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1 Introduction

Music source separation (SS) is the task of recovering each original instrument
from a polyphonic mixture of multiple musical instruments. Currently, music
source separation methods are mainly used in research for several audio pro-
cessing task, such as music remixing [37], automatic karaoke [21], instrument-
wise equalization [22], music information retrieval systems [16], audio com-
pression [35], etc. Nevertheless, these methods have been rarely exploited in
real-world applications, because of their high computational cost and slow ex-
ecution times that prevent their use in a wide spectrum of practical situations.

During the last decade, due to the growing demand for low cost computing
devices and the desire to enjoy music content in streaming mode on these em-
bedded devices, real-time audio processing is becoming an important research
topic in the field of music. In this way, SS is used for transcription applica-
tions [12], sound event detection [13] or interactive music editing applications
(Celemony Software GmbH1). On the other hand, there are many music SS
applications where response time is not a restriction. These are often called
offline applications and require the whole audio signal to estimate the sources,
and hence cannot be implemented in real-time. In these cases, the main goal is
to perform the separation with the highest possible perceptual quality results
while keeping interference between the sources to a minimum. These algo-
rithms are useful as a preprocessing stage for other tasks, such as structured
coding [36], beat tracking [10], audio restoration [6], etc. Note that real-time
systems perform the separation as the audio is acquired, using only past and
present information, meanwhile in the offline approach the audio performance
to be processed is available as a whole. This fact makes real-time performance
less accurate than offline performance. In this context, many recent efforts in
the field have been focused on improving the robustness and speed of music
real-time systems, making them appropriate for mobile devices and for a wide
range of real-life contexts [2,1,28].

Nowadays, most commercial music recordings are available in multichannel
format, such as stereo and 5.1. The number of channels available to perform
music separation is a key factor that can be exploited when designing music SS
models. Multichannel mixtures allow spatial positioning of the music sources
in the sound field. This spatial positioning models the contribution of each
musical source in each channel. However, high SS quality results are not pos-
sible to reach using only the multichannel spatial property [33]. In that sense,
the knowledge of additional prior information could be exploited to improve
the separation, such as the instrumentation [24], musical score information
[25,20,14], spectral information about the sources [30], information about the
recording/mixing conditions [15], etc.

In this paper, we propose a SS framework for multichannel audio signals
of high polyphonic complexity providing a high SS quality by developing a
low latency multichannel system. In this context, the tested scenarios show

1 www.celemony.com
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that it is possible to reach real-time combining parallel and high performance
techniques with multi-core architectures, the most common architecture in
today’s computer systems.

The proposed approach is suitable for live broadcast platforms of classi-
cal music such as MyOperaPlayer2 or Medici.TV3, since a latency of a few
seconds can be assumed by online users in exchange for an interactive expe-
rience, where they can select their favorite personal mix switching between
enjoying the full performance or concentrating on a specific instrument. For
this purpose, we decompose this problem in three stages: (1) the audio-to-
score alignment, (2) the separation process and (3) the source reconstruction
stage. The first stage is based on the ReMAS [1] system: a parallel and efficient
Real-time Musical Alignment System. In the second, the estimation of each
source spectrogram for each channel is carried out using a non-negative matrix
factorization (NMF) approach. In the final stage, a Wiener filtering method
is computed for modeling the energy contribution of each instrument of the
audio mixture.

In this work, significant improvements have been carried out that clearly
differentiate it from our previous work [28]. First, note that ReMAS, which
was optimized for low-power processors such as ARM processors, applies the
alignment process frame-by-frame. In the new context, the frame-by-frame
mechanism is not proper, having been necessary to redesign ReMAS for ad-
dressing a block-by-block approach. Here, we propose to split up the input
signal in consecutive audio segments (i.e. audio blocks) with the aim of re-
ducing the memory consumption in long musical pieces. Then, the alignment
process is performed over each segment consecutively. This alignment process
has been enriched by the incorporation of a traceback stage which improves
the alignment results at the expense of a complexity increment. Second, a
novel multichannel signal model which encodes the score information within
the model is proposed. In this sense, the separation stage has been imple-
mented using a different non-negative matrix factorization (NMF) approach.
Therefore, the multiplicative update rules have had to be analysed and effi-
ciently implemented according to the proposed model. Finally, the reconstruc-
tion stage has been also redesigned for addressing the complexity increment
of the novel signal model.

