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Recent work on 6D superconformal field theories has established an intricate correspondence between
certain Higgs branch deformations and nilpotent orbits of flavor symmetry algebras associated with
T-branes. In this paper, we return to the stringy origin of these theories and show that many aspects of these
deformations can be understood in terms of simple combinatorial data associated with multipronged strings
stretched between stacks of intersecting 7-branes in F theory. These data let us determine the full structure
of the nilpotent cone for each semisimple flavor symmetry algebra, and they further allow us to characterize
symmetry-breaking patterns in quiverlike theories with classical gauge groups. An especially helpful
feature of this analysis is that it extends to “short quivers” in which the breaking patterns from different
flavor symmetry factors are correlated.
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I. INTRODUCTION

One of the surprises from string theory is the prediction
of whole new classes of quantum field theories decoupled
from gravity. Central examples of this sort are 6D super-
conformal field theories (SCFTs). The only known way
to reliably engineer examples of such theories is to start
with a background geometry in string/M/F theory, and to
consider a singular limit in which all length scales are sent
to zero or infinity (for early work in this direction, see, e.g.,
Refs. [1–3]). Since small deformations away from these
scaling limits have a sensible coupling to higher-dimen-
sional gravity, there is strong evidence that this leads to an
interacting conformal fixed point.
The most flexible method known for constructing such

theories is via F theory on a noncompact, elliptically
fibered Calabi-Yau threefold. SCFTs are generated by
simultaneously contracting a configuration of curves in
the base geometry. There is now a classification of all
elliptic threefolds which can generate a 6D SCFT, and in
fact, each known 6D SCFT can be associated with some

such threefold [4,5] (see also Refs. [6,7]).1 For a recent
review, see Ref. [11].
In these sorts of constructions, one begins away from the

fixed point of interest and then tunes to zero various
operator vacuum expectation values (VEVs) in the low-
energy effective field theory. In this UV limit, the effective
field theory description breaks down, but the stringy
description still remains well behaved. From this perspec-
tive, the main question is to better understand the micro-
scopic structure of these 6D SCFTs.
The F-theory realization of 6D SCFTs provides insight

into the corresponding structure of these theories as well as
their moduli spaces (see Ref. [11]). Perhaps surprisingly, all
known 6D SCFTs resemble generalizations of quiver gauge
theories in which (on a partial tensor branch) the theory
involves ADE gauge groups linked together by 6D con-
formal matter [12,13]. The topology of these quivers is rather
simple and consists of a single spine of such gauge groups.
The space of tensor branch deformations translates in the
geometry to the moduli space of volumes for the contractible
curves in the base of the elliptic threefolds. Additionally,
Higgs branch deformations translate to complex structure
deformations of the corresponding elliptic threefolds.
The quiverlike description of 6D SCFTs also suggests

that Higgs branch deformations can be understood in terms
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1The caveat to this statement is that in all known constructions,
there is a nontrivial tensor branch. Additionally, in F theory, there
can be “frozen” singularities [8–10]. We note that all such models
still are described by elliptic threefolds with collapsing curves in
the base.
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of breaking patterns associated with the flavor symmetries
of these theories. For example, in the 7-brane gauge theory,
nilpotent elements of the flavor symmetry algebra corre-
spond to “T-brane configurations” of 7-branes. For a
partial list of references to the T-brane literature, see
Refs. [14–36].
A pleasant aspect of nilpotent elements is that they come

equipped with a partial ordering, as dictated by the
symmetry-breaking pattern in the original UV theory.
Indeed, the orbit of each nilpotent element under the
adjoint action specifies (under Zariski closure) a partially
ordered set. This partial ordering determines fine-grained
structure for Higgs branch flows between different 6D
SCFTs [22,37] and points the way to a possible classi-
fication of RG flows between 6D SCFTs [30].2

This has been established in the case of 6D SCFTs with a
sufficient number of gauge group factors in the quiverlike
description—i.e., “long quivers,” where Higgsing of the
different flavor symmetries is uncorrelated—and there are
also hints that it extends to the case of “short quivers” in
which the structure of Higgsing is correlated.
One feature which is somewhat obscure in this

characterization of Higgs branch flows is the actual break-
ing pattern taking place in the quiverlike gauge theory.
Indeed, in the case of a weakly coupled quiver gauge
theory, the appearance of matter transforming in represen-
tations of different gauge groups means that the corre-
sponding D-flatness conditions for one vector multiplet will
automatically be correlated with those of neighboring
gauge group nodes. This means that each breaking pattern
defined on the exterior of a quiver will necessarily
propagate toward the interior of the quiver. Even in the
case of quiver gauge theories with classical algebras, the
resulting combinatorics for tracking the breaking pattern of
a Higgs branch deformation can be quite intricate.
To address these issues, in this paper we use the physics

of brane recombination to extract the combinatorics of
Higgs branch flows in 6D SCFTs. In stringy terms, brane
recombination is associated with the condensation of
strings stretched between different branes. In the context
of F theory, strings can be bound states of F1 and D1
strings, and they can have multiple ends. Our task, then,
will be to show how such multipronged strings attach
between different stacks of branes, and moreover, how this
leads to a natural characterization of brane recombination
for Higgs branch flows in 6D SCFTs.
Since we will be primarily interested in flows driven by

nilpotent orbits, we first spell out how a given configuration
of multipronged strings attached to bound states of ½p; q�
7-branes maps onto the breaking pattern associated with a
particular nilpotent orbit of an algebra. Separating these
branes from one another corresponds to a choice of Cartan

subalgebra, and strings stretched between these separated
branes correspond to Lie algebra elements associated with
roots of the Lie algebra, defining a directed graph between
the nodes spanned by these branes. In particular, we show
that we can always generate a nilpotent element of the
(complexified) Lie algebra by working in terms of a
directed graph which points in one direction. We also
show that, starting from such a directed graph, appending
additional strings always leads to a nilpotent element with a
strictly larger nilpotent orbit. We thus construct the entire
nilpotent cone of each Lie algebra of type ABCDEFG
using such multipronged string junctions.
With this result in place, we next turn to an analysis of

Higgs branch flows in quiverlike 6D SCFTs, as generated
by T-brane deformations. We primarily focus on 6D SCFTs
generated by M5-branes probing an ADE singularity with
flavor symmetry GADE ×GADE, as well as tensor branch
deformations of these cases to nonsimply laced flavor
symmetry algebras. As found in Ref. [30], these are
progenitor theories for many 6D SCFTs (the other being
E-string probes of ADE singularities [5,13,39–41]). The
partial tensor branch of these parent UV theories are all of
the form

½G0� −G1 − � � � −Gk − ½Gkþ1� ð1:1Þ

with G0; Gkþ1 flavor symmetries and G1;…; Gk gauge
symmetries. We show that Higgs branch flows are deter-
mined by a system of coupled D-term constraints, one for
each node of such a quiver gauge theory. This in turn means
that the “links” between gauge nodes behave as a gener-
alization of matter, as suggested by the structure of these
quivers. We also show that condensing these strings leads
to a sequence of brane recombinations, relying on a parallel
with Hanany-Witten moves [42] seen in the type-IIA
framework to derive the type-IIB recombination moves.
We present a complete characterization of quiverlike
theories with classical algebras, and briefly discuss what
would be needed to extend this analysis to quiverlike
theories with exceptional gauge group factors.
The explicit characterization of nilpotent orbits in terms

of string junctions also allows us to study Higgs branch
flows in which the number of gauge groups is small. This
case is especially interesting because there are nontrivial
correlations on the symmetry-breaking patterns, one ema-
nating from the left flavor symmetryG0 and the subsequent
D-term constraints on its gauged neighbors, and one
emanating from the right flavor symmetry Gkþ1 and its
gauged neighbors in the quiver of Eq. (1.1). This sort of
phenomenon occurs whenever the size of the nilpotent orbit
of the flavor algebras is sufficiently large, and the number
of gauge groups k is sufficiently small. We study these
“overlapping T-branes” in detail in the case of the classical
algebras. In particular, we show how to extract the resulting
IR SCFT using our picture in terms of brane recombination.

