location measures is based on the sup-
port function of the fuzzy sets. The outcome of each Cartesian product of two
trapezoidal fuzzy numbers with referential [0, 10], Ṽ1 and Ṽ2, is a truncated

square pyramid Ũ with support function given by sŨ : (0, 1]× S1 → R with

sŨ (α,u) =





−̺v21 cos (π + ϑu − ϑv21) if ϑu ∈
(
−π

2 ,−ϑw21

)
, u1 > 0

̺v21
cos (ϑu − ϑv21

) if ϑu ∈ [−ϑw21
, 0) , u1 > 0

̺v22 cos (ϑu − ϑv22) if ϑu ∈
[
0, π

2

)
, u1 > 0

̺v12
cos (π + ϑu − ϑv12

) if ϑu ∈
(
−π

2 ,−ϑw21

)
, u1 < 0

−̺v12
cos (ϑu − ϑv12

) if ϑu ∈ [−ϑw21
, 0) , u1 < 0

−̺v11
cos (ϑu − ϑv11

) if ϑu ∈
[
0, π

2

)
, u1 < 0,

where ̺u = ̺(u1,u2) =
√
u2
1 + u2

2, vij = (xi(α), yj(α)), wij = (yj(α), xi(α)),

ϑu = ϑ(u1,u2) =





arctan (u2/u1) , if u1 6= 0
π
2 , if u1 = 0, u2 > 0
−π

2 , if u1 = 0, u2 < 0,

x1(α) = inf(Ṽ1)α, x2(α) = sup(Ṽ1)α, y1(α) = inf(Ṽ2)α and y2(α) = sup(Ṽ2)α.
The D1/3 distance between (0, 0) and each of the considered location mea-

sures has been computed: this distance equals 17.117 for the Aumann-type
mean, 18.023 for the fuzzy trimmed mean with trimming proportion β = 0.15,
18.599 for the fuzzy trimmed mean with β = 0.2, and 18.260 for the fuzzy
M-estimator of location based on Hampel’s loss function with the above men-
tioned tuning parameters. The reason for the difference between the Aumann-
type mean and the robust location measures is now explained. First, the fuzzy
trimmed mean with β = 0.15 excludes the four observations in Table 1 from
the computations due to their higher distance to the ‘centre’ of the data.

Table 1 Trimmed observations for the computation of the fuzzy trimmed mean (β = 0.15).

Response to item M1 Response to item M2

Tra(5.850, 7.025, 9.050, 9.100) Tra(0.000, 0.1250, 2.050, 2.550)
Tra(0.000, 0.025, 0.025, 0.025) Tra(9.975, 9.975, 9.975, 10.000)
Tra(0.000, 1.125, 1.200, 1.275) Tra(2.500, 3.750, 3.900, 5.450)
Tra(0.050, 0.050, 0.075, 0.075) Tra(9.025, 9.025, 9.950, 9.950)
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Fig. 2 The sample of 31 fuzzy sets built from the answers of the girls to items M1 and M2.
In black, the observations trimmed for the computation of the fuzzy trimmed mean.

As said before, these fuzzy sets correspond to the students with the lowest
degrees of agreement with respect to at least one of the two items, which can
be clearly seen from Figure 2. When β = 0.2, the fuzzy trimmed mean excludes
the two extra observations in Table 2.

Table 2 Trimmed observations for the computation of the fuzzy trimmed mean with the
choice β = 0.2, but not with β = 0.15.

Response to item M1 Response to item M2

Tra(4.325, 5.025, 7.925, 8.500) Tra(1.750, 2.500, 3.675, 3.675)
Tra(2.500, 2.550, 4.275, 4.300) Tra(2.500, 4.625, 4.625, 6.900)

On the other hand, the weights assigned to the observations in Table 1 when
computing the fuzzy M-estimator of location based on Hampel’s loss function
were 0 in all cases. Hence, the lowest degrees of agreement have a larger impact
on the computation of the Aumann-type mean than on the other location
measures, which present a more robust behaviour. Regarding the comparison
of the fuzzy trimmed means and the fuzzy M-estimator of location, the latter
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‘removes’ the 4 observations in Table 1 and the first observation in Table 2,
and assigns the second smallest weight (0.011 out of the maximum weight
0.043) to the second observation in Table 2. Hence, in this case, it provides
an intermediate solution and detects 5 outliers (it can be checked that the
computation of the estimator using as a seed the fuzzy trimmed mean with
β = 0.2 also assigns a null weight to only 5 observations).

