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The self-assembly of styrene-type olefins into the corresponding stilbenes was

conveniently performed in the Deep Eutectic Solvent (DES) mixture 1ChCl/2Gly under air

and in the absence of hazardous organic co-solvents using a one-pot chemo-biocatalytic

route. Here, an enzymatic decarboxylation of p-hydroxycinnamic acids sequentially

followed by a ruthenium-catalyzed metathesis of olefins has been investigated in DES.

Moreover, and to extend the design of chemoenzymatic processes in DESs, we also

coupled the aforementioned enzymatic decarboxylation reaction to now concomitant Pd-

catalyzed Heck-type C-C coupling to produce biaryl derivatives under environmentally

friendly reaction conditions.

Keywords: Deep Eutectic Solvents, chemoenzymatic, metal-catalysis, biocatalysis, metathesis, phenolic acid

decarboxylase, Heck reaction

INTRODUCTION

Following the basis of the Sustainable Development (United Nations, 2015), and trying to
confront both the current diminution of crude oil resources and the dramatic environmental
difficulties connected with its use, the Chemical Community is making great efforts to
employ bio-based feedstock as starting materials instead of non-renewable fossil supplies,
therefore attempting to accomplish some of the essential Principles of Green Chemistry
(Anastas and Warner, 1998; Matlack, 2001; Lancaster, 2002; Poliakoff et al., 2002; Sheldon
et al., 2007). Nowadays, one of the major challenges of Sustainable Chemistry is replacing
the use of organic solvents in chemical reactions since their production mainly relies
on petrochemical manufacturing (Constable et al., 2007). In this sense, it is estimated
that around 90% of the mass balance of chemical processes is associated with the
solvents employed not only in the synthetic methodologies but also in the isolation and
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purification steps of the target products (Clark and Tavener, 2007;
Jessop, 2011). Traditionally, organic chemists have employed
volatile, hazardous and non-renewable petroleum-based Volatile
Organic Compounds (VOCs) as reaction media taking advantage
of the so-called “positive solvent effect” (Reichardt and Welton,
2010). In the search of maximizing this “positive solvent effect”
while deviating from the previously commented traditional
hazardous VOC solvents, chemists have endeavored to research
new greener and non-conventional reaction media (Anastas,
2010), which should be easily available, biodegradable, non-toxic,
biorenewable, and safe for both humans and the environment
(Moity et al., 2012). In this context and during the last
decade, a new family of sustainable reaction media, the so-
called Deep Eutectic Solvents (DESs) (Abbott et al., 2003, 2004)
has attracted the attention of many research groups worldwide.
As consequence, these neoteric solvents have been broadly
applied in chemistry as sustainable reaction media for: (i) polar
organometallic chemistry (Mallardo et al., 2014; Vidal et al.,
2014, 2016; Sassone et al., 2015; García-Álvarez et al., 2018;
Rodríguez-Álvarez et al., 2018; Ghinato et al., 2019); (ii) metal
catalyzed organic reactions (García-Álvarez, 2015; Vidal and
García-Álvarez, 2019); (iii) biocatalysis (Gotor-Fernández and
Paul, 2018); (iv) traditional organic synthesis (Liu et al., 2015;
Alonso et al., 2016); (v) metal extraction and electrochemistry
(Smith et al., 2014; Millia et al., 2018); and (v) polymer
science (Carriazo et al., 2012; del Monte et al., 2014; Mota-
Morales et al., 2018; Quirós-Montes et al., 2019; Roda et al.,
2019; Sánchez-Condado et al., 2019). These sustainable eutectic
solvents can be obtained just by mixing (without any further
steps of purification or isolation) two molecules capable of
forming a complex intermolecular network based on hydrogen-
bond interactions. One molecule must be a HBA (hydrogen-
bond-acceptor), whereas the other must act as hydrogen-bond-
donor (HBD) (García-Álvarez, 2019). In this field, one of
the most commonly used HBA for the synthesis of DESs
is choline chloride (ChCl, [(CH3)3NCH2CH2OH]Cl), which is
a safe and non-toxic (vitamin B4, RDA 550mg) quaternary
ammonium salt produced at multi-ton scale and employed as
additive for feeding chicken (cost: 2e/Kg) (Blusztajn, 1998).
In combination with different sustainable HBD [like glycerol,
saccharides, urea or bio-based organic acid (i.e., lactic acid)],
ChCl is able to form liquid eutectic mixtures with tunable
physicochemical properties.

