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Abstract: The current systematic review evaluated the effects of different pre-cooling techniques on
sports performance in highly-trained athletes under high temperature conditions. PubMed/MEDLINE,
EMBASE, Web of Science, CENTRAL, Scopus, and SPORTDiscus databases were searched from
inception to December 2019. Studies performing pre-cooling interventions in non-acclimatized
highly-trained athletes (>55 mL/kg/min of maximal oxygen consumption) under heat conditions
(≥30 ◦C) were included. The searched reported 26 articles. Pre-cooling techniques can be external
(exposure to ice water, cold packs, or cooling clothes), internal (intake of cold water or ice), or mixed.
Cooling prior to exercise concluded increases in distance covered (1.5–13.1%), mean power output
(0.9–6.9%), time to exhaustion (19–31.9%), work (0.1–8.5%), and mean peak torque (10.4–22.6%), as well
as reductions in completion time (0.6–6.5%). Mixed strategies followed by cold water immersion seem
to be the most effective techniques, being directly related with the duration of cooling and showing the
major effects in prolonged exercise protocols. The present review showed that pre-cooling methods
are an effective strategy to increase sports performance in hot environments. This improvement
is associated with the body surface exposed and its sensibility, as well as the time of application,
obtaining the best results in prolonged physical exercise protocols.
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1. Introduction

Nowadays, sport competitions take place in a great diversity of geographical areas characterized
by hot environments, such as the 2019 International Association of Athletics Federations (IAAF) World
Championships in Doha, the 2020 Olympic Games in Tokyo, and the 2022 Federation International
Football Association (FIFA) World Championship in Qatar. This situation constitutes a major challenge
for athletic trainers and medical staff due to the impact that heat causes in athletes, mainly in endurance,
racket, and team-sport disciplines. The practice of moderate/high-intensity exercise produces large
amount of energy, which is eliminated as heat with an associated increase of central temperature [1].
Skin blood flow and sweat rate increments are crucial thermoregulatory mechanisms that favor heat
loss [2], although when environmental conditions are extreme, these adjustments are disturbed and
cannot avoid the elevation of core body temperature [3]. In this regard, hyperthermia is known

Int. J. Environ. Res. Public Health 2020, 17, 2952; doi:10.3390/ijerph17082952 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0001-9708-7015
https://orcid.org/0000-0002-0440-1157
https://orcid.org/0000-0003-4625-2759
http://www.mdpi.com/1660-4601/17/8/2952?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph17082952
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2020, 17, 2952 2 of 15

to reduce physical and athletic performance [4,5], altering cardiovascular function and leading to
both peripheral and central fatigue [6]. Furthermore, exertional heat stroke may occur when core
temperature reaches 40 ◦C and the subject begins to suffer changes in mental status [7]. Nonetheless,
highly trained endurance athletes respond physiologically as if they were already heat acclimatized [8],
and present less adaptive potential in comparison with moderately trained athletes or untrained
subjects [9]. In fact, a study performed in elite cyclists competing in heat showed that they were able to
reach core temperatures of 40 ◦C and above without heat illness [10].

Bearing in mind the particular circumstances in which highly trained athletes compete and in
looking for a major performance, sport scientists have put all their effort to find cooling techniques to
reduce central temperature and delay the onset of fatigue [11]. Thus, athletes can implement cooling
before or during competition to facilitate heat dissipation and increase heat storage capacity, prolonging
the time in which exercise intensity can be maintained before reaching a critical top limit [12].

To date, none of the reviews on this topic have focused on highly-trained athletes (>55 mL/kg/min
of maximal oxygen consumption (VO2max)) under heat stress conditions (>30 ◦C) [11,13,14]. This
aspect is extremely necessary in preparation for attending to the sports events that will take place
in the near future. Therefore, the purpose of this systematic review was to summarize the current
scientific evidence in relation to the effectiveness of pre-cooling strategies in highly-trained athletes
exercising/competing in high temperature environments.

2. Materials and Methods

This systematic review followed the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement [15].

2.1. Search Strategy

All studies were identified through a search on electronic databases, including PubMed/MEDLINE,
EMBASE, Web of Science, CENTRAL, Scopus, and SPORTDiscus, from inception until December 2019.
Reference lists of the included articles were also searched for additional references. Searches were
restricted to the English language, without limitations on dates of publication. Details of the search
strategy for PubMed/MEDLINE are shown in Appendix A.

