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1 Motivation and summary of results

Recently, the study of Chern-Simons-matter (CS-matter) theories with a single gauge group

SU(N) and matter [1, 2] in the adjoint representation has become holographically accessible

at strong coupling and large N . This new holographic arena has opened up by the consistent

truncation of massive type IIA supergravity [3] on S6 [4, 5] down to a maximal supergravity

in four dimensions with an ISO(7) gauge group [6]. The supergravity gauging is of dyonic

type [7, 8], with the magnetic coupling m identified with the Romans mass F0 and with

the CS level k as [4]

F0 = m =
k

2π`s
, (1.1)
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Holographic RG-flows on the D2-brane

All these supersymmetric AdS4 solutions of massive type IIA string theory should corre-
spond to conformal phases of the D2 brane field theory with distinct flavour symmetries and
supersymmetry. They should arise as the IR endpoints of RG flows triggered by di↵erent
symmetry- and supersymmetry-preserving deformations of N = 8 SYM caused by the Ro-
mans mass. We confirm this expectation for the N = 2 flow discussed in [11] by explicitly
constructing an N = 2 domain wall solution in D = 4 dyonic ISO(7) supergravity that inter-
polates between the N = 2, SU(3) ⇥ U(1) vacuum in the IR and the (corresponding D = 4
description of the) planar D2 brane solution in the UV. More generally, we show that there
exists an N = 1 family of flows that originate in N = 8 SYM and drive the theory towards the
N = 2, SU(3)⇥ U(1)-symmetric IR fixed point. We find a second family of N = 1 RG flows
that drive N = 8 SYM into the supersymmetric IR phase with SU(3) invariance. Both fami-
lies are bounded by a unique flow with IR endpoint into the G2-symmetric phase. Finally, we
are also able to construct two unique domain walls that interpolate between the G2 conformal
phase in the in the UV and either the N = 2, SU(3)⇥ U(1) point or the N = 1 SU(3) point
in the IR. By the generic results of [11, 14] and the specific formulae of [25], these domain
walls uplift to massive type IIA supergravity and link the corresponding AdS4 solutions. See
figure 1 for a schematic sketch of this web of domain walls. ov: Say something about the
SO(4) point and flow. In the remainder of the paper we do this and that.

D2-brane

N=1 & G2

N=1 & SU(3)

N=2 & SU(3)xU(1)

Figure 4
Figures 3 & 5

N=3 & SO(4)

Figure 1: RG flows from SYM (dotted lines) and between CFT’s (solid lines) dual to BPS
domain-wall solutions within the SU(3) and SO(4) invariant sectors of the dyonic ISO(7)-
gauged maximal supergravity.

ag: Say this somewhere at the begining: To generate all the figures in this paper, we
have set g = c = 1 without loss of generality, since all theories with c 6= 0 are equivalent to
each other and g sets the unit of length in the gravitational solution. Note however that the
position of the fixed point in scalar-space, and therefore the domain walls connecting them,

3

D2-brane

Figure 1. Network of domain-walls connecting the D2-brane behaviour (SYM-CS) and the pre-

viously known supersymmetric AdS4 solutions (CFTs) of the ISO(7) maximal supergravity. The

black lines (solid and dashed) correspond to domain-walls previously constructed in the SU(3) in-

variant sector of the theory [14]. The blue and yellow solid lines are new domain-walls constructed

in this paper within the SO(3)R invariant sector of the theory. Actual plots corresponding to these

new domain-walls can be found in figure 2 and figure 4.

with `s the string length. The supersymmetric AdS4 solutions of the dyonically-gauged

ISO(7) supergravity that preserve at least SU(3) or SO(4) residual gauge symmetry have

been classified. The supergravity contains four such solutions with N = 1 and G2 gauge

symmetry [9], N = 2 and SU(3) × U(1) gauge symmetry [4], N = 3 and SO(4) gauge

symmetry [10], and N = 1 and SU(3) gauge symmetry [6] (see table 1 in section 2.1). These

give rise to AdS4 solutions of massive IIA [4, 11–13] and are respectively dual to three-

dimensional superconformal field theories (SCFTs) with N = 1 and G2 flavour symmetry,

N = 2 and SU(3) flavour symmetry, N = 3 and SU(2) flavour symmetry, and N = 1

and SU(3) flavour symmetry. The N = 2 and N = 3 gauge/gravity duals have concrete

proposals [4] in terms of the field theories of [1, 2] with appropriate superpotentials. Two

new N = 1 AdS4 solutions with U(1) gauge symmetry are found in appendix A.

A network of BPS domain-wall configurations connecting two supersymmetric AdS4

solutions with at least SU(3) gauge symmetry was uncovered in [14]. These domain-walls

are displayed with black solid lines in figure 1. The holographic duals of such domain-

walls are renormalisation group (RG) flows between two different CFTs with at least SU(3)

flavour symmetry. In addition, there are RG flows connecting a non-conformal theory in the

ultraviolet (UV) to a CFT in the infrared (IR). The non-conformal theory is identified with
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the maximally supersymmetric Yang-Mills theory (SYM) in three dimensions deformed

with a CS term, and describes the worldvolume of a stack of D2-branes in massive IIA. The

domain-walls reaching the D2-branes in the UV are also represented in figure 1 with black

dashed lines. Flows involving the N = 3 CFT with SU(2) ≡ SO(3)R flavour symmetry as a

fixed point were excluded from the analysis of [14]. The purpose of this paper is to fill this

gap. We will show that this N = 3 CFT can serve as an IR fixed point by constructing new

domain-wall solutions that end at this critical point. A natural, simplifying assumption

is to request that the flows preserve the SO(3)R flavour of the IR phase. The SO(3)R-

invariant sector of N = 8 ISO(7) supergravity that we recently constructed in [15] is thus

the natural arena to construct these solutions.

The outcome of our study of supersymmetric four-dimensional domain-walls is two-fold:

• On the one hand, we find a one-parameter family of domain-wall solutions corre-

sponding to RG flows that connect the N = 1 CFT with G2 flavour symmetry in the

UV to the N = 3 CFT with SU(2) symmetry in the IR. One would expect these RG

flows to be triggered by mass deformations of the UV theory. However, due to the

lack of a continuous R-symmetry for N = 1 theories in three dimensions, a precise

description of these RG flows is not yet available.

• On the other hand, we find a unique domain-wall solution corresponding to an RG

flow that connects the N = 2 CFT with SU(3) flavour symmetry in the UV to

the N = 3 CFT with SU(2) symmetry in the IR. This RG flow preserves N = 2

supersymmetry and is created upon deforming the UV CFT with a mass term. This

flow is of the type discussed by Gaiotto and Yin (GY) in [2] and, for this reason,

we will refer to it in the following as the GY flow. Interestingly, the GY flow can

be “glued” to another RG flow connecting the N = 1 CFT with G2 symmetry in

the UV to the N = 2 CFT with SU(3) symmetry in the IR, whose holographic dual

was already constructed in [14]. The combined RG flow then provides a limiting

behaviour of the flows referred to above. The full network of available domain-walls

is sketched in figure 1.

Being generated by a mass deformation of the N = 2 CFT, the GY flow is similar to

the well-known flows of [16] and [17–19], created by mass deformations of four-dimensional

N = 4 SYM [20] and ABJM [21]. This similarity is reflected in the dual type IIA geometry.

The latter can be depicted as an S2 bundle over a four-dimensional base, with S6 topology

for the total space. In the UV and at intermediate holographic energies along the flow, the

S2 fibres are deformed and show only a U(1) symmetry. This is the R-symmetry preserved

along the flow. The S2 fibres get squashed inhomogeneously against the base as the flow

moves on towards lower energies. Finally, at the IR fixed point the S2 fibres become

round and a full SO(3) R-symmetry emerges. All along the flow, the four-dimensional

base displays an intact CP1 acted upon by the SO(3)R flavour group. Geometrically, the

holographic GY flow is thus the analogue to the D3 [16] and M2 [17–19] flows created

by similar mass deformations, where the internal S5 and the S7 become squashed along

their Hopf fibers [19]. The geometries involved in [17–19], in [16] and in the present case
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should correspond to configurations of intersecting M-branes and Dp-branes with all allowed

(odd or even) values for p, respectively. These configurations are not known precisely in

any of these cases, and it is beyond the scope of this paper to address this issue. See

however [22, 23] for early examples in a related context.

The paper is organised as follows. In section 2 we present a minimal four-dimensional

gauged supergravity model that contains the AdS4 solutions of interest. This minimal

model contains both the gravity dual of the GY flow and a family of domain-walls interpo-

lating between the G2 N = 1 critical point in the UV and N = 3 fixed point in the IR. The

former is investigated in section 3, and the latter in section 4. Concrete proposals exist for

the N = 2 and N = 3 SCFTs linked by the GY flow. We review them in section 3 and

provide field-operator maps relevant to this flow. In section 5 we discuss the uplift of the

domain-wall dual to the GY flow to ten-dimensional massive IIA supergravity. The paper

concludes with various appendices with complementary material.

2 Minimal gauged supergravity model

Our starting point to holographically investigate RG flows with an N = 3 and SU(2)

flavour symmetric fixed point in the IR is the half-maximal supergravity coupled to three

vector multiplets that we recently constructed in [15]. This theory describes the dynamics

of the SU(2) ∼ SO(3)R invariant sector of the maximal ISO(7) supergravity [6]. The latter

arises upon reduction of massive IIA on S6 [4, 5].

2.1 A four-chiral sector of dyonic ISO(7) supergravity

Fortunately, the full SO(3)R-invariant model of [15] is not needed in order to construct the

solutions of interest here. The minimal setup that accommodates such solutions consists

of a subsector thereof containing the metric field gµν and four complex scalars zI with

I = 1, . . . , 4. The dictionary between the complex scalars zI and the real fields of [15] is

given by

z1 =
b11√

2
+ i e−φ1/

√
2 , z2 = − b22√

2
+ i e−φ2/

√
2 , z3 = − b33√

2
+ i e−φ3/

√
2 , (2.1)

and

z4 = −χ+ i e−ϕ . (2.2)

Here, ϕ, φ1, φ2, φ3 are proper scalars and χ, b11, b22, b33 pseudoscalars. All other fields in

the model of [15] can be turned off consistently with their equations of motion. In other

words, the sector that contains the four complex scalars (2.1), (2.2) is a consistent trunca-

tion of the N = 4 SO(3)R-invariant sector [15] of N = 8 dyonic ISO(7) supergravity [6].

See appendix A for an alternative derivation of this minimal eight-scalar model directly

from the full N = 8 supergravity.

This simple model can be recast as a minimal (N = 1) supergravity coupled to

four chiral fields. The complex scalars zI serve as coordinates on the scalar geometry

– 4 –
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[SL(2)/SO(2)]4, equipped with the Kähler potential

K = −2
3∑
i=1

log[−i(zi − z̄i)]− log[−i(z4 − z̄4)] . (2.3)

Interactions are codified in a cubic holomorphic superpotential

W = 2m+ 2 g
[

4 z1 z2 z3 +
(
z2

1 + z2
2 + z2

3

)
z4

]
, (2.4)

where g and m are the coupling constants of the parent N = 8 supergravity [6]. The

(bosonic) action is then of Einstein-scalar form

Sbos =

∫
d4x
√
g

(
1

2
R− V − 1

2
KIJ̄ ∂µz

I ∂µz̄J̄
)
, (2.5)

where KIJ̄ = ∂zI∂z̄J̄K is the Kähler metric on the scalar geometry

KIJ̄ dz
I dz̄J̄ = −

3∑
i=1

2

(zi − z̄i)2dzi dz̄i −
1

(z4 − z̄4)2dz4 dz̄4 , (2.6)

and V = V (zI , z̄J̄) denotes the scalar potential. The latter can be readily computed

from (2.3) and (2.4) using the standard N = 1 formula

V = 8KIJ̄ ∂zIW ∂z̄J̄W − 12W2 , (2.7)

involving the gravitino mass term

W =
1

2
eK/2

(
WW

)1/2
, (2.8)

and the inverse Kähler metric KIJ̄ .

This N = 1 model suffices to capture all the known supersymmetric AdS4 solutions

of the ISO(7) maximal supergravity with at least SU(3) or SO(4) gauge symmetry (see

table 1). Moreover, and importantly for the purposes of this paper, these solutions also

appear as supersymmetric within the N = 1 model presented here, thus satisfying the

F-flatness conditions FI = ∂IW + (∂IK)W = 0 that follow from the superpotential (2.4).

This fact will allow us to construct BPS domain-wall solutions that interpolate between

the supersymmetric AdS4 critical points of table 1. These domain-walls will describe,

holographically, RG flows between the corresponding dual CFTs.

2.2 Domain-wall setup

In order to describe the three-dimensional RG flows holographically, we are interested in

gravitational configurations that preserve SO(1, 2) Lorentz symmetry. This requirement is

accommodated by a domain-wall Ansatz of the type

ds2 = e2A(ρ)ηµνdx
µdxν + dρ2 , (2.9)
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N G LG VG = −12/L2
G z

(G)
1 z

(G)
2 z

(G)
3 z

(G)
4

1 G2
5·151/4

8·22/3 −19.9871 · · · 1+i
√

15
4·21/3

1+i
√

15
4·21/3

1+i
√

15
4·21/3

1+i
√

15
4·21/3

2 SU(3)×U(1) 1
31/4 −20.7846 · · · i√

2
i√
2

1+i
√

3
2

1+i
√

3
2

3 SO(4) 33/4

2·22/3 −23.2773 · · · −1+i
√

3
2·21/3

1+i
√

3
2·21/3

1+i
√

3
2·21/3

1+i
√

3
21/3

1 SU(3) 55/4

8·31/4 −23.7956 · · ·
√

3+i
√

5
4

√
3+i
√

5
4

−1+i
√

15
4

−1+i
√

15
4

Table 1. Supersymmetric AdS4 solutions ordered by decreasing value of the scalar potential VG.