On the other hand, during the last decade organic chemists
have tried to design cleaner and more efficient one-pot multistep
processes as alternative routes to classical step-by-step processes
with the concomitant: (i) minimization of the time consumption
and chemical waste; (ii) simplification of the practical aspects;
and (iii) possibility to cope with sensitive reaction intermediates
(no isolation of transiently-formed unstable products is needed;
Hayashi, 2016). However, these one-pot multistep processes
typically rely on the employment of the same synthetic
organic tool (metal-, bio-, or organo-catalyzed reactions)
throughout the transformation, while the corresponding hybrid
counterparts combining different catalytic disciplines are still
very scarce. In this sense, transition-metal-catalyzed reactions

(van Leeuwen, 2004; Hartwig, 2010) represent an excellent
platform to produce prochiral intermediates that enzymes
can subsequently convert into high-added-value enantiopure
compounds (Sheldon and Pererira, 2017). This chemoenzymatic
approach has been fruitfully employed in traditional and
hazardous organic solvents1 due to the intrinsic shortcomings
(hydrolysis, oxidations) that transition-metal complexes usually
suffered in water. However, the recent advances on the field of
organometallic catalysis in water (Dixneuf and Cadierno, 2013)
opened the door to its possible coupling with biotransformations
in aqueous systems after overcoming other concomitant
drawbacks related with: (i) reciprocal poisoning of catalysts;
(ii) degradation because of additives, co-factors or co-solvents;
(iii) incompatibility of reaction conditions; and (iv) undesired
side-reactions (Gröger and Hummel, 2014; Bornscheuer, 2015;
Schmidt et al., 2018). Despite these issues, current studies are
boosting the aqueous combination of well-established metal-
catalyzed organic reactions (Pd, Cu, or Ru-catalyzed processes)
with enzyme-mediated aminations, reductions, halogenations,
or decarboxylation processes (Gröger and Hummel, 2014;
Bornscheuer, 2015; Ríos-Lombardía et al., 2018; Schmidt et al.,
2018). Interestingly, the combination of transition metals and
enzymes in the above-mentioned DESs has been barely noticed,
despite the beneficial effect of these neoteric solvents in both
metal-catalyzed transformations (García-Álvarez, 2015; Vidal
and García-Álvarez, 2019) and enzymatic processes (Gotor-
Fernández and Paul, 2018) is now well-established. In this
sense, some of us have reported the pioneering combinations
in ChCl-based eutectic solvents of the ruthenium(IV)-catalyzed
isomerization of allylic alcohols with bioreductions (Cicco et al.,
2018); or the assemble of Pd-catalyzed Suzuki C-C coupling
with bioreductions (Ketoreductases, KRED; Paris et al., 2018)
and bioaminations (transaminases, ATA) (Paris et al., 2019; see
Scheme 1).

Based on the excellent catalytic activity of Phenolic
Acid Decarboxylase from Bacillus subtilis (BsPAD) in the
decarboxylation of p-hydroxycinnamic acids in DESs (see
Scheme 2; Schweiger et al., 2019), we herein present the
unprecedented one-pot combination of the selective production
of p-hydroxystyrenes catalyzed by a BsPAD in the eutectic
mixture choline chloride/glycerol (1ChCl/2Gly) with two
well-established metal-catalyzed organic processes that employ
styrene-type precursors, like: (i) the Grubbs-II catalyzed
metathesis of olefins (an organic reactions which remained
unreported in eutectic mixtures); and (ii) the Pd-catalyzed
Heck-type C-C coupling reaction2,3.

1For selected recent examples, see: (Lohr and Marks, 2015; Verho and Bäckvall,
2015; El-Sepelgy et al., 2016; Palo-Nieto et al., 2016; Yang et al., 2016; Görbe et al.,
2017).
2For previous examples that described palladium-catalyzed Heck-type C-C
coupling processes in DESs, see: (Illgen and König, 2009; Marset et al., 2017;
Saavedra et al., 2019).
3At this point, we would like to highlight that Ramón et al. have nicely studied (by
DFT calculations and NMR techniques) the possible catalytically active Pd-species
present in the Heck reaction in eutectic mixtures (see Marset et al., 2017).
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SCHEME 1 | Previous reported examples on chemoenzymatic cascades in DESs.

SCHEME 2 | BsPAD-catalyzed decarboxylation of p-hydroxycinnamic acids in the 1ChCl/2Gly-water medium.

