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Microplastics (MPs) attract ever-increasing attention due to environmental concerns. Nowadays, 

they are ubiquitous across ecosystems, and research demonstrates that the origin is mainly 

terrestrial. Wastewater treatment plants (WWTPs) are a major source of MPs, especially fibres, 

in water masses. This review is focused on understanding the evolution and fate of microplastics 

during wastewater treatment processes with the aim of identifying advanced technologies to 

eliminate microplastics from the water stream. Amongst them, bioremediation has been 

highlighted as a promising tool, but confinement of microorganisms inside the WWTP is still a 

challenge. The potential for MPs bioremediation in WWTPs of higher aquatic eukaryotes, which 

offer the advantages of low dispersion rates and being easy to contain, is reviewed. Animals, 

seagrasses and macrophytes are considered, taking into account ecoethical and biological issues. 

Necessary research and its challenges have been identified.  

Keywords: bioremediation, eukaryotes, microplastics, sludge, technologies, wastewater 

Acronyms: A2O: Anaerobic, anoxic, aerobic; CAS: Conventional activated sludge; DAF: 
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Highlights 

- WWTPs are main sources of marine MP pollution  

- Efficient technologies to avoid MPs presence in sludges are still a challenge 

- Higher eukaryotes are explored for MP bioremediation in WWTP 

- Animal welfare is a concern for MP bioremediation, with few exceptions 

- Seagrasses and aquatic macrophytes seem optimal candidates for MP bioremediation 
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1. Fate and evolution of microplastics in WWTPs 

The aim of this review being to explore new ecologically acceptable ways to prevent MPs 

pollution by WWTPs, we will examine first the points where MPs can escape from WWTPs, the 

treatments currently employed for the capture and elimination of MPs, and then focus on 

bioremediation and specifically on higher eukaryotes as species that can be more easily contained 

inside WWTPs than unicellular organisms. 

1.1. Legislation on microplastics 

It has been estimated that 245 tonnes of MPs, whose final destination is the aquatic environment, 

are generated every year. There is a lack of international regulation governing the production of 

microplastics, especially in the field of personal care and cosmetic products (Auta et al., 2017), 

but some countries such as Canada, Ireland, the United Kingdom and the USA are banning 

microbead production and products that contain them (Prata 2018a). In the case of the USA, “The 

Microbead-Free Waters Act of 2015” is the legislation that bans the addition of plastic microbeads 

to products. This law came into force for manufacturers in July 2017 and for retail sales in July 

2018 (H. Rept. 114-371, 2015). Following the same line, in 2019, the European Chemicals 

Agency (ECHA) submitted a proposal to forbid the intentional addition of microplastics to 

different products. It has been estimated that the enforcement of this proposal would reduce the 

emission of these microcontaminants to the environment in the European Union by 85-95%, 

which means it would avoid the emission of approximately 400 thousand tonnes over 20 years. 

The legislation is expected to be ready by June 2020 and it would be subsequently sent to the 

European Commission for evaluation (ECHA, 2019). In addition, also in 2019, the European 

Parliament submitted a proposal (TA/2019/0071) to tackle microplastic pollution in wastewater 

treatment and those issues derived from sludge use as a fertiliser in agriculture (European 

Parliament, 2019). Proposing legislation on WWTPs is a good starting point for the 

implementation of measures that minimize dispersion of MPs in the environment. 

1.2. Main sources of microplastics  

Water is the main means by which MPs are transported (Alimi et al., 2018), so WWTPs receive 

millions of microplastic fragments every day (Okoffo et al., 2019). There is no linear correlation 

between population density and MPs concentrations in the inlet stream of WWTPs, but 

agricultural and industrial activities seem to be strong determinants (Eerkes-Medrano et al., 2015; 

Long et al., 2019). Recently, Bayo et al. (2020) demonstrated that another important factor is 

seasonal variability, the highest concentrations being found during hot periods, since temperature 

contributes to the acceleration of plastic degradation and fragmentation. Additionally, high 

concentrations of microplastics were also observed after rainfall events, due to urban runoff. 
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1.3. Evolution of microplastic at each stage of WWTP 

The few studies that have analysed the evolution of microplastics in WWTPs report that, although 

these facilities do not completely remove these pollutants from wastewater, in some cases removal 

efficiency values higher than 90% are achieved (Bayo et al., 2020; Blair et al., 2020; Edo et al., 

2020). MPs are defined as particles between 5 mm and 0.1 μm (Picó et al., 2019), and although 

investigation has been carried out, completion of the task of establishing sampling, extraction and 

quantification protocols for microplastics smaller than 20 μm is still a huge challenge (Poerio et 

al., 2019). 