In Table 3, the distances between the Aumann-type mean, the fuzzy trimmed
means and the fuzzy M-estimator of location based on Hampel’s loss function
(with a = 5.633, b = 7.278 and c = 8.330) computed for the whole dataset and
three reduced datasets are shown. The reduced datasets have been obtained
by removing either the four observations in Table 1, the five observations con-
tained in Table 1 and the first row of Table 2 or the six observations in Tables
1-2.

Table 3 Distances between the location measures computed for the whole dataset and three
reduced datasets without 4, 5 or 6 observations.

Measure 4 observations 5 observations 6 observations

Aumann-type mean 1.035 1.202 1.516
Fuzzy trimmed mean (β = 0.15) 0.876 0.876 0.799
Fuzzy trimmed mean (β = 0.2) 1.477 1.826 1.559
Fuzzy M-estimator 0.820 0.820 0.283

Naturally, the removal of the fifth observation from the dataset does not
have any impact on the computation of the fuzzy M-estimator (with respect to
its performance when only the other four observations are deleted) because, as
said before, it detects the five outliers from the beginning. On the other hand,
the fuzzy trimmed mean with β = 0.15 discards the 15% of the observations for
the computation of the mean and that implies that the number of observations
removed when the sample size is 27 (reduced dataset without 4 outliers) or 26
(reduced dataset without 5 outliers) is 4 and 3, respectively. Therefore, the size
of the trimming region coincides in both situations (23 observations in each
case). For this reason, only the Aumann-type mean and the fuzzy trimmed
mean with β = 0.2 present different values in the first two columns of Table 3.

It can be noticed that the fuzzy M-estimator is the location measure which
achieves the lowest distance, followed by the fuzzy trimmed mean with β =
0.15. Contrarily, the Aumann-type mean computed for the whole dataset is
clearly further from the Aumann-type mean computed for the reduced datasets
(indeed, the higher number of outliers removed, the higher this distance) and
something similar happens to the fuzzy trimmed mean with β = 0.2 (the
trimming proportion is too high for this sample and non-outlying observations
are trimmed, so some important information about the ‘centre’ of the data is
lost).

Table 4 completes the study with the computation of the distances between
the four estimates (the Aumann-type mean, the two fuzzy trimmed means and
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the fuzzy M-estimator of location based on Hampel’s loss function) on the full
dataset and the Aumann-type mean of the reduced datasets.

Table 4 Distances between the location measures computed for the whole dataset and the
Aumann-type mean of a reduced dataset without 4, 5 or 6 observations.

Measure 4 observations 5 observations 6 observations

Aumann-type mean 1.035 1.202 1.516
Fuzzy trimmed mean (β = 0.15) 0 0.343 0.619
Fuzzy trimmed mean (β = 0.2) 0.619 0.320 0
Fuzzy M-estimator 0.482 0.217 0.418

Obviously, the first row of Tables 3 and 4 coincide and, as expected, the
robust estimators on the full dataset are close to the Aumann-type mean on the
reduced datasets. The fact that all distances but the one for the fuzzy trimmed
mean with β = 0.2 increase when passing from 5 deleted observations to 6 is
an indication that there are indeed 5 outliers in this dataset.

6 Concluding Remarks

Fuzzy M-estimators of location and trimmed means have been extended to
F2

c (R
p) and their properties have been analyzed. It has been proven, by means

of their finite sample breakdown point, that the behaviour of both alternatives
is more robust than for the Aumann-type mean. In terms of their finite sample
breakdown point, fuzzy M-estimators of location are a more robust approach
than fuzzy trimmed means when the trimming proportion is less than 0.5
(when the trimming proportion is exactly 0.5 both alternatives are equally
robust). Both estimators share the translation equivariance, symmetry with
respect to symmetrically distributed random fuzzy set values and strong con-
sistency, but only fuzzy trimmed means are always scale equivariant. Finally,
a real-life example has empirically shown the robustness of fuzzy M-estimators
of location and fuzzy trimmed means as an alternative to the Aumann-type
mean.

As future research lines, it would be interesting to use other tools from ro-
bust statistics, such as the influence function, so realistic parametric families
of distributions on F2

c (R
p) should be proposed first. Furthermore, scale equiv-

ariant fuzzy M-estimators could be defined by means of robust scale measures
for fuzzy set-valued data (see de la Rosa de Sáa et al., 2017, for some robust
scale estimators introduced for the one-dimensional case). Finally, hypothesis
testing procedures related to these measures could be established.

SUPPLEMENTARY MATERIAL

Online Resource: Proofs of the theoretical results stated in the article. (.pdf)
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