RESULTS AND DISCUSSION

Ruthenium Catalyzed (Grubbs-II)
Metathesis of Styrene-Type Olefins in Deep

Eutectic Solvents (DESs)
Ru-catalyzed olefin metathesis is considered as one of the
most efficient and reliable synthetic utensils within the organic
synthetic toolbox for the selective formation of new C-C bonds,
thus allowing the direct access to organic compounds that
would require a larger number of conventional steps for their
synthesis (Grubbs, 2003; Hoveyda and Zhugralin, 2007; Grela,
2014). In this sense, and while olefin metathesis in organic
and hazardous VOC solvents is nowadays ubiquitous [and even
in aqueous media (Lipshutz and Ghorai, 2008; Burtscher and
Grela, 2009; Tomasek and Schatz, 2013)], the possibility to carry
out ruthenium-catalyzed metathesis of olefins in biorenewable
eutectic mixtures has got not precedents, as far as we are aware.
Accordingly, and trying to finish with this discontinuity in
the employment of DESs in transition-metal-catalyzed organic
transformations, our experimental work started with the study

of the archetypical self-assembly metathesis of styrene (1a) as
a model reaction (see Table 1) by employing the Grubbs-II
complex (4 mol%) in the eutectic mixture 1ChCl/2Gly, at 50◦C
and in the presence of air (entry 1, Table 1). After 20 h of
reaction under the aforesaidmild reaction conditions, the desired
stilbene (2a) was selectively obtained in almost quantitative yield
(95%). For comparison, water (the prototypical example of green
solvent) was studied under the same reaction conditions (4
mol% of Grubbs-II at 50◦C), giving rise to lower yields of 2a
(87%, entry 2, Table 1) after longer reaction times (24 h), thus
disclosing a new example of an accelerated organic reaction in
DESs (García-Álvarez, 2015; Vidal and García-Álvarez, 2019).
A similar reduction of the yield of the target 2a was also
observed when the catalyst loading was reduced by half (i.e.,
2 mol%, entry 3, Table 1). After this first parametric study, we
extended our investigations to other ChCl-based DES containing
different hydrogen-bond-donors [HBD, urea (entry 4) or lactic
acid (Lac, entry 5)], finding in both cases a similar decrease of the
catalytic activity of the Grubbs-II catalyst (60–61%). Taking into
consideration the experimental fact that uncovers 1ChCl/2Gly as
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TABLE 1 | Parameterization studies on the Ru-catalyzed self-assembly metathesis of styrenes (1a–f) in different Deep Eutectic Solvents (DESs)a.

Entry Substr. R1 R2 Solvent Catalyst [Ru]

(mol%)

Conc. t (h) c

(%)b

1 1a H H 1ChCl/2Gly Grubbs-II 4 1 M 20 95c

2 1a H H H2O Grubbs-II 4 1 M 24 87

3 1a H H 1ChCl/2Gly Grubbs-II 2 1 M 24 76

4 1a H H 1ChCl/2Urea Grubbs-II 4 1 M 20 60

5 1a H H 1ChCl/2Lac Grubbs-II 4 1 M 20 61

6 1a H H Gly Grubbs-II 4 1 M 24 71

7 1a H H 1ChCl/2Gly Grubbs-I 4 1 M 24 15

8 1a H H 1ChCl/2Gly 3a 4 1 M 24 5

9 1a H H 1ChCl/2Gly 3b 4 1 M 24 2

10 1a H H 1ChCl/2Gly Grubbs-II 4 0.1 M 24 14

11 1b OMe H 1ChCl/2Gly Grubbs-II 4 1 M 24 83

12 1c F H 1ChCl/2Gly Grubbs-II 4 1 M 24 21

13 1d Cl H 1ChCl/2Gly Grubbs-II 4 1 M 24 17

14 1a H H 1ChCl/2Gly – 4 1 M 24 0

15 1e OH H 1ChCl/2Gly Grubbs-II 4 1 M 24 15

16 1e OH H 1ChCl/2Gly Grubbs-II 4 0.5 M 24 12

17 1e OH H DES:H2O (1:1)d Grubbs-II 4 0.5 M 24 12

18 1f OH OMe DES:H2O (1:1)d Grubbs-II 4 0.5 M 24 18

aGeneral conditions: reactions performed under air at 50◦C with 0.5 mmol of substrate and 0.5mL of the desired solvent. For more information, see Supplementary Material.
bDetermined by GC.
c91% isolated yield of 2a.
d1ChCl/2Gly:H2O 1:1.

the best reaction media, we investigated if the presence of the
quaternary ammonium salt ChCl was necessary to achieve high
conversions on the final stilbene (2a). Thus, the self-assembly
metathesis of 1a upon the optimized reaction conditions (50◦C,
4 mol% of Grubbs-II and under air) was studied but employing
pure glycerol as solvent (entry 6, Table 1). As expected from our
previous experience on metal-catalyzed processes in ChCl-based
DESs (García-Álvarez, 2015; Vidal and García-Álvarez, 2019), the
reaction in the absence of ChCl (pure glycerol) also produced 2a

but in lower yield (71%) after longer reaction time (24 h), thus
revealing the positive effect of non-molecular ChCl-based DESs
when compared with their separated components.