The MPs classified as fibres and fragments are the most frequently observed types, making up, 

respectively, 57 and 34% of the total. In addition, fibres are the most difficult MPs to remove in 

WWTPs, due to their morphological characteristics (Ngo et al., 2019). 

Microplastics removal efficiency depends on treatment, operating conditions, sludge 

characteristics and microplastic buoyancy (Lusher et al., 2018; Nemerow, 2006). To understand 

MPs behaviour and fate during wastewater treatment processes, it is necessary to study in depth 

each stage of waste treatment in the processing plant. A scheme for a conventional WWTP is 

shown in Figure 1. 

Figure 1. A schematic representation of WWTP processes and percentages of MPs removal 

during processing. 

High variability of influent flow and composition makes it more difficult to obtain representative 

samples. This leads to underestimation of MPs concentrations because they can be retained in the 

sewage system by sedimentation (Lepot et al., 2017).  

Bigger microplastic particles in WWTP influent are removed by screening systems (screens, 

meshes) (Zhang et al., 2020). After that, the process for grit and grease removal takes place by 

means of sand sinking and grease floating, and during this step MPs are also separated from the 

wastewater stream by sinking and floating. It is noticeable that Murphy (2016) reported that the 

highest MPs elimination efficiencies are achieved in the grit and grease removal systems. Lusher 
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et al. (2018) indicated that 62% of microplastics extracted during WWTPs processes probably 

come from this specific separation phase. 

Primary clarifier is used for removing settleable solids from wastewater, so during this 

sedimentation process, based on a pseudo-equilibrium approach (solid-liquid), some 

microplastics settle and others remain suspended in wastewater. The structure of suspended solids 

and their concentration have an important effect in solid-liquid separation (Sheng et al., 2008). A 

circular tank is the most frequently employed design, in which water enters centrally and radial 

flow towards the periphery allows sedimentation. 

Sedimentation efficiency depends on different factors, such as retention time, temperature, type 

of flow and speed, system design, size and particle densities, etc. (Nemerow, 2006). For example, 

higher retention times increase the amount of settled solids (so it is also expected that the amount 

of settled MPs increases); high temperatures decrease the density of the medium, which also 

favours sedimentation. 

Secondary treatment is a biological process that allows the biodegradation of organic matter. It is 

usually carried out under aerobic conditions, so it is necessary to supply oxygen to the 

microorganisms by wastewater aeration. During this aeration process, which is also a pseudo 

equilibrium (solid-liquid-gas), some microplastics could pass to the atmosphere since it is well 

known that MPs can be found in air (Chen et al., 2020; Enyoh et al., 2019; Prata 2018b).  

The conventional activated sludge process (CAS), which basically involves the biological 

oxidation of carbonaceous organic matter, and subsequent separation of treated water from solid 

particles through sedimentation in a secondary clarifier, are commonly employed to treat 

municipal wastewaters. It has been reported that secondary treatment can reduce the MPs 

concentration in water by between 96% and 98% (Lares et al., 2018; Michielssen et al., 2016). 

Tertiary treatment is the final cleaning step that improves wastewater quality before it is reused, 

recycled or discharged to the environment. It usually consists of a disinfection process to kill or 

inactivate pathogenic organisms, and chlorination and UV irradiation are the most common 

processes (Zhuang et al., 2015). In general, tertiary treatment has no effect on MPs removal (Prata 

2018a; Sun et al., 2019), but in some cases microplastics can be degraded by this treatment, i.e., 

it has been described that chlorination can reduce MPs concentration by 7% (Liu et al., 2019). 