2See also Refs. [31,38] for a related discussion of partial
ordering in the case of certain 4D SCFTs.
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We leave the case of short quivers with exceptional gauge
groups/flavor symmetries to future work.
The rest of this paper is organized as follows: First, in

Sec. II, we review in general terms the structure of 6D
SCFTs as quiverlike gauge theories, and we explain how
the worldvolume theory on 7-branes leads to a direct link
between Higgs branch flows and nilpotent orbits of flavor
symmetries. In Sec. III, we show how to reconstruct the
nilpotent cone of a flavor symmetry algebra in terms of the
combinatorial data of strings stretched between stacks of
½p; q� 7-branes. Section IV uses these combinatorial data to
provide a systematic method for analyzing Higgs branch
flows in quiverlike theories with classical gauge groups,
including cases with 6D conformal matter. In Sec. V, we
study Higgs branch flows from overlapping nilpotent orbits
in short quivers, and in Sec. VI we present our conclusions.
A number of additional detailed computations are included
in the Appendixes.

II. 6D SCFTS AS QUIVERLIKE GAUGE THEORIES

In this section, we briefly review the relevant aspects of
6D SCFTs, which we shall be studying in the remainder
of this paper. The main item of interest for us will be the
quiverlike structure of all such theories, and the corre-
sponding Higgs branch flows associated with nilpotent
orbits of the flavor symmetry algebra.
To begin, we recall that the F theory realization of 6D

SCFTs involves specifying a noncompact elliptically
fibered Calabi-Yau threefold X → B, where the base B
of the elliptic fibration is a noncompact Kähler surface. In
minimal Weierstrass form, these elliptic threefolds can be
viewed as a hypersurface:

y2 ¼ x3 þ fxþ g: ð2:1Þ

The order of vanishing for the coefficients f, g and the
discriminant Δ ¼ 4f3 þ 27g2 dictate the structure of pos-
sible gauge groups, flavor symmetries, and matter content
in the 6D effective field theory. We are particularly
interested in the construction of 6D SCFTs, which requires
us to simultaneously collapse a collection of curves in the
base to zero size at finite distance in the Calabi-Yau metric
moduli space. This can occur for curves with negative self-
intersection, and compatibility with the condition that we
maintain an elliptic fibration over generic points of each
curve imposes further restrictions [4]. Each such configu-
ration can be viewed as being built up from intersections
of non-Higgsable clusters (NHCs) [43] and possible
enhancements in the singularity type over each such
curve. The tensor branch of the 6D SCFT corresponds
to resolving the collapsing curves in the base to finite size,
and the Higgs branch of the 6D SCFT corresponds to
blowdowns and smoothing deformations of the Weierstrass
model such as [44]

y2 ¼ x3 þ ðf þ δfÞxþ ðgþ δgÞ: ð2:2Þ

In Refs. [4,5], the full list of possible F-theory geom-
etries which could support a 6D SCFT was determined.
Quite remarkably, all of these theories have the structure of
a quiverlike gauge theory with a single spine of gauge
group nodes and only small amounts of decoration by
(generalized) matter on the left and right of each quiver. In
this description, 7-branes with ADE gauge groups intersect
at points where additional curves have collapsed. These
points are often referred to as “conformal matter” since
they localize at points just as in the case of ordinary matter
in F theory [12,13]. These configurations indicate the
presence of additional operators in the 6D SCFT and, like
ordinary matter, can have nontrivial VEVs, leading to a
deformation onto the Higgs branch. A streamlined
approach to understanding the vast majority of 6D
SCFTs was obtained in Ref. [30], where it was found
that any 6D SCFT can be viewed as “fission products,”
namely as deformations of a quiverlike theory a with
partial tensor branch such as

½E8� 1
gADE

2
gADE

… 2
gADE½GADE� ð2:3Þ

or

½GADE� 2
gADE

… 2
gADE½GADE�; ð2:4Þ

where the few SCFTs which cannot be understood in this
way can be obtained by adding a tensor multiplet and
weakly gauging a common flavor symmetry of these
fission products through a process known as fusion. In the
above, each compact curve of self-intersection −n with a

7-brane gauge group of ADE type is denoted as n
gADE. The

full tensor branch of these theories is obtained by perform-
ing further blowups at the collision points between the
compact curves (in the D- and E-type cases). To empha-
size this quiverlike structure, we shall often write

½G0� −G1 −…Gk − ½Gkþ1� ð2:5Þ

to emphasize that there are two flavor symmetry factors
(indicated by square brackets), and the rest are gauge
symmetries.
The 6D SCFTs given by Eqs. (2.3) and (2.4) can also be

realized in M theory. The theories of Eq. (2.3) arise from an
M5-brane probing an ADE singularity which is wrapped by
an E8 9-brane. The theories of Eq. (2.4) arise from M5-
branes probing an ADE singularity. In what follows, we
shall primarily be interested in understanding Higgs branch
flows associated with the theories of Eq. (2.4).
For GADE of A or D type, the IR SCFTs of these Higgs

branch flows can also be realized in type IIA. SU gauge
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algebras are obtained from the worldvolume of D6-branes
suspended between spacetime-filling NS5-branes, while
SO algebras and Sp gauge algebras also require O6− and
O6þ branes, respectively, stretched between 1

2
NS5-branes.

These constructions will prove especially useful in Sec. IV,
where we discuss Hanany-Witten moves of the branes of
the type-IIA construction.
One of the main ways to cross-check the structure of

proposed RG flows is through anomaly matching con-
straints. The anomaly polynomial of a 6D SCFT is
calculable because the tensor branch description of each
such theory is available from the F-theory description, and
the anomaly polynomial obtained on this branch of moduli
space can be matched to that of the conformal fixed point
[44–48]. To fix conventions, we often write this as a formal
eight-form with conventions (as in Ref. [11]):

I8 ¼ αc2ðRÞ2 þ βc2ðRÞp1ðTÞ þ γp1ðTÞ2 þ δp2ðTÞ

þ
X
i

�
μiTrF4

i þ TrF2
i

�
ρip1ðTÞ þ σic2ðRÞ

þ
X
j

ηijTrF2
j

��
; ð2:6Þ

where in the above, c2ðRÞ is the second Chern class of the
SUð2ÞR symmetry, p1ðTÞ is the first Pontryagin class of the
tangent bundle, p2ðTÞ is the second Pontryagin class of
the tangent bundle, and Fi is the field strength of the ith
symmetry, where i and j run over the flavor symmetries of
the theory. See the review in Ref. [11] as well as the
Appendixes for additional details on how to calculate the
anomaly polynomial in specific 6D SCFTs.
Returning to the F-theory realization of the 6D SCFTs of

Eq. (2.4), there is a large class of Higgs branch deforma-
tions associated with nilpotent orbits of the flavor sym-
metry algebras.3 Moreover, nilpotent elements admit a
partial ordering which also dictates a partial ordering of
6D fixed points. We say that a nilpotent element μ ≼ ν
when there is an inclusion of the orbits under the adjoint
action: OrbitðμÞ ⊆ OrbitðνÞ.
In the 6D SCFT, there is a triplet of adjoint valued

moment maps D1
adj, D

2
adj, D

3
adj which couple to the flavor

symmetry current supermultiplet. The nilpotent element
can be identified with the complexified combinationDC

adj ¼
D1

adj þ iD2
adj. Closely related to this triplet of moment

maps are the triplet of D-term constraints for each
gauge group factor Gj for j ¼ 1;…; k. Labeling these as
a three-component vector taking values in the adjoint of
each such group D⃗j, supersymmetric vacua are specified in
part by the conditions

D⃗j ¼ 0 for all j; ð2:7Þ

modulo unitary gauge transformations. We note that in the
weakly coupled context, the D-term constraints for each
gauge group factor are in fact correlated with one another.
In particular, if we specify a choice of moment map D⃗0 ≠ 0

and D⃗kþ1 ≠ 0 on the left and right of the quiver, respec-
tively, this propagates to a nontrivial breaking pattern in the
interior of the quiver.
That being said, the actual description of this breaking

pattern using 6D conformal matter is poorly understood,
because there is no weakly coupled description available
for these degrees of freedom. So, while we expect there to
be a correlated breaking pattern for gauge groups in the
interior of a quiver, the precise structure of these terms is
unclear due to the unknown structure of the microscopic
degrees of freedom in the field theory.
In spite of this, it is often possible to extract the resulting