2.2. Eligibility Criteria

Studies were included if they fulfilled the following inclusion criteria: (1) cooling intervention
applied before exercise; (2) existence of a control condition (without cooling intervention) through a
randomized crossover design; (3) ambient temperature≥30 ◦C; (4) highly-trained athletes (>55 mL/kg/min
of VO2max or, in case this value was not mentioned, the clear specification by the authors that the
athletes were trained); (5) athletes not acclimatized to heat; and (6) measurement of sports performance.
Studies were excluded if they were incomplete (e.g., abstracts), if outcome measures were based on
non-performance parameters (e.g., physiological markers), and/or if their design was different from
randomized crossover trial.

2.3. Study Selection

Articles identified by the search strategy were screened independently by two authors for the
inclusion criteria using the title and abstract and then the full-text copies. Discrepancies over article
inclusion were settled through discussion with a third reviewer until consensus was reached. Data
were extracted independently by two investigators, and involved the following items: data on study
source, study design, sample size, characteristics of the participants, ambient conditions (temperature
and relative humidity), exercise protocol, technique and protocol of pre-cooling, variation in core
temperature (Tc) between periods at the end of exercise, and final outcomes of the interventions.
The main outcomes were total distance covered, power output, completion time, time to exhaustion,
and work.
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2.4. Quality Assessment

The quality of the studies was assessed by two researchers using the PEDro scale for this purpose [16].
This scale is based on 11 items, the first of which refers to external validity, and the remaining 10 to
internal validity and the presentation of the statistical analysis. The assessment was nevertheless scored
out of 10, as the first item was not taken into account for this purpose. For each item whose criterion
was met, one point was awarded, whereas no points were given if the item was not fulfilled [17].
The relationship between the score and the quality of the study was on the following basis: excellent
quality (9 or 10 points), good quality (6 to 8 points), fair quality (4 or 5 points), and poor quality (fewer
than 4 points).

3. Results

3.1. Studies Included

The search strategy retrieved 2845 records. After duplicates were removed, 1253 studies were
excluded from the review process and 1525 were excluded after title and/or abstract analysis; 67 full-text
copies of the remaining studies were obtained and subjected to further evaluation. After reading
full-text copies, 41 studies were excluded from this review and 26 articles meeting the eligibility criteria
were included for qualitative analysis [18–43] (Figure 1).
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Figure 1. Flow diagram of study selection process.

3.2. Participant Characteristics

Overall, 240 subjects were included in the qualitative analysis. The number of participants
ranged from 6 [41] to 20 [25]. All the studies assessed only men, except three which used a mix-sex
sample [20,21,26] and two studies that included only women [44,45]. In total, 227 males and 13 females
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took part in the studies. The average age of participants was 24.6 years (ranging between 19.9 [32]
and 34.8 [22]), and the VO2max varied from 55.7 [33,38] to 71.6 mL/kg/min [40]. Regarding sport
modality, studies included a wide variety of athletes, both individual (cyclists [18,19,24,30,37–42],
runners [20–22,43], triathletes [23–25,42], and tennis players [26]), and team-sport players (covering
cricket [27–29], soccer [31], lacrosse [32], and other non-specified team sports [33]). Furthermore,
three studies included volunteers who recreationally practice various sport activities [34–36]. Table 1
summarizes the main results of the selected studies.

3.3. Intervention Characteristics

All the studies analyzed the acute effects of pre-cooling on sports performance and compared
it with non-pre-cooling controls. A total of 20 studies evaluated external techniques through 28
interventions [18–22,24–29,31–33,37–41,43], 8 assessed internal techniques (intake of ice or cold
water) [23,30,31,34–36,42,43], and 3 investigated mixed strategies (a combination of external and
internal methods) [31,40,43].

Two studies measured time to exhaustion (TTE) [34,36], three analyzed work [18,27,39], one
evaluated mean peak torque [28], and one assessed cricket parameters (ball speed, accuracy, and total
run-up speed) [29]. Pre-cooling strategies studied were:

• External: cold water immersion (CWI) [21,33,37,38], ice packs [22,31], iced towels [27], cooling
gloves [39], ice vest/jacket [18,20,39,41], cooling garment [19], cold water over the head [43], and
diverse combinations of the above techniques [24,26–29,32,40,41].

• Internal: crushed ice ingestion [23,30,31,34–36,42] and oral rehydration [43].
• Mixed: a combination of external and internal techniques [31,40,43].