According to the best of our knowledge, there has not yet been presented a
holistic, flexible and free system that addresses this problem on parallel shared
memory systems. As a proof of concept, some experiments are carried out on
a dataset of chamber and orchestral music, showing reliable results in terms
of sound quality.

The structure of the article is organized as follows. In Sect. 2, we present
the proposed framework and describe the main function and methodology of
each of the stages that compose it. In Sect. 3, the evaluation set-up is presented

2 www.myoperaplayer.com
3 www.medici.tv
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Fig. 1: Block diagram of the proposed framework.

and the experimental results are shown. Finally, conclusions are summarized
in Sect. 4.

2 Framework description

2.1 System overview

In this work, we propose the development of a low latency multichannel SS
system for musical pieces of high polyphonic complexity. In particular, we
present a framework capable of aligning the musical score and the performance
first, and then using this alignment to guide the separation process of all the
instruments which compound the original mixture.

Unlike real-time systems in which each audio frame is processed in series,
in the offline applications the entire recordings of the performance are available
in advance for processing. However, processing long recordings directly is not
possible due to the great impact that the duration of these recordings has over
the system in terms of memory resources. To mitigate this problem, we propose
to split up the input audio signals into blocks of a configurable duration. These
blocks are processed in series providing a hybrid behaviour. In this way, our
system performs the SS in real-time with a latency equal to the duration of
these blocks.

The block diagram of the proposed framework is displayed in Fig. 1. As
can be observed, the issue has been decomposed into three main stages: align-
ment, separation and reconstruction. The following subsections detail the main
function and the procedure of each stage.
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2.2 Alignment stage

The main aim of this stage is to synchronize the audio signal of the musical
performance with its corresponding score to guide the separation process. In
this way, each temporal frame t of the input audio signal is matched with
each MIDI score event s. For this purpose, we have redesigned our real-time
algorithm ReMAS [1] and incorporated a traceback module (see Fig. 1).

In order to reduce the impact that long recordings have over the system
in terms of memory resources, we propose to divide the signal into blocks
of a fixed duration. Then, each block is processed in series by the proposed
framework.

For each new audio segment that arrives for being processed, we perform
a novel extension of the audio-to-score alignment presented in [8] and imple-
mented in [1]. In particular, Carabias et al. [8] proposed to compute a distor-
tion matrix D ∈ RS×T

+ as the β-divergence between two features sequences
related to the score and the input audio frames. Firstly, the score information
is arranged into score units (i.e. combinations of notes annotated in the score)
and then, a single spectral pattern for each of them is learnt. These spectral
patterns compound the score features sequence. Afterward, a vector of fea-
tures per each frame t is computed as its conversion to the frequency domain.
A deep description of this theoretical procedure can be found in [8,1].

Once the distortion matrix D is generated for each frame t in the block and
each instant s in the score, the general alignment is computed using dynamic
time warping (DTW). In this way, an accumulated cost matrix C ∈ RS×T

+ is
defined using the following recursion,

C(s, t) = min
cs,ct

{
C(s− 1, t− ct) +D(s, t)σ1,ct

C(s− cs, t− 1) +D(s, t)σcs,1

}
(1)

where cs and ct are the step sizes at each dimension, whose values are the
integers in the range cs ∈ [1, Cs] and ct ∈ [1, Ct]. Scalars Cs and Ct are
then the maximum allowed step sizes in the score and in the performance,
respectively. The weights σ control the bias toward diagonal steps, being set
to σx,y =

√
x2 + y2. Observe that C(s, t) is the accumulated cost matrix of

the minimum-cost path from (1, 1) to (s, t), and that C(1, 1) is initialized to
D(1, 1), because the alignment result is constrained to include the point (1, 1)
of the audio block. Note that given a time frame t, Eq. 1 is applied indepen-
dently for each score unit s in order to consider all possible paths throughout
the score up to the instant t. In this regard, a parallel implementation of Eq. 1
has been carried out to reduce the impact of long musical compositions. Ob-
serve that the number of paths to be computed grows when the score increases
(i.e. when the number of score units rises).

ReMAS [1] simply returns the score position associated to the best forward
path for each time t, that is, sout = argmins C(s, t). However, here we have
incorporated a traceback stage to improve the alignment results. This stage
delivers the alignment result corresponding to all the audio frame of the block,
obtained by computing the forward path up to the end of the audio block and
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following the recursion b steps backward in the x-axis (performance), where b
is the total number of frames of the block.