IR fixed point after such a deformation, even in the absence
of a Lagrangian description. The main reason this is
possible is because in the context of an F-theory compac-
tification, we already have a classification of all possible
outcomes which could have resulted from a Higgs branch
flow (since we have a classification of 6D SCFTs). In many
cases, this leads to a unique candidate theory after
Higgsing, and this has been used to directly determine
the Higgsed theory. Even so, this derivation of the theory
obtained after Higgsing involves a number of steps which
are not entirely systematic, thus leading to potential
ambiguities in cases where the number of gauge group
factors in the quiver is sufficiently small that there is a
nontrivial correlation in the symmetry-breaking pattern
obtained from a pair of nilpotent orbits (one on the left
and one on the right of the quiver). We refer to such quivers
as “short,” and to the case where there is no correlation
between breaking patterns from different nilpotent orbits
as “long.”
One of our aims in the present paper will be to

determine the condensation of strings stretched between
different stacks of branes. Our general strategy for
analyzing Higgs branch flows will therefore split into
two parts:
(1) First, we determine the particular configuration of

multipronged strings associated with each nilpo-
tent orbit.

(2) Second, we determine how to consistently condense
these multipronged string states to trigger brane
recombination in the quiverlike gauge theory.

3We note that although a T-brane deformation has vanishing
Casimirs and may thus appear to be “invisible” to the geometry,
we can consider a small perturbation away from a T-brane which
then would register as a complex structure deformation. Since we
are dealing with the limiting case of a SCFT, all associated mass
scales (as well as fluxes localized on 7-branes) will necessarily
scale away. This also means that each nilpotent element can be
associated with an elliptic threefold [12].
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III. NILPOTENT ORBITS FROM STRING
JUNCTIONS

One of our aims in this paper is to better understand
the combinatorial structure associated with symmetry-
breaking patterns for 6D SCFTs. In this section, we show
how to construct all of the nilpotent orbits of a semisimple
Lie algebra of type ABCDEFG from the structure of
multipronged string junctions. The general idea follows
earlier work on the construction of such algebras, as in
Refs. [49–51] (see also Refs. [52–54]). We refer the
interested reader to Appendix A for additional details
and terminology on nilpotent orbits which we shall
reference throughout this paper.
Recall that in type IIB, we engineer such algebras using

½p; q� 7-branes, namely a bound state of p D7-branes and q
S-dual 7-branes. Labeling the monodromy of the axiodi-
laton around a source of 7-branes by a general element of
SLð2;ZÞ,

τ ↦
aτ þ b
cτ þ d

for

�
a b

c d

�
∈ SLð2;ZÞ; ð3:1Þ

a ½p; q� 7-brane determines a conjugacy class in SLð2;ZÞ as
specified by the orbit of4

M½p;q� ¼
�
1þ pq −p2

q2 1 − pq

�
: ð3:2Þ

The relevant structure for realizing the different ADE
algebras are the monodromies:

A ¼ M½1;0� ¼
�
1 −1
0 1

�
; B ¼ M½1;−1� ¼

�
0 −1
1 2

�
;

C ¼ M½1;1� ¼
�
2 −1
1 0

�
; X ¼ M½2;−1� ¼

�−1 −4
1 3

�
:

ð3:3Þ

The 7-branes necessary to engineer various Lie algebras
follow directly from the Kodaira classification of possible
singular elliptic fibers at real codimension 2 in the base of
an F-theory model [55–57]. They can also be directly
related to a set of basic building blocks in the string
junction picture worked out in Ref. [49], which we label as
in Ref. [58]:

AN∶ ANþ1 ð3:4Þ

HN∶ ANþ1C ðfor N ¼ 0; 1; 2Þ ð3:5Þ

DN∶ ANBC ð3:6Þ

EN∶ AN−1BC2 ðfor N ¼ 6; 7; 8Þ ð3:7Þ

ẼN∶ ANXC ðfor N ¼ 6; 7; 8Þ: ð3:8Þ

The HN series in Eq. (3.4) represents an alternative way to
realize low-rank SU-type algebras. We also note that in the
case of the A and D series, it is possible to remain at weak
string coupling, while the H and E series require order-1
values for the string coupling. Here, we have indicated
two alternate presentations of the E-type algebras (see
Ref. [58]). It will prove convenient in what follows to use
the ẼN realization with an X-brane. The nonsimply laced
algebras have the same SLð2;ZÞ monodromy type. In the
string junction description, this involves further identifica-
tions of some of the generators of the algebra by a suitable
outer automorphism. Some aspects of this case are dis-
cussed in Ref. [51].
We would like to understand the specific way that

nilpotent generators of the Lie algebra are encoded in this
physical description. In all these cases, the main idea is to
first separate the 7-branes so that we have a physical
realization of the Cartan subalgebra. Then, a string which
stretches from one brane to another will correspond to an
8D vector boson with mass dictated by the length of the
path taken to go from one stack to the other:

mass ∼
length
l2�

; ð3:9Þ

with l� being a short distance cutoff. In the limit where all
the 7-branes are coincident, we get a massless state.
With this in mind, let us recall how we engineer the

gauge algebra suðNÞ using D7-branes. All we are required
to do in this case is introduceN D7-branes, which are ½p; q�
7-branes with p ¼ 1 and q ¼ 0. Labeling the 7-branes as
A1;…; AN , we can consider an open string which stretches
from brane Ai to brane Aj. Since this string comes with an
orientation, we can write

Ai → Aj ð3:10Þ

and introduce a corresponding nilpotent N × N matrix with
a single entry in the ith row and jth column. We denote by
Ei;j the matrix with a 1 in this single entry so that the
corresponding nilpotent element is written as vi;jEi;j with no
summation on indices. Conjugation by an SLðn;CÞ element
reveals that the actual entry does not affect the orbit. Wewill,
however, be interested in RG flows generated by adding
perturbations away from a single entry, so we will often view
vi;j as indicating a VEV/energy scale. In this manner, we can
represent an RG flow triggered by moving onto the Higgs
branch of the theory, which is labeled by a nilpotent orbit of a

4A note on conventions: One can either consider this matrix or
its inverse depending on whether we pass a branch cut counter-
clockwise or clockwise. This will not affect our discussion in any
material way.
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Lie algebra, in terms of a collection of strings stretched
between the 7-branes.
Ordering the branes A1;…; AN from left to right in the

plane transverse to the stack of 7-branes, we see that we can
now populate the strictly upper triangular portion of a
matrix in terms of strings Ai → Aj for i < j (see Fig. 1). So,
in other words, we can populate all possible nilpotent orbits
(in this particular basis). Similar considerations hold for the
other algebras, but clearly, this depends on a number of
additional features such as unoriented open strings (in the
case of the classical SO=Sp algebras) and multipronged
string junctions (in the case of the exceptional algebras). A
related comment is that we are just constructing a repre-
sentative nilpotent element in the orbit of the Lie algebra.
What we will show is that for any deformation onto the
Cartan, there is a “minimal length” choice, and all the other
elements of the orbit are obtained through the adjoint action
of the Lie algebra.
Our plan in the rest of this section will be to establish in

detail how to construct the corresponding nilpotent orbits
for each configuration of strings. Additionally, we show not
only that can we generate all orbits, but that the combi-
natorial method of “adding extra strings” automatically
generates a partial ordering on the space of nilpotent orbits,
which reproduces the standard partial ordering of the
nilpotent cone. The essential information for the classical
Lie algebras, and in particular the list of simple and positive
roots, is illustrated in Table I. We elaborate on the content
of this table (as well the exceptional analogs) in the
following subsections.