3.4. Outcome Measures

3.4.1. External Method Cooling vs. Non-Cooling Strategies

The use of external cooling devices showed increases in distance covered (3.6–13.1%), mean power
output (0.9–4.5%), work (0.1–8.5%), and mean peak torque (10.4–22.6%), in addition to reductions in
completion time (0.5–5.8%) when compared with non-cooling strategies.

3.4.2. Internal Method Cooling vs. Non-Cooling Strategies

Internal cooling elicited increases in distance (1.5%), mean power output (6.2%), and TTE (19–31.9%),
as well as reductions in completion time (0.6–6.5%) in comparison with non-cooling control groups.

3.4.3. Mixed-Method Cooling vs. Non-Cooling Strategies

The combination of internal and external strategies was effective in increasing mean power output
(3%) and reducing completion time (1.3–5.1%).

3.4.4. Inter-Group Comparisons

Those studies comparing mixed-method cooling vs. internal and/or external strategies did
not conclude any significant between-group effects, although there was a trend in favor of mixed
methods [31,40,43].

3.5. Quality Assessment

Regarding methodological quality, the risk of bias of the included studies is shown in Table 2.
Due to their crossover design, none of the studies could conceal allocations and blind participants
from the interventions. Moreover, none of them blinded therapists or assessors. Overall, the quality of
the studies attained an average of 4.9 in the PEDro scale, which corresponded to a fair quality.
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Table 1. Summary of the included studies.

Study

N
nSex
nAge
nVO2max
nSport

EC
nT
nRH

Exercise Protocol
(Time/Distance, Timing
and Type)

Pre-Cooling Strategy Main Results (vs. CON) Between-Group Effects
(Inter-COOL)

App Protocol ∆Tc Max #

(1) Distance
(2) Mean power output
(3) Completion time
(4) Time to exhaustion
(5) Work
(6) Mean peak torque
(7) Cricket-specific measures

(1) Distance
(2) Mean power output
(3) Completion time
(4) Time to exhaustion
(5) Work
(6) Cricket-specific measures

Aldous
et al. [31]

8♂
22 ± 3
56 ± 9
Soccer

30.7
51

90′

45′/15′rec/45′

TM

INT Ice slurry ingestion (7.5 g/kg pre @ −0.1 ◦C and
3.75 g/kg rec) −0.1 (1) 0%

No significanceEXT Ice packs on quadriceps and hamstrings @ −14 ◦C 0 (1) 0%
MIX Ice slurry ingestion + ice packs −0.2 (1) 0%
CON Water ingestion (21 ◦C)

Arngrïmsson
et al. [20]

9♂, 8♀
22.7 ± 3.3
62.3 ± 4.4
Running

32
50

5000 m TT
TM

EXT 38′ ice vest −0.2 (3) ↓1.1% (p < 0.05)

CON No COOL

Booth et al. [21]
5♂, 3♀
26.7 ± 1.7
63.1 ± 0.1
Running

32
60

30′ TT
TM

EXT CWI (10′ @ 28–29 ◦C + 50′ @ 23–24 ◦C) −0.8 (1) ↑4.2% (p < 0.05)

CON No COOL

Duffield
et al. [18]

7♂
20.2 ± 2.2
ND
Cycling

30
60

80′ sprints
3 × 15′/5′-10′ rec
CE

EXT Ice jacket (pre and rec times) −0.1 (2) ↑2.4%
(5) ↑4.2%

CON No COOL

Duffield
et al. [26]

6♂, 2♀
20.8 ± 1.5
ND
Tennis

35
55

Running (on-court tennis
movement drills)
5 × 5′/2′ rec

EXT Ice vest + cold towels on head/neck/legs (20′ @
5 ◦C) + cold compression garment (10′ @ 5 ◦C) −0.2 (1) ↑4.6%

CON No COOL (passive seating)

Duffield
et al. [32]

7♂
19.9 ± 1.4
ND
Lacrosse

32.4
44

30′ sprints
4 × 5′/2′ rec
Lacrosse field

EXT 20′ COOL vest + cold towels in neck (3 ◦C) + ice
packs on quadriceps −0.5 (1) ↑7.7% (p = 0.05)

CON No COOL

Faulkner
et al. [19]

10♂
25.1 ± 6.1
61.3 ± 4.3
Cycling

35
51

60′ (75% Wmax)
CE

EXT 40′ COOL garment cold water (14.2 ◦C) 0 (2) ↓2.1%
(3) ↓3.6%

(2) No significance
(3) ↑2.6% in favor of COOL frozen
water (vs. COOL cold water)
(p < 0.05)

EXT 40′ COOL garment water frozen −0.1 (2) ↑4.5% (p < 0.05)
(3) ↓5.8% (p < 0.05)

CON No COOL
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Table 1. Cont.