The first four columns show respectively the number of preserved supersymmetries in the maximal

theory, the residual gauge symmetry preserved at the AdS4 solution, the value of the AdS4 radius,

and a numeric approximation to the value of VG. The last four columns give the position of the

AdS4 solutions in field space. We have set g = m = 1.

where ρ ∈ R is the coordinate transverse to the domain-wall and holographically dual to

the energy scale in the field theory, ηµν = diag(−1, 1, 1) is the 2+1-dimensional Minkowski

metric, and A(ρ) is a function that we will refer to as the domain-wall function. This

Ansatz enjoys two reparameterisation symmetries related to shifts in the holographic radial

coordinate and re-scalings of the Minkowski coordinates

xµ → σ xµ , A→ A− log σ , ρ→ ρ+ ρs . (2.10)

The minimisation of the action (2.5) gives rise to a set of second order ordinary dif-

ferential equations. However, we are interested in BPS configurations preserving various

amounts of supersymmetry. Such configurations are solutions of a set of BPS first-order

differential equations

∂ρA = 2W , ∂ρz
I = −4KIJ̄ ∂z̄J̄W , (2.11)

where W is the gravitino mass term given in equation (2.8). In (2.11), it is convenient

to scale away all the dependence on the coupling constants g and m by considering the

redefinition

zI → zI
(
m

g

)1/3

⇒ KIJ̄ → KIJ̄

(
m

g

)−2/3

. (2.12)

From (2.3) and (2.4), it then follows that the gravitino mass (2.8) scales as

W →W
(
g7

m

)1/6

. (2.13)

The quantity ` ≡ (g7/m)−1/6 becomes the natural length scale with respect to which all

the remaining dimensionful fields and functions are measured

V → V/`2 , {xµ, ρ} → {xµ, ρ} ` , A→ A . (2.14)

The AdS4 radius LG at each critical point scales accordingly as

LG → LG ` . (2.15)

From now on, we will always use the dimensionless quantities just introduced. The explicit

dependence of quantities on g and m is restored by simply applying the above rescalings.
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G ∆G,a

G2 1−
√

6 1− 1√
6

(×3) 1 + 1√
6

(×3) 1 +
√

6

SU(3)×U(1) 1−
√

17
2

3−
√

17
2

2
3 1 (×2) 4

3
1+
√

17
2

3+
√

17
2

SO(4) −
√

3 1−
√

3 (×2) 2−
√

3
√

3 1 +
√

3 (×2) 2 +
√

3

SU(3) 1−
√

6 (×2) 0 1
3

5
3 2 1 +

√
6 (×2)

Table 2. Modes allowed by the BPS equations around each of the supersymmetric AdS4 solutions

labelled by their residual gauge symmetry G. We have ordered them in increasing magnitude and

highlighted with a gray background the modes with ∆G,a < 0 which parameterise regular domain-

wall solutions ending in the IR (ρ→ −∞).

2.3 Modes and dual operators around AdS4 solutions

The BPS equations (2.11) admit AdS4 solutions where the scalar fields acquire a value z
(G)
I

that extremises the superpotential: the r.h.s. of the BPS equations for the scalars vanishes

and the domain-wall function takes the linear form

A =
ρ

LG
. (2.16)

The constant LG = 1/2W(z
(G)
I ) here is the corresponding AdS4 radius, and the label G

refers to the residual gauge symmetry preserved at a given AdS4 solution. All the AdS4

solutions considered in the main body of this paper were previously known [6, 10] and are

summarised in table 1.

The scalar spectrum around each of the AdS4 solutions can be obtained by considering

fluctuations of the chiral fields

zI(ρ) = z
(G)
I + δz

(G)
I (ρ) . (2.17)

Linearising the BPS equations in the variables δz
(G)
I one finds that a generic solution can

be expressed as a linear superposition

δz
(G)
I (ρ) =

8∑
a=1

z
(G)
I,a ζ

(G)
a e

− ρ
LG

∆G,a . (2.18)

We will refer to the exponents ∆G,a as modes. These modes and the constant matrix

of coefficients z
(G)
I,a are completely determined by the BPS equations, whereas the eight

integration constants ζ
(G)
a remain arbitrary and specify the most general solution to the

linearised BPS equations. We list the modes corresponding to each of the AdS4 solutions

in table 2. It is worth noticing that the radial shift introduced in (2.10) gets reflected in a

non-trivial transformation of the integration constants

ρ→ ρ+ ρs , ζ(G)
a → e

ρs
LG

∆G,aζ(G)
a . (2.19)

This symmetry will prove useful in sections 3 and 4 to construct domain-wall solutions. It

will also be helpful in appendix B, where the flows previously constructed in the SU(3)–

invariant sector of ISO(7) supergravity [14] are re-obtained as solutions of our present

four-chiral model.

– 7 –
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The normalised spectrum of scalar masses at the various AdS4 solutions of table 1 can

be obtained from the potential (2.7), and is related to the independent modes in table 2.

The relation between the two sets of data is given by

M2
G,a L

2
G = ∆G,a (∆G,a − 3) . (2.20)

By virtue of the gauge/gravity correspondence, the modes with M2
G,a L

2
G > 0 are dual

to irrelevant scalar operators (with conformal dimension ∆ > 3) whereas those modes

with −9
4 ≤M2

G,a L
2
G < 0 are dual to relevant scalar operators (with conformal dimension

∆ < 3). Modes with a vanishing mass squared correspond to marginal scalar operators

(with conformal dimension ∆ = 3). For the AdS4 solutions of tables 1 and 2 the number

of dual operators of each type is given in table 3.

Note that the counting of relevant and irrelevant operators dual to the scalar fields

does not coincide, in general, with the counting of positive and negative modes around the

AdS4 solutions (the latter are highlighted in table 2). Recall that the reason lies in the

existence of two solutions, denoted ∆±, to the equation (2.20) [24]. On the one hand, for a

positive mass squared, dual to an irrelevant operator, there are two solutions ∆+ > 3 and

∆− < 0, and the BPS equations select one of them. If the negative root ∆− is selected,

the gauge/gravity correspondence establishes that the dual CFT Lagrangian is deformed

by adding an irrelevant operator, which has an important effect in the UV of the theory.

If, on the contrary, the positive root ∆+ is selected, the dual field theory possesses a non-

trivial vacuum expectation value (vev) for the corresponding irrelevant operator, but the

source of this operator is absent in the Lagrangian. On the other hand, for a negative

mass squared, dual to a relevant operator, both solutions ∆± are positive, and the BPS

equations again selects only one of them. As before, if the negative root ∆− is selected the

dual CFT is deformed by adding a relevant operator, whereas if the positive root ∆+ is,

the dual field theory possesses a vev with no source in the Lagrangian. However, the rôle of

the roots ∆± can be reversed in the case where the negative mass square lies in the range

−9
4 < M2

G,a L
2
G ≤ −5

4 , when an alternative quantisation of the scalar field is possible [24].

Whenever one of the modes in the expansion (2.18) is activated, the maximally sym-

metric AdS4 geometry ceases to be a solution of the BPS equations (2.11). The latter

dictate a new and non-trivial domain-wall solution whose holographic interpretation cor-

responds to an RG flow of the dual field theory. When the active modes are the negative

ones associated with irrelevant operators, as we will consider shortly, the AdS4 solution

provides the IR endpoint of the RG flow. In field theory language, the RG flow brings the

dual field theory to a fixed point in the IR with appropriate deformations turned on.

In [14] we presented a study of the domain-wall solutions involving the N = 1, G2

point, the N = 2, SU(3)×U(1) point and the N = 1, SU(3) point as IR endpoints. In that

reference the negative modes in the IR are the same ones that appear in the truncation

under scrutiny here, and therefore the structure of domain-wall solutions with these fixed

points in the IR is the same as in [14]. See appendix B for a summary. For this reason, in

the rest of this paper we will focus on domain-wall solutions ending at the N = 3, SO(4)

solution in the IR. From equation (2.18) and table 2, only three modes can be seen to

– 8 –
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G Relevant operators Irrelevant operators Marginal operators

G2 6 2 0

SU(3)×U(1) 5 3 0

SO(4) 4 4 0

SU(3) 3 4 1

Table 3. Number of relevant, irrelevant and marginal operators dual to the scalar modes in the

AdS4 solutions.

allow for a regular solution in the IR (ρ→ −∞). We will denote these as

∆SO(4),1 = −
√

3 , ∆SO(4),2 = ∆SO(4),3 = 1−
√

3 . (2.21)

For these modes, the coefficients are determined in terms of three integration constants

ζ
(SO(4))
a (with a = 1, 2, 3), which determine the chiral field fluctuations by means of the

equation (2.18) with a parameterisation of the coefficients of the form

z
(SO(4))
Ia =


1+(2+

√
3)i

2·21/3

1−(2−
√

3)i

2·21/3 0

−1−(2+
√

3)i

2·21/3 −
√

3−(3−2
√

3)i

6·21/3

1+(2−
√

3)i

2·21/3

−1−(2+
√

3)i

2·21/3 0 −1+(2−
√

3)i

2·21/3

− (
√

3+1)−(
√

3−1)i

21/3
22/3

3

(
3− 2

√
3
)
− 22/3
√

3
i 0

 . (2.22)

Using the shift symmetry (2.19) we can set one of the integration constants to any desired

value, for example, to one. Furthermore, the fact that two of the modes are equal, namely

∆SO(4),2 = ∆SO(4),3 = 1 −
√

3, implies that the dual field theory is perturbed by two

operators of the same dimensionality. But there are particular combinations that result

more convenient to study certain domain-walls, as we will show.

3 The gravity dual of the Gaiotto-Yin flow

A concrete supersymmetric domain-wall solution of the flow equations derived in section 2

connects the N = 2 SU(3) × U(1)-invariant fixed point in the UV to the N = 3 SO(4)

fixed point in the IR. We will argue that this domain-wall corresponds holographically to

one of the field theory RG flows envisaged by GY in [2]. We will review the boundary

and bulk sides of the story in sections 3.1 and 3.2, and will finally integrate the numerical

domain-wall solution in section 3.3.

3.1 Field theory

The SCFTs of interest arise as low-energy phases of the theory defined on the worldvolume

of a stack of N planar D2-branes in R7, namely, three-dimensional N = 8 SU(N) SYM,

upon turning on supersymmetric CS terms at level k for the SU(N) gauge fields. At

sufficiently high energies, the relevant field content thus includes 1 vector field Aµ, 7 real

scalars XI , I = 1, . . . , 7, corresponding to the directions transverse to the D2-branes, and

8 Majorana fermions λA, A = 1, . . . , 8, all of them in the adjoint of the SU(N) gauge group
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and in the indicated representations of the SO(7) R-symmetry. The fields have canonical

dimensions ∆(XI) = 1
2 , ∆(Aµ) = ∆(λA) = 1. The CS terms overrule the (irrelevant)

Yang-Mills contributions and dominate the low-energy physics. Additional couplings can

be included among the matter fields XI , λA that render the resulting CS-matter models

superconformal.

Two such CS-matter SCFTs have N = 2 and N = 3 supersymmetry. In general, the

on-shell field content of this type of theories includes, in N = 2 language, a non-Abelian

gauge field Aµ in a vector multiplet, along with a number Nf (arbitrary for N = 2 and

Nf = 2 for N = 3) of complex scalars Za and complex fermions χa, a = 1, . . . , Nf . These

are the on-shell components of chiral multiplets Φa, and lie in a given representation of

the gauge group. For the cases at hand, we chose gauge group SU(N) and matter in

the adjoint in order to make contact with the D2-brane description at sufficiently high

energies. In these cases, the Za and χa will respectively be complexifications of XI and

λA, namely, Z1 = X1 + iX2, etc. At weak coupling, these SCFTs admit the on-shell

Lagrangian description [1, 2]

L = tr

[
k

4π
εµνρ

(
Aµ∂Aρ +

2

3
AµAνAρ

)
+DµZ̄aD

µZa + i χ̄a γ
µDµχ

a

]
− 4π

k
tr(Z̄aTiZ

a) tr(χ̄bT
iχb)− 8π

k
tr(ψ̄aT

iZa) tr(Z̄bT
iχb)

− 4π

k
tr(Z̄aTiZ

a) tr(Z̄bTjZ
b) tr(Z̄cT

iT jZc) + LW , (3.1)

where the traces are taken in the adjoint and T i are the SU(N) generators. The Yukawa

terms and the quartic scalar potential arise upon elimination of auxiliary fields. In addition,

we have allowed for further interaction terms LW governed by a superpotential W . This

is a holomorphic function of Za, and arises as the lowest component of a chiral superfield

W holomorphic in Φa. Explicitly, these interaction terms read

LW =tr

(
∂W (Z)

∂Za
∂W (Z)

∂Z̄a
+

1

2

∂2W (Z)

∂Za∂Zb
χaχb +

1

2

∂2W (Z)

∂Z̄a∂Z̄b
χ̄aχ̄b

)
, (3.2)

see e.g. (A.34) of [25]. The addition of a superpotential will typically break the manifest

U(Nf ) flavour symmetry of the theory with no superpotential to a subgroup thereof.

The N = 3 theory has Nf = 2, flavour symmetry SU(2) ≡ SO(3)R, and quartic

superpotential [2]

WN=3 =
2π

k
tr
(
[Φ1,Φ2]

)2
, (3.3)

with (dimensionless) coefficient locked in terms of the Chern-Simons level k. With free-

field assignments for the conformal dimensions, ∆(Φa) ≡ ∆(Za) = 1
2 , ∆(χa) = 1, the

superpotential (3.3) is marginal and the classical action (3.1) is manifestly scale-invariant.

A more general quartic superpotential of the type (3.3) but with a generic coupling α

would only preserve N = 2. GY argue, at weak coupling k � 1, that this more general

N = 2 α-dependent theory flows into the theory with superpotential (3.3), therefore expe-

riencing an N = 3 supersymmetry enhancement at low energies [2]. The superpotential is
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non-renormalised and the N = 3 theory does not have R-charge or wave function renor-

malisation either. For this reason, the Lagrangian (3.1)–(3.3) can be expected to provide a

good description of the N = 3 theory also at strong ’t Hooft coupling λ ≡ N/k � 1 with k

of order 1 [2]. We will review evidence from the field theory later in this section and from

supergravity in section 3.2 that support this picture. The full symmetry of this theory

is OSp(4|3) × SO(3)R. Denoting by SO(3)d the N = 3 R-symmetry group contained in

OSp(4|3), the full global bosonic symmetry of the N = 3 SCFT is thus SO(3)d × SO(3)R.

The N = 2 theory (3.1) with no superpotential, W = 0, and free-field dimension

assignments is also manifestly scale-invariant. In contrast to the N = 3 case, however, the

N = 2 chirals may undergo both R-charge and wave function renormalisation [2]. Based on

holographic evidence at strong coupling [4], we claim that the N = 2 theory with Nf = 3,

which we fix henceforth, and cubic superpotential

WN=2 =
1

6
εabc tr

(
[Φa,Φb] Φc

)
, (3.4)

is in fact also conformal. This could not possibly happen without R-charge renormalisation.