A. SUðNÞ: Partition by grouping branes with strings

In the case of an SUðNÞ flavor, we simply have N
perturbative A-branes with ½p; q� ¼ ½1; 0� charges. The
N − 1 simple roots of SUðNÞ can be represented by strings
joining two adjacent A-branes, as shown in Fig. 2. We refer
to these as “simple strings” due to their correspondence to
the simple roots. The remaining (nonsimple) roots are then
described by strings connecting any two A-branes. The
positive roots are represented by strings stretching from left
to right, while the negative ones would go in the opposite
direction (as indicated by the arrows). That is, we choose a
basis for the generators of the suN algebra to be given by:
(1) NðN − 1Þ=2 nilpositive elements Ei;j with 1 ≤ i <

j ≤ N, corresponding to strings stretching from the
ith to the jth A-brane (with the arrow pointing from
left to right).

(2) NðN − 1Þ=2 nilnegative elements Ej;i ¼ XT
k with

1 ≤ i < j ≤ N, corresponding to strings stretching
from the jth to the ith A-brane (with the arrow now
pointing from right to left).

(3) (N − 1) Cartans ½Ei;iþ1; Eiþ1;i� for 1 ≤ i ≤ N − 1.
Throughout this paper, we denote Ei;j to be the matrix

withþ1 values in the entry ði; jÞ but zeros everywhere else.
The positive simple roots are given by αi ð1≤ i≤ rankðGÞÞ,
with the corresponding matrix representation labelled Eαi .
Any nonsimple root can then be labelled explicitly in terms
of its simple roots constituents: αi;j;k;…;p;q ¼ αi þ αjþ
αk þ � � � þ αp þ αq, and the corresponding matrix repre-
sentation is obtained from nested commutators.
In this basis, the simple positive roots are Ei;iþ1 for

1 ≤ i ≤ N − 1, as illustrated by their corresponding
directed strings in Fig. 2. Furthermore, we use the con-
vention of Ref. [50] to keep track of the different mono-
dromies. Namely, we only display the directions transverse
to the 7-brane, thus representing each 7-brane as a point. In
this picture, the associated branch cut for SLð2;ZÞ mono-
dromy stretches vertically downward to infinity. This will
not enter our analysis in any material way, so in order not
to overcrowd the figures, we will mostly not draw the
branch cuts.
We have already seen that nilpotent orbits of SUðNÞ are

parametrized by partitions of N (with no restriction what-
soever). Thus, it becomes natural to classify nilpotent orbits
by how branes are grouped together. Namely, we can group
any set of A-branes by stretching strings between them,
giving rise to a particular partition of the N branes. This
partition is then in one-to-one correspondence with its
corresponding nilpotent orbit. As an equivalence class, we
have many different string configurations belonging to the
same orbit (just like many different matrices have the same
Jordan block decomposition). For instance, the three string
junctions of Fig. 3 all represent the same ½3; 2; 1� partition:
(1) The first string junction picture has the matrix

representation M1 ¼ E1;2 þ E2;3 þ E4;5.
(2) The second configuration has the matrix represen-

tation M2 ¼ E1;3 þ E3;6 þ E4;5.
(3) And finally, the third one has the matrix representa-

tion M3 ¼ E1;3 þ E4;5 þ E5;6.
To each nilpotent orbit of SUðNÞ we can then associate

one of many possible string junction pictures. To keep the
picture as simple as possible, we choose to use only
“simple” positive strings—that is, strings stretching from
left to right between two adjacent A-branes. This ensures

FIG. 1. Separating a collection of A-type branes leads to a deformation of suðNÞ to the Cartan subalgebra. Open strings stretched
between distinct branes are associated with specific generators in the complexified Lie algebra. In the figure, this is shown for a string
stretched from brane Ai to brane Aj.
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that we only make use of simple roots. This typically does
not completely fix a string junction representative, so we
are free to make a convenient choice of the remaining
possibilities.
By starting with a configuration with no string attached

(a ½1N � partition), we can add more and more strings to go
from the ½2; 1N−2� orbit all the way to the [N] partition. This
generates a whole Hasse diagram of nilpotent orbits which
exactly matches that which is mathematically predicted.
Figure 4 illustrates this diagram for the case of SUð6Þ,
where we associate a “standard” string junction picture with
each nilpotent orbit according to how the branes are
partitioned as we add more and more strings.
More precisely, in order to flow from one point of the

Hasse diagram to the next, one simply needs to add a small
perturbation—that is, an oriented string (moving from left
to right) corresponding to a positive root. By the definition
of the partial ordering of nilpotent orbits, this guarantees
that the RG flow indeed always takes us deeper into the IR.
Weyl transformations/brane permutations can then be used
to reduce the obtained diagram back to one of the standard
ones which only relies on the simple roots.
The flows involving only the addition of a simple root

(corresponding to linking two more branes together) are
fairly clear. The only cases where that is not so obvious are
the ones corresponding to flows that are similar to the one
described in Fig. 4 by going from ½22; 12� to ½3; 13�. For this,
we can add the string α2 þ α3 ¼ a2 − a4, corresponding to
a small deformation ϵ · E2;4. This particular flow is illus-
trated in Fig. 5. Generalizing this procedure to arbitrary
SUðNÞ shows that the intermediate RG flows are guaran-
teed to be physically realizable in the same fashion.TA
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ã i

4
do
ub
le

st
ri
ng
s:

a i
−
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;ã

j
−
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FIG. 2. Brane diagram of strings/roots stretching between the
A-branes yielding an SUðNÞ flavor symmetry (see Ref. [50]). The
dashed lines represent the positions of branch cuts. Since they do
not contribute to our analysis, they are not drawn in subsequent
pictures.

FIG. 3. Three equivalent ways of describing the partition
½3; 2; 1� in the set of nilpotent orbits of SUð6Þ. To each picture
is associated a different matrix, but they all have the same
Jordan block decomposition and thus belong to the same
equivalence class.
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B. SOð2NÞ and SOð2N − 1Þ
In F theory, the SOð2NÞ and SOð2N − 1Þ geometries are

realized by the presence of ANBC-branes. In type IIB,
however, the BC-branes turn into an O7− orientifold plane
(as discussed in Ref. [59]), which we refer to here as the
“BC mirror.” This mirror reflects the N A-branes across,
yielding a total of 2N branes (half of which are physical,
half of which are “image” branes). We thus represent

SOð2NÞ by 2N dots separated by a vertical line represent-
ing the BC mirror, and SOð2N − 1Þ by merging one
A-brane with its mirror image onto the orientifold so that
we have N − 1 A-branes on the left, N − 1 mirror A-branes
on the right, and a single A-brane squeezed onto the vertical
line representing the mirror.
Furthermore, Ref. [50] provides us with a set of string

junctions to represent the simple roots of SOð2NÞ, as

FIG. 4. Hasse diagram of SUð6Þ nilpotent deformations going from top (UV) to bottom (IR), where all simple roots are turned on and
all corresponding “simple strings” connect the A-branes.

FIG. 5. One way of flowing from the ½22; 12� nilpotent orbit (top) to the ½3; 13� orbit (bottom). In the top figure we have the matrix
representationM1 ¼ E1;2 þ E3;4. The flow is then induced by adding an extra string stretching between the second and third branes, as
illustrated in the bottom-left figure. This corresponds to the matrix M2 ¼ E1;2 þ E3;4 þ ϵ · E2;4. This matrix is similar to
M0

2 ¼ E1;2 þ E2;3, corresponding to the bottom-right diagram. Thus, both bottom string junctions belong to the same nilpotent
orbit ½3; 13�.
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illustrated in Fig. 6. We can then obtain the corresponding
roots for SOð2N − 1Þ via the standard projection (or
branching) of SOð2NÞ → SOð2N − 1Þ. We see that much
like SUðNÞ, we can have strings stretching between any
pair of A-branes, and the simple strings correspond to those
stretching between adjacent pairs. However, the presence of
the B- and C-branes allows for a new kind of string: a two-
pronged string which takes two A-branes and connects
them to the B- and C-branes. All these configurations are
regulated by charge conservation: the A-branes all have
charges [1, 0] so that a fundamental string can stretch
between any pair of them, but the B-brane has charge
½1;−1�, and the C-brane has charge [1, 1]. Thus, no string
can stretch directly between a B- and a C-brane. However,
these two branes together have an overall charge of [2, 0],
which is exactly twice that of an A-brane. Therefore, by
combining two A-branes with the B- and C-branes, charge
can be conserved. This combination is achieved through the
introduction of a two-pronged string denoted αN in Fig. 6.
We then visualize this SOðNÞ geometry by introducing

the orientifold, which reflects the strings as well as the
A-branes. This is illustrated in Figs. 7 and 8 for SOð2NÞ
and SOð2N − 1Þ, respectively.