Study

N
nSex
nAge
nVO2max
nSport

EC
nT
nRH

Exercise Protocol
(Time/Distance, Timing
and Type)

Pre-Cooling Strategy Main Results (vs. CON) Between-Group Effects
(Inter-COOL)

App Protocol ∆Tc Max #

(1) Distance
(2) Mean power output
(3) Completion time
(4) Time to exhaustion
(5) Work
(6) Mean peak torque
(7) Cricket-specific measures

(1) Distance
(2) Mean power output
(3) Completion time
(4) Time to exhaustion
(5) Work
(6) Cricket-specific measures

Gerrett
et al. [35]

12♂
30.4 ± 3.4
58.5 ± 8.1
Various sport activities

30.9
41.1

2 × 31′ self-pace
intermittent protocols
TM

INT 30′ ice slurry ingestion (7.5 g/kg @ 0.1 ◦C) −0.2 (1) ↑1.5%

CON Water ingestion (23.4 ◦C)

Ihsan et al. [30]
7♂
27.7 ± 3.1
ND
Cycling

30
75

40 km TT
CE

INT 30′ crushed ice ingestion (6.8 g/kg) −0.4 (2) ↑6.9% (p = 0.06)
(3) ↓6.5% (p = 0.049)

CON No COOL

Katica et al. [24]
8♂
25 ± 3
57.8 ± 5.0
Cycling/Triathlon

35
43.8

16.1 km TT
CE

EXT 20′ head and neck ice wraps + ice vest 0.1 (2) ↑1.8%
(3) ↓3.4% (p = 0.04)

CON No COOL

Kay et al. [37]
7♂
23.7 ± 2.1
64.5
Cycling

31
60

30′ TT
CE

EXT CWI (10′ @ 29.7 ◦C + 50′ @ 8–11 ◦C) −0.3 (1) ↑6.0% (p < 0.05)

CON No COOL

Lee et al. [34]
8♂
22 ± 4
57.8 ± 5.6
Various sport activities

35
60

Cycle to exhaustion INT Cold liquid ingestions (3 × 300 mL @ 4 ◦C) −0.5 (p < 0.001) (4) ↑31.9% (p < 0.001)

CON Warm liquid ingestion (3 × 300 mL @ 37 ◦C)

Maia-Lima
et al. [38]

8♂
20 ± 1
55.7 ± 7.88
Cycling

35
68

30 km TT
CE

EXT CWI (10 × (3′@ 24 ◦C) and 3′ out of the bath) −0.9 (p < 0.05) (2) 0%
(3) ↓3.4% (p < 0.05)

CON No COOL

Maroni
et al. [39]

10♂
21.1 ± 3.3
65.7 ± 10.7
Cycling

35
68

43′ sprints (cycling race
simulation protocol)
CE

EXT 30′ hand-COOL glove −0.3 (2) ↑1.0%
(5) ↑0.1%

No significance
EXT 30′ COOL jacket −0.3 (2) ↑3.1%

(5) ↑3.0%

EXT 30’ hand-COOL gloves + COOL jacket −0.5 (2) ↑0.9%
(5) ↑0.8%

CON No COOL
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Table 1. Cont.

Study

N
nSex
nAge
nVO2max
nSport

EC
nT
nRH

Exercise Protocol
(Time/Distance, Timing
and Type)

Pre-Cooling Strategy Main Results (vs. CON) Between-Group Effects
(Inter-COOL)

App Protocol ∆Tc Max #

(1) Distance
(2) Mean power output
(3) Completion time
(4) Time to exhaustion
(5) Work
(6) Mean peak torque
(7) Cricket-specific measures

(1) Distance
(2) Mean power output
(3) Completion time
(4) Time to exhaustion
(5) Work
(6) Cricket-specific measures

Minett
et al. [27]

10♂
20.9 ± 2.6
ND
Cricket

33
33

70′ sprints
2 × 35′/15′ rec
Running track (cricket
simulation)

EXT Head COOL (iced towel soaked in water at 5 ◦C) 0 (1) ↑5.8%
(5) ↑0.3%

(1) ↑6% and 7% in favor of
whole-body COOL (vs. head +
hand-COOL and hand-COOL,
respectively)EXT