The coefficient of (3.4) is not fixed by N = 2 supersymmetry (in particular, it is not fixed

to the Chern-Simons level k) but is nevertheless dimensionless, consistent with conformal

invariance. Thus, the Lagrangian (3.1), (3.2) does not provide a good description of the

N = 2 theory with superpotential (3.4), and it should be replaced by the Wilsonian effective

action corresponding to the CS-driven flow from N = 8 SYM. The latter may contain,

for example, a Kähler potential for the kinetic terms of the chirals. The full symmetry

of this strongly coupled N = 2 SCFT is thus OSp(4|2) × SU(3), where the latter factor

is the flavour symmetry preserved by the (non-renomalised) superpotential (3.4). The

R-symmetry group contained in OSp(4|2) will be denoted U(1)ψ, following the geometric

conventions of section 5. The full global bosonic symmetry of the N = 2 SCFT is thus

U(1)ψ × SU(3).

With the benefit of hindsight, it is possible to argue purely in field-theoretical terms

that a strongly coupled N = 2 SCFT theory with flavour SU(3) and superpotential (3.4)

makes perfect sense. The free energy F of this type of field theories on S3 can be determined

at strong coupling [26, 27] using localisation techniques [26, 28, 29]. If the SCFT has a

superpotential, then F can be computed as a function of arbitrary dimension assignments

∆a for the chirals Φa, a = 1, 2, 3, subject to the sole requirement that the (exact, non-

renormalised) superpotential be marginal. For (3.4), this translates into the condition

∆1 + ∆2 + ∆3 = 2 . (3.5)

The real part of the leading order free energy as a function of ∆a is [30]

F =
3
√

3π

20 · 21/3

[
1 +

Nf∑
a=1

(
1−∆a

)[
1− 2 (1−∆a)

2
]]2/3

k1/3N5/3 , (3.6)

with Nf = 3. On the surface (3.5), the function (3.6) attains an extremum at

∆1 = ∆2 = ∆3 =
2

3
, (3.7)
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consistent with SU(3) symmetry and renormalised away from the free field values. These,

and only these, must be the dimensions of the chirals at the N = 2 fixed point [26],

reproducing the assignments of [4]. With (3.7), the free energy (3.6) evaluates to

FN=2 =
313/6π

40

(
32

27

)2/3

k1/3N5/3 , (3.8)

thus reducing to the result of [4]. Subleading corrections to this free energy have been

worked out in [31].

Of course, the leading order free energy of the N = 3 SCFT can be computed in the

exact same way [32]. Assigning arbitrary dimensions ∆a to the two chirals consistent with

the marginality of the (again, exact and non-renormalised) superpotential (3.3),

∆1 + ∆2 = 1 , (3.9)

the free energy, (3.6) with Nf = 2, becomes extremal for the free-field values

∆1 = ∆2 =
1

2
. (3.10)

These are now compatible with SU(2) ≡ SO(3)R symmetry. This provides evidence that

the classical N = 3 action (3.1)–(3.3) with Nf = 2 is not renormalised at strong coupling.

At the extremum (3.10), the leading contribution of the N = 3 free energy becomes [32]

FN=3 =
313/6π

40
k1/3N5/3 . (3.11)

From (3.8) and (3.11), it straightforwardly follows that

FN=2 > FN=3 . (3.12)

By the argument of [27], these two theories could thus be connected by an RG flow, with

the N = 2 SCFT in the UV and the N = 3 one in the IR. In fact, GY had previously

argued that this flow is indeed generated upon deforming the N = 2 theory by a mass term

for one of the three chirals.1 Consider a deformation of the N = 2 superpotential (3.4)

quadratic in, say, the Φ3 superfield:

WN=2 , def = tr

(
[Φ1,Φ2] Φ3 +

1

2
µ (Φ3)2

)
. (3.13)

A mass term must always be relevant. Indeed, for the N = 2 assignment ∆3 = 2
3 in (3.7),

the dimension of the operator (Φ3)2 is 4
3 , less than the marginal dimension 2 of the super-

potential. The dimensionful parameter µ introduces a scale, conformal invariance is lost,

and the N = 2 theory plunges down an RG flow. At sufficiently low energies, the massive

field Φ3 is integrated out. From (3.13), the effective superpotential becomes

W =
1

2µ
tr
(
[Φ1,Φ2]

)2
. (3.14)

1Here we focus on a simplified version of the model in section 4.2 of [2] with no D6-branes, Nf = 0 there,

and consequently no fundamental matter, Qj = Q̃j = 0 there. It is this simplified flow that we dub GY

after these authors, although we will argue slightly differently.
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Flavour R-symmetry Flavour R-symmetry

SU(3) × U(1)ψ
SO(3)R ×U(1)τ × U(1)ψ

SO(3)R × SO(3)d

SO(3)R × U(1)d
SO(3)R×U(1)d−−−−−−−−−−−−−−−−−−→ SO(3)R × U(1)d

UV RG flow IR

Table 4. Summary of bosonic global symmetry groups involved in the GY flow. The top lines

correspond to the full symmetry enjoyed by the fixed points, with subsequent rows giving the

explicit subgroups mentioned in the text.

GY argue that this N = 2 superpotential will finally end up flowing to the N = 3 super-

conformal fixed point whose superpotential has coefficient fixed by the Chern-Simons level

(see below equation (3.3) above). At long distances, conformal invariance is restored and

supersymmetry is even enhanced.

It is interesting to determine the symmetry groups preserved along the GY flow. See

table 4 for a summary and appendix C for further details. The mass deformation in (3.13)

obviously breaks the SU(3) UV flavour to the SU(2) subgroup such that 3→ 2 + 1. Here

Φ1, Φ2 are the doublet and Φ3 the singlet. By construction, this SU(2) is identified with

the SO(3)R flavour symmetry of the IR SCFT. In addition, the GY flow preserves an extra

U(1). This is a mixture of the U(1) (call it U(1)τ following again section 5) that commutes

with SO(3)R inside SU(3), and the UV R-symmetry U(1)ψ. This mixing follows from a

group theory argument whose implementation is cleaner if the parameter µ in (3.13) is

thought as dimensionless. In this case, a reassignment of the dimensions of Φa is needed,

as in e.g. [33–35]. Both terms in the superpotential (3.13) must now be separately requested

to be marginal. This in turn leads to a split of the constraint (3.5) as ∆1 + ∆2 = 1 and

∆3 = 1. The free energy (3.6) with Nf = 3 is now extremal under these constraints when

∆1 = ∆2 =
1

2
, ∆3 = 1 , (3.15)

of course reproducing the SO(3)R-symmetric assignments (3.10) for the doublet that sur-

vives in the IR. But by OSp(4|2) representation theory, these dimensions are also the

R-charges (with opposite sign in our conventions) preserved along the flow. The U(1)

charges (3.15) only branch appropriately from SU(3) × U(1)ψ if this U(1) is strictly con-

tained in U(1)τ × U(1)ψ. This U(1) can also be shown to be contained in the SO(3)d

R-symmetry of the IR (it can thus be denoted U(1)d). This follows by assuming that

both UV, SU(3) × U(1)ψ, and IR, SO(3)R × SO(3)d, global symmetry groups are con-

tained in SO(7), as required for both N = 2 and N = 3 theories to arise as different

CS-matter phases of the D2-brane field theory. To summarise, the global bosonic symme-

try preserved by the GY flow is U(1)d× SO(3)R, where SO(3)R is flavour and U(1)d is the

R-symmetry. From (3.13), the GY flow is manifestly N = 2 like the UV theory. However,

the R-symmetry U(1)d that rotates the supercharges along the flow is different from the

R-symmetry U(1)ψ of the UV. Instead, U(1)d corresponds to the precise mixture of UV

R-symmetry U(1)ψ and UV flavour U(1)τ that is contained in the IR R-symmetry group

SO(3)d (see table 4 and appendix C).
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Finally, it is useful to elucidate the N = 2 operators that drive the GY flow at the level

of the Lagrangian. We have argued that the weak-coupling Lagrangian description (3.1)

breaks down at strong coupling. A Kähler potential might be generated, and the super-

potential interaction terms (3.2) should require modification accordingly. We may never-

theless make naive use of (3.2) to find the schematic form for these operators. Plugging

the superpotential (3.13) into (3.2), cubic interaction terms and quadratic mass terms are

generated for the component fields of Φ3. The latter are of the form

OB ∼ tr Z̄3 Z
3 , OF ∼ tr

(
χ3χ3 + χ̄3χ̄3

)
. (3.16)

These mass operators are clearly invariant under the SO(3)R flavour group of the GY

flow. Moreover, as the group theory analysis of appendix C shows, these operators are also

neutral under the U(1)d R-symmetry along the flow.

3.2 Supergravity and the field-operator map

The CS-matter SCFTs described in section 3.1 have gravity duals in massive type IIA string

theory [4, 11–13]. In addition, these models enjoy a convenient four-dimensional description

in terms of maximal, N = 8, supergravity with a dyonic ISO(7) gauging [6]. This is

similar to the existence of holographic descriptions of four-dimensional N = 4 SYM [20]

and ABJM [21] in terms of the maximal supergravities in five and four dimensions with

SO(6) [36] and SO(8) gauge groups [37]. In those cases, like in the present case, some of the

supergravity fields are dual to mass terms for the boundary fields. Let us determine the map

between supergravity fields and gauge-invariant operators of the boundary field theories.

We find it convenient to work in the SL(8) frame for the N = 8 supergravity, the frame

used in [6], because the proper scalars can be straightforwardly identified with quadratic

combinations of the vector representation where SL(8) acts. Identifying these as the co-

ordinates transverse to the branes and ultimately as the adjoint scalars in the boundary

theory, these quadratic combinations become related to mass terms for the latter. The

supergravity pseudoscalars, in turn, are related to mass terms for the dual field theory

fermions. The SL(8) frame is, however, rather inconvenient to identify these mass terms,

as the pseudoscalars are parametrised in this frame as self-dual four-rank antisymmetric

tensors in the vector representation. A triality rotation is needed to bring the parametri-

sation into quadratic combinations of spinor representations, for which the relation to

the field theory’s fermion mass terms then becomes obvious. In the following, we will

assume that appropriate triality transformations on the supergravity pseudoscalars have

been performed.

Although there is no supersymmetric AdS critical point with SO(7) symmetry, the

35 proper scalars of ISO(7) supergravity can be nevertheless assigned to the 27 + 7 + 1

representations of SO(7), and the pseudoscalars to the 35. The latter correspond to gauge-

invariant mass terms tr λ(AλB) for the 8 fermions λA of N = 8 SYM. The 27 scalars are

dual to symmetric-traceless gauge-invariant mass terms trX{IXJ} for the 7 scalars XI .

The singlet can be seen to be related to the second factor in the D = 4 N = 8 branching

E7(7) ⊃ SL(7)×SO(1, 1) and thus to the IIA dilaton. For this reason, this bosonic operator
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scalar/pseudoscalar SU(3)×U(1)ψ SO(3)R ×U(1)τ ×U(1)ψ SO(3)R ×U(1)d M2L2 ∆ Osp(4|2) multiplet

ZaZ̄b − 1
3δ
a
bZ

cZ̄c 80 1(0,0) + 2(− 3
2
,0) + 2( 3

2
,0) + 3(0,0) 10 + 2− 1

2
+ 2 1

2
+ 30 −2 1 massless vector

ZaZ̄4 3−2/3 1(−1,− 2
3

) + 2( 1
2
,− 2

3
) 1−1 + 2− 1

2
−14

9
7
3 short gravitino

Z̄aZ
4 3̄2/3 1(1, 2

3
) + 2(− 1

2
, 2
3

) 11 + 2 1
2

−14
9

7
3 short gravitino

Z(aZb) 6−4/3 1(−2,− 4
3

) + 2(− 1
2
,− 4

3
) + 3(1,− 4

3
) 1−2 + 2− 3

2
+ 3−1 −20

9
4
3 hypermultiplet

Z̄(aZ̄b) 6̄4/3 1(2, 4
3

) + 2( 1
2
, 4
3

) + 3(−1, 4
3

) 1+2 + 2 3
2

+ 31 −20
9

4
3 hypermultiplet

ZaZ̄a − 3Z4Z̄4 10 1(0,0) 10 3−
√

17 1+
√

17
2 long vector

Re(Z4Z4) 10 1(0,0) 10 3 +
√

17 5+
√

17
2 long vector

Im(Z4Z4) 10 1(0,0) 10 0 — eaten

ZaZ4 3−2/3 1(−1,− 2
3

) + 2( 1
2
,− 2

3
) 1−1 + 2− 1

2
0 — eaten

Z̄aZ̄4 3̄2/3 1(1, 2
3

) + 2(− 1
2
, 2
3

) 11 + 2 1
2

0 — eaten

χaχ̄b − 1
3δ
a
bχ

cχ̄c 80 1(0,0) + 2(− 3
2
,0) + 2( 3

2
,0) + 3(0,0) 10 + 2− 1

2
+ 2 1

2
+ 30 −2 2 massless vector

χ(aχb) 62/3 1(−2, 2
3

) + 2(− 1
2
, 2
3

) + 3(1, 2
3

) 10 + 2 1
2

+ 31 −14
9

7
3 hypermultiplet

χ̄(aχ̄b) 6̄−2/3 1(2,− 2
3

) + 2( 1
2
,− 2

3
) + 3(−1,− 2

3
) 10 + 2− 1

2
+ 3−1 −14

9
7
3 hypermultiplet

Re(χ4χ4) 1−2 1(0,−2) 1−2 2 3+
√

17
2 long vector

Im(χ4χ4) 12 1(0,2) 12 2 3+
√

17
2 long vector

χaχ̄a − 3χ4χ̄4 10 1(0,0) 10 2 3+
√

17
2 long vector

χaχ̄4 3−2/3 1(−1,− 2
3

) + 2( 1
2
,− 2

3
) 1−1 + 2− 1

2
0 — eaten

χ̄aχ
4 3̄2/3 1(1, 2

3
) + 2(− 1

2
, 2
3

) 11 + 2 1
2

0 — eaten

χaχ4 34/3 1(−1, 4
3

) + 2( 1
2
, 4
3

) 11 + 2 3
2

0 — eaten

χ̄aχ̄4 3̄−4/3 1(1,− 4
3

) + 2(− 1
2
,− 4

3
) 1−1 + 2− 3

2
0 — eaten

Table 5. The scalar spectrum at the N = 2 point.

can be assigned to the Yang-Mills Lagrangian, trFµνF
µν , in analogy with the D = 5

N = 8 situation where E6(6) ⊃ SL(6) × SL(2), with the second factor associated to the

IIB axion-dilaton. Finally, the 7 in the branching 27 + 7 + 1 does not have a holographic

interpretation because it corresponds to Stückelberg scalars that are eaten and disappear

from the physical spectrum.