As we can see, the presence of the mirror guarantees that
even parts (in the partition of 2N or 2N − 1) appear an even
number of times whenever we use any of the regular one-
pronged simple strings. Thus, using the same rules as with
SUðNÞ, we can generate most allowed partitions corre-
sponding to SO groups. We note that unlike SUðNÞ, we
also have the presence of a two-pronged string coming as a
result of the distinguished root αN of SOð2NÞ. This can
result in configurations where the partitions are not so
obvious from the string junction picture. We can thus turn
to the equivalent matrix representation and read off the
corresponding partition from the equivalence class it
belongs to. To do that, we once again need to specify
what basis we are using. Generalizing the rules from suN

listed in the previous section to so2N , we have the following
NðN − 1Þ nilpositive elements:
(1) Half of them are E1-pronged ¼ Ei;j − ð−1Þj−i

E2N−jþ1;2N−iþ1 with 1 ≤ i < j ≤ N, corresponding
to one-pronged strings stretching from the ith to the
jth A-brane, as well as their reflections—namely,
the strings stretching between the ð2N − jþ 1Þth
and the ð2N − iþ 1Þth nodes, which are on the

FIG. 6. Brane diagram of strings/roots stretching between the A-, B-, and C-branes, making up the SOð2NÞ symmetry (see Ref. [50]).
The A-branes are denoted by black circles, the B-brane by an empty circle, and the C-brane by an empty square. The dashed lines
represent the position of branch cuts, which (once again) are not drawn in subsequent pictures. To the right we give the corresponding
Dynkin diagram with simple roots numbered.

FIG. 7. Brane diagram of strings/roots stretching, for SOð2NÞ. The B- and C-branes are turned into an orientifold, which is denoted by
a mirror (vertical line). The strings corresponding to simple roots are illustrated by arrows stretching between the branes and reflected
across the mirror. We note that the distinguished root αN corresponds to the two-pronged string, and indeed it is made of two legs moving
across the BC mirror in order to respect the difference in charges between the A-, B-, and C-branes.

FIG. 8. Brane diagram of strings/roots stretching, for SOð2N − 1Þ. The B- and C-branes are turned into an orientifold denoted by a
mirror (vertical line), and one of the A-branes is squeezed onto it. The strings corresponding to simple roots are illustrated by arrows
stretching between the branes and reflected across the mirror.
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right-hand side of the mirror. These correspond to
the suN ⊂ so2N nilpositive generators.

(2) The other half are E2-pronged ¼ Ei;2N−jþ1 − ð−1Þj−i
Ej;2N−iþ1 with 1 ≤ i < j ≤ N, corresponding to two-
pronged strings stretching between the ith and
ð2N − jþ 1Þth nodes, as well as the jth and
ð2N − iþ 1Þth nodes.

The associated NðN − 1Þ nilnegative elements are simply
ET
1-pronged and ET

2-pronged. These correspond to the same one-
and two-pronged strings, but with their directions reversed.
Finally, we have N Cartans: The first (N − 1) come from
one-pronged strings: Hi ¼ ½Ei;iþ1 þ E2N−i;2N−iþ1; Eiþ1;i þ
E2N−iþ1;2N−i� for 1 ≤ i ≤ N − 1. These correspond to the
suN ⊂ so2N Cartan generators. The last generator is then
given by HN ¼ ½EN−1;Nþ1 þ EN;Nþ2; ENþ1;N−1 þ ENþ2;N �.
Note the presence of negative values introduced by the

reflection across the BC mirror. We choose our convention
such that simple roots only containpositive entries. Theminus
signs are then imposed to some nonsimple roots simply
because they are given by commutators of a simple root.
For instance, the nonsimple string α1 þ α2 inside SOð8Þ is
represented by the matrix ½E1;2þE7;8;E2;3þE6;7�¼
E1;2 ·E2;3−E6;7 ·E7;8¼E1;3−E6;8.
As a result of the above equations, the simple positive

roots (corresponding to the simple strings of Fig. 7) are then
given by the matrices Ei;iþ1 þ E2N−i;2N−iþ1 for 1 ≤ i ≤
N − 1 and XSOð2NÞ

N ¼ EN−1;Nþ1 þ EN;Nþ2. The positive
simple roots for SOð2N − 1Þ are identical, except for
the last one. Indeed, we have Ei;iþ1 þ E2N−i;2N−iþ1 for
1 ≤ i ≤ N − 2 (as before), but the shorter simple root isffiffiffi
2

p ðEN−1;N þ EN;Nþ1Þ. The remaining nonsimple roots are
simply obtained by taking the appropriate commutators.
As an example of a partition which is not immediately

obvious from the string junction picture, we can stretch
the two strings αN and αN−1 from Fig. 7. The associated
matrix makes it obvious what orbit such a configuration
belongs to: in particular, it corresponds to the 2N × 2N
matrix M¼EN−1;NþENþ1;Nþ2þEN−1;Nþ1þEN;Nþ2, which
belongs to the nilpotent orbit of ½3; 12N−3�.
With this set of strings and corresponding matrices, we

can now associate to each partition a string junction picture.
Just like for SUðNÞ, we have many choices. For instance,
the three diagrams of Fig. 9 all represent the same ½32; 12�
partition:
(1) The first string junction picture has a matrix repre-

sentation M1 ¼ E1;2 þ E7;8 þ E2;3 þ E6;7.
(2) The second configuration has matrix representation

M2 ¼ E2;3 þ E6;7 þ E3;4 þ E5;6 þ E2;5 − E4;7.
(3) The third has matrix representation M3 ¼ E1;2þ

E7;8 þ E2;5 − E4;7.
In order to keep our diagrams as simple as possible, we

chose representatives which only make use of the simple
strings from Fig. 7 whenever possible. However, unlike
SUðNÞ, the SOð2NÞ and SOð2N − 1Þ algebras also contain

distinguished orbits. These orbits cannot be described with
only simple roots and must therefore involve one or more
nonsimple strings. We observe such a special case in the
distinguished orbit [5, 3] of SOð8Þ (see Fig. 13). Our string
junction diagrams then allow us to recognize distinguished
orbits as those requiring the presence of one or more
nonsimple strings.
The groups SOð4NÞ contain “very even” orbits. These

are orbits with corresponding partitions given by only even
parts. Such partitions split into two separate orbits, such as
½24�I and ½24�II or ½42�I and ½42�II in SOð8Þ. That is, the
matrix representation of a ½λμ�I and a ½λμ�II configuration
have the same Jordan block decomposition and are there-
fore related by an outer automorphism. However, they are
not related by any inner automorphism and thus do not
actually belong to the same nilpotent orbit. This splitting to
two orbits for the very even partitions simply comes from
the symmetry of the Dynkin diagram for Dn: namely, the
exchange of the last two roots αN−1 and αN . This means that
a very even partition involving αN−1 (a one-pronged string)
will be labeled ½λμ�I, while its companion very even
partition involving αN instead (a two-pronged string) will
be labeled ½λμ�II . This is illustrated in Fig. 10.
We briefly mention the triality automorphism of SOð8Þ in

Fig. 11. Namely, we know that the nilpotent orbits with
partitions ½3; 15�, ½24�I , and ½24�II are all related by the triality
outer automorphism. Indeed, they are represented by the
following set of roots: fα3;α4g, fα1; α3g, and fα1; α4g,
respectively. Similarly, the partitions ½5; 13�, ½42�I, and ½42�II
also form a trio. There is no inner automorphism that exists
between these representations, which implies that they do
indeed belong to different nilpotent orbits.
By starting with a configuration with no string attached

[the ½12N−1� partition for SOð2N − 1Þ or ½12N � for SOð2NÞ],

FIG. 9. Three equivalent ways of describing the partition
½32; 12� in the set of nilpotent orbits of SOð8Þ. To each picture
is associated a different matrix, but there exists an inner
automorphism that can bring them all to the same Jordan
block decomposition. Therefore, they belong to the same
equivalence class.
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we can add more and more strings to go from the ½22; 12N−5�
or ½22; 12N−4� orbit all the way to the ½2N − 1� or ½2N�
partitions. We summarize all of the nilpotent orbits of
SOð7Þ and SOð8Þ in Figs. 12 and 13, respectively.
Finally, much like what we have seen in SUðNÞ, most

flows include the simple addition of a root/string and
therefore are obvious. However, there are a few cases that
are not so immediately clear. We work them out here in the
case of SOð8Þ and note that the methods below extend to
the higher-rank SO groups.
(1) ½22;14�→ ½3;15�:We can add to α1 the highest positive

root α2;1;3;2;4 ¼ α1 þ 2α2 þ α3 þ α4 (identified with
the matrix E1;7 þ E2;8). This setup is represented by
the matrix E1;2þE7;8þϵðE1;7þE2;8Þ, which belongs
to the same orbit as E3;4 þ E5;6 þ E3;5 þ E4;6 and

corresponds to the diagram involving the set of simple
strings fα3; α4g.