Head + hand-COOL (iced towel soaked in water
at 5 ◦C in head and cold water immersion @ 9 ◦C
in hands)

−0.1 (1) ↑6.9% (p < 0.05)
(5) ↑8.2%

EXT

Whole-body COOL (iced towel on head and neck
@ 5 ◦C, cold water on hands @ 9 ◦C, ice vest on
torso and ice packs on quadriceps @ −20 ◦C
−20′ + 5′ rec)

−0.4 (1) ↑13.1% (p < 0.05)
(5) ↑8.5%

CON No COOL

Minett
et al. [28]

8♂
21.5 ± 2.7
ND
Cricket

33
34

70′ sprints
2 × 35′/15′ rec
Running track (cricket
simulation)

EXT

10′ + 5′ rec of whole-body COOL (iced towel on
head and neck @ 5 ◦C, cold water on hands @
9 ◦C, ice vest on torso and ice packs on
quadriceps @ −20 ◦C)

−0.1 (1) 0%
(6) ↑10.4%

(1) ↑4.5% in favor of 20′ COOL (vs.
10′ COOL) (p = 0.03)
(6) ↑11.1% in favor of 20′ COOL
(vs. 10 ′COOL) (p = 0.03)

EXT

20′ + 5′ rec of whole-body COOL (iced towel on
head and neck @ 5 ◦C, cold water on hands @ 9
◦C, ice vest on torso and ice packs on quadriceps
@ −20 ◦C)

−0.4 (p < 0.05) (1) ↑4.7% (p = 0.01)
(6) ↑22.6% (p = 0.05)

CON No cooling

Minett
et al. [29]

10♂
23 ± 8
ND
Cricket

31.9
63.5

6-over bowling spell 10 m
walking/20 m sprinting

EXT
20′ towel on head, neck and shoulders (5 ◦C) + ice
vest (−20 ◦C), cold water on non-bowling hand
(9 ◦C) and ice-packs on quadriceps (−20 ◦C)

−0.3

(7)
↑0.3% ball speed (p = 0.63)
↓2.5% accuracy (p = 0.76)
↓1.0% total run-up speed (p = 0.66)

CON No COOL

Muñoz
et al. [43]

10♂
25 ± 4
60.2 ± 5.4
Running

33
30

5000 m TT after
90′/30%VO2max
TM

INT Oral rehydration (7 ◦C) each 10′ −0.2 (3) ↓4.7%

No significanceEXT Cold water over the head (7 ◦C) each 10′ −0.1 (3) ↓3.8%

MIX Oral rehydration (7 ◦C) + cold water over the
head (7 ◦C) each 10′ −0.2 (3) ↓5.1%

CON No COOL

Quod et al. [41]
6♂
28 ± 4
71.4 ± 3.2
Cycling

34
41

40′ @ 75% WmaxCE
EXT CWI (5′ @ 29 ◦C + 25′ @ 24 ◦C) + ice jacket (40′) −0.2 (p = 0.004) (2) ↑3.8%

(3) ↓3.8% (p = 0.009)
(3) ↓2.4% in favor of the combined
treatment (vs. COOL jacket)
(p = 0.06)EXT 40′ COOL jacket 0 (2) ↑1.6%

(3) ↓1.5% (p = 0.35)
CON No COOL
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Table 1. Cont.

Study

N
nSex
nAge
nVO2max
nSport

EC
nT
nRH

Exercise Protocol
(Time/Distance, Timing
and Type)

Pre-Cooling Strategy Main Results (vs. CON) Between-Group Effects
(Inter-COOL)

App Protocol ∆Tc Max #

(1) Distance
(2) Mean power output
(3) Completion time
(4) Time to exhaustion
(5) Work
(6) Mean peak torque
(7) Cricket-specific measures

(1) Distance
(2) Mean power output
(3) Completion time
(4) Time to exhaustion
(5) Work
(6) Cricket-specific measures

Randall
et al. [22]

8♂
34.8 ± 4.4
65.5 ± 3.9
Running

32
49

5000 m TT
TM

EXT 30′ ice packs on quadriceps and hamstrings 0 (3) ↓6.0% (p < 0.01)
No significance

EXT 30′ ice vest −0.2 (3) ↓3.2%

CON No COOL

Ross et al. [40]
11♂
33 ± 5.1
71.6 ± 6.1
Cycling

32–35
50–60

46.4 km TT
CE

MIX 30′ crushed ice ingestion (14 g/kg) + iced towels
on torso and legs ND (2) ↑3.0% (p = 0.04)