The spectrum at the N = 2 critical point of ISO(7) supergravity was given in [6] and

allocated into representations of OSp(4|2)×SU(3) in [38]. See table 5 for a summary. The

SU(3) × U(1)ψ representations branch from the SO(7) representations discussed above,

see appendix C. Further branchings under the various subgroups of SU(3) introduced in

section 3.1 have also been included for convenience. From the table, chiral condensates

trZ(aZb) and real (traceless) mass terms tr (ZaZ̄b − trace) for the boundary scalars Za,

a = 1, 2, 3, can be seen to be included in the spectrum. The chiral condensates have

dimension 4
3 , consistent with the dimensions (3.7) for Za. Curiously, the real traceless

mass terms have dimension 1, rather than twice the dimension of Za. This is perhaps not

so surprising when one realises that these operators arise as the lowest component of the

conserved SU(3) flavour supercurrent multiplet, and thus must have protected dimension 1.

The AdS4 mass squared of these fields is M2L2 = −2. Alternative quantisation [24] is

therefore needed for these supergravity fields to be dual to dimension 1 operators.

Two SU(3) × U(1)ψ singlets are contained in the spectrum of proper scalars, both of

them contained in the same long vector multiplet of OSp(4|2). One of them, tr Re(Z4Z4),
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descends directly from the SO(7) singlet identified above, and thus corresponds to

trFµνF
µν . Indeed, it is this mode that drives holographically the N = 8 SYM theory

into the N = 2 CS-matter SCFT [14]. It is fun to note that supergravity in this con-

text gives a precise value, (5 +
√

17)/2, for the dimension of the irrelevant Yang-Mills

term in three-dimensions. The other singlet is related, up to a term proportional to the

Konishi-like operator

O0 = tr
(
Z1Z̄1 + Z2Z̄2 + Z3Z̄3 + Z4Z̄4

)
, (3.17)

to the square of the 7th coordinate, X7, transverse to the D2-branes. Indeed, (X7)2 can

be identified with the auxiliary, SU(3)-singlet scalar σ in the vector multiplet that arises

from splitting the N = 8 SYM field content into N = 2 multiplets. This auxiliary field

turns out to be integrated out as tr σ ∼ trZaZ̄a (with sum in a = 1, 2, 3), see e.g. (A.33)

of [25], thus matching the table assignment.2 The three scalars trZaZ̄4 and their complex

conjugates are potentially related to minimal couplings in the covariant derivatives of Za.

They belong to massive gravitino multiplets, and thus are dual to operators in the six

N = 8 SYM supersymmetry current multiplets broken by the N = 2 SCFT.

The pseudoscalar spectrum contains mass terms, tr
(
Re(χ4χ4) + i Im(χ4χ4)

)
, for the

complex gaugino that enters the N = 2 vector multiplet. Like the auxiliary scalar

trσ ∼ tr(X7)2 in this multiplet, the complex gaugino is also integrated out from the

weakly-coupled Lagrangian (3.1). These fermionic mass terms belong to the same OSp(4|2)

long vector multiplet. Other pseudoscalars in the spectrum can be assigned to different

quadratic fermionic operators in the boundary. Most importantly for our purposes, the

spectrum contains gauge-invariant mass terms trχ(aχb) for the boundary fermions χa. Su-

pergravity predicts that these mass terms should have a renormalised dimension of 7
3 ,

consistent with the dimension 7
6 for χa that follows from (3.7), see appendix C.

A proposal for the supergravity fields that should drive holographically the GY flow

can be made upon inspection of table 5. The appropriate scalars should be singlets under

the SO(3)R ⊂ SU(3) flavour symmetry preserved along the flow. Twenty such singlets can

be found in the fourth column of the table. These are the scalars contained in the SO(3)R-

invariant model of [15]. Further discrete symmetries and identifications can be imposed,

along the lines of appendix A, that allow one to retain only the boxed fields in that column

(boxes containing two entries account for a single supergravity field). The boxed fields

correspond to those of the eight-real-scalar model described in section 2.1. In addition to

be SO(3)R singlets, the supergravity fields driving the GY flow must also be invariant under

the U(1)d R-symmetry along the flow. In particular, the pseudoscalar in the 10 ⊂ 80 with

M2L2 = −2 is set to zero along the flow by virtue of the BPS compatibility condition (3.22)

2Up to terms in the Konishi-like operator (3.17), which has a dual only in the full type IIA string theory

and not in D = 4 N = 8 ISO(7) supergravity, the operator tr(X7)2 ∼ trZaZ̄a is in turn akin to the Konishi

operator of N = 4 SYM in four-dimensions. Unlike in D = 5 N = 8 SO(6) supergravity, this operator

does have a dual scalar in ISO(7) supergravity, again up to terms proportional to the actual Konishi-like

operator (3.17) in the present case. The fact that tr(X7)2 is integrated out of the (weakly coupled) on-shell

N = 2 Lagrangian (3.1) does not mean that it becomes irrelevant in the N = 2 CS-matter SCFT. On the

contrary, supergravity predicts a relevant dimension (1 +
√

17)/2 for this operator.
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below. Of course, they must be relevant in the UV as well. The only supergravity fields

that satisfy all these requirements are the two scalars and the pseudoscalar marked in blue

in table 5. The selected pseudoscalar indeed corresponds to a mass term OF of the type

discussed in (3.16). Up to terms in the Konishi-like operator (3.17), the proper scalars are

also of the form OB argued in (3.16). The numerical integration of section 3.3 will confirm

that these are indeed the modes that drive the flow out of the N = 2 UV phase.

As the field theory flows into the N = 3 fixed point at long distances, the dual su-

pergravity spectrum allocates itself into OSp(4|3) × SO(3)R representations. These were

worked out in [10], to which we refer for the details. Here we only note that the supergrav-

ity spectrum at the N = 3 point contains an SO(3)R triplet of massless OSp(4|3) vector

multiplets, each one containing in turn an SO(3)d triplet of scalars and an SO(3)d triplet

of pseudoscalars, along with the adjoint SO(3)d massless R-symmetry vectors. All of these

scalars and pseudoscalars have AdS mass M2L2 = −2. The 9 proper scalars have AdS

mass M2L2 = −2 and are dual to ∆ = 1 operators in alternative quantisation. More

concretely, each vector multiplet contains the SO(3)d triplet(
Z(aZb) , Z̄(aZ̄b) , Z

aZ̄b −
1

2
δabZ

cZ̄c

)
, a = 1, 2 , (3.18)

where each entry is itself an SO(3)R triplet. The first two entries are condensates of the

chiral fields Za, a = 1, 2, and their conjugates, that remain massless on the GY flow.

The field theory operators dual to the supergravity scalars (3.18) have now dimension 1,

protected by the conservation of the SO(3)R flavour current. Moreover, the dimension

1 of all these operators is now consistent with the free-field dimension assignment (3.10)

for Za, a = 1, 2, in the IR. This is in contrast with the situation at the N = 2 fixed

point. This provides a holographic argument that the N = 3 Lagrangian (3.1)–(3.3) is not

renormalised at strong coupling. A similar analysis for the pseudoscalars can be made.

These are dual to dimension 2 fermionic mass terms with a structure analogue to (3.18).

Finally, we note that the supergravity modes with irrelevant dimensions (2.21) that were

shown in section 2.3 to possibly drive flows into the N = 3 IR fixed point, belong to the

long OSp(4|3) gravitino multiplet retained in the SO(3)R-invariant model of [15]. We do

not have a concrete proposal for the dual operators.

3.3 The numerical four-dimensional domain-wall

The intricacy of the BPS equations (2.11) forces us to consider a numeric strategy to

integrate them. The strategy we follow consists in performing an IR shooting from a

convenient radial value ρ = ρIR � 0, with the perturbations in (2.18) used as a boundary

condition. This allows us to set the starting point in ρIR instead of the deep IR ρ→ −∞.

As previously discussed, regularity of the flow permits only the negative modes in (2.21),

thus corresponding to turning on irrelevant operators in the dual field theory. This strategy

has been implemented successfully in similar contexts (see e.g. [16] for an early example).

Let us first note that in both the UV and IR endpoints of the domain-wall the z1 and

z2 chiral scalars are identified as

z1 = −z2 . (3.19)
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Using the parameterisation (2.1), this condition amounts to identifying φ1 = φ2 and b11 =

b22 in the larger (half-maximal) theory constructed in [15]. It is in this half-maximal context

where (3.19) appears as the requirement that the U(1)d ≡ SO(2) ⊂ SO(3)d subgroup of

the R-symmetry group in the IR is preserved also in the UV and, more generally, along

any domain-wall solution where (3.19) holds.

At the level of the fluctuations described by the coefficients in (2.22), we observe that

the first column therein already satisfies (3.19) whereas only a combination of the second

and the third columns does (recall that the modes to which they are associated have the

same value). Alternatively, we can re-express this as a condition on the two corresponding

integration constants

ζ
(SO(4))
3 =

(
1√
3
− 1

)
ζ

(SO(4))
2 . (3.20)

As a result, any deviation from the AdS4 solution with SO(4) symmetry that is regular

towards ρ→ −∞ and satisfies the condition (3.19) for U(1)d invariance takes the form

z1(ρ) = −z̄2(ρ) = z
(SO(4))
1 +

(
1 + (2 +

√
3)i

2 · 21/3

)
ζ

(SO(4))
1 e

√
3 ρ

LSO(4)

+

(
1− (2−

√
3)i

2 · 21/3

)
ζ

(SO(4))
2 e

(
√

3−1)ρ
LSO(4) + · · · ,

z3(ρ) = z
(SO(4))
3 +

(
−1− (2 +

√
3)i

2 · 21/3

)
ζ

(SO(4))
1 e

√
3 ρ

LSO(4) (3.21)

+

(
3−
√

3

6 · 21/3
+

9− 5
√

3

6 · 21/3
i

)
ζ

(SO(4))
2 e

(
√

3−1)ρ
LSO(4) + · · · ,

z4(ρ) = z
(SO(4))
4 +

(
−(
√

3 + 1)− (
√

3− 1)i

2 · 21/3

)
ζ

(SO(4))
1 e

√
3 ρ

LSO(4)

+

(
22/3

3
(3− 2

√
3)− 22/3

√
3
i

)
ζ

(SO(4))
2 e

(
√

3−1)ρ
LSO(4) + · · ·

where the ellipsis represent terms with a dependence of the form e(m1

√
3+m2(

√
3−1)) ρ/LSO(4)

with m1 + m2 > 1. Truncating at order m1 + m2 = k corresponds to an expansion that

keeps all the correct radial dependence only up to ek
√

3 ρ/LSO(4) .

Despite being consistent at the level of the equations of motion that derive from the ac-

tion (2.5), the identification (3.19) poses additional constraints on the BPS equations (2.11).

Plugging (3.19) into (2.11) yields two algebraic relations for the imaginary parts of z3 and

z4 of the form3

Re(z3)

Im(z3)
=

Re(z4)

Im(z4)
=

√
2 Re(z3)2 Re(z4)√

1− 2 Re(z3)2 Re(z4)
. (3.22)

3In the parameterisation (2.1), (2.2), the algebraic relations (3.22) become the two conditions

me
√

2φ3 + 2g χ
(
1 + e2ϕχ2) = 0 ,

1√
2
b33 e

1√
2
φ3 = χ eϕ ,

where the supergravity couplings g and m have been restored.
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Figure 2. Numerically integrated domain-wall with z1 = −z̄2 that interpolates between AdS4

solutions with SU(3) × U(1) symmetry in the UV (brown square) and SO(4) symmetry in the IR

(purple circle). This domain-wall is dual to the GY flow reviewed in section 3.1.

These are in turn consistent with the flow equations (2.11), in the sense that the latter are

identically satisfied on the combinations (3.22). The remaining undetermined components,

Re(z1), Im(z1), Re(z3) and Re(z4), then satisfy a set of coupled differential equations

Re(z1)′ =
Re(z1) (2 Re(z3)− Re(z4))

(2 Re(z3)2 Re(z4))1/4 (1− 2 Re(z3)2 Re(z4))3/4
,

Im(z1)′ = − Im(z1)3

4

1− 8 Re(z3)2Re(z4) + Re(z1)2 (2Re(z3)− Re(z4))

(2 Re(z3)2 Re(z4))1/4 (1− 2 Re(z3)2 Re(z4))3/4
,

Re(z3)′ = −Re(z3)

2

(
1− 2 Re(z3)2 Re(z4)

2 Re(z3)2 Re(z4)

)1/4 (
Im(z1)2

(
1− Re(z1)2Re(z3)

)
− 4Re(z3)

)
,

Re(z4)′ = −Re(z4)

2

(
1− 2 Re(z3)2 Re(z4)

2 Re(z3)2 Re(z4)

)1/4 (
Im(z1)2

(
1 + Re(z1)2Re(z4)

)
− 4Re(z4)

)
,

(3.23)

where the prime represents a derivative with respect to ρ. A numeric domain-wall solution

to the BPS equations can now be readily constructed by performing a shooting from the

IR using (3.21) as boundary conditions.