In order to compute a backward path with b frames, the algorithm must
store the best step sizes for each (s, t) across the b frames. A matrix P ∈ RS×T

+

of step sizes is constructed as follows,

P(s, t) = argmin
cs,ct

{
C(s− 1, t− ct) +D(s, t)σ1,ct

C(s− cs, t− 1) +D(s, t)σcs,1

}
, (2)

where each element P(s, t) stores the pair {cs, ct} corresponding to the last
step of the minimum cost path up to (s, t). Since b is the temporal size of
the block, P can be implemented in the computer as a matrix with S × b ele-
ments. Consequently, the traceback stage increases the memory consumption
in comparison to online DTW.

At the last time frame T of the block, the score position corresponding to
the best forward path is selected as smin = argmins D(s, T ), and the backward
path is constructed step-by-step from (smin, T ) by reading the step sizes stored
in P. Note that when a new audio block arrives, a new accumulated cost
matrix D has to be computed considering that D(1, 1) has to be initialized
to C(smin, 1), because the path has to continue from the last score position
selected by the previous block.

However, this block-by-block approach is less accurate than analyzing the
input signal as a whole. Observe that while the first frames of a block are
aligned using the future information corresponding to the last frames of the
block, the alignment decision for these last frames is made without the in-
formation of the future blocks. To mitigate this, we propose to overlap the
blocks, that is, the first frames which compound a specific block belong to
the previous block. In this way, these special frames will be aligned using the
information of the following block.

Fig. 2 illustrates the proposed traceback process with an example. As can
be observed, the backward path (displayed as a black line) is constructed from
smin for each aligned block (displayed as a rectangle of dashed red lines). In
this example, the last two frames of one block are the fist two frames of the
following block (represented in gray). As a result, the global path (displayed
as a green line) differs from the local paths corresponding to each block. The
output per analyzed block of this alignment stage is the path corresponding to
the interval of frames [1, T −m], where m is the number of overlapped frames
(m = 2 in this example). This aligned path is used for the following stages to
perform the SS of this block of size T −m.

The computational complexity of the overall system increases as the num-
ber of overlapped frames increases, since more blocks have to be analyzed.
However, the higher number of overlapped frames, the better the alignment.
In this regard, Cabañas et al. [4] analyzed the effect of the latency in the align-
ment accuracy achieved by ReMAS. Their experiments showed that, beyond
a delay of 2 seconds, the alignment results are almost equal to the offline case.
Therefore, in the development of our system we have considered this 2 seconds
to compute the number of overlapped frames m.
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Fig. 2: The proposed block-by-block approach for the traceback stage.

For this alignment stage, the computational complexity is mainly deter-
mined by ReMAS. According to [2], where a study of the theoretical computa-
tional cost of ReMAS was analyzed, the complexity per frame of the sequential
version is defined by,

O
(
LT + LF log2(LF ) + PK + S

)
(3)

where LF is the fast Fourier transform length, LT is the frame length, P is the
number of notes in MIDI scale, S is the number of states and K is the number
of score units. For the time-frequency representation of the input signal, we
have used a frame length LT of 5700 samples (∼ 129 ms) and a hop size of
570 samples (∼ 12, 9 ms) in order to have enough temporal resolution, being
the sampling rate equal to 44,1 kHz. To have enough frequency resolution
for low frequency sounds, LF = 16384 bins has been chosen as in [31]. P
is selected as 114 that corresponds to a range of notes of 9.5-octaves in one
sample per semitone of MIDI resolution. Remark that K and S rely on the
musical composition and are obtained from the processing of the MIDI score.

As can be observed in Fig. 1, only an audio channel is required to perform
the alignment to the MIDI score. Moreover, the traceback process is applied
once the block alignment is done. Thereby, the theoretical computational com-
plexity per block can be expressed as,
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O
(
T (LT + LF log2(LF ) + PK + S) + T

)
(4)

where T is the block size in terms of the number of frames.
Excluding the sequential implementation of the traceback process, the rest

of the modules of the alignment stage have been implemented based on the fol-
lowing parallelization strategies: (1) using parallel routines for shared-memory
of the FFTW package [17], (2) calling BLAS/LAPACK [3] Level 1 routines for
vector and vector-vector operations, and (3) using parallel and worksharing
constructors of OpenMP [11]. Moreover, in order to compute the minimum
score unit (i.e. smin) and its position among the vector of score units asso-
ciated to each instant t (see Eq. 1), a parallel reduction function has been
implemented for those cases when the OpenMP version is less than 4.0 or the
relationship between the search space and the number of cores is not adequate.
In this sense, the parallel complexity of this stage is given by,

O

(
T

(
LT

c
+ LF log2

(
LF

c

)
+

PK

c
+

c log2(c) + S

c

)
+ T

)
(5)

where c is the number of processors or cores used. As expected, the new com-
plexity includes a minimal overhead corresponding to the built-in sequential
traceback module.