Microplastics that remain in treated water are discharged into the environment in rivers or oceans 

(Galafassi et al., 2019; Uurasjärvi et al., 2020; Wang et al., 2019; Waring et al., 2018) and 

different studies have estimated that globally WWTPs discharge millions of microplastics 

particles every day. For example, Edo et al. (2020) reported the release of 300 million into the 

Henares river (Madrid) per day, while three WWTPs located in South Carolina discharged 

between 500 and 1000 million per day into Charleston Harbor estuary (Conley et al., 2019), 
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despite the fact that the MPs removal efficiencies of the plants were 93% and 85-98%, 

respectively. In addition, it has been found that in rivers, MPs concentration is higher downstream 

of WWTPs than upstream (Li et al., 2020; McCormick et al., 2014; Shruti et al., 2019; Vermaire 

et al., 2017). 

Most microplastics removed in WWTPs are accumulated in the sewage sludge produced at each 

stage of the treatment process, especially in the primary and secondary clarifiers (Prata 2018a; 

Sun et al., 2019). This sludge is widely applied to soils, so it can be an important source of 

pollutants, including microplastics (Barbosa Jr. et al., 2020; Gherghel et al., 2019; Lassen et al., 

2015). For example, 50% of annual sludge wastes generated in Europe and North America are 

employed as agricultural fertilizer and it has been estimated that these wastes contain a total 

amount of MPs of between 44000 and 430000 tonnes (Hurley et al., 2018; Lu et al., 2019). 

Furthermore, stabilization processes such as lime addition or anaerobic digestion do not reduce 

MPs concentration in sludge (Gatidou et al., 2019; Rolsky et al., 2020). 

The effects of microplastics on soils have scarcely been studied, but some studies have indicated 

their ability to absorb toxic contaminants such as metals, polychlorinated biphenyls (PCBs) and 

polycyclic aromatic hydrocarbons (PAHs) (Caruso et al., 2019; Rodrigues et al., 2019; Xu et al., 

2019), which increases the pollutant risks of MPs (Al-Odaini et al., 2015). 

Today, technologies to totally avoid the presence of MPs in sewage sludge are unrealistic, but the 

amount of microplastics in sludge can be reduced by, for example, improving the elimination of 

microplastics in grit and grease removal systems (Sun et al., 2019). Anaerobic digestion can also 

be considered as a potential way to reduce MPs in stabilized sludge, but further research on this 

topic is needed, investigating areas such as bioremediation (Enfrin et al., 2019). 

1.4. Advanced wastewater treatment 

Although, in general, conventional WWTPs have high MPs removal efficiencies (≥ 90%), it is a 

fact that a large amount of microplastics is still discharged into the environment. For this reason, 

the use of advanced treatments, especially during the tertiary phase, could provide an alternative 

for reducing the concentration of MPs in treated water before it is discharged. A summary of 

different wastewater treatments that, according to the literature, have been proved to effectively 

remove microplastics from wastewater is seen in Table 1.  
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Table 1. A list of different treatment processes used in recent studies that analysed the 

microplastic removal efficiency of wastewater in WWTPs. 

Treatment process 

Removal 

efficiency 

(%) 

Reference 

Conventional activated process 

(CAS) 
96-98 

Lares et al., 2018; Michielssen et al., 

2016 

Oxidation ditch 97 Lv et al., 2019 

Chlorination disinfection 7 Liu et al., 2019. 

Ozone 90 Hidayaturrahman et al., 2019. 

Coagulation/Flocculation 47-82 Hidayaturrahman et al., 2019. 

Rapid Sand Filtration (RSF) 45-97 

Magni et al., 2019; Michielssen et al., 

2016; Murphy et al., 2016; Talvitie et 

al., 2017. 

Anaerobic, anoxic, aerobic (A2O) 72-98 Lee et al., 2018; Yang et al., 2019 

Sequencing batch reactor (SBR) 98 Lee et al., 2018 

Discfilter 40-98 
Hidayaturrahman et al., 2019; Simon 

et al., 2019; Talvitie et al., 2017 

Dissolved Air Flotation (DAF) 95 Talvitie et al., 2017 

Reverse Osmosis (RO) 90 Ziajahromi et al., 2017 

Dynamic membrane (DM) 99 Li et al., 2018 

Membrane Bioreactor (MBR) ≥ 99 
Lares et al., 2018; Michielssen et al., 

2016; Talvitie et al., 2017. 