We have performed the numeric integration after using the shift symmetry in (2.19)

to set ζ
SO(4)
1 = 1 and choosing a particular value for ζ

SO(4)
2 . The value of ζ

SO(4)
2 turns to

be restricted to a finite range for the domain-wall solution to admit a non-singular UV

behaviour. A generic value within this range produces a domain-wall that reaches the

scaling behaviour of the D2-brane solution (deformed by Roman’s mass [14]) in the UV.
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However, there is a critical value for ζ
SO(4)
2 at the edge of the permitted range that gives

rise to the special domain-wall displayed in figure 2. The UV endpoint of this particular

domain-wall corresponds to the N = 2 AdS fixed point. This critical value for ζ
SO(4)
2 lacks

physical significance since, by repeated use of the arbitrary shift symmetry (2.19), it can be

set to any value upon changing the value of ζ
SO(4)
1 accordingly. Still we can provide a radial

shift-independent relation between the two IR parameters that determines the domain-wall

depicted in figure 2 uniquely. This relation reads(
ζ

SO(4)
2

) 1
1−
√

3 ' 15.54
(
ζ

SO(4)
1

) 1
−
√

3 . (3.24)

As we have just shown, there is a unique domain-wall solution that is SO(3)R-invariant

by construction and is also subject to the relations (3.19) that ensure that U(1)d-invariance

is also preserved. This domain-wall is N = 2 all along and interpolates between the N = 2

AdS critical point in the UV and the N = 3 one in the IR. In section 2.3 we discussed in

detail the allowed deformations around the IR (ρ → −∞) as well as the relations (3.20)

and (3.24). Here we analyse the UV (ρ → ∞) regime of the domain-wall and perform a

characterisation of deformations around the N = 2, SU(3)×U(1) solution.

Amongst the modes listed in table 2, only the six that are positive correspond to regular

solutions in the UV. However, not all of them are compatible with the conditions (3.19)

and (3.22) that need to be imposed when constructing the domain-wall of figure 2. Out of

the six positive modes, only three are compatible with these conditions. These are:

∆(SU(3)×U(1)),3 =
2

3
, ∆(SU(3)×U(1)),4 = 1 , ∆(SU(3)×U(1)),7 =

1 +
√

17

2
. (3.25)

The fluctuations around the AdS4 UV solution are determined by the matrix of coefficients

z
(SU(3)×U(1))
I,a , where a = 3, 4, 7 in the current notation, with the label specifying the posi-

tion in table 2. It is illuminating to provide higher-order terms in the near-UV solution,

corresponding to the complementary modes to those listed in (3.25). These can be cal-

culated as 3 −∆(SU(3)×U(1)),a, and appear as free coefficients when integrating the second

order equations of motion but are completely determined in terms of the UV coefficients4

ζ3,4,7 when considering the BPS equations subject to the conditions (3.19) and (3.22). This

analysis gives
z1

z2

z3

z4

 =


1√
2

− 1√
2

0

0

 ζ3 e
− 2

3
ρ
L +


0

0

−1+
√

3i
4

1+
√

3i
2

 ζ4 e
− ρ
L +


i
2
i
2

−1+
√

17
8
√

2
(1−

√
3i)

−1+
√

17
8
√

2
(1−

√
3i)

 ζ7 e
− 1+

√
17

2
ρ
L

+


− 5 i

3
√

2

− 5 i
3
√

2
3
32 − 11

8
√

3
i

− 1
16 − 17

8
√

3
i

 ζ2
3ζ4 e

− 7
3
ρ
L +




33
32
√

2

− 33
32
√

2

0

0

 ζ3
3 +


i

2
√

2
i

2
√

2

−1−
√

3i
8

1+2
√

3i
4

 ζ2
4

 e−2 ρ
L + · · · ,

(3.26)

4In the remaining of this section we omit the label (SU(3)×U(1)) in the UV coefficients and the AdS radius

to avoid excessive cluttering.
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with the ellipsis denoting other terms that we are not interested in. I.e., the expres-

sion (3.26) is not a UV expansion since we are omitting terms, that in particular scale as

e−
4
3
ρ
L and e−

5
3
ρ
L , which are more important in the UV limit ρ→∞ than some of the terms

shown here. Notice also that a non-normalisable contribution e−
5−
√

17
2

ρ
L does not appear

in table 2 and is thus not allowed by the BPS equations. For the numerical domain-wall

of figure 2, the coefficients ζ3,4,7 in (3.26) become functions of the IR parameters (3.24).

Armed with the expansion (3.26) we can make contact with the field theory picture

reviewed in section 3.1, using the field-operator map discussed in section 3.2. The constant

ζ3 corresponds to the source for the SO(3)R × U(1)d-invariant fermion bilinear operator

OF ∼ tr
(
χ3χ3 + χ̄3χ̄3

)
with dimension ∆ = 7

3 that belongs to an OSp(4|2) hypermultiplet

in table 5. This source is the only dimensionful parameter in the field theory side, and

therefore its exact value carries no physical significance. The corresponding property in

the gravitational side is, again, the use of the shift symmetry (2.19) that allows to set ζ3

to any value without changing the physics. From our numerical integration we can find

the UV constants of integration in terms of the IR parameter ζ
(SO(4))
2 . For our discussion

it suffices to give the physically-meaningful relations between the UV ones

ζ4 ' 0.97722 ζ
3/2
3 , ζ7 ' 1.04957 ζ

3(1+
√

17)
4

3 . (3.27)

The constants ζ4 and ζ7, related to ζ3 via (3.27), correspond in principle to vevs for the

boson bilinears with conformal dimensions ∆ = 1 and ∆ = 1+
√

17
2 that belong to the

massless and massive (long) vector multiplets in table 5, respectively.

The coefficients in the second line of equation (3.26) also carry information about the

behaviour of the dual operators. The first one scales like e−
7
3
ρ
L and corresponds to a vev

for OF . This term, proportional to ζ4
3 ζ4, takes the exact value that allows to kill the

normalizable mode associated to the field of mass square M2L2 = −14
9 , i.e., there is no

condensate for this fermion bilinear. To see this explicitly we constructed the asymptotic

solution to the second order equations of motion for the relevant fields and compared

it to the expansion in (3.26). The matching between both expressions determined that

the constant of integration associated to the fermion bilinear condensate, via holographic

renormalisation [39], has to vanish. A similar holographic renormalisation analysis should

be performed to assess whether the naive vevs mentioned above for the boson bilinears

actually hold up as actual vevs for operators that turn out to condense along the flow.

This is, however, immaterial for our discussion. More important is the term in (3.26)

that scales like e−2 ρ
L . This term corresponds to a source for the dimension 1 operator

that requires alternative quantisation and sits in the massless vector multiplet of table 5.

Crucially, from (3.26) and (3.27), the coefficient of this term is completely determined from

the fermion mass parameter as ζ3
3 .

This analysis confirms that the SO(3)R×U(1)d-invariant domain-wall plotted in figure 2

approaches the N = 2 UV fixed point with sources, governed by a unique parameter, for the

field theory operators OF and OB defined in (3.16), up to contributions of the Konishi-like

operator (3.17). This domain-wall is thus dual to the GY flow.
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4 A family of holographic RG flows with N = 1 → N = 3

Relaxing the field identification in (3.19), the unique domain-wall depicted in figure 2 gets

generalised to a full family of domain-walls labelled by a single parameter. This family

consists of new domain-wall solutions that connect the N = 3, SO(4) solution in the IR

and the N = 1, G2 solution in the UV. The generic flows in the family are N = 1 and

preserve only the SO(3)R flavour of the IR fixed point. The family is limited on one side by

the N = 2, SO(3)R ×U(1)d-invariant GY domain-wall of section 3.3, and bounded on the

other side by a new N = 1 SO(3)R× SO(2)-invariant domain-wall. The supersymmetry of

the latter is also N = 1, and SO(2) corresponds to an additional flavour symmetry.

4.1 Generic flows

A numerical study reveals that the range of the parameter describing different members

of this family is delimited by two special cases. On one side of the allowed range there is

the limiting domain-wall that passes arbitrarily close to the N = 2, SU(3)×U(1) solution

before reaching the N = 1, G2 in the UV. This limiting domain-wall eventually disappears

in favour of the N = 2 → N = 3 domain-wall studied in section 3 for which the scalar

identification in (3.19) holds and we concluded that

ζ
(SO(4))
3

ζ
(SO(4))
2

=

(
1√
3
− 1

)
, (4.1)

see (3.20). The N = 2 → N = 3 domain-wall of figure 2 can be “glued” to the N = 1 →
N = 2 domain-wall connecting the G2 and SU(3)×U(1) solutions [14] (see appendix B).

On the other side of the allowed range for the parameter there is a bounding domain-

wall that does reach the N = 1, G2 point in the UV. For this bounding domain-wall a

different scalar identification of the form z2 = z3 holds, which translates into the condition

ζ
(SO(4))
3

ζ
(SO(4))
2

=
1

2
√

3
. (4.2)

As a result, a family of domain-wall solutions exists and is given by a parameter delimited

by the radial shift-independent values in (4.1) and (4.2), namely,(
1√
3
− 1

)
<
ζ

(SO(4))
3

ζ
(SO(4))
2

≤ 1

2
√

3
. (4.3)

An example of a member of this family of BPS domain-walls is displayed in figure 3,

together with the limiting (blue solid line) and bounding (yellow solid line) domain-walls.

4.2 The bounding symmetry-enhanced domain-wall

Similarly to section 3.3, let us note here that in both the UV and IR endpoints of the

bounding domain-wall, the z2 and z3 chiral scalars are identified as

z2 = z3 . (4.4)
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Figure 3. Numerically integrated domain-walls that interpolate between the G2 solution (red

triangle), the SU(3) × U(1) solution (brown square) and the SO(4) solution (purple circle). They

form a one-parameter family of domain-walls delimited by two solid lines: the limiting domain-wall

dual to the GY flow (blue solid line) and the bounding domain-wall (yellow solid line). In both

cases additional scalar identifications occur which translate into symmetry-enhanced domain-walls.

The dashed, green line corresponds to a generic domain-wall with ζ
(SO(4))
3 = − 2

5 ζ
(SO(4))
2 that passes

close to the N = 2 SU(3)×U(1)ψ fixed point without reaching it.

Using the parameterisation (2.1), this identification translates into b22 = b33 and φ2 = φ3

in the larger (half-maximal) theory constructed in [15]. As a result, an SO(2) ⊂ SO(3)d

subgroup of the R-symmetry in the IR is again preserved in the UV. The identification (4.4)

is this time consistent with the BPS equations (2.11) and holds all along the bounding

domain-wall. Its effect in the linearised solution around the AdS4 endpoint in the IR

reduces to the identification of the integration constants

ζ
(SO(4))
3 =

1

2
√

3
ζ

(SO(4))
2 , (4.5)

since the first column in (2.22) is already compatible with (4.4).

As before, we can use of the radial shift symmetry (2.19) to set ζ
(SO(4))
1 = 1 without loss

of generality. It is then straightforward to solve the first-order BPS equations by shooting

from the IR with the boundary conditions being determined by the expansions (2.17)

and (2.18), and the parameters (2.22) being constrained by (4.5). There is again a critical

value of ζ
(SO(4))
2 such that the domain-wall depicted by the yellow line in figure 3 occurs.

This unique domain-wall appears when the relation between the IR parameters reads(
ζ

SO(4)
2

) 1
1−
√

3 ' 11.26
(
ζ

SO(4)
1

) 1
−
√

3 . (4.6)

This domain-wall is plotted in figure 4.
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Figure 4. Numerically integrated bounding domain-wall with z2 = z3 that interpolates between

AdS4 solutions with N = 1, G2 symmetry in the UV (red triangle) and N = 3 SO(4) symmetry

in the IR (purple circle). This domain-wall holographically describes an RG flow between three-

dimensional SCFTs with N = 1→ N = 3 supersymmetry enhancement.

5 The flows in ten dimensions

We conclude with some considerations about the type IIA uplift of the flows that we

have constructed in this paper, focusing on the GY flow of section 3. All of the above

four-dimensional domain-walls give rise to solutions of massive type IIA supergravity upon

uplift on deformed six-spheres. In order to obtain the ten-dimensional geometries, we

have particularised the formulae for the consistent truncation [4, 5] of massive type IIA

supergravity [3] on S6 to the eight-scalar sector of D = 4 ISO(7) supergravity [6] that was

identified in section 2. The resulting uplifting formulae are quite complicated and can be

consulted in appendix5 D.1.

Here we will simply analyse some qualitative features of the six-dimensional internal

geometry corresponding to the GY flow of section 3. The geometry corresponding to the

UV N = 2 fixed point [4] can be understood as an S2 bundle over CP2, with S6 topology for

the total space. The S2 fibre is deformed and displays a U(1)ψ isometry only. The effect on

this geometry of the field theory deformation (3.13) that triggers the GY flow is to realign

the deformed S2 fibres inside of the ambient R7 in which S6 is defined. This realignment

selects a U(1)d symmetry group, preserved along the entire flow, as a certain combination

of U(1)ψ and another U(1)τ that acts on the UV CP2 base. As the flow proceeds towards

lower energies, the total S6 internal space undergoes, in turn, a combination of two types of

5As discussed in the appendix, we have in fact obtained the uplift of the entire N = 4 SO(3)R-invariant

sector of ISO(7) supergravity to the ten-dimensional type IIA metric, dilaton and Ramond-Ramond

one-form.
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deformations. On the one hand, ellipsoidal deformations are inflicted by the proper scalars

ϕ, φ1, φ2, φ3. On the other hand, the pseudoscalars χ, b11, b22, b33 together with the

proper scalars squash inhomogeneously the deformed, U(1)d-invariant, S2 fibres against

the four-dimensional base. At the IR N = 3 fixed point [12, 13] the deformation of the

fibre disappears. The fibre becomes a round S2, and its U(1)d symmetry blows up into

the full SO(3)d IR R-symmetry group. A flavour SO(3)R symmetry is also preserved along

the flow.

Let us see how this works in more detail, referring to appendix D.2 for the technicalities.

The six-dimensional geometry corresponding to the N = 2 UV fixed point is [4]

ds2
6 =

3

2
dα2 +

9 sin2 α

5 + cos 2α

(
dψ +

1

2
sin2 ξ (dτ + σ)

)2

+
6 sin2 α

3 + cos 2α

[
dξ2 + cos2 ξ ds2(CP1) +

1

4
cos2 ξ sin2 ξ (dτ + σ)2

]
. (5.1)

The angles α, ψ, parametrise a (globally defined, see [11]) S2, fibred over the four-dim-

ensional geometry within brackets. In this case, this base is also globally defined and

corresponds to the complex projective plane, CP2, equipped with the Fubini-Study metric.

In (5.1), the latter has been written out in a standard parametrisation that exhibits a

manifest SO(3)R ×U(1)τ symmetry, with SO(3)R ∼ SU(2) acting homogeneously on the

CP1 factor and U(1)τ generated by the Killing vector ∂τ . Of course, the full symmetry

of the term within brackets is the SU(3) that acts homogeneously on CP2, in agreement

with the flavour symmetry of the dual N = 2 field theory. This SU(3) rotates the adjoint

chirals Φa, a = 1, 2, 3, of the dual N = 2 SCFT, leaving the superpotential (3.4) invariant.