2.3 Separation stage

In this stage, the magnitude spectrograms of each audio channel are estimated
using a NMF approach. For this aim, we propose a multichannel extension of
the signal model presented in [27]. Muñoz et al. proposed a signal model where
the score information is encoded in the form of score units, so that each basis
represents a unique combination of notes defined in the score. Consequently,
during the factorization, this model only allows the activation of concurrent
notes that are defined in the score and happen in the performance.

In this regard, we propose a novel multichannel decomposition of the in-
put audio spectrograms X ∈ RF×T×N

+ into the product of four nonnegative
matrices as follows,

Xn(f, t) ≈ X̂n(f, t) =
∑
p,j

Mn,jBp,j(f)
∑
k

Ek,p,jAk(t)︸ ︷︷ ︸
Gp,j(t)

(6)

where X̂ ∈ RF×T×N
+ is the estimation of the magnitude spectrogram at each

time-frequency (f, t) point and per each channel n; B ∈ RF×P×J
+ is the basis

matrix of spectral patterns for each note p and instrument j of the composition;
E ∈ RK×P×J

+ is the matrix of score units that encodes the active notes and

instruments in each score unit k; A ∈ RK×T
+ is the time-varying gains matrix;

G ∈ RP×J×T
+ is the matrix which holds the gains of the basis B corresponding
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to the note p and instrument j at frame t; and M ∈ RN×J
+ is the panning

matrix which models the contribution of each instrument j in each channel n.
In this approach, the spectral patterns B are obtained in a preprocessing

stage where the amplitudes of each note of the musical instruments are learned
in advance by using the Real World Computing (RWC) music database [19,
18]. These pre-learned instrument models are an approximation to the real
spectral patterns occurring in the mixture. Note that sometimes certain dis-
similarity between training and testing instruments can be occurred due to
the physical differences between the training and testing instruments, the per-
forming style difference of the performers and the acoustical difference of the
recording environments. In the literature, some authors [9,31] have proposed
to adapt the learned models to the instruments in the mixed signal during the
factorization process in order to fit them better with the recorded signal.

Regarding the rest of the model parameters, the score units matrix E
is also defined in that preprocessing stage by the score. In this work both
parameters B and E are fixed during the separation process. The gain matrix
A is initialized to the output path of the alignment stage. This path indicates
the score units played at each frame t.

Contrary to the alignment stage, here all the channels are used to per-
form the spectrograms estimation. In this sense, a Hanning-windowed FFT
is firstly applied to each channel and then, their time-frequency representa-
tions are converted to a resolution of 1/4 of a semitone. This resolution has
been proven to achieve better results for separation tasks [7]. Once the FFT
is computed for all the channels, the factorization parameters of Eq. 6 can be
estimated under the nonnegativity restriction by minimizing the β-divergence
between the observed X and the modeled X̂ spectrograms. Therefore, we have
efficiently implemented the following multiplicative update rules required for
the factorization,

Ak(t)← Ak(t)⊙

(∑
f,p,j,n Mn,jBp,j(f)Ek,p,j [X̂n(f, t)

β−2 ⊙Xn(f, t)]∑
f,p,j,n Mn,jBp,j(f)Ek,p,jX̂n(f, t)β−1

)
(7)

Mn,j ←Mn,j ⊙

(∑
f,t,p,k Bp,j(f)Ek,p,jAk(t)[X̂n(f, t)

β−2 ⊙Xn(f, t)]∑
f,t,p,k Bp,j(f)Ek,p,jAk(t)X̂n(f, t)β−1

)
(8)

where β = 1.5.
Finally, once both parameters are estimated, the spectrogram of each source

in each channel Ŝ ∈ RF×T×J×N
+ can be computed in the reconstruction stage.

Observe that, following the block-by-block approach, this stage outputs the
parameters estimation for each block independently.