Ultrafiltration (UF) 42 Ziajahromi et al., 2017 

As can be seen in Table 1, dynamic membranes (DM) and membrane bioreactors (MBR) are, so 

far, the most efficient processes in terms of removing microplastics from wastewater, achieving 

MPs removal values as high as 99.9% (Li et al., 2018; Talvitie et al., 2017). The main 

disadvantages of MBR are membrane costs, energy demand, fouling control and low flux. In 

comparison, dynamic membranes offer lower costs and energy consumption, but, in this case, the 

filter is easily clogged (Ersahin et al., 2012; Li et al., 2018; Poerio et al., 2019). 

MPs removal by means of different organisms such as bacteria, fungi and algae has been recently 

investigated, and bioremediation is a very interesting challenge (Shahnawaz et al., 2019). 

Eukaryotic species have received much less attention and their efficiency is unknown, even 

though they can accumulate MPs.  
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2. Use of higher Eukaryotes for MPs bioremediation in WWTPs  

Microplastics are present in all the oceans and in marine organisms worldwide (e.g. Andrady et 

al., 2011; Wright et al., 2014; Zhao et al., 2014; Lusher et al., 2015). As we have commented 

above, WWTPs are major sources of MPs pollution (e.g. Eerkes-Medrano et el., 2015; Murphy 

et al., 2016; Ziajahromi et al., 2017). Fibres and small fragments escape the filtering processes 

and are not efficiently retained in WWTPs; consequently, coastal cities are hotspots for MPs 

entering the ocean (Browne et al., 2011; Murphy et al., 2016). WWTPs discharging to rivers also 

contribute to ocean pollution because MPs transported by the current finally enter the sea; river 

mouths are also hotspots for MPs pollution (Leslie et al., 2017). Finding efficient and ecologically 

friendly ways of retaining MPs in WWTPs is urgently needed to prevent marine MPs pollution. 

Here we will focus on bioremediation, which is already employed for removing pollutants such 

as hydrocarbons or phosphates from WWTPs (Kshirsagar 2013; Gargouri et al., 2014).  

The use of living organisms for MPs bioremediation is still a challenge. Most research has been 

done on bacteria and lower eukaryotes (fungi). The main problem with these small organisms is 

their containment within WWTPs to prevent their unwanted release into the ecosystems (Nuzzo 

et al., 2020). Containing bigger organisms like higher eukaryotes could, in theory, be easier, but 

their application in MPs bioremediation is still an alternative which has received little attention.  

This section focusses on the potential of aquatic higher plants and animals for MPs 

bioremediation. 

2.1. Characteristics relevant to the use of higher eukaryotes for bioremediation  

Candidate species should possess several features (Figure 2). First, to comply with animal welfare 

legislation (European Directive 2010/63/EU http://data.europa.eu/eli/dir/2010/63/oj), species that 

suffer as a result of exposure to MPs cannot be employed. Under this Directive, vertebrates, 

decapods and cephalopods, whose capacity for suffering is recognized, should be disregarded for 

use in bioremediation. Secondly, the capture, retention and filtration/ingestion rates of MPs 

should be high, as should be their digestion/elimination, and, furthermore, they should not be 

returned to the environment. Species should be employed only within their native range, since 

geographical transfers must be absolutely disregarded for biodiversity conservation reasons 

(Molnar et al., 2008). Species with a broader distribution, easy control and management, would 

be more suitable. Finally, since the use of a species for WWTP treatments implies growing it 

inside or near treatment plants, containment measures for preventing releases to the environment 

should be efficient. 
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 Figure 2. Characteristics required by candidate species for MPs bioremediation in WWTP. 

2.2. Potential of marine animals  

Marine animals, from zooplankton (Frydkjær et al., 2017) to top predators (Alomar & Deudero, 

2017; Masiá et al., 2019; Zhu et al., 2019), ingest MPs. MPs are harmful to them (Anbumani et 

al., 2018), although their toxic effect in the wild is still unknown because most experiments 

conducted in laboratories use higher MPs densities that those observed in the environment (Lenz 

et al., 2016; de Sá et al., 2018). Further studies with higher ecological validity, i.e. with realistic 

amounts of MPs, are needed. 