The UV configuration (5.1) also has a manifest U(1)ψ symmetry generated by ∂ψ. This is

dual to the R-symmetry of the N = 2 UV field theory. The metric on the topological S2

parametrised by α, ψ is deformed away from the standard round form by a function of α,

and thus displays only U(1)ψ symmetry. At the UV configuration (5.1) we thus have

N = 2 UV symmetry : U(1)ψ ×U(1)τ × SO(3)R manifest (actually U(1)ψ × SU(3)).

(5.2)

In the field theory, the SO(3)R ∼ SU(2) subgroup of the full UV SU(3) flavour sym-

metry group acts on the first two adjoint chirals, Φa, a = 1, 2, as a doublet and leaves Φ3

invariant. The mass deformation (3.13) that generates the GY flow therefore breaks the

SU(3) flavour of the UV field theory to SO(3)R. This mass deformation is also invariant

under a combination U(1)d of the residual flavour symmetry U(1)τ that commutes with

SO(3)R inside SU(3), and the UV R-symmetry U(1)ψ. Thus, along the N = 2 GY flow

we have

N = 2 GY flow symmetry : U(1)d × SO(3)R , (5.3)

where the first factor is R-symmetry and the second is flavour. Geometrically, U(1)d is

generated by the Killing vector (D.22) of the UV geometry (5.1), and still acts on the S2

fibres. However, these get realigned inside the ambient R7 that contains the topological

S6 as a consequence of the mixing of ∂τ and ∂ψ. Also as a consequence of this mixing, the

four-dimensional base of the S2 fibration is no longer globally defined. Nevertheless, the
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base still displays an intact CP1 upon which SO(3)R acts. The scalars and pseudoscalars

squash the U(1)d-invariant S2 fibres against the SO(3)R-invariant base as they run along

the flow. The proper scalars by themselves tend to deform the metric on S6 inherited by

the constraint (D.2) to the ellipse MIJµ
IµJ = 1 in R7, for some scalar-dependent matrix

MIJ . This can be seen by setting the pseudoscalars to zero (formally, as they are non-

vanishing along the flow) in the internal geometry (D.5), (D.6). In any case, the symmetry

group (5.3) at intermediate stages of the GY flow is a subgroup of both the manifest and

the full symmetries, (5.2), of the UV geometry (5.1).

At the N = 3 fixed point, the internal six-dimensional geometry [12, 13] becomes, in

a notation close to [13],

ds2
6 =

2
(
3 + cos 2β

)
cos2 β

3 cos4 β + 3 cos2 β + 2
δijDµ̃

iDµ̃j + 2

[
dβ2 +

8 sin2 β

3 + cos 2β

(
ds2(CP1) +

1

4
(ρ3)2

)]
.

(5.4)

Here, β is an angle related to α, ξ in (5.1) through (D.21), and µ̃i, i = 1, 2, 3, are constrained

coordinates on R3 defining a round S2, δij µ̃
iµ̃j = 1. This S2 is fibred on the (local)

geometry within brackets in (5.4) via

Dµ̃i ≡ dµ̃i + εijkAjµ̃k , with Ai =
sin2 β

3 + cos 2β
ρi , (5.5)

where ρi, i = 1, 2, 3, are the right-invariant one-forms on an S3 within the local four-

dimensional base. This S3 should be regarded as the Hopf fibration over CP1, with ρ3 the

one-form along the Hopf fibre. The SO(3)R ∼ SU(2) flavour symmetry acts homogeneously

on the (global) CP1 factor within the S3 in the base. This CP1 factor is inherited by the IR

geometry (5.4) from its UV counterpart (5.1), and survives the GY flow unscathed. More

interestingly, an enhanced SO(3)d R-symmetry emerges in the IR, as the metric on the S2

fibres becomes round. At the N = 3 IR fixed point, we get

N = 3 IR symmetry : SO(3)d × SO(3)R , (5.6)

where the first factor, which contains the U(1)d R-symmetry along the GY flow, is the

R-symmetry and the second factor is flavour. The IR symmetry group (5.6) contains the

GY flow symmetry (5.3) but, interestingly, is not contained in the UV symmetry (5.2). All

three, UV, intermediate, and IR, symmetry groups are nevertheless contained in the SO(7)

group that rotates the undeformed internal S6. This SO(7) is also the R-symmetry of the

three-dimensional N = 8 super-Yang-Mills (SYM) theory defined on a stack of D2-branes,

prior to deforming with Chern-Simons terms, see [14].

With some differences, this behaviour is qualitatively analogue to that of similar solu-

tions in type IIB [16] and M-theory [17–19, 40] that are respectively dual to mass defor-

mations of four-dimensional N = 4 SYM [20] and ABJM [21]. The mass deformation of

N = 4 SYM considered in [16] breaks the UV SU(4) R-symmetry to N = 1, and preserves

SU(2) × U(1) symmetry along the flow. Here, the first factor is flavour and the second is

the R-symmetry. A similar flow on the M2-brane [17–19, 40] breaks the manifest N = 6

supersymmetry and SU(4) ×U(1) global symmetry of ABJM to N = 2 and SU(3)×U(1)
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with, again, the first factor corresponding to flavour and the second to R-symmetry. The

internal geometries dual to these flows correspond to odd-dimensional sheres S2n+1, with

n = 2 in type IIB and n = 3 in M-theory. In both cases, the SU(n) flavour group acts homo-

geneously on a CPn−1 submanifold of the CPn base of S2n+1 [19]. The U(1) R-symmetry is

a combination of the U(1)ψ that acts on the Hopf fiber and the U(1)τ that acts on CPn and

commutes with SU(n) inside SU(n+ 1) [19]. As the flow proceeds, the S2n+1 is squashed

ellipsoidally by the proper scalars, and the Hopf fiber is squashed inhomogeneously against

the base by the running scalars and pseudoscalars [19]. An intact CPn−1 is preserved all

along. Except for the family of M2-brane flows of [40] and unlike the GY flow, these flows

do not exhibit supersymmetry enhancement in the IR.
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A N = 1 truncation of ISO(7) supergravity with seven chirals and new

supersymmetric vacua

The four-chiral model described in section 2 was argued to arise as a further subtruncation

of the SO(3)R-invariant sector [15] of N = 8 ISO(7) supergravity. We have verified that the

equations of motion, (2.6)–(2.8) of [15], of the SO(3)R-invariant sector reduce consistently

to the equations of motion for the model of this paper. Here, we provide an alternative

derivation of the four-chiral model directly from the full N = 8 ISO(7) supergravity.

More precisely, the starting point here is a consistent N = 1 subsector of N = 8 ISO(7)

supergravity that retains seven chiral fields. As we will now show, this seven-chiral model

arises as a Z∗2 × Z(1)
2 × Z(2)

2 invariant sector of the dyonic ISO(7) maximal supergravity.

Here,

Z(1)
2 × Z(2)

2 ⊂ SL(8) ⊂ E7(7) , (A.1)

is a four-element Klein subgroup whose action on the SL(8) fundamental index A = 1, . . . , 8

is given by

I : (x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8)→ (x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8) ,

Z(1)
2 : (x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8)→ (x1 , x2 , x3 , −x4 , −x5 , −x6 , −x7 , x8) ,

Z(2)
2 : (x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8)→ (x1 , −x2 , −x3 , x4 , x5 , −x6 , −x7 , x8) ,

Z(1)
2 Z(2)

2 : (x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8)→ (x1 , −x2 , −x3 , −x4 , −x5 , x6 , x7 , x8) .

(A.2)
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In addition, we will also require invariance under an additional Z∗2 acting on the coordi-

nates as

Z∗2 : (x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8)→ (x1 , −x2 , x3 , −x4 , x5 , −x6 , x7 , −x8) .

(A.3)

This truncation retains the seven dilatons of E7(7) together with seven axions in order

to furnish seven N = 1 chiral multiplets. This sector has been extensively considered in

the past when exploring N = 1 flux compactifications in the presence of generalised flux

backgrounds [41–43]. In this context, the Z(1)
2 × Z(2)

2 factors in (A.1) are associated with

a (toroidal) orbifold action on T6, whereas the Z∗2 factor in (A.3) is identified with an

orientifold projection halving the number of supersymmetries [44]. Recently, this sector

has also been studied within the context of the SO(8) maximal supergravity [45].

Following the conventions of [46], the fourteen real scalars in the truncation are asso-

ciated with the following E7(7) generators in the SL(8) basis. The dilatons have associated

generators of the form

gϕ1 = −t11 − t22 − t33 + t4
4 + t5

5 + t6
6 + t7

7 − t88,

gϕ2 = −t11 + t2
2 + t3

3 − t44 − t55 + t6
6 + t7

7 − t88,

gϕ3 = −t11 + t2
2 + t3

3 + t4
4 + t5

5 − t66 − t77 − t88,

gϕ5 = t1
1 − t22 + t3

3 + t4
4 − t55 + t6

6 − t77 − t88,

gϕ6 = t1
1 + t2

2 − t33 − t44 + t5
5 + t6

6 − t77 − t88,

gϕ7 = t1
1 + t2

2 − t33 + t4
4 − t55 − t66 + t7

7 − t88,

gϕ4 = t1
1 − t22 + t3

3 − t44 + t5
5 − t66 + t7

7 − t88,

(A.4)

whereas the axions correspond to generators of the form

gχ1 = t1238, gχ5 = t2578,

gχ2 = t1458, gχ6 = t4738, gχ4 = t8246 .

gχ3 = t1678, gχ7 = t6358,

(A.5)

Exponentiating the above generators as

V = Exp

[
−12

7∑
I=1

χI gχI

]
Exp

[
1

4

7∑
I=1

ϕI gϕI

]
, (A.6)

yields a parameterisation of an [SL(2)/SO(2)]7 coset space. The scalar kinetic terms in the

resulting N = 1 supergravity model are of the form

Lkin = −1

4

7∑
I=1

[
(∂ϕI)

2 + e2ϕI (∂χI)
2
]
. (A.7)
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These are the kinetic terms for a set of seven chiral fields zI = −χI + i e−ϕI with Kähler

potential

K = −
7∑
I=1

log[−i(zI − z̄I)] . (A.8)

A direct computation shows that the scalar potential in this sector of the theory can be

re-expressed in terms of a holomorphic superpotential of the form

W = 2m+ 2 g [ z1 z2 z3 + z1 z6 z7 + z2 z7 z5 + z3 z5 z6 + (z1 z5 + z2 z6 + z3 z7) z4 ] , (A.9)

using standard N = 1 formulas.

New N = 1 AdS4 vacua. We have performed a numerical scan of supersymmetric

extrema by solving the F-flatness conditions that derive from (A.9) and found six such

AdS4 vacua. Four of them were known previously, and their location in field space was

discussed in the main text (see table 1 with the identifications in equation (A.20) below).

The other two vacua are new and preserve N = 1 supersymmetry together with only a

U(1) symmetry within the maximal ISO(7) gauged supergravity. This U(1) turns out to be

the Cartan subgroup, U(1)R, of the SO(3)R subgroup of SO(7) discussed in the main text.

The new vacua have a smaller value of the potential compared to the ones in table 1.

In particular, setting g = m = 1, we find:

• The first one has a value of the potential

V = −25.6971 , (A.10)

and its location in field space is given by6

z1 = z5 = 0.4874 + 0.5961 i ,

z2 = z6 = 0.1082 + 1.1728 i ,

z3 = −0.2178 + 0.5098 i ,

z4 = −0.5989 + 0.5894 i ,

z7 = 1.2101 + 0.8849 i .

(A.11)

In terms of the AdS4 radius, the spectrum of normalised scalar masses around this

solution, within this seven-chiral sector, is given by

M2L2 ={8.1644 , 8.0986 , 4.2223 , 2.7101 , 2.6648 , 0.7839 , 0.1342 ,

− 1.6232 , −1.6997 , −1.8625 , −1.8766 , −2.0988 , −2.1075 , −2.2066} ,
(A.12)

and the corresponding values ∆ of the modes that are selected by the BPS equations

originating from (A.9) read

∆ ={−1.7271 , −1.7169 , −1.0441 , 3.7271 , 3.7169 , −0.2418 , 3.0441 ,

0.7083 , 2.2418 , 0.8775 , 0.8889 , 1.1111 , 1.1225 , 1.2917} .
(A.13)

These modes arrange themselves into seven chiral multiplets of OSp(4|1).

6There are additional (but equivalent) discrete realisations of this vacuum.
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• The second one has a smaller value of the potential

V = −35.6102 , (A.14)

and is located at (see footnote 6)

z1 = z5 = −0.1103 + 0.7629 i ,

z2 = z6 = 0.8364 + 0.3907 i ,

z3 = −0.4021 + 0.3120 i ,

z4 = −0.9449 + 1.4406 i ,

z7 = 0.7402 + 1.1526 i .

(A.15)

The spectrum of normalised scalar masses around this solution is given by

M2L2 ={10.8555 , 9.8092 , 7.5707 , 4.6152 , 4.1131 , 4.0254 , 3.8639 ,

2.3031 , 0.0681 , 0.0152 , −1.1885 , −1.4465 , −2.2393 , −2.2491} ,
(A.16)

and the corresponding values ∆ of the modes that are selected by the BPS equations

that follow from (A.9) read

∆ ={−2.1202 , −1.9726 , −1.6338 , 4.1202 , −1.0225 , −1.0051 , 3.9726 ,

3.6338 , 3.0225 , 3.0051 , 0.4697 , 0.6036 , 1.3964 , 1.5303} .
(A.17)

Again, these modes arrange themselves into seven chiral multiplets of OSp(4|1).

Enhancements to SO(3) symmetry. Denoting the chiral fields as zi = (z1, z2, z3) and

zî = (z5, z6, z7), two cases of symmetry enhancement are then immediately envisaged:

• A continuous SO(3) invariance is recovered upon the identifications

zi ≡ Φ1 , z4 ≡ Φ2 , zî ≡ Φ3 , (A.18)

thus yielding the superpotential of the three-chiral model of appendix A of [6]

W = 2m+ 2 g
[

Φ3
1 + 3 Φ1 Φ2

3 + 3 Φ1 Φ2 Φ3

]
. (A.19)

The identifications in (A.18) reduce the seven-chiral sector to the Z2×SO(3) invariant

sector studied in [46] for general CSO gaugings of maximal supergravity.