Next, we focus our attention on the activity of other
ruthenium catalysts for the self-assembly metathesis of 1a in
1ChCl/2Gly (entries 7–9). The Grubbs-I complex was tested as
catalyst, discovering a dramatic decrease in the catalytic activity

under the optimized reaction conditions as only 15% of 2a was
obtained after 24 h (entry 7, Table 1). Taking into account the
high activity exhibited for the bis(allyl)-Ru(IV) complexes 3a,b
in the isomerization of allylic alcohols in DESs, these complexes
were also tested in the metathesis of 1a in the eutectic mixture
1ChCl/2Gly. Unfortunately, both complexes were almost inactive
in such transformation (entries 8–9, Table 1). For completeness,
the parameterization study included the effect of the substrate
concentration in the course of the catalytic reaction. As a result,
a decrease from 1M of 1a (entry 1) to 0.1M (entry 10) produced
a remarkable decrease in the final conversion (14%).

With the optimized reaction conditions in hand, the scope of
the reaction was extended to other styrene-like olefins finding
that electron donating groups (MeO, entry 11) are tolerated in the
process (83%) while the presence of electron withdrawing groups
(F, entry 12; Cl, entry 13) results in concomitant decrease of the
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activity of the Grubbs-II catalyst. Likewise, the presence of the Ru
catalyst was verified as mandatory for the reaction to take place
(entry 14, Table 1). Bearing in mind the planned cascade and the
fact that BsPAD decarboxylates exclusively p-hydroxycinnamic
acids4, p-hydroxystyrene and 4-hydroxy-3-methoxystyrene (1e–
f, the tentative products resulting from the biotransformation),
were subjected to the metathesis reaction. Unfortunately, the p-
hydroxyl group within 1e exerted a strong negative effect and the
measured conversion was exclusively of 15% (entry 15). Further
attempts at 0.5M and using a medium consisting of DES:H2O
1:1 led to similar outcome (entries 16–17). Analogously, the
disubstituted 1f styrene led to the stilbene-type derivative 2f in
18%. At this point, and bearing in mind the results obtained
in entries 11–18 (Table 1), it is important to highlight that
we observed experimentally a direct relationship between the
solubility of the styrenes 1a–f in the eutectic mixture 1ChCl/2Gly
and the reaction yield. In this sense, and for the case of styrene
(1a) and p-methoxy-styrene (1b), which are totally insoluble
in the eutectic mixture 1ChCl/2Gly, the catalytic reaction takes
place under heterogeneous conditions and best reaction yields
were observed (95 and 83%, respectively). However, we observed
a dramatic decrease in the yield of the reaction (12–21%)
when partially soluble (1c–d) or soluble (1e–f) styrenes were
employed5, 6. Similarly, some of us have previously reported an
analogous scenario when using organolithium reagents (RLi) in
the heterogeneous anionic polymerization of the aforementioned
styrenes 1a-dwhen employing polar eutectic mixtures as reaction
media (Sánchez-Condado et al., 2019).

As stated above, the inhibition of the catalytic activity
of transition-metal complexes in the presence of enzymes,
co-factors or buffers is a well-known phenomenon in one-
pot chemoenzymatic processes (Gröger and Hummel, 2014;
Bornscheuer, 2015; Schmidt et al., 2018). Accordingly, we
designed two experiments aimed at verifying the compatibility
of the co-factor free BsPAD-catalyzed decarboxylation process
with the Grubbs-II catalyzed self-assembly metathesis of styrenes