Among the marine invertebrates (excluding Decapods and Cephalopods), many active-feeding 

species are not suitable for bioremediation purposes due to low retention rates. Gastropods rapidly 

expel MPs in faecal pellets (Gutow et al., 2015). Copepods also expel MPs in faecal pellets 

efficiently (Cole et al., 2013), as do amphipods (Au et al., 2015; Blarer and Burkhardt-Holm, 

2016), while the Cladocera Daphnia magna expels MPs at different rates depending on their shape 

(Frydkjær et al., 2017). However, species that combine deposit feeding and predation, like the 

echinoderm Ophiomusium lymani, accumulate more MPs fragments and fibres (1.96 ± 0.66 to 

3.43 ± 1.35 microplastics/g) than exclusive predators like Hymenaster pellucidus (0.48 ± 0 to 9.10 

± 4.21 microplastics/g) (Courtene-Jones et al., 2019). This suggests better ingestion and retention 

of MPs by filter-feeding or deposit-feeding organisms.  

Filter-feeding organisms seem to have some potential for MPs retention. Mytilus mussels retain 

pollutants, and thus serve for bioremediation in natural ecosystems (Broszeit et al., 2016). MPs 

fragments can be retained in their circulatory system for 48 days (Browne et al., 2008); however, 

most MPs fibres, which are abundant, are excreted after 24h, reducing their eliminatory efficiency 

(Chae et al., 2020). Other filter-feeders like cnidarians gained interest among the scientific 

community because adhesion to the coral surface seems to be an effective mechanism for MPs 

Candidates for 
MP 

bioremediation
Native

Containment 
mechanisms 

available

Efficient MP 
retention

MP do not harm 
the species 

Fast 
ingestion/filtering 

rate
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retention (ingestion rates of 0.25 x 10-3 to 14.8 x 10-3 microplastic particles hour-1 were observed, 

while adhesion to the surface was 40 times greater; Martin et al., 2019). However, although the 

responses to MPs vary among species (Reichert et al., 2018) it seems that MPs alter coral feeding 

behaviour (Hall et al., 2015; Murphy and Quinn 2018), and cause a reduction in anti-stress 

capacity and the immune system activity (Tang et al., 2018). So, unfortunately, since tropical 

coral reefs are highly affected by climate change (Hoegh-Guldberg et al., 2007), tropical corals 

should not be used for bioremediation.  

The sandworm Arenicola marina has a retention rate of 240 – 700 MPs over its lifetime (1.2 ± 

2.8 particles/g), apparently without impacts on its metabolism (Van Cauwenberghe et al., 2015); 

it could be a possible candidate for bioremediation in sea and brackish waters because it tolerates 

salinities down to 12 ppt. More studies should be carried out into possible harm caused by MPs 

in this species. Another promising organism is the echinoderm sea cucumber, which has been 

proposed for pollution monitoring (Mohsen et al., 2019), and may be suitable for removing PCB-

contaminated plastic as it selectively ingests plastic particles over other types of sediment particles 

(Graham and Thompson, 2009). Thus, these sediment feeders would be suitable during the 

bioremediation process for the solid phase in wastewater treatment plants. However, MPs affect 

the embryonic development of other echinoderms like sea urchins (Nobre et al., 2015) and 

therefore, without an analysis of the impact of MPs on holothurian health, their use for 

bioremediation cannot be proposed.  

In summary, sandworms and holothurians are promising for MPs bioremediation, but animal 

welfare issues are still a concern. Further experiments should investigate the impacts of MPs on 

them before proposing applications for WWTP treatment.   

2.3. Potential of aquatic higher plants  

The greatest advantage of higher plants over animals is that there is no evidence of suffering. 

Algae, specifically microalgae, have been tested for bioremediation potential in water. Roccuzzo 

et al. (2020) described unicellular microalgae that, alone or combined with bacteria, can degrade 

endocrine disrupting chemicals in wastewaters. Seaweeds like Fucus vesiculosus can retain 

suspended MPs on their surface (Gutow et al., 2015). Removal of other pollutants, such as heavy 

metals, by means of bioremediation has already been studied. Phytoextraction is a technology 

proposed in 1995 by Salt et al. (1995) whereby plants that can accumulate metals and store them 

in harvestable parts are used to extract these pollutants from soil. Rhizofiltration is another method 

proposed by the same authors to eliminate heavy metals from water, instead of soils, through their 

roots. Therefore, the same approach could be used for MPs extraction both in the solid and in the 

liquid phase, by growing them in WWTPs. 
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Seagrasses are of interest for treating effluents near the sea because they can grow in marine and 

brackish waters. Soumya et al. (2015) proposed the smooth ribbon seagrass Cymodocea rotundata 

for bioremediation on textile dye effluent. Recently, attention has been paid to the relation 

between seagrasses and MPs. The first evidence in situ showed MPs adherence to seagrasses by 

encrustation, to epibionts associated with the macrophyte, and by adhesion to the polysaccharide 

mucus layer (Goss et al., 2018; Seng et al., 2020). Seagrasses can thus act as a trap or sink of MPs 