• A different continuous SO(3) invariance is restored upon the identification

zi = zî , (A.20)

which connects with the SO(3)R invariance of [15]. This yields a four-chiral model

with a superpotential, from (A.9), of the form

W = 2m+ 2 g
[

4 z1 z2 z3 +
(
z2

1 + z2
2 + z2

3

)
z4

]
. (A.21)

This coincides with (2.4) of the main text and is the superpotential that we have

used in this paper. If (A.20) is relaxed as z1 = z5, z2 = z6 while leaving z3 and z7

unidentified, as in the new N = 1 critical points (A.11) and (A.15), the continuous

symmetry is only the Cartan subgroup U(1)R of SO(3)R.
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Let us conclude with an observation. When analysed within the seven-chiral sector

of this appendix, the N = 3 solution with SO(4) symmetry has an enlarged scalar mass

spectrum with no additional irrelevant operators apart from those already listed in table 2.

Therefore, no additional domain-walls exist in the seven-chiral model ending at the N = 3

and SO(4) symmetric solution in the IR.

B Previously known domain-wall solutions

For completeness, we give here some details on the domain-wall solutions contained in the

minimal model of section 2 that coincide with flows discussed previously in [14].

• The N = 1, G2 fixed point has a unique negative (and therefore regular) mode in

the IR, ∆G2,1 = 1−
√

6, with the matrix of coefficients

z
(G2)
I,1 =

1

4 · 21/3

(
9− 4

√
6√

2
+

√
15

2
i

)
(B.1)

for I = 1, 2, 3, 4. The constant of integration ζ
(G2)
1 is the only dimensionful scale in

the system, and the freedom to perform the radial shift (2.19) allows to re-scale it to

any convenient value, for example ζ
(G2)
1 = 1; the field theory counterpart consists in

noticing that the CFT is perturbed by a source that sets the only scale of the theory.

Such scale can be always set to a convenient value by a redefinition of the energy

units.

The domain-wall describes a solution interpolating between the D2-brane geometry

asymptotics in the UV and the G2 fixed point in the IR. Holographically this cor-

responds to a G2-preserving deformation in the UV of the SYM theory that lives in

the worldvolume of the D2-branes, to a CS-matter theory in the IR governed by a

conformal fixed point [14].

• There are two regular deformations of the N = 2, SU(3) × U(1) solution as the

IR endpoint of a domain-wall solution: ∆SU(3)×U(1),1 = 1−
√

17
2 and ∆SU(3)×U(1),2 =

3−
√

17
2 . The linearized BPS equations are solved by the matrix of coefficients

z
(SU(3)×U(1))
I,a =


i
2 − i

2

− i
2 − i

2

0 −1−
√

17
8·25/6 (1−

√
3i)

0 −1−
√

17
8·25/6 (1−

√
3i)

 (B.2)

which preserves SU(3) symmetry since the perturbation maintains z1 = z2 and

z3 = z4. Once again, the arbitrary radial shift (2.19) allows to set the constant of

integration ζ
(SU(3)×U(1))
1 = 1 without loss of generality. Then ζ

(SU(3)×U(1))
2 can take

values in a compact range, parameterising a continuous family of solutions whose

UV is given by the D2-brane geometry. In the field theory side there is a continuous

deformation of the SYM Lagrangian that makes the theory flow to a CS-matter the-

ory with SU(3) × U(1) symmetry. At one of the boundaries of this allowed range of
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values for ζ
(SU(3)×U(1))
2 the UV description of the domain-wall is dominated by the

G2 fixed point described above. In this case, as it corresponds to a UV description

of the fixed point (ρ → ∞), only positive modes (and therefore regular in the UV)

are active around the G2 solution [14].

• Finally, [14] also considers domain-walls where the IR endpoint of the solution is

given by the N = 1, SU(3) fixed point, with ∆SU(3),1 = ∆SU(3),2 = 1 −
√

6. The

linearized BPS equations imply a matrix of coefficients

z
(SU(3))
I,a =



√
3

4

√
5

4
√

2
i

√
3

4

√
5

4
√

2
i

−3(4+3
√

6)+(3
√

10+4
√

15)i
16 −5(2

√
2−
√

3)−
√

5(9−2
√

6)i

16
−3(4+3

√
6)+(3

√
10+4

√
15)i

16 −5(2
√

2−
√

3)−
√

5(9−2
√

6)i

16

 (B.3)

which preserves SU(3) symmetry since the perturbation maintains z1 = z2 and z3 =

z4. By using the arbitrary radial shift of equation (2.19) one can set the constant of

integration ζ
(SU(3))
2 = 1 without loss of generality. Then ζ

(SU(3))
1 can take values in a

compact range, parameterising a continuous family of solutions whose UV is given by

the D2-brane geometry, i.e., in the field theory side there is a continuous deformation

of the SYM Lagrangian that makes the theory flow to a CS-matter theory with

SU(3) symmetry. At one of the limits of this set of allowed values for the constant

ζ
(SU(3))
1 the UV description of the domain-wall is dominated by the G2 fixed point

described above, with only positive modes turned on, as it corresponds to a regular

UV description.

C Symmetries along the GY flow

Both N = 2 and N = 3 SCFTs connected by the GY flow can be regarded as different CS-

matter phases of the D2-brane field theory: three-dimensional N = 8 SYM. Accordingly,

the symmetry groups, summarised in table 4, at both endpoints and along the flow should

be regarded as subgroups of the N = 8 SYM R-symmetry group, SO(7).

The SU(3)×U(1)ψ global symmetry of the UV SCFT is embedded into SO(7) through

SO(7) ⊃ SO(6) ⊃ SU(3)×U(1)ψ . (C.1)

The 7 real scalars XI and 8 Majorana fermions χA of N = 8 SYM accordingly branch as

7
SO(6)−−−→ 6 + 1

SU(3)×U(1)ψ−−−−−−−→
(
3− 2

3
+ 3+ 2

3

)
+ 10 , (C.2)

8
SO(6)−−−→ 4 + 4

SU(3)×U(1)ψ−−−−−−−→
(
3 1

3
+ 1−1

)
+
(
3− 1

3
+ 1+1

)
. (C.3)

The triplets here correspond to the bosonic, Za, and fermionic, χa, on-shell components of

the N = 2 SCFT chirals Φa, a = 1, 2, 3, via complexification of X1, . . . , X6 and χ1, . . . , χ6.

The singlets correspond to the real auxiliary scalar, σ ∼ (X7)2, and to the complex gaugino,

λ ∼ χ7+iχ8, of the N = 2 vector multiplet. Interestingly, the group theory branching (C.2)
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fixes the U(1)ψ R-symmetry of Za as R(Za) = −2
3 , in agreement with the independent

field theory result (3.7). For reasons to be explained below, we use conventions where the

conformal dimension ∆ and the R-charge R for the lower components of short OSp(2|4)

hypermultiplets are related via

∆ = −R , (C.4)

rather than with the more familiar + sign. Also, X7 comes out R-neutral under the

branching (C.2), consistent with the field theory result tr (X7)2 ∼ trZaZ̄a, see section 3.2.

Finally, the branching (C.3) correctly reproduces the UV field theory R-charge assignment

of +1
3 for the fermions χa. This follows independently in the field theory by writing out

the superfield

Φa = Za +
√

2 θαχaα + F a (C.5)

in components and assigning R-charge R(θα) = −1 in agreement with the sign conven-

tion (C.4). Incidentally, the usual dimension assignment [θα] = −1
2 leads to ∆(χa) = 7

6 , so

that the fermion mass terms trχ(aχb) have dimension 7
3 in agreement with the supergravity

result of table 5. As noted in the text, the dimension 2
3 for Za leads to dimension 4

3 for

the condensates trZ(aZb), but does not fix the dimension of the real SU(3)-traceless mass

terms tr (ZaZ̄b − traces).

The superpotential mass deformation in (3.13) that triggers the GY flow breaks the

UV global symmetry SU(3)×U(1)ψ down to SO(3)R×U(1)d. Here, SO(3)R ∼ SU(2) is the

subgroup of SU(3) such that 3→ 2 + 1, with Za, a = 1, 2, the doublet and Z3 the singlet.

This SO(3)R is the flavour symmetry group along the flow. The R-symmetry U(1)d along

the flow is the subgroup of SU(3) × U(1)ψ that leads to the R-charge assignments (3.15)

(with opposite sign in our conventions, as in (C.4)) along the flow. In order to determine

how U(1)d is embedded in SU(3) × U(1)ψ, assume that U(1)d = pU(1)τ + qU(1)ψ, where

U(1)τ commutes with SO(3)R inside SU(3) and p, q are constants to be determined. Under

SU(3)×U(1)ψ ⊃ SO(3)R ×U(1)τ ×U(1)ψ ⊃ SO(3)R ×U(1)d , (C.6)

the chiral bosons Za and fermions χa branch as

3− 2
3

SO(3)R×U(1)τ×U(1)ψ−−−−−−−−−−−−→ 2( 1
2
,− 2

3
) + 1(−1,− 2

3
)

SO(3)R×U(1)d−−−−−−−−→ 2 1
2
p− 2

3
q + 1−p− 2

3
q , (C.7)

3 1
3

SO(3)R×U(1)τ×U(1)ψ−−−−−−−−−−−−→ 2( 1
2
, 1
3

) + 1(−1, 1
3

)

SO(3)R×U(1)d−−−−−−−−→ 2 1
2
p+ 1

3
q + 1−p+ 1

3
q . (C.8)

The branching (C.7) reproduces the R-charge assignments (3.15) with the sign conventions

of (C.4) for
1
2 p− 2

3q = −1
2

−p− 2
3q = −1

}
=⇒ p =

1

3
, q = 1 . (C.9)

Thus, U(1)d is a proper mixture of U(1)τ and U(1)ψ, as advertised in section 3.1. Ten-

soring the branchings (C.7), (C.8) reproduces the charge assignments in table 5 for the

supergravity fields under SO(3)R ×U(1)τ ×U(1)ψ and SO(3)R ×U(1)d with p, q in (C.9).

In the N = 3 SCFT fixed point, the surviving bosons, Za, and fermions, χa, a = 1, 2,

transform as doublets under the SO(3)R ∼ SU(2) IR flavour symmetry. These are also
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charged under the R-symmetry U(1)d: from (C.7)–(C.9), R(Za) = −1
2 and R(χa) = 1

2 .

These R-charge assignments are consistent with these fields being components of a super-

field Φa, as in (C.5) with now a = 1, 2. In the IR fixed point, the R-symmetry is in fact

enlarged to a full SO(3)d, consistent with N = 3 supersymmetry. Thus, we still need to

show that the U(1)d subgroup of the UV global symmetry group SU(3) × U(1)ψ defined

via (C.6)–(C.9) is also a subgroup of the full SO(3)d R-symmetry group of the IR.

In order to show this, we resort to the embedding of both UV and IR global symmetries

into the common SO(7) R-symmetry of the parent N = 8 SYM theory. On the one hand,

further branching (C.1) via (C.6) by combining (C.2), (C.3) with (C.7), (C.8), the N = 8

SYM bosons and fermions XI , χA can be checked to split as

7
SO(3)R×U(1)d−−−−−−−−→

(
2− 1

2
+ 1−1

)
+
(
2 1

2
+ 11

)
+ 10 , (C.10)

8
SO(3)R×U(1)d−−−−−−−−→

(
2 1

2
+ 10 + 1−1

)
+
(
2− 1

2
+ 10 + 11

)
. (C.11)

On the other hand, the global IR symmetry SO(3)d × SO(3)R is embedded into SO(7) via

SO(7) ⊃ SO(3)′ × SO(4)′ ≡ SO(3)′ × SO(3)L × SO(3)R ⊃ SO(3)d × SO(3)R , (C.12)

with SO(3)R the right-handed component of SO(4)′ and SO(3)d the diagonal of SO(3)′ ×
SO(3)L, hence the labels employed in the main text. Under (C.12), the N = 8 SYM bosons

and fermions branch as

7
SO(3)′×SO(3)L×SO(3)R−−−−−−−−−−−−−→ (1,2,2)+(3,1,1)

SO(3)d×SO(3)R−−−−−−−−−→ (2,2)+(3,1) , (C.13)

8
SO(3)′×SO(3)L×SO(3)R−−−−−−−−−−−−−→ (2,2,1)+(2,1,2)

SO(3)d×SO(3)R−−−−−−−−−→ (2,2)+(3,1)+(1,1) . (C.14)

Further splitting these under the Cartan of SO(3)d, we finally find the branchings

7 −→ (2 1
2

+ 2− 1
2
) + (11 + 10 + 1−1) , (C.15)

8 −→ (2 1
2

+ 2− 1
2
) + (11 + 10 + 1−1) + 10 , (C.16)

into representations of SO(3)R and the U(1) Cartan of SO(3)d. The branchings (C.15),

(C.16) coincide with (C.10), (C.11). This proves that the U(1)d subgroup of the UV

symmetry group SU(3) × U(1)ψ defined via (C.6)–(C.9) is indeed the Cartan subgroup of

the SO(3)d R-symmetry group of the IR.

We conclude with a justification of our unusual sign choice in the shortening rela-

tion (C.4) that relates the conformal dimension and the R-charge of OSp(4|2) hypermulti-

plets. The reason is that, with this sign convention, the IR R-charge assignments for the

mass deformed [17–19] ABJM chirals transverse to the M2-branes (see (3.16) of [47]),

M2 : R(Za) = +
1

3
, a = 1, 2, 3 , R(Z4) = +1 , (C.17)

and the R-symmetry assignments in our case, given by equation (C.2),

D2 : R(Za) = −2

3
, a = 1, 2, 3 , R(X7) = 0 , (C.18)

are related by an SO(8) triality rotation. See [38] for the details.
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D Ten-dimensional geometries

D.1 IIA uplift of the D = 4 SO(3)R-invariant sector

Here we present the uplift the four-dimensional flows to massive IIA supergravity. In order

to do this, we use the formulae of [4, 5] for the consistent truncation of massive type IIA

down to D = 4 N = 8 dyonically gauged ISO(7) supergravity [6], and particularise them

to the eight-scalar sector defined in section 2. We find it convenient to pack the scalars φ1,

φ2, φ3 and the pseudoscalars b11, b22, b33 into the 3× 3 matrices

m = diag
(
e−
√

2φ1 , e−
√

2φ2 , e−
√

2φ3
)
, b = diag

(
b11, b22, b33

)
. (D.1)

Whenever needed, the individual components of these matrices will be denoted mij and

bı̂j , following the notation of [15] with the index conventions of [48]. In fact, the uplifting

formulae below take on the exact same form for the entire N = 4, SO(3)R-invariant scalar

sector [15] of ISO(7) supergravity, when m and b in (D.1) are replaced with the general

SO(3)R-invariant expressions given in [15].