(3) ↓1.3% (p = 0.08)

No significanceEXT CWI (10′ @ 10 ◦C) + 20′ ice jacket ND (2) ↑1.1% (p = 0.43)
(3) ↓0.5% (p = 0.53)

CON Cold water (4 ◦C) ingestion ad libitum

Schmit
et al. [25]

13♂
31 ± 4
64.9 ± 6.9
Triathlon

35
50

20 km TT
CE

EXT 20′ ice vest ND (2) ↑4.0%
(3) ↓1.3%

CON No COOL

Siegel et al. [36]
10♂
28 ± 6
56.4 ± 4.7
Various sport activities

34
54.9

Run to exhaustion
TM

INT 30′ ice slurry ingestion (7.5 g/kg @ −1 ◦C) 0.3 (p = 0.001) (4) ↑19% (p = 0.001)

CON Cold water ingestion (4 ◦C)

Skein et al. [33]
10♂
28 ± 2.7
55.7 ± 7.9
Team-sports

31
33

50 sprints (1 sprint/’with
1′ rec each 10′)
Running track

EXT CWI (15′ @ 10 ◦C) −0.2 (1) ↑3.6% (p < 0.05)

CON No COOL

Stanley
et al. [42]

10♂
30 ± 5.0
60.0 ± 7.7
Triathlon/Cycling

34
60

75′ cycling @ 60% PPO +
50′ seated rec + 30′

performance trial)
CE

INT Ice slushy ingestion (−0.8 ◦C prior to
performance trial) −0.4 (p = 0.001) (3) ↓0.6% (p = 0.263)

CON Liquid ingestion (18.4 ◦C prior to
performance trial)

Stevens
et al. [23]

9♂
29.1 ± 3.6
61.7 ± 4.7
Triathlon

32–34
20–30

Triathlon
(Olympic distance)

INT Crushed ice ingestion (10 g/kg) during 17′–45′ of
cycling phase −0.8 (3) ↓2.5% (running phase)

(p = 0.03)

CON Fluid ingestion (32–34 ◦C)
CON No collar

App: approach; CE: cycle ergometer; CON: control; COOL: cooling; CWI: cold water immersion; EC: environmental conditions; EXT: external strategy; HRmax: maximum heart rate; INT:
internal strategy; km: kilometre; m: meter; Max: maximum (at the end of the exercise protocol); MIX: mixed strategy; mL: millilitre; N: sample; ND: no data; PPO: peak power output; rec:
recovery; RH: relative humidity (%); RPE: rating of perceived exertion; T: temperature (◦C); Tc: core temperature (◦C); TM: treadmill; TT: time trial; VO2max: maximal oxygen uptake
(mL/kg/min); VO2peak: oxygen uptake during peak exercise (mL/kg/min); vs.: versus; Wmax: maximal power; @: at; #: negative value favors COOL condition; ‘: minutes; ‘’: seconds; *:
p: significance.
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Table 2. Quality assessment of the included studies.

Study PEDro Score Distribution

1 2 3 4 5 6 7 8 9 10 11 Total PEDro Score

Aldous et al. [31] – • – • – – – • – – • 4
Arngrimsson et al. [20] – • – • – – – • – • • 5
Booth et al. [21] – • – • – – – • – • • 5
Duffield et al. [18] – • – • – – – • – • • 5
Duffield et al. [26] – • – • – – – • – • • 5
Duffield et al. [32] – • – • – – – • – • • 5
Faulkner et al. [19] – • – • – – – • – • • 5
Gerrett et al. [35] – • – • – – – • – • • 5
Ihsan et al. [30] – • – • – – – • – • • 5
Katica et al. [24] • • – • – – – • – • • 5
Kay et al. [37] – • – • – – – • – • • 5
Lee et al. [34] – • – • – – – • – • • 5
Maia-Lima et al. [38] – • – • – – – • – • • 5
Maroni et al. [39] – • – • – – – • – • • 5
Minett et al. [27] – • – • – – – • – • • 5
Minett et al. [28] – • – • – – – • – • • 5
Minett et al. [29] – • – • – – – • – • • 5
Muñoz et al. [43] • • – • – – – • – • • 5
Quod et al. [41] – • – • – – – • – • • 5
Randall et al. [22] – • – • – – – • – • • 5
Ross et al. [40] – • – • – – – • – • • 5
Schmit et al. [25] – • – • – – – • – – • 4
Siegel et al. [36] – • – • – – – • – • • 5
Skein et al. [33] – • – • – – – • – • • 5
Stanley et al. [42] – • – • – – – • – • • 5
Stevens et al. [23] – • – • – – – • – • • 5