4The mechanism of the BsPAD-catalyzed decarboxylation of p-hydroxycinnamic
acids starts by deprotonation of the p-hydroxy group and proceeds via a quinone
methide intermediate, which then leads to the cleavage of CO2. For the specific
case of Deep Eutectic Solvents, it has been reported that: “in view of the observed
differing substrate preference dependent on the applied solvent, it is suggested that
solvent effects play a crucial role in our studied reaction systems besides classical steric
and electronic properties of the substrates.” For more information, see: (Rodríguez
et al., 2010).
5These experimental facts suggest that the catalytic reaction takes place “on the
eutectic mixture” and not “in the eutectic mixture”. This “on DES” concept is closely
related with the “on water” concept previously coined by K. B. Sharpless. These “on
water” (or “on DES”) reactions are thought to occur at the organic/liquid water (or
eutectic mixture) interface with water (or DES) insoluble reactants. For leading
references, dealing with the “on water” concept, see: (Narayan et al., 2005; Chanda
and Fokin, 2009; Butler and Coyne, 2015, 2016).
6This mechanistic proposal indicates that the eutectic-phobic interactions in
between both the insoluble styrenes and the catalyst permit an intimal contact
between both reactants, thus increasing the overall observed catalytic rate of the
process. This mechanistic effect is now well-established and has been previously
observed by different research groups worldwide in the study of Grubbs-catalyzed
“on water” metathesis processes. For outstanding articles and book chapters
that reported previous examples of this mechanistic effect in Grubbs-catalyzed
metathesis reactions see: (Gułajski et al., 2008; Diallo et al., 2010; Grela et al., 2015).

in DESs7. Initially, the catalytic activity of the Grubbs-II
catalyst in the metathesis of 1a was evaluated in the medium
employed in the enzymatic decarboxylation, namely a mixture
1ChCl/2Gly:H2O 1:1 (see Scheme 2). Similarly, in a second
experiment the enzyme was also added to the reaction media
1ChCl/2Gly:H2O containing the Grubbs-II catalyst. Pleasantly,
both tests showed that the metallic complex suffers virtually
no erosion of its catalytic activity (96% of 2a) in the reaction
conditions needed for the starting enzymatic step of the planned
cascade process.

Chemoenzymatic Combination of
BsPAD-Catalyzed Decarboxylation of
p-Hydroxycinnamic Acids With the
Ru-Catalyzed (Grubbs-II) Metathesis of
Styrene-Type Olefins in DESs
Encouraged by the previous parametrization that suggest
the possibility to trigger the self-assembly metathesis of p-
hydroxystyrenes employing directly the reaction media coming
from the enzymatic decarboxylation of p-hydroxycinnamic
acids, we designed the chemoenzymatic coupled process in
a 1ChCl/2Gly-water medium (see Scheme 3). According to
conditions optimized previously (Schweiger et al., 2019), the
BsPAD-catalyzed decarboxylation of 3f was performed at
300mM substrate concentration and 30◦C in 1ChCl/2Gly-water.
Once the biotransformation was completed, the Grubbs-II
catalyst was then added and the reaction mixture stirred for
24 h at 50◦C. As expected, the conversion in the metathesis
step was very low and the isolated overall yield of 2f for
the two-steps process resulted in 15%. Hence, our studies
revealed that the stepwise enzymatic decarboxylation/metal-
catalyzed metathesis was hampered by the intrinsic limitations
of the metallic step, not by the incompatibility between single
reactions. At least, it can be taken as a proof of concept of the
viability of this chemoenzymatic process in DES-water media
at the expense of developing more efficient catalysts for the
metathesis of p-hydroxystyrenes.

Chemoenzymatic Combination of the
BsPAD-Catalyzed Decarboxylation of
p-Hydroxycinnamic Acids With the
Pd-Catalyzed Heck Coupling in DESs
Seeing as the above unsatisfactory results, we turned our
attention on other metal-catalyzed transformations reported
in eutectic mixtures, like the case of the Pd-catalyzed Heck-
type C-C coupling2,3. In fact, such chemoenzymatic process,
namely the tandem enzymatic decarboxylation/Heck coupling
has just been reported in continuous flow in DES-water to tackle
incompatibility of catalysts and solubility issues (Grabner et al.,
2020). Accordingly, we planned to get more insight about this
system by setting up the counterpart process in batch conditions

7For previous examples dealing with the combination of Ru-catalyzed metathesis
processes and different enzymatic transformations in aqueous media, see:
(Tenbrink et al., 2011; Denard et al., 2014; Gómez Baraibar et al., 2016; Scalacci
et al., 2017; Bojarra et al., 2018).
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SCHEME 3 | One-pot sequential enzymatic decarboxylation (BsPAD)/metal-catalyzed metathesis (Grubbs-II) of p-hydroxycinnamic acid (3f) in the

mixture 1ChCl/2Gly-water.