(2) ½3; 22; 1� → ½32; 12�: We can add the nonsimple
string α2 þ α3 þ α4 to the initial set fα1; α3; α4g.
This gives the matrix E1;2 þ E7;8 þ E3;4 þ E5;6þ
E3;5 þ E4;6 þ ϵðE2;6 þ E3;7Þ, which is similar to
the matrix E1;2 þ E7;8 þ E2;3 þ E6;7.

FIG. 10. Two very even partitions that yield the same partition but do not belong to the same nilpotent orbit. The first one only involves
one-pronged strings and is labeled ½42;…; 24�I , while the second one replaces αN−1 with the two-pronged string αN and is labeled
½42;…; 24�II . To the right we give the Dynkin diagrams with the corresponding strings turned on.

FIG. 11. Triality of SOð8Þ illustrated by the three different
representations corresponding to partitions ½3; 15� (top), ½24�I
(middle), and ½24�II (bottom). The corresponding simple roots
used are illustrated in the adjacent Dynkin diagrams. The first has
a matrix representation M1 ¼ E3;4 þ E5;6 þ E3;5 þ E4;6, the sec-
ond is given by M2 ¼ E1;2 þ E7;8 þ E3;4 þ E5;6, and the last by
M3 ¼ E1;2 þ E7;8 þ E3;5 þ E4;6. These all correspond to differ-
ent nilpotent orbits, because there exists no inner automorphism
between these three matrices.

FIG. 12. Hasse diagram of SOð7Þ nilpotent deformations,
going from the smallest orbits at the top to the largest orbits
at the bottom. All simple roots are present, and every corre-
sponding simple string is connecting the A-branes. In the case of
the last simple root, one A-brane is connecting to the middle A-
brane located on the BC mirror.
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(3) ½32; 12� → ½5; 13�: We can add the nonsimple string
α2 þ α3 þ α4 to the set of simple roots fα1; α2g
to obtain the matrix E1;2 þ E7;8 þ E2;3 þ E6;7 þ
ϵðE2;6 þ E3;7Þ. This matrix is similar to the one
corresponding to the set of strings fα2; α3; α4g.

(4) ½5; 13�; ½42�II → ½5; 3� Starting from the set of simple
roots fα2; α3; α4g of ½5; 13�, we can add the positive
root α1 þ α2 þ α3 to obtain the equivalent set
fα1; α2; α3; α2 þ α3 þ α4g.
Similarly, starting from the set of simple roots

fα1; α2; α4g of ½42�II , we can add the positive non-
simple root fα2; α3; α4g again to obtain the same
Weyl equivalent set fα1; α2;α3; α2 þ α3 þ α4g.

C. SpðNÞ
Recall that in F theory, we realize the SpðNÞ-type gauge

theories by a nonsplit IN fiber. In terms of 7-branes, this
involves the transverse intersection of a stack of D7-branes
with an O7− plane along a common 6D subspace. In the
IIA realization of this algebra, we can also consider a stack
of D6-branes on top of an O6þ plane.
For our present purposes, we can merge the A-branes

pairwise on each side of the mirror. This then yields N
nodes on each side of the mirror but with the particularity
that a two-pronged string can stretch from a single
composite node, as seen in Table I. Zooming out, the
two-pronged string—which corresponds to the long simple

FIG. 13. Hasse diagram of SOð8Þ nilpotent deformations, going from top (UV) to bottom (IR), where all simple roots are present and
every corresponding simple string is connecting adjacent A-branes or, in the case of the last simple root, two A-branes are connected to
the BC mirror.

FIG. 14. Brane diagram of strings/roots stretching, for SpðNÞ. The orientifold is once again represented by a mirror (vertical line). The
strings corresponding to simple roots are illustrated by arrows stretching between the branes and reflected across the mirror. We note that
the longer root αN corresponds to the two-pronged string being squeezed into a single double arrow crossing the mirror, ensuring that the
charge differences are still respected.
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root of SpðNÞ—gets squished into a double arrow coming
out of the same node and connecting to its mirror image
across theBC-branes. This means that, unlike with SOð2NÞ
algebras, we can now draw a double string stretching from
the same node and crossing the BC mirror. The simple root
αN of Fig. 14 is one example of the N double string
connections that can be stretched that way. In terms of the
IIA description, the change in orientation of the mirror
means we can now draw all of the same string junctions as
for SOð2NÞ, but we also have an additional 2N possible
roots which correspond to double connections coming out
of the same node [something that was not allowed in
SOð2NÞ]. The set of simple roots/strings for SpðNÞ is given
in Fig. 14.
The set of simple strings (as illustrated in Fig. 14) along

with the reflecting mirror ensures that odd parts in the
partition of 2N must appear with even multiplicity. This
exactly matches the constraint that, in the partitions used to
parametrize the nilpotent orbits of SpðNÞ, the multiplicity
of odd parts must be even. Furthermore, SpðNÞ also
contains distinguished orbits, which involve the presence
of one or more nonsimple roots.
Following the same conventions as before, we use the

following matrices as the nilpositive part of the basis
for spN :
(1) NðN − 1Þ=2 one-pronged strings E1-pronged ¼

Ei;j − ð−1Þj−iE2N−jþ1;2N−iþ1 with 1 ≤ i < j ≤ N,

corresponding to one-pronged strings stretching
from the ith to the jth A-brane, as well as their
reflections. That is, the strings stretching between
the ð2N − jþ 1Þth and the ð2N − iþ 1Þth nodes
which are on the right-hand side of the mirror. These
correspond to the suN ⊂ spN nilpositive generators.

(2) NðN − 1Þ=2 two-pronged strings E2-pronged ¼
Ei;2N−jþ1 þ ð−1Þj−iEj;2N−iþ1 with 1 ≤ i < j ≤ N,
corresponding to two-pronged strings stretching
between the ith and ð2N − jþ 1Þth nodes, as well
as the jth and ð2N − iþ 1Þth nodes.

(3) N double strings Xdoubled ¼ 2Ei;2N−iþ1 with 1 ≤ i ≤
N − 1 and the long simple string XN ¼ EN;Nþ1.
These correspond to double-pronged strings merged
together into single double connections. They stretch
from the ith to the ð2N − iþ 1Þth node.

The N doubled strings coming out of the same node are
the only new roots which were not present in so2N .
We give the Hasse diagram of nilpotent orbits for Spð3Þ

in Fig. 15 to illustrate the possible string junctions. Flows
between each level in the Hasse diagrams follow the same
rules as for the SO groups.