We will give the uplifting formulae in S6 embedding coordinates µI , I = 1, . . . , 7,

subject to the constraint

δIJ µ
IµJ = 1 . (D.2)

It is convenient to split the index I = (i, a), with i = 1, 2, 3 and a = 4, 5, 6, 7 respectively

labelling the fundamental representations of the SO(3)′ and SO(4)′ subgroups of SO(7)

defined in equation (C.12). The S6 embedding coordinates thus split as µI ≡ (µi, νa).

Sometimes we will suppress the indices on these and will write µ and ν, in line with the

notation employed for the D = 4 fields. Incidentally, the S6 coordinates ν should not be

confused with the D = 4 coset representative given in (2.9) of [15].

It is helpful to introduce the following functions of the D = 4 scalars and the S6

embedding coordinates:

∆1 = e
√

2(φ1+φ2+φ3) µTmµ+ e
ϕ+ 1√

2
(φ1+φ2+φ3)

νTν , (D.3)

and

∆2 = e−ϕ+
√

2(φ1+φ2+φ3)
(
1 + e2ϕχ2

) [
µT

(
m+

1

2
bTb

)
µ

]2

+ eϕ
[
1 +

1

2
tr
(
bTbm−1

)
+

1

8

[
tr
(
bTbm−1

)]2 − 1

8
tr
(
bTbm−1bTbm−1

)
+

1

8
e
√

2(φ1+φ2+φ3)
(
det b

)2](
νTν

)2
+

[
e

1√
2

(φ1+φ2+φ3)
[
2 + e2ϕχ2 +

1

2
tr
(
bTbm−1

)]
− 1√

2
eϕ+

√
2(φ1+φ2+φ3) χ det b

] [
µT

(
m+

1

2
bTb

)
µ

]
νTν . (D.4)
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With these definitions, the uplift of the D = 4 metric, ds2
4, and scalars into the D = 10

Einstein-frame metric reads

dŝ2
10 = ∆

1/8
1 ∆

1/4
2

(
ds2

4 + g−2 ∆−1
2 ds̄2

6

)
, (D.5)

where

ds̄2
6 = Mij dµ

i dµj +Mi dµ
i νTdν +M î dµi

(
νĴ−dν

)
+M ı̂̂

(
νJı̂−dν

)(
νĴ−dν

)
+M

(
νTdν

)2
+ P dνTdν . (D.6)

Here, Jı̂− , ı̂ = 1, 2, 3, is the triplet of constant antiself-dual two-forms introduced in ap-

pendix A of [15] (with indices a there replaced with ı̂ here), and the quantities Mij , etc.,

depend on the D = 4 scalars and the S6 embedding coordinates µ, ν. Specifically, they

are given by the lengthy expressions:

Mij =

[
µT

(
m+

1

2
bTb

)
µ+ e

ϕ− 1√
2

(φ1+φ2+φ3)
νTν

]
(m−1)ij

+
1

2
εi
k`εj

hm (bTb)kh
(
∆1m`m − e

√
2(φ1+φ2+φ3)m`rmms µ

rµs
)

+
1

4
e
√

2(φ1+φ2+φ3) ∆−1
1 εi

k`εj
hm (bTb)kp(b

Tb)hq µ
pµq

×
(

∆1m`m − e
√

2(φ1+φ2+φ3)m`rmms µ
rµs
)

+
1

4
e
ϕ+ 1√

2
(φ1+φ2+φ3)

×
[
(bTb bTb)ij − (bTb)ij tr(bTb) +

1

2

[
tr(bTb)

]2
δij −

1

2
tr(bTb bTb) δij

]
νTν

− 1

8

[
1− 2e2ϕχ2 + 2 (bTb)kh (m−1)kh

]
µiµj ,

M î = −
(
m−1

)ih
ε̂k̂ ˆ̀b

k̂
h b

ˆ̀
n µ

n +
√

2χ e
ϕ+ 1√

2
(φ1+φ2+φ3)

εih` b̂h

(
m`n +

1

2
(bTb)`n

)
µn

− 1√
2

∆−1
1 χ e

ϕ+ 3√
2

(φ1+φ2+φ3)
b̂q ε

ih`mhn (bTb)`p µ
qµnµp

− 1

4
e
√

2(φ1+φ2+φ3)εikm ε̂p̂q̂ ε
pqn bp̂p b

q̂
q (bTb)k` µ

`

×
(
mmn −∆−1

1 e
√

2(φ1+φ2+φ3)mmhmns µ
hµs
)
,

M ı̂̂ = −1

2
bı̂k b

̂
h

[
(m−1)kh + ∆−1

1 χ2 e2ϕ+
√

2(φ1+φ2+φ3) µkµh
]

+
1

16
e
√

2(φ1+φ2+φ3) ∆−1
1 ε(ı̂k̂ĥ ε

̂)
m̂n̂ ε

ijk εpqr bk̂p b
ĥ
qb
m̂
ib
n̂
j

×
(

∆1mrk − e
√

2(φ1+φ2+φ3)mrsmkt µ
sµt
)

− 1

2
√

2
∆−1

1 χ e
ϕ+ 3√

2
(φ1+φ2+φ3)

bı̂h µ
h ε̂k̂ĥ ε

pqr bk̂p b
ĥ
qmrs µ

s ,

Mi = −1

4

[
1 + 2 e2ϕχ2 − 2

√
2 e

ϕ+ 1√
2

(φ1+φ2+φ3)
χ det b

]
µi ,
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M = −1

8

[
1− 2 e2ϕχ2 + 2 tr

(
bTbm−1

)]
,

P = e
−ϕ+ 1√

2
(φ1+φ2+φ3) (

1 + e2ϕχ2
) [
µT

(
m+

1

2
bTb

)
µ

]
+

[
1 +

1

2
tr
(
bTbm−1

)]
νTν .

(D.7)

Indices i and ı̂ here are raised and lowered with δij and δı̂̂, respectively. We have verified

that these expressions reproduce the known uplifts of AdS fixed points, see appendix D.2.

We have also computed the embedding of the model of section 2 (and, in fact, of the

full SO(3)R-invariant scalar sector [15] of ISO(7) supergravity) into the type IIA dilaton

and Ramond-Ramond one-form. The consistent embedding into the dilaton reads

eφ̂ = ∆
3/4
1 ∆

−1/2
2 , (D.8)

in terms of the quantities introduced in (D.3), (D.4). The uplift of the scalars into the

Ramond-Ramond one-form is given by

Â(1) = −1

2
g−1 εijk aij dµk +

1

2
g−1 e

√
2(φ1+φ2+φ3) ∆−1

1 εijkmih (bTb)j` µ
hµ` dµk

+
1√
2
g−1 χ e

ϕ+ 1√
2

(φ1+φ2+φ3)
∆−1

1 bı̂j µ
j
(
νTJı̂−ν

)
+

1

4
g−1 e

√
2(φ1+φ2+φ3) ∆−1

1 εı̂̂k̂ ε
ijk bı̂i b

̂
jmk` µ

`
(
νTJ k̂− ν

)
, (D.9)

where aij = −aji are the SO(3)R-invariant D = 4 Stückelberg scalars introduced in [15].

Note that these enter neither the IIA metric (D.5) nor the dilaton (D.8). We have verified

that, when evaluated at the N = 2 and N = 3 critical points, equations (D.8) and (D.9)

reproduce the corresponding expressions for the dilaton and Ramond-Ramond one-form

given in [4, 11, 13], by making use of the S6 embedding coordinates (D.10), (D.12) below.

The expressions for the B-field and the Ramond-Ramond three-form are left as

an exercise.

D.2 Geometric realisation of the GY flow symmetries

It is useful to introduce local coordinates on the deformed S6 geometries to track how the

different symmetries worked out in appendix C act geometrically along the entire GY flow,

including the endpoint geometries.

When evaluated at the N = 2 SU(3) × U(1)-invariant UV fixed point, the internal

metric ds2
6 ≡ ∆−1

2 ds̄2
6 in (D.5) reduces to equation (5.1) of the main text, upon choosing

the S6 embedding coordinates µI = (µi, νa) as

µ1 + iµ2 = sinα cos ξ eiψ , µ3 = cosα , (D.10)

ν1 + iν2 = − sinα sin ξ cos
θ

2
e
i
2

(2ψ+τ+φ) , ν3 + iν4 = − sinα sin ξ sin
θ

2
e
i
2

(2ψ+τ−φ) ,

with

0 ≤ α ≤ π , 0 ≤ ψ < 2π , 0 ≤ τ < 2π , 0 ≤ ξ ≤ π

2
, 0 ≤ θ ≤ π , 0 ≤ φ < 2π .

(D.11)
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The first four of these angles appear explicitly in the metric (5.1), while the last two

parametrise CP1, with

ds2(CP1) =
1

4

(
dθ2 + sin2 θ dφ2

)
, σ = cos θ dφ . (D.12)

As discussed in the text, the metric inside of the brackets on the second line of (5.1) is

simply the Fubini-Study metric on CP2. Its isometry is thus SU(3). With the parametri-

sation (D.10), only an SU(2) ∼ SO(3)R symmetry, acting on the CP1 subspace, along with

the U(1)τ generated by ∂τ , is manifest. In these coordinates, SO(3)R is generated by the

Killing vectors

R1 = − sinφ∂θ − cosφ cot θ ∂φ , R2 = cosφ∂θ − sinφ cot θ ∂φ , R3 = ∂φ . (D.13)

These close into the Lie algebra

[Ri, Rj ] = −εijk Rk , (D.14)

with the normalisation of (A.6) of [15]. In addition to these flavour symmetries, the geom-

etry (5.1) is also invariant under the U(1)ψ generated by ∂ψ. This U(1)ψ corresponds the

R-symmetry of the dual UV N = 2 field theory.

At the N = 3 fixed point, it is convenient to choose a parametrisation that is better

adapted to the symmetries of the solution. We have verified that the internal metric

ds2
6 ≡ ∆−1

2 ds̄2
6 for the N = 3 SO(4) fixed point, (5.4), can be recovered from (D.5)

by evaluating the latter at the corresponding D = 4 scalars vevs and selecting the S6

embedding coordinates as

µi = cosβ µ̃i , ν1 + iν2 = − sinβ cos
θ

2
e
i
2

(ψ′−φ) , ν3 + iν4 = − sinβ sin
θ

2
e(ψ′+φ) .

(D.15)

Here, µ̃i, i = 1, 2, 3 define a round S2 through δijµ̃
iµ̃j = 1, and 0 ≤ β ≤ π

2 , 0 ≤ ψ′ < 2π.

The angles θ, φ in (D.15) are the same that appear in (D.10). Together with ψ′, these

now parametrise an S3, with ψ′ the coordinate along the Hopf fibre. The right-invariant

one-forms on this S3 are

ρ1 = cosψ′ dθ − sinψ′ sin θ dφ ,

ρ2 = sinψ′ dθ + cosψ′ sin θ dφ ,

ρ3 = −
(
dψ′ − cos θ dφ

)
,

(D.16)

and obey the Maurer-Cartan equations

dρi = −1

2
εijkρ

j ∧ ρk . (D.17)

Equations (D.17) are the dual, differential form version of the commutation rela-

tions (D.14). Indeed, the group SO(3)R generated by (D.13) is also a symmetry of the

geometry (5.4). In the IR N = 3 field theory, this SO(3)R corresponds to the flavour
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symmetry. In addition, the solution (5.4) possesses an SO(3)d R-symmetry. To see how

this acts, it is convenient to introduce further coordinates θ̃, φ̃ on the S2 fibres by letting

µ̃1 = sin θ̃ cos φ̃ , µ̃2 = sin θ̃ sin φ̃ , µ̃3 = cos θ̃ . (D.18)

The R-symmetry group SO(3)d is diagonally embedded into the SO(3)′ that rotates µ̃i,

and the left-invariant SO(3)L that acts on the S3 parametrised by θ, φ, ψ′. After some

calculation, we find that SO(3)d is generated by the vectors

D1 = sin φ̃ ∂θ̃ + cos φ̃ cot θ̃ ∂φ̃ + cosψ′ ∂θ − csc θ sinψ′ ∂φ − cot θ sinψ′ ∂ψ′ ,

D2 = − cos φ̃ ∂θ̃ + sin φ̃ cot θ̃ ∂φ̃ + sinψ′ ∂θ + csc θ sinψ′ ∂φ + cot θ cosψ′ ∂ψ′ ,

D3 = −∂φ̃ − ∂ψ′ . (D.19)

These can indeed be checked to be Killing vectors of the N = 3 metric (5.4), and to close

on the SO(3)d commutation relations,

[Di, Dj ] = εij
kDk , (D.20)

normalised as in appendix A of [15].

At intermediate energies along the GY flow, only an SO(3)R × U(1)d symmetry is

preserved. This SO(3)R is generated by the Killing vectors (D.13) that act on the CP1

factor of both the UV, (5.1), and IR, (5.4), geometries. The U(1)d is the Cartan subgroup

of the SO(3)d IR R-symmetry: it is, thus, generated by D3 in (D.19). From this equation,

it is apparent that U(1)d is the diagonal combination of the azimuthal U(1) that acts on

the S2 parametrised by µ̃i, and the U(1)ψ′ that acts on the Hopf fibre of the S3 base

of the IR geometry. It is also interesting to determine how U(1)d is embedded into the

U(1)ψ × U(1)τ symmetry the UV geometry (5.1). In order to elucidate this, we simply

keep track of the diffeomorphism that relates the different coordinates in which the UV

and IR geometries are expressed. Comparing the expressions for the S6 embedding coor-

dinates (D.10) to (D.15), (D.18), and recalling that θ, φ in both expressions are the same,

we deduce

cosα = cosβ cos θ̃ , sinα sin ξ = sinβ , ψ = φ̃ , τ = ψ′ − 2ψ . (D.21)

Therefore

D3 = −1

2
(3 ∂ψ + 2 ∂τ ) . (D.22)

This matches (C.9) up to a rescaling of the τ coordinate.
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