(Scheme 4). Following the reported conditions in the flow
system, we essayed the Heck coupling between p-hydroxystyrene
(1e) and iodobenzene (4) in 1ChCl/2Gly:H2O 1:1 but employing
the commercially available catalyst Pd(PPh3)4. The use of EtOH
as co-solvent (25% v/v) proved to be critical for the outcome of
the reaction. Working at 100◦C and 60mM of 4, the conversion
reached a value >90% with an isolated yield of 65% on (E)-4-
hydroxystilbene (5e) after 8 h. In fact, due to the strong reaction
conditions, the yield was limited by the formation of the isomeric
byproduct p-hydroxy-1,1-diphenylethylene at a percentage close
to 10%. On the other hand, the inhibition studies unveiled that
by adding exogenous BsPAD the Pd catalyst is deactivated (c
= 0%) which precludes the chemoenzymatic process without
additional settings.

In a first attempt to remove the biocatalyst for the tentative
second step of the cascade, a BsPAD-catalyzed decarboxylation
of 3e was conducted at 120mM and 30◦C in 1ChCl/2Gly:H2O
1:1 during 2 h. Once the biotransformation was accomplished
(99%), the reaction mixture was subjected to centrifugation at
13,000 rpm during 5min. The insolubles were discarded and the
supernatant diluted (up to 60mM of PhI, the limiting reactant)
and treated with the reagents for the Heck coupling. As a result,
the overall yield for the two-steps process was exclusively of 15%,
which suggests that BsPAD partially remained in the supernatant.
Hence, two strategies were planned to avoid the contact between
catalysts: (i) immobilization of BsPAD on a solid support; or
(ii) employment of aqueous micellar solutions which enable to
isolate metal catalyst and enzyme from each other. For more
information, see Supplementary Material.

With regards to the first approach, we conceived a solid
support for BsPAD which fitted the requirements for the
chemoenzymatic cascade; preserving the catalytic activity of the
enzyme and avoiding the enzyme lixiviation to the reaction
medium based on DES-water mixtures. With these premises, we
selected the commercially available carrier EP-403S (pore size:
40–60 nm and particle size: 100–300µm). We further activated
such carrier with tertiary amine groups (EP-TEA) to promote
the enzyme immobilization through reversible but strong ionic
interactions as reported for other industrially relevant enzymes
as ketoreductases (Benitez-Mateos et al., 2017). 100% of the
offered BsPAD was immobilized on the carrier although the
specific activity of the enzyme was reduced to 51% upon
the immobilization (Table 2). Noteworthy, the immobilized
BsPAD was significantly more active than other decarboxylases

immobilized on pre-existing carriers through both reversible
and irreversible chemistries (Aßmann et al., 2017). When we
performed fluorescence studies, we observed that the intrinsic
Trp-fluorescence intensity of BsPAD decreased and its maximum
emission wavelength was red-shifted when the enzyme was
immobilized (Figure 1A). That fluorescence decay suggests that
the immobilization induced some conformational distortions on
BsPAD structure that would explain its lower recovered enzyme.
Inspecting the X-ray structure of BsPAD, we found a region
clearly enriched in Asp and Glu, which makes us to postulate
that region as the one through the immobilization takes place.
Moreover, in that acidic region, we find two main tyrosines
that may be quenched to some extent upon the immobilization
(Figures 1A,B). Hence, we suggest that the lower catalytic
efficiency of this heterogeneous biocatalyst may rely on some
structural distortion at the interface between that acidic region
of the enzyme and the surface of acrylic porous beads.