D. An almost classical algebra: G2

We next consider the exceptional Lie group G2. Even
though the Lie algebra of G2 is technically an exceptional
Lie group, the fact that it can easily be embedded inside the

FIG. 15. Hasse diagram of Spð3Þ nilpotent deformations going from top (UV) to bottom (IR), where all simple roots are turned on and
all corresponding simple strings are connecting the A-branes. In the case of the last simple root, a double connection stretches from the
last node and connects across the mirror, ensuring charge conservation.
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Lie algebra of SOð7Þ makes it behave almost identically.
Furthermore, as we are going to encounter this algebra even
when dealing only with classical quivers, it is useful to have
a closer look at exactly how one might want to describe it.
First, we note that the monodromy of G2 is the same

as for SOð7Þ and SOð8Þ—that is, there are a total of four
A-branes and a B- with a C-brane. Thus, we can start from
the SOð7Þ configuration which has four A-branes with one
stuck on the BC mirror (see Fig. 12). Then, we note that
for G2, the roots α1 and α3 are identified while α2 is
left untouched. Namely, the branching SOð7Þ → G2 takes
α1 þ α3 → α1 and α2 → α2. Therefore, we obtain the
positive roots listed in Fig. 16.
The matrix representation is taken directly from SOð7Þ.

For the positive simple roots, we have

X1 ≡ E1;2 þ E6;7 þ
ffiffiffi
2

p
ðE3;4 þ E4;5Þ; ð3:11Þ

X2 ≡ E2;3 þ E5;6: ð3:12Þ

The other four positive roots are given by

½X1; X2� ¼ E1;3 − E5;7 −
ffiffiffi
2

p
ðE2;4 − E4;6Þ; ð3:13Þ

½½X1; X2�; X1� ¼ 2
ffiffiffi
2

p
ðE1;4 þ E4;7Þ − 2ðE2;5 þ E3;6Þ;

ð3:14Þ

½½½X1; X2�; X1�; X1� ¼ 6ðE1;5 − E3;7Þ; ð3:15Þ

½½½½X1; X2�; X1�; X1�; X2� ¼ 6ðE1;6 þ E2;7Þ: ð3:16Þ

As a result, we can now give the four nontrivial nilpotent
orbits of G2 in terms of strings (see Fig. 17). We note that,
once again, we have a simple correspondence with parti-
tions of 7, illustrated by the groupings allowed from the
associated string junctions. The ordering is a total ordering
rather than a mere partial ordering (unlike for most larger
groups), and the flows from one orbit to the other follow

from the fact that they are projections of the previously
studied SOð7Þ symmetry.

E. Nilpotent orbits for exceptional algebras

We now turn our attention to the exceptional Lie algebras
E6;7;8. These distinguish themselves from the classical
algebras in several ways. First, their nilpotent orbits are
not simply described by partitions but rather by Bala-Carter
labels. These labels are in one-to-one correspondence with
a weighted Dynkin diagram and a set of roots. Interestingly,
when the matrix representations of these roots are added
together, their Jordan block decomposition still yields a
unique partition. Thus, we can still parametrize the nilpo-
tent orbits of E6;7;8 by partitions of 27, 56, and 248
(corresponding to the dimension of their respective funda-
mental representations). These partitions arise from the
branching of the fundamental of EN to the SUð2Þ asso-
ciated with the nilpotent orbit. However, there does not
exist a simple set of rules or restriction on these partitions
like we have seen for the classical Lie algebras. Thus, this
classification is very limited.
By making use of string junctions and the brane

configuration describing these algebras, it is, however,
possible to gain a little more insight into the structure of
nilpotent orbits for these exceptional groups. Physically, we
know that the EN symmetries are given by AN−1BC2-, or
equivalently, ANXC-brane configurations. The advantage
of using the description with an X-brane is that we can now
branch EN to SUðNÞ ×Uð1Þ, where the SUðNÞ piece is
represented by N A-branes and N − 1 ordinary open strings
(i.e., one beginning and one end) stretching between them.
States charged under the Uð1Þ factor necessarily involve
multiprong strings which attach to this stack of A-branes

FIG. 17. Hasse diagram of G2 nilpotent deformations going
from top (UV) to bottom (IR), where both simple roots are
present so that both corresponding simple strings are there to
connect all 7-branes and mirror-image branes.

FIG. 16. Brane diagram of strings/roots stretching, for G2.
The B- and C-branes are turned into an orientifold denoted by a
mirror (vertical line), and one of the A-branes is squeezed onto it.
Furthermore, the first A-brane is “linked” to the middle one (as if
it were also merged onto the mirror), so that the first and third
roots of SOð7Þ join together as the first root of G2 [as dictated by
the quotient, which takes SOð7Þ → G2]. The strings correspond-
ing to simple roots are illustrated by arrows stretching between
the branes and reflected across the mirror.
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and also involve the XC stack. This procedure matches
identically the initial setup used for describing SOð2NÞ
symmetries. The only difference is that we now have a
generalized mirror made out of an X- and a C-brane instead

of simply B- and C-branes. This means that it now takes a
three-pronged string stretching from three A-branes to attach
to theXCmirror in order to conserve the charges. Indeed, the
charges from an X- and a C-brane now sum to [3, 0], which
is exactly 3 times that of an A-brane. As a result, we obtain
the brane and string configurations given in Fig. 18.
We then treat the X- and C-branes together as a gener-

alized mirror and use the shorthand picture of Fig. 19, where
the XC mirror is represented by an × inside a circle to
differentiate it from the vertical line that represented the BC
mirror for the orientifold seen in the SOðNÞ symmetries.
This XC mirror is more complicated than the simply

reflecting mirror for the classical algebras. Indeed, we can
think of this mirror as fragmenting the partitions of 27, 56,
and 248 according to their branching rules. The funda-
mental representation of EN branches to irreducible rep-
resentations of SUðNÞ ×Uð1Þ as
27 → 150 þ 61 þ 6−1; for E6 → SUð6Þ ×Uð1Þ; ð3:17Þ

56 → 21−2 þ 212 þ 76 þ 7−6; for E7 → SUð7Þ ×Uð1Þ;
ð3:18Þ

248 → 630 þ 563 þ 56−3 þ 28−6 þ 286 þ 8−9 þ 89 þ 10;

for E8 → SUð8Þ ×Uð1Þ: ð3:19Þ

FIG. 18. Brane diagram of strings/roots stretching between the A-, X-, and C-branes making up the E6;7;8 symmetry (see Ref. [60]).
The A-branes are denoted by black circles, the X-brane by an empty triangle, and the C-brane by an empty square. The dashed lines
represent the positions of branch cuts. Again, these branch cuts are not drawn in subsequent pictures. To the right we give the
corresponding Dynkin diagram with simple roots numbered.

FIG. 19. Brane diagram of strings/roots stretching, for E6;7;8.
The X- and C-branes are turned into a generalized mirror denoted
by a crossed circle. The strings corresponding to simple roots are
illustrated by arrows stretching between the branes. We note that
the distinguished root α2 corresponds to the three-pronged string
and indeed is made of three legs attaching to the XC mirror in
order to respect the difference in charges between the A-, X-, and
C-branes.
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Here, 15 is the two-index antisymmetric representation
of SUð6Þ, and 21 is the two-index antisymmetric repre-
sentation of SUð7Þ. For the E8 case, 63 is the adjoint, 28
is the two-index antisymmetric, 56 is the three-index
antisymmetric, and 8 is the fundamental representation
of SUð8Þ. For the adjoint representations of E6 and E7,
we also have

78 → þ350 þ 201 þ 20−1 þ 12 þ 1−2 þ 10;

for E6 → SUð6Þ ×Uð1Þ; ð3:20Þ

133 → 450 þ 35−4 þ 354 þ 78 þ 7−8 þ 10;

for E7 → SUð7Þ ×Uð1Þ: ð3:21Þ

By embedding SUðNÞ inside EN in this manner, we see that
positive strings can be described by any set of one-pronged
strings between the N A-branes or any three-pronged string
attaching to three A-branes and stretching to the XCmirror.
Furthermore, E6 also allows a six-pronged string attaching
all of its A-branes to the XC mirror, as illustrated by the
trivial representation 12 in its branching. This string
corresponds to the highest root of E6. E7 also allows
six-pronged strings, as seen by the presence of 7−8 in its
branching [this is indeed the six-index antisymmetric
representation of SUð7Þ]. Finally, E8 not only allows
six-pronged strings (as seen by the six-index antisymmetric
286 representation), but it also allows for eight different
nine-pronged strings, which connect all eight A-branes to
the XC mirror with a double connection stretching from
one of the eight A-branes. These rules follow directly from
the structure of the exceptional algebras, as shown in
Refs. [50,60]. To illustrate these situations, we depict the
highest roots of E6, E7, and E8 in Figs. 20, 21, and 22,
respectively.
In order to describe each nilpotent orbit, we now need to

rely more heavily on the matrix representation. As a result,

we associate to each simple string of Fig. 18 a matrix in the
fundamental representation of EN . Any choice of basis will
yield the same results, but for reference we give the simple
roots in Appendix D and use the method of Ref. [61] to
obtain the remaining nonsimple roots.
Next, we proceed just as with the classical algebras.