(Huang et al., 2020; Jones et al., 2020), suggesting they have potential for sludge treatment – if 

they can be grown on sludge. For example, the Caribbean angiosperm Thalassia testudinum has 

MPs encrusted by epibionts on its blades (average of 0.75 ± 0.25 beads/blade; and 3.69 ± 0.99 

microfibres/blade) (Goss et al., 2018), and far away in Scotland, Zostera marina beds accumulate 

MPs in higher concentrations than bare sandy sites (average of 4.25 ± 0.59 MPs in blades; and 

4.50 ± 0.96 MPs in seagrass-associated biota) (Jones et al., 2020). Herbivores eating these 

seagrasses will introduce MPs in their diet and transfer them to higher levels in the trophic chain; 

but perhaps growing this plant in controlled conditions on WWTP sludge could help to prevent 

MPs from reaching the open sea. Seagrasses are generally very sensitive to pollution, especially 

of nitrogen (e.g. Fernandes et al., 2019), but some species are more resistant (O’Brien et al., 2018) 

and could theoretically grow in disturbed areas like the outfall or the sludge of WWTPs.  

Regarding other higher plants, Ali et al. (2020) proposed several freshwater Magnoliophyta for 

removing heavy metals in WWTPs: water hyacinth (Eichhornia crassipes), water lettuce (Pistia 

stratiotes) and Duck weed (Lemna minor), amongst others. It seems that at environmentally 

realistic concentrations, nano- and microplastics do not pose ecological risks to aquatic 

macrophytes. Some macrophytes like Egeria densa and their associated microbiome can 

accumulate and transform gold nanoparticles (Avellan et al., 2018); these systems could be 

investigated for MPs bioremediation. Since few macrophytes would grow well in brackish or 

seawater (Haller et al. 1974), their use for MPs retention, yet to be investigated, would be 

recommended for freshwater WWTPs.  

Summarising, seagrasses could be the optimal candidate for MPs bioremediation in marine and 

brackish WWTP, and aquatic macrophytes with their associated microbiota in freshwater WWTP. 

Further investigations should target the best methods for growing resistant seagrasses in sludge 

waters, the capacity of local species for MPs retention, and methods to ensure containment of 

species propagules. The latter objective is important for avoiding diversity disturbances outside 

the WWTP.  

2.4. Fate of MPs in eukaryotes  

As mentioned above, one of the characteristics that a species should possess in order to be a 

candidate for use in bioremediation is for it to efficiently digest and/or eliminate MPs, without 
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returning them to the environment. Many species have been dismissed for this reason, as their 

retention rate is low (e.g. active-feeding species), and others because MPs cause the animal harm. 

Translocation of MPs from the digestive tract to other organs may occur in aquatic animals, as 

reported in fish-brain and liver (Collard et al., 2017; Mattsson et al., 2017), but it is probably 

uncommon (Jovanović, 2017) and hardly damages the animal; if it did, removing MPs from an 

organ without killing the individual would be very difficult. For animals that retain MPs in the 

digestive tract without apparent harm, such as sandworms and echinoderms (Graham and 

Thompson, 2009; Van Cauwenberghe et al., 2015), the optimal accumulation time for efficient 

retention without harming the animal should first be studied carefully. For the elimination of MPs 

retained in the digestive tract, after a time in the WWTPs, individuals could be removed and 

placed in a clean environment where they could eliminate gut MPs by defecation; and then 

returned to the WWTP while the defecated MPs are disposed of. Ideally, the organisms would be 

grown in aquaculture facilities, transferred to WWTPs, and left there for the time considered 

optimal for MPs accumulation without animal harm. Then the individuals could be transported 

back to culture facilities for MPs disposal. The whole process should be conducted in such a way 

as to avoid animal suffering. 