1. Eligibility criteria; 2. Random allocation; 3. Concealed allocation; 4. Baseline comparability; 5. Blind subjects; 6. Blind therapists; 7. Blind assessors; 8. Adequate follow-up; 9.
Intention-to-treat analysis; 10. Between-group comparisons; 11. Point estimates and variability. A “•” indicates a “yes” score, and a dash indicates a “no” score.
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4. Discussion

Pre-cooling techniques seem to be an effective strategy to enhance sports performance in hot
environments. Thus, improvements in terms of time, distance covered, work and power output, and
increasing TTE have been shown after applying cooling strategies prior to acute exercise trials.

With regard to external pre-cooling, a combination of methods appears to yield better results than
the use of an isolated technique. A reduced mean completion time was observed after a combination
of CWI with an ice vest/jacket, compared with ice vest or jacket alone [41]. Minett et al. [27] found that
20 min of whole-body pre-cooling was more effective than head and hands cooling in intermittent
sprint bouts, and even larger differences were observed compared to head refreshing alone. However,
Maroni et al. [39] did not show any differences in performance when comparing a hand-cooling
glove technique with a cooling jacket or a combination of both during high intensity prolonged
repeated-sprint efforts in cyclists. Despite this circumstance, all techniques improved thermal sensation
when they were applied in isolation. Because none of the cooling techniques assessed were able to
reduce Tc values between all trials [39], this factor might play an important role in athletic performance.
The key to reducing the Tc could reside in the parts of the body exposed to cooling devices, suggesting
that head and neck are more decisive than the distal parts. Neck is located near the thermoregulatory
center, which receives and integrates afferent thermal inputs and coordinates the efferent response to
the periphery [46]. Both neck and head present 2-5 times higher alliesthesial thermosensitivity than any
other segment during moderate cooling [47] and dominate whole-body temperature perception despite
constituting only a small portion of the total skin surface area [48]. In this regard, cooling the neck was
observed to significantly extend TTE in untrained individuals performing a treadmill time-trial [49].
Furthermore, the distance covered increased when endurance-trained subjects were cooled prior and
during a similar exercise protocol [50]. In addition to this, the specificity in the physiological assessment
of performance may have a key role in these findings [51], as cricket players are more familiar with
sprints [27] than cyclists, who are not used to performing repeated short-duration sprints (15 s) on
a cycle-ergometer [39]. However, the hypothesis that cycling may not benefit from pre-cooling was
discarded, as there are a considerable number of studies that have reported positive results using
cooling devices prior to simulated cycling tests [18,19,24,25,30,37,38,40,41].

Concerning individual techniques, CWI showed the best results among the external strategies in
terms of sports performance, offering significant increases in total distance covered [21,33,37], as well
as reductions in completion time [38]. Although these previous results support the fact that cooling
a larger body surface area improves performance to a greater extent, the application of ice packs
alone on quadriceps and hamstrings also yielded significant positive effects in completion time after
performing a 5000m treadmill time-trial [22]. Moreover, cooling hamstrings and quadriceps improved
power and work following a sprint-based protocol on a cycle-ergometer [52], even though local cooling
slows enzyme activity and nerve conduction, as well as reducing the rate of force development [53].
This reduction in contractile speed shown by the cooled muscles [54] especially affects short and
intense efforts, as a consequence of its negative impact on the fast twitch fiber recruitment, essential
for an optimal sprint performance [55]. Therefore, although further research is needed, it may be
counterproductive to cool lower-limb muscles prior to sprint protocols, as the high pre-activation
required by the hamstrings just before ground contact to produce maximum acceleration [56] could
be harmed.

Furthermore, and inversely related with intense efforts, prolonged exercise alters thermal
homeostasis to a greater extent than shorter exercise protocols, responding better to pre-cooling
and highlighting the importance of exercise duration on its effectiveness [57]. Nonetheless, it is worth
mentioning that cooling effect may be limited and tends to decrease when exercise exceeds 60 min [11],
and thus including the intervention process during exercise breaks (if exist) can help to maintain
its effectiveness.