Namely, we start with N A-branes next to an XCmirror and
start attaching more and more small string deformations
until we reach the deepest nilpotent orbit. To every string
junction diagram we associate a matrix representation
which belongs to some nilpotent orbit. We can differentiate
between nilpotent orbits based on the Bala-Carter label or
the partition associated to the matrix (by Jordan block
decomposition). For instance, the diagram involving the
first two simple roots of E6 is represented by the matrix
X1 þ X3, where

X1 ¼ E1;2 þ E12;13 þ E15;16 þ E17;18 þ E19;20 þ E21;22;

X3 ¼ E2;3 þ E10;12 þ E11;15 þ E14;17 þ E20;23 þ E22;24:

This matrix X1 þ X3 has Jordan block decomposition
½36; 19� and is associated with the Bala-Carter label A2.
Much as in the case of the classical algebras, multiple

diagrams belong to the same equivalence class. Thus, in
order to keep our diagrams as simple as possible, we choose
representative string junction diagrams that only make use
of the simple strings from Fig. 18 whenever possible.
Indeed, once again we identify some distinguished orbits
as those which cannot be described solely by a set of
simple roots and necessarily involve nonsimple roots.
Furthermore, while any string junction yielding the proper
partition is valid, for simplicity we select configurations
with the minimum number of strings required (with as few
nonsimple strings as possible) so that the addition of only a
single positive root ϵ · Xk is required to flow to the nearest
nilpotent orbit. We illustrate the nilpotent orbits of E6, E7,
and E8 in Figs. 23, 24, and 25, respectively. The Hasse
diagrams labeled by just their Bala-Carter labels can be
found in, e.g., the Appendix of Ref. [62], which summa-
rizes several aspects regarding nilpotent orbits of excep-
tional algebras.
We see that we can move from one nilpotent orbit to the

next by small deformations, just like we did for the classical
groups. Furthermore, we can describe every orbit using
only simple strings except for the distinguished ones. These

FIG. 20. Highest roots of E6 represented by its corresponding
six-pronged string. It stretches from all six A-branes and attaches
to the X- and C-branes represented by the crossed circle.

FIG. 21. Highest roots of E7 represented by its corresponding
six-pronged string. It stretches from the six leftmost A-branes and
attaches to the X- and C-branes represented by the crossed circle.

FIG. 22. Highest roots of E8 represented by its corresponding
nine-pronged string. It stretches from all eight A-branes (attach-
ing twice onto the first one) to the X- andC-branes represented by
the crossed circle.
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distinguished orbits once again require the presence of one
[or two, for E8ða7Þ] nonsimple roots.

1. The nonsimply laced F4 ⊂ E6

Finally, we note that F4 ⊂ E6 is obtained from E6 by a
very simple identification of simple roots:

αE6

2 ¼ αF4

1 ;

αE6

4 ¼ αF4

2 ;

αE6

3 þ αE6

5 ¼ αF4

3 ;

αE6

1 þ αE6

6 ¼ αF4

4 ; ð3:22Þ

where αF4

1 and αF4

2 denote the first two short roots of F4,
while αF4

3 and αF4

4 denote the longer ones. As a result, we
can also simply give the Hasse diagram of F4 as a subset of
the one from E6.

IV. HIGGSING AND BRANE RECOMBINATION

In the previous section, we showed how to generate the
entire nilpotent cone of a semisimple algebra using the
combinatorics of string junctions. In particular, the oper-
ation of “adding a string” reproduces the expected partial
ordering based on orbit inclusion. We now use this analysis
to study Higgs branch flows for 6D SCFTs. Our main task
here will be to study the effects of brane recombination
triggered by VEVs for 6D conformal matter.
We first remark that the picture in terms of string

junctions leads to a simple description of Higgsing with
semisimple deformations. Recall that a semisimple element
is one that is diagonalizable (in particular, not nilpotent).
Since all the quiverlike gauge theories consist of stacks
of AN-branes with either a BC or XC plane, we may join an
open string from one stack of A-branes to the next,
continuing from left to right across the entire quiver.
This leads to a “peeling off” of the corresponding 7-brane,
and has the effect of reducing the rank of each of the
gauge algebras by 1 in both the classical case and the
exceptional case.
Much more subtle is the case of T-brane deformations.

For the most part, we confine our analysis to the case of
quiverlike theories in which all the gauge groups are
classical (see Figs. 26, 27, 28, 29). Even in these cases,
the matter content of the partial tensor branch can still be
strongly coupled, as evidenced by SO − SO 6D conformal
matter. Nonetheless, we will still be able to develop
systematic sets of rules to extract the IR fixed point
obtained from a given T-brane deformation in such cases.
To some extent, the necessary data are encoded by

judiciously applying Hanany-Witten moves involving sus-
pended D6-branes. Such moves were used in Ref. [63], for
instance, to extract different presentations of a given 6D

FIG. 23. Hasse diagram of E6 nilpotent deformations going
from top (UV) to bottom (IR), where all simple roots are present,
and every corresponding simple string connects adjacent A-
branes, or in the case of the second simple root, three A-branes
are connected to the XC mirror. For ease of exposition, we only
list the set of strings rather than the complete string junction
diagrams for each case.
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FIG. 24. Hasse diagram of E7 nilpotent deformations going from top (UV) to bottom (IR), where all simple roots are present, and
every corresponding simple string connects adjacent A-branes, or in the case of the second simple root, three A-branes connect to the XC
mirror.
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Fig. 25. (Continued).
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SCFT. To apply the Hanany-Witten analysis of that work to
the case at hand, we will need to extend it in two respects.
First of all, to cover the case of quiverlike theories with SO
gauge algebras, such brane maneuvers sometimes result
in a formally negative number of D6-branes [22,37].
Additionally, in the case of short quivers, the data specified
by pairs of nilpotent orbits will produce correlated effects in

the resulting IR fixed points. To address both points, we
will need to extend the available results in the literature.
As we have already mentioned, our main focus will be on

tracking brane recombinations as triggered by the con-
densation of open strings. In the context of 6D SCFTs, all
of this occurs in a small localized region of the base of the
noncompact elliptic threefold. Macroscopic data such as

FIG. 25. Hasse diagram of E8 nilpotent deformations going from top (UV) to bottom (IR), where all simple roots are present, and
every corresponding simple string connects adjacent A-branes, or in the case of the second simple root, three A-branes connect to the XC
mirror.
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the surviving flavor symmetries correspond to the asymp-
totic behavior of noncompact 7-branes that pass through
this singular region, but which also extend out to the
boundary of the noncompact base. This also means that,
provided we hold fixed the total asymptotic 7-brane charge
present in the configuration, we can consider any number of
“microscopic processes” which could appear in the physics
of brane recombination.
One such process which we shall often use is the creation

of brane/antibrane pairs localized in the region near the
6D SCFT. We denote such an antibrane by Ā and use it in
annihilation processes such as

Aþ Ā → no branes: ð4:1Þ

Strictly speaking, such a physical process would generate
radiation. The only sense in which we are really using these
objects is to count the overall Ramond-Ramond charge
asymptotically far away from the configuration. In this
sense, there will be little distinction between an antibrane
and a “negative/ghost brane.” Since we are primarily
interested in determining the end outcome of Higgsing,
we use these Ā-branes as a combinatorial tool which must
disappear at the final stages of our analysis through
processes such as Eq. (4.1). We refer to this as having a
“Dirac sea” of A=Ā pairs of 7-branes.
Much as in the case of a general configuration of plus

and minus charges in electrodynamics, a lowest-energy
configuration is obtained by allowing charges to freely
move through a material. In much the same way, we shall
allow the branes and antibranes