We named the resulting heterogeneous biocatalysts as
PAD@EC-TEA, which despite presenting lower specific activity
than the soluble enzyme, exhibited an excellent decarboxylation
efficiency toward 3e both in water and 1ChCl/2Gly:H2O 1:1. In
particular, working at 200mM of 3e and a comparable loading
of biocatalyst, the reaction was complete in 2 h (c > 99%).
Remarkably, PAD@EC-TEA could be efficiently recycled up to
four times in H2O meanwhile the heterogeneous biocatalyst
completely lost its activity after just one cycle in theDESmixture.
This fact was due to the high concentration of choline needed
to form the DES (3M) that partially released BsPAD from the
aminated carrier (Figure 1C). In fact, the DES was as efficient
as 1M NaCl breaking the electrostatic interactions between
the proteins and the positively charged carrier, and therefore
eluting BsPAD to the reaction crude. Then, two decarboxylation
reactions of 3e were run at 120mM in 1ChCl/2Gly:H2O 1:1
and water. After verifying complete conversion of the cinnamate
by HPLC, the reaction mixtures were filtered off to remove
PAD@EC-TEA and subjected to further Heck coupling (60mM).
Using the selected DES mixture, no product was detected
as expected since choline partially eluted the BsPAD to the
reaction crude (Figure 1C), thus that soluble enzyme inhibited
the Pd catalyst, precluding the formation of the C-C bond
(Table 3, entry 2). On the contrary, running the decarboxylation
in water, the enzyme remained bound to the carrier and
consequently the metal-catalyzed reaction rendered 5e in 60%
overall yield (Table 3, entry 3). Therefore, this two-step one-pot
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SCHEME 4 | One-pot sequential enzymatic decarboxylation (BsPAD)/Pd(PPh3)4-catalyzed Heck coupling of p-hydroxycinnamic acid (3e) with PhI (4) in

DES-water mixtures.

TABLE 2 | Heterogeneous biocatalyst characterization.

Enzyme Support 9 % Ai (U/g) Load (mg/g) AR (U/g) AR % Aei (U/mg)

BsPAD EP-TEA 100 3,09 1 1,58 51,11 1,58

Immobilization parameters of BsPAD in ECGP/403-5/TEA support. 9%, immobilization yield; Ai , immobilized activity; AR, restored activity; Aei, expressed activity of immobilized enzyme.

FIGURE 1 | (A) Total intrinsic fluorescence of soluble and immobilized BsPAD using an excitation wavelength of 280 nm. T0 (solid lines) correspond to spectra of the

non-incubated enzymes, while T1 (dashed lines) do to enzyme incubated for 1 h at 45◦C. Data were normalized assigning a value of 1 to the highest fluorescence

intensity value for each sample non-thermally incubated (sample T0s). (B) Electrostatic surface representation of BsPAD (PDB ID: 2P8G). Tryptophan and tyrosine

residues are colored in green and yellow, respectively. Images were made with Chimera software. (C) Percentage of protein eluted from the carrier after an incubation

of 1 h with 1M NaCl, a solution of (1ChCl/2Gly:H2O 1:1) and H2O.

sequential chemoenzymatic process successfully worked up when
firstly performing the BsPAD-driven decarboxylation in water,
separation the heterogeneous biocatalysts by simple vacuum
filtration and finally diluting the reaction by 2-fold with the DES
and adding the Pd-catalyst. Using this synthetic sequence, we are
able to achieve high yields of the desired product and recycle the
immobilized BsPAD.

Very recently, designer surfactants based on aqueous micellar
solutions have been demonstrated as valuable reaction media
for chemoenzymatic cascades (Cortes-Clerget et al., 2019). In
particular, Lipshutz et al. developed several one-pot two-step
combinations of metal-catalyzed reactions with a subsequent
bioreduction. In the so-called micellar catalysis, the biocatalyst

remains in the aqueous solution, while the organic solvents host
the metal-catalyst and acts as reservoir for substrate and product.
On the other hand, the solubilizing properties of the surfactant
Cremophor R© enabled to enhance the substrate concentration of
poorly-water soluble substrates in a two-enzyme cascade reaction
(Correia Cordeiro et al., 2019). With these precedents, the
BsPAD-catalyzed decarboxylation of 3ewas essayed at 200mM in
a medium consisting of water and 2 wt.% of different surfactants
(above their reported critical micelle concentration)8. As deduced

8The technical specifications for the commercially available Kolliphor RH40 R© and
Cremophor EL R© report a critical micelle concentration (CMC) of 0.03% w/w at
37◦C and 0.02% w/w at 25◦C, respectively. With regards to the recently designed
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TABLE 3 | Strategies for the one-pot sequential enzymatic decarboxylation/Pd-catalyzed Heck coupling of p-hydroxycinnamic acid (3e) in non-conventional mediaa.