Regarding the computational complexity, the theoretical cost of the feature
extraction module of the separation stage (see Fig. 1) for the parallel version
can be approximated by,
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O

(
TN

(
LT

c
+ LF log2

(
LF

c

)))
(9)

where N is the number of channels of the music performance. As in the align-
ment stage, the same parallelization strategies have been used, i.e. exploiting
the parallel FFTW, BLAS/LAPACK and OpenMP routines.

The overall cost for the parameter estimation module (see Fig. 1) has been
computed considering that the multiplicative update rules of Eq. 7 and Eq. 8
have been implemented using BLAS/LAPACK. Thus, for each source (i.e in-
strument) presented in the mixture, the implementation of Eq. 7 leads two
matrix-matrix products (dgemm subroutine) and two vector-vector products
(daxpy subroutine), together with other auxiliary operations of lower com-
putational intensity. Likewise, the implementation of Eq. 8 requires the same
type and number of operations, but in this case for each MIDI note p. Thereby,
the theoretical computational cost can be approximated by,

O

(
I
[ Eq. 7︷ ︸︸ ︷
F
(
TJP +KNJ + 2TKN

)
+

+ TJ
(
FP + 2NF +KP

)︸ ︷︷ ︸
Eq. 8

])
(10)

where J is the number of instruments of the composition, I is the number of
iterations of the NMF approach and F is the frequency in MIDI resolution
sampled (logarithmic resolution instead of linear resolution). For music SS
purposes, F is fixed to 401, one sample per quarter of semitone. Note that, in
this approximation, F and P are fixed parameters and are not dependent on
the composition. In this sense, some assumptions can be considered. In general,
J and N are significantly smaller than T and P , respectively. Furthermore,
considering that in most recordings of orchestral instrumental ensembles there
is usually one microphone channel for each type of instrument, we can assume
that J ≈ N . Therefore, the cost can be expressed as,

O
(
LF ITJ

(
2P + 3K

))
. (11)

2.4 Reconstruction stage

Finally, the reconstruction of each source in each channel is computed using
a soft-filter strategy. Firstly, the estimated parameters of the signal model
presented in Eq. 6 are used to predict the magnitude spectrograms of each
source j in each channel n by

Ŝn,j(f, t) =
∑
k,p

Mn,jBp,j(f)Ek,p,jAk(t). (12)
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Afterward, we apply a Wiener filter to reconstitute the different sources
of the mixture based on the power spectrum ratio between the reference sig-
nals. Once the spectrograms are estimated, soft masking V ∈ RF×T×J×N

+ is
computed for each source and channel,

Vn,j(f, t) =
|Ŝn,j(f, t)|2∑
j |Ŝn,j(f, t)|2

(13)

where V represents the relative energy contribution of each source j in each
channel n for each time-frequency bin. Then, to obtain the estimated source
magnitude spectrogram Y ∈ RF×T×J×N

+ , Eq. 13 is used as follows,

Yn,j(f, t) =
√
Vn,j(f, t) ·Xn(f, t). (14)

Finally, the IFFT block is performed (see Fig. 1). The time representation
is converted from MIDI resolution to linear frequency allocating the value
of a MIDI bin to its corresponding frequency bins. Afterwards, the phase
spectrogram of the input mixture is applied for each source. Then, a windowed
inverse fast Fourier transform (IFFT) is computed with the same features as in
the FFT block. The procedure of the whole system is summarized in Algorithm
1.

Algorithm 1 Proposed system algorithm

1: Load B and E from the preprocessing stage.
2: Divide the audio signal into M blocks.
3: for m=1 to M do
4: Read audio frame block xn(t).
5: Compute ReMAS with the traceback stage to obtain the optimal path.
6: Compute the FFT to each channel and change to a 1/4 of a semitone MIDI resolution.
7: for it=1 to I do
8: Update the gains matrix using the Eq. 7.
9: Update the panning matrix using the Eq. 8.

10: end for
11: for n=1 to N do
12: Compute Wiener mask using the Eq. 13.
13: for j=1 to J do
14: Estimate the spectrogram of each source Y using Eq. 14.
15: Change to linear resolution.
16: Compute the IFFT.

17: end for
18: end for

From the computational point of view, Eq. 13 and Eq. 14 have been im-
plemented exploiting the spatial locality. In this manner, the data has been
stored using matrices whose dimensions have been arranged according to
the subsequent use. Accordingly, the Wiener filter is implemented using one
vector-matrix product (BLAS/LAPACK dgemv subroutine) for each source
and block. The rest of the operations have been implemented using the FFTW
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package and OpenMP, as in the previous stages. Regarding the use of OpenMP,
there are loops in this stage where the cost of their iterations depends on differ-
ent search spaces (non-uniform cost), becoming the computational intensity of
some loop iterations irrelevant with respect to the rest. To mitigate this situ-
ation, in addition to using the appropriate OpenMP clauses (dynamic/guided
scheduling), nested parallelism is enabled in certain parts of this stage. Thus,
some processes, such as sequential operations, initializations, etc., can concur
with other operation more expensive (e.g. BLAS/LAPACK or IFFTs), im-
proving the use of resources. Finally, the temporal complexity of this stage
can be expressed by,

O

(
TNJ

(
FP +

LF log2(LF )

c

))
. (15)

3 Evaluation and experimental results

This section presents the experimentation carried out in the evaluation of the
proposed SS framework. In this evaluation, we have exploited two different
databases. Firstly, we have used a subset of the University of Rochester Mul-
timodal Music Performance (URMP) dataset presented in [23]. This subset is
compounded by 4 classical chamber music pieces ranging from duets to quin-
tets and played by 9 different common instruments in orchestra. The musical
score, the audio recordings of the individual tracks, the audio recordings of
the assembled mixture and ground-truth annotation files are available for each
piece. Secondly, we have used the orchestra database developed by Pätynen
et al. [29]. It consists of four excerpts of approximately 3 minutes each one
composed by symphonic music from Classical and Romantic style. The four
pieces vary in terms of number of instruments sections, style, dynamics, and
size of the orchestra. More details of both databases are provided in Table 1.

Composer Piece name Dur. Channels Instr. Score units

Vivaldi Spring 0m 35s 3 2 27
Chopin Nocturne 1m 36s 4 3 103
Bach The Art of the Fugue 2m 52s 5 4 530
Hubert Jerusalem 1m 59s 6 5 224
Mozart Don Giovanni 3m 47s 10 8 1046
Beethoven Symphony no. 7 3m 11s 10 10 604
Bruckner Symphony no. 8 1m 27s 10 10 567
Mahler Symphony no. 1 2m 12s 10 10 1176

Table 1: Characteristics of the chamber and orchestral dataset used for the
evaluation of our SS system.

For both datasets, the multichannel mixtures have been generated by sim-
ulating the spatial position of all sources in a room. We have used the software
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Roomsim [5] wiht the same setup employed in [26] to generate the room im-
pulse responses.

Regarding the testbed, we have focused our interest on two different sys-
tems. Firstly, we have used a server with an Intel® Xeon® Silver 4110 pro-
cessor with 8 cores. It operates at 2.1 GHz and runs CentOS Linux 7. Note
that HyperThreading and Turbo Boost are both deactivated. Secondly, the
experiments were conducted on a NVIDIA Jetson AGX Xavier development
kit with an eight-core ARM v8.2 CPU always operating at 2.26 GHz (ad-
justed by the NVPModel command tool) and running Ubuntu Linux 16.04.
Both systems use the same version of the OpenBlas and FFTW packages, as
well as the GNU C Compiler 7, supporting the specification 4.5 of OpenMP.
Finally, it should be remarked that the used data type is “double” (i.e. IEEE
754 double-precision binary floating-point format).

3.1 Experimental results

Firstly, we have measured the execution time and memory consumption de-
pending on the number of frames per audio block (i.e. the block size). Fig. 3
illustrates the obtained results for all pieces described in Table 1.

As shown, the memory consumption considerably increases as the size of
the audio block grows (see Fig. 3a). Performances with a high number of
instruments and/or recording channels (i.e. Mozart, Beethoven, Bruckner and
Mahler) require a larger amount of memory, regardless of the block size. This
results from the fact that all parameters of the signal model, except the gains
matrix A (see Sect. 2.3), directly depend on these two variables.

On the other hand, as the block size becomes longer, the execution time
decreases (see Fig. 3b). This improvement is only noticeable for blocks of a
short size where the decay is significant, while the execution time is always very
similar for blocks of a size longer than 1024 frames. The reason is that NMF,
which has been mainly implemented by matrix–matrix operations, has a strong
impact on the overall complexity of the system. Note that BLAS/LAPACK
stabilizes its speedup when the size of the matrices is reasonably large. In
short, this is an important finding for our system, because it reveals that the
execution time does not decrease for blocks longer than 1024 frames.

This analysis demonstrates that choosing a block size longer than 1024
frames implies a high memory cost (more than 2 GB) without any improvement
in terms of execution time. Moreover, as explained in Sect. 2.2, at least two
seconds of audio (i.e. 156 frames with the hop size used between frames) are
required to achieve reliable alignment results. Therefore, for the sake of brevity,
we propose to consider a block size of 1024 frames for carrying out a deeper
study of the performance of our proposal.

Secondly, we have evaluated our proposal as a function of the number of
computing cores used simultaneously for a fixed block size of 1024 frames. Since
the total execution time varies among the total duration of each musical piece,
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Fig. 3: Experimental results as a function of the block size in frames.

we have considered normalizing it to that duration for a better comparison.
The results obtained by the Intel® Xeon® Silver 4110 are depicted in Fig. 4.

As previously explained in Sec. 2, the computational complexity of the
whole system depends mainly on three variables when the block size is fixed
(see Eq. 5, Eq. 11 and Eq. 15): the duration of the score (i.e. the number of score
units), the number of recording channels and the number of instruments of the
composition. In this sense, regarding the number of instruments and channels,
only the chamber music performances, where a low number of instruments
and channels are presented (i.e. Bach, Hubert, Chopin and Vivaldi), can be
run in real-time using parallel computing. Note that real-time is guaranteed
when the normalized execution time is lower than 1. In the case of orchestral
compositions (i.e. Beethoven, Bruckner, Mahler and Mozart), it is not possible
to reach real-time due to the combination of a relatively high score duration
and a large number of instruments and channels. However, this limitation can
be sorted out just by reducing the number of output audio files. Note that
this implementation outputs an audio file per each channel and instrument.
Nevertheless, from a music point of view, only the audio file corresponding to
the best separation per each instrument is required. Therefore, the number of
output files can be reduced by up to one per instrument. Moreover, the number
of iterations of the NMF approach can be also downsized without affecting
the convergence of the algorithm at the expense of losing some quality in the
separation.

Attending to the duration of the score, Mozart and Mahler are the most
demanding in terms of score units. For all cases, both obtain higher execu-
tion times than Beethoven and Bruckner despite having the same number of
channels and instruments.

Regarding the efficiency, the behavior obtained by the system is as ex-
pected. Note that some memory bound operations of the system are performed
as matrix–vector, such as the Wiener filter, Eq. 7 and Eq. 8. Therefore, the se-
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Xeon® Silver 4110 for each composition as a function of the number of cores
used simultaneously.

quential approach maximizes the performance, taking advantage of the whole
memory bandwidth, while a parallel approach is limited by this fact.

Additionally, in order to assess the upper bound of the fastest separa-
tion that can be reached with our proposal, we have reduced the number of
output audio files to one per instrument and the number of iterations of the
NMF algorithm guaranteeing its convergence. Table 2 summarized the execu-
tion time in seconds, the normalized execution time and the efficiency on the
Intel® Xeon® Silver 4110 using 8 cores for each stage and for each orchestral
composition.

In view of the results, it can be concluded that real-time is achieved for all
composition except Mahler. In this exceptional case, reducing the FFT length
would give the system the opportunity to be executed in real-time, affecting
only the quality of low-pitch sounds in separation. Another possible solution
could be to use “float” as the data type. This would reduce the memory
consumption and decrease the execution time without loosing the accuracy
of perceptual quality results. As can be observed, the separation stage, which
consumes between 74% and 81% of the total execution time, means a high load
in the system, while the alignment and reconstruction stages barely account
for 2% and 15%, respectively.
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Composition Beethoven Bruckner Mahler Mozart
Stage Execution Time (s)

Alignment 3.99 1.88 3.25 6.04
Separation 122.85 54.52 111.98 168.37

Reconstruction 39.95 18.00 27.38 33.03
Normalized Execution Time

Alignment 0.02 0.02 0.02 0.03
Separation 0.64 0.63 0.85 0.74

Reconstruction 0.21 0.21 0.21 0.15
Efficiency

Alignment 28% 25% 42% 41%
Separation 50% 50% 52% 52%

Reconstruction 55% 56% 54% 57%

Table 2: Execution times measured in seconds, normalized execution times
and efficiency on the Intel® Xeon® Silver 4110 for each stage and audio
composition.

As for the NVIDIA Jetson AGX Xavier, the experimental results obtained
in the evaluation are provided in Table 3. As the results obtained by the
orchestral performances do not reach real-time, for the sake of brevity, only
the chamber music results are shown. As can be observed, real-time can be
reached for all the chamber compositions when more than 6 cores are used. The
results obtained for the efficiency is always above 48%, even in the worst-case
scenario.

Composition Bach Hubert Nocturne Spring
Cores Execution Time (s)

1 632.94 397.83 161.42 36.76
2 355.83 234.59 107.78 23.98
4 200.83 144.58 58.64 13.68
6 142.46 92.36 42.01 11.01
8 108.35 72.01 33.74 9.66

Normalized Execution Time
1 3.62 3.32 1.68 1.02
2 2.03 1.95 1.12 0.67
4 1.15 1.2 0.61 0.38
6 0.81 0.77 0.44 0.31
8 0.62 0.6 0.35 0.27

Efficiency
2 89% 85% 75% 77%
4 79% 69% 69% 67%
6 74% 72% 64% 56%
8 73% 69% 60% 48%

Table 3: Execution times measured in seconds, normalized execution times and
efficiency on the the NVIDIA Jetson AGX Xavier for each audio composition
as a function of the number of cores used.
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Finally, we have analyzed the performance of our proposal evaluating the
alignment accuracy and the separation results. For this evaluation, we have
also considered a fixed block size of 1024 frames. First, we have compared
the alignment performance with other offline and online reference methods:
(a) Carabias’s offline [8], (b) Carabias’s online [8], (c) Ellis’ offline [32], and
(d) Soundprism [14]. Figure 5a illustrates the alignment results in terms of
precision values of the analyzed methods as a function of the onset devia-
tion threshold. The threshold value varies from 50 to 2000 ms. As can be
observed, our block-by-block proposal reaches results very similar to the of-
fline approaches and clearly outperforms the online cases. This corroborates
the assumption made in Section 2.2 that a block size greater than 2 seconds
guarantees an alignment accuracy almost equal to the offline case.

In order to assess the separation performance, we have used BSS EVAL [34]
toolbox, which provides three metrics: Source to Distortion Ratio (SDR),
Source to Interference Ratio (SIR) and Source to Artifacts Ratio (SAR). These
metrics are commonly accepted in the field of source separation and thus, allow
a fair comparison with other state-of-the-art methods. In this sense, different
configurations of the proposed separation framework has been compared in
order to show its separation capabilities. First, Oracle computes the optimal
value of the Wiener mask at each frequency and time component assuming that
the signals to be separated are known in advance. This approach represents
the upper bound for the best separation that can be reached with the used
time-frequency representation. Rand uses random values at each frequency and
time component as input for the evaluation. This provides a starting point for
the separation algorithms. Finally, we have included an oracle variant denoted
as ground-truth GT which uses the score manually annotated by musicologist
as a hard prior initialization for the times varying gains. Figure 5b depicts the
median values of SDR, SIR and SAR obtained in the evaluation of the pro-
posed database for each approach. As can be seen, the proposed framework
(SDR = 3,18 dB, SIR = 9,39 dB, SAR = 4,30 dB) provides competitive sep-
aration results, and comparable with the oracle GT solution, which informs
about the best separation results that can be obtained using our method when
perfect annotation is available.

4 Conclusion

In this paper, we present a parallel multichannel SS system. Our approach has
focused on achieving real-time execution assuming a latency of a few seconds
and reaching reliable results in terms of sound quality. Under these conditions,
we have decomposed the system in three main stages. First, an alignment stage
based on DTW is performed to synchronize the audio signal of the musical
piece with its corresponding score. Then, the magnitude spectrograms of each
audio channel are estimated using a NMF approach during the separation
stage. In this sense, a novel multichannel signal model has been proposed to
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Fig. 5: Evaluation of the alignment accuracy and the separation performance.

encode the score information in form of score units. Finally, the reconstruction
of each source in each channel is computed using a soft-filter strategy.

The proposed framework has been implemented for multi-core architec-
tures and, thus, the application can be executed in a wide range of devices.
Moreover, the system has been evaluated considering chamber and orches-
tral compositions and reaching real-time in most of the cases. To our best
knowledge, our proposal is the first multichannel implementation in real-time
that obtains reliable results in terms of sound quality for highly polyphonic
ensembles.
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