In seagrasses and higher plants, MPs retention may take place in different ways, with the particles 

accumulating on the blades and also their associated microbiota. In Thalassia testudinum, MPs 

are retained in the epibiont communities on the blades (Goss et al., 2018), while MPs, especially 

microfibres, have been found attached to blades without epibiont communities in the seaweed 

Fucus vesiculosus (Gutow et al., 2015). As no relation between epibiont communities and MPs 

density have been found (Seng et al., 2020), a wide range of seagrasses and algae species could 

be valid for bioremediation. Moreover, not only blades retain MPs. Mangrove rhizospheres have 

been shown to act as a sink of MPs (Li et al., 2019), and sediments of seagrasses like Enhalus 

acoroides and Zostera marina, can trap MPs as well (Huang et al., 2020; Jones et al., 2020). 

Information about patterns and efficiency of MPs accumulation in seagrasses and macroalgae is 

scarce, and further studies in this field should be done.  

Given the diversity of retention mechanisms in higher aquatic plants, MPs elimination could be 

approached differently depending on the species. Generally, plants could be grown in WWTPs 

from the stage at which MPs retention is efficient, then the parts of plants where MPs are retained, 

sediments, or the whole plants, could be harvested for disposal of the MPs. Systems for preventing 

dispersal of small propagules (seeds, spores, others) should be designed in order not to disturb 

surrounding ecosystems, something that may be caused by artificial propagation even if the 

species are local.  
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3. Conclusions 

WWTPs are not intentionally designed for the removal of MPs, and despite having an efficiency 

of retention ≥ 90%, millions of microplastics are still released into the environment every day, 

not only by treated water discharge, but also by sewage sludge use for soil improvement. 

Consequently, these facilities are considered to be an important source of release of MPs into 

aquatic environments. Some higher eukaryotes have potential for elimination of MPs from 

WWTPs. Animal candidates may be annelids (sandworms), echinoderms (sea cucumbers) and 

perhaps other groups still not investigated. Seagrasses and macrophytes seem to be good 

candidates, with certain precautions for containment of species propagules. The results of this 

review suggest that the following research and management actions could be recommended: 

a) Targeting of WWTPs as priority hotspots for the avoidance of microplastics discharge 

into the environment. 

b) The improvement and implementation of advanced processes in tertiary treatments to 

remove a greater amount of MPs from treated water. 

c) Exploring bioremediation as a potential alternative in order to degrade or accumulate 

microplastics in wastewater treatment, depending on the species considered. 

d) Investigation of new technologies and biotechnologies to efficiently eliminate MPs from 

sludges. 

e) Assessment of the efficiency of candidate species for retaining MPs at realistic 

environmental concentrations.    

f) The improvement of cultivation, manipulation and management of choice species, with 

special attention to containment inside WWTPs, and animal welfare if animals are 

employed.  
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Suplemetary material: 

 

Supplementary table 1. A summary of different treatment processes reported in recently studies that have analysed the microplastic removal efficiency from wastewater 

in WWTP 

 

Treatment process Removal efficiency (%) References 

Conventional Activated Process (CAS) 96-98 Lares et al., 2018; Michielssen et al., 2016 

Oxidation ditch 97 Lv et al., 2019 

Chlorination disinfection 7 Liu et al., 2019 

Ozone 90 Hidayaturrahman et al., 2019 

Coagulation/Flocculation 47-82 Hidayaturrahman et al., 2019 

Rapid Sand Filtration (RSF) 45-97 Magni et al., 2019; Michielssen et al., 2016; Murphy et al., 2016; Talvitie et al., 2017 

Anaerobic, Anoxic, Aerobic (A2O) 72-98 Lee et al., 2018; Yang et al., 2019 

Sequencing Batch Reactor (SBR) 98 Lee et al., 2018 

Discfilter 40-98 Hidayaturrahman et al., 2019; Simon et al., 2019; Talvitie et al., 2017 

Dissolved Air Flotation (DAF) 95 Talvitie et al., 2017 

Reverse Osmosis (RO) 90 Ziajahromi et al., 2017 

Dynamic Membrane (DM) 99 Li et al., 2018 

Membrane Bioreactor (MBR) ≥ 99 Lares et al., 2018; Michielssen et al., 2016; Talvitie et al., 2017 

Ultrafiltration (UF) 42 Ziajahromi et al., 2017 
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