Enzymatic decarboxylation Pd-catalyzed Heck coupling

Entry Substr. Biocatalyst Medium [3e]

(mM)

c

(%)b
Work-upc Medium [1e]

(mM)

Yield

(%)e

1 3e PAD WT DES:H2O 1:1 120 >99 A DES:H2O:EtOH 60 15

2 3e PAD-TEA DES:H2O 1:1 120 >99 A DES:H2O:EtOH 60 -

3 3e PAD-TEA H2O 120 >99 B DES:H2O:EtOH 60 60

4 3e PAD WT H2O (2 wt.% 6) 120 >99 C H2O:EtOH
d 60 60

5 3e PAD WT H2O (2 wt.% 7) 120 >99 C H2O:EtOH
d 60 55

6 3e PAD WT H2O (2 wt.% 8) 120 95 C H2O:EtOH
d 60 25

7 3e PAD WT H2O (2 wt.% 9) 120 >99 C H2O:EtOH
d 60 20

8 3e PAD-TEA H2O (2 wt.% 6) 120 55 B H2O:EtOH
d 60 <5

9 3e PAD-TEA H2O (2 wt.% 7) 120 40 B H2O:EtOH
d 60 <5

10 3e PAD WT H2O (2 wt.% 6) 200 >99 C H2O:EtOH
d 60 62

11 3e PAD WT H2O (2 wt.% 6) 200 >99 C H2O:EtOH
d 100 70

aGeneral conditions: The enzymatic decarboxylation was performed under air at 30◦C during 2 h. The Heck coupling was performed at 100◦C during 8 h.
bDetermined by HPLC.
cProcedure A: centrifugation and removal of insolubles. Procedure B: removal of biocatalyst by filtration through a cartridge. Procedure C: dilution in the reaction medium of the second
step without further treatment.
dWater contains 2 wt.% of the corresponding surfactant.
eOverall yield for the two-steps procedure after silica gel chromatography.

from Table 3, the reaction proceeded smoothly in such a low
percentage of the four solubilizers tested (c > 90% entries 4–7).
Then, the corresponding reaction mixtures were supplemented
with an aqueous solution (2 wt.% solubilizer) containing the Pd
catalyst, EtOH, PhI, and K2CO3 and heated at 100◦C during
8 h. The media containing Cremophor EL (6) and Kolliphor
RH40 (7) led to good yields (55–60%, entries 4–5), in contrast
to those containing both SPGS-550-M (8) and TPGS-750-M (9)
(20–25%, entries 6–7)9. Likewise, the immobilized biocatalyst
(BsPAD-TEA) was also tested in the best micellar solutions
(those containing 6 and 7). Unfortunately, such media resulted

surfactants TPGS-750-M and SPGS-550-M, they exhibited a CMC of ca. 10−4 M
and 2% w/w was found to be useful for most reactions studied to date: (Lipshutz
and Ghorai, 2012).
9The observed decrease in the catalytic activity when using TPG-750-M and
SPGS-550M could be explained by bearing in mind the fact that their technical
specifications assessed that: reactions can be run between 4 and 60◦C. Above 70◦C,
however, particle shapes become unpredictable; e.g., reorganization from spherical
particles to bilayer arrays may occur, and so the quality of reactions run in these
modified particles is not predictable.

in incomplete decarboxylation of 3e (c< 55%, entries 8–9) which
led to very low overall yields after the metal-catalyzed step (c <

5%). Finally, the effect of substrate concentration on the two-
steps protocol was studied. The enzymatic decarboxylation of 3e
took place warmly at 200mM in the micellar solution containing
6 (entry 10). Further dilution to 60mM in PhI for the Heck
coupling (as in previous experiments) led to comparable isolated
yield (62%). Gratefully, the attempt to enhance the second step to
100mM resulted in an improved overall yield (70%, entry 11).

CONCLUSIONS

The application of non-conventional media such asDeep Eutectic
Solvents (DESs) or aqueous micellar solutions as a practical
solution to set up two chemoenzymatic cascades has been
studied. In particular, the BsPAD-catalyzed decarboxylation of
p-hydroxycinnamic acids was coupled alternatively with two
metal-catalyzed processes such as the metathesis of olefins
and a Heck C-C coupling reaction. In the first process, both
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catalysts were compatible and the low overall yield was due
to the ineffective activity of the Grubbs-II catalyst toward p-
hydroxystyrenes in such eutectic mixtures. With regards to the
second, the employment of an immobilized biocatalyst on the one
hand or micellar solutions on the other was enough to confine
the enzyme and avoid its inhibitory activity on the Pd catalyst,
the target biaryl derivatives being obtained in moderate to good
yields. Despite some limitations remained challenging in the
processes reported herein, these examples contribute to expand
the available toolbox for developing chemoenzymatic cascades.
Future efforts must be led to improve the immobilization of
BsPAD on solid materials to achieve irreversibly bound enzymes
that do not interfere with the metal-catalyzed step and tolerate
DESmixtures to assemble one-pot concurrent systems.
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