Regarding internal strategies, the ingestion of ice crushed before exercising managed to reduce
completion time in both a 40km time-trial [30] and in the running phase of an Olympic-distance
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triathlon [23], as well as increases in distance covered on a treadmill [35]. Nevertheless, the timing
of ice ingestions may be important for enhancing performance. In this regard, a significantly higher
TTE was observed when the rest interval between the end of the ice intake and the beginning of the
exercise protocol was more prolonged (20 min vs. 5 min) [58]. These results encourage research on the
most appropriate time of ingestion in relation with the beginning of the competition to enhance the
ergogenic effects of this technique.

Muñoz et al. [43] noted that oral rehydration (7 ◦C) each 10 min before completing a 5000 m
treadmill could reduce a 4.7% time in the race test, although in a non-significant manner. Despite the
short duration of the test, this fact might highlight the importance of an adequate pre-hydration level on
sports performance, as has been previously described in long-distance runners [59] and cyclists [60,61].
Nevertheless, the deleterious effect of hypohydration is still in doubt, as well-trained cyclists subjected
to a dehydration up to −3% did not impair their performance on a 25 km time-trial in hot conditions
(33 ◦C, 40% relative humidity (rh)) [62]. These results may be taken into account, as they have been
obtained under real conditions (blinding the cyclists to their hydration status and with a facing air
speed at a rate near that of field-based forward cycling speed).

As expected, when internal and external strategies are combined, the effectiveness is enhanced in
comparison with the application of both separately. The intake of crushed ice ingestion was significantly
more effective than CWI in terms of power output when both were combined separately with a cooling
jacket [40], and adding ice slushy to a cooling jacket improved power and work values compared to the
external technique alone in team sport athletes [63]. Therefore, it seems that mixed strategies are the
best alternative to boost athletic performance under heat stress conditions, although further research
studying practical applicability is needed to establish the most feasible techniques.

Despite all the above, this review focused on athletes non-acclimatized to heat, and thus those
who perform an adaptation period before competing might not obtain further positive results after
pre-cooling aid, as has already been suggested. In this regard, no beneficial effects of pre-cooling were
observed in terms of performance in acclimatized amateur trained runners [64]. However, 2 weeks of
acclimatization offered similar results compared with cool conditions in terms of time when trained
cyclists were subjected to a prolonged time trial, whereas they showed a decrease in power output
in the non-acclimatized period [65]. Accordingly, it has been concluded that crushed ice ingestion
prior to exercise offered identical improvements in endurance cycling performance compared with
a 12 day acclimatization training program [66], being a cost-effective, time-efficient alternative if the
acclimatization is not possible. Apart from this, the individual characteristics of each athlete constitute
a differential factor concerning their response to heat. The skin temperature of athletes exposed to
heat raises at a slower rate, as they sweat earlier than less-trained individuals [67]. This fact has led
to suggestions that the application of cooling devices before exercise does not provide any beneficial
effects [12]. However, this hypothesis may depend on athletes’ morphology. Larger individuals have a
lower increase of body temperature, whereas subjects with higher aerobic fitness tended to accumulate
more heat for the same relative exercise intensity during cycling in hot conditions, as heat production
exceeds its elimination [68].

Future Directions on Heat Management in Athletes

Sport competitions are currently taking place in non-traditional hot countries, and thus the
implementation of cooling techniques before, during, and after competitions will become even more
important for athletes to cope with the heat. We have concluded that pre-cooling is effective in
improving performance parameters in highly trained athletes. However, no solid evidence exists
about the implication of cooling strategies on short and intense efforts, as we have mentioned above.
Furthermore, it is also important to find the most suitable pre-cooling technique for each sports practice
or specific context, as it may occur that the most effective technique in absolute terms is not the most
adequate in certain circumstances. In addition, and parallel to these techniques, the development
of technology as wearable biosensors capable of monitoring the thermal state and the response to
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physical exertion in real time will provide additional advantages to medical staff to protect the health
of athletes [69,70].

5. Conclusions

Pre-cooling methods are an effective strategy to reduce core body temperature prior exercise
sessions in heat environments. These methods boost athletic performance, generally increasing power,
work, covered distance, and time to exhaustion, as well as reducing completion time. Mixed techniques
(a combination of internal and external strategies) seem to be the most adequate option to enhance
the benefits of this practice, closely followed by cold water immersion, highlighting the influence of
the body surface exposed. Additionally, prolonged physical exercise protocols have evidenced better
results from the application of pre-cooling than short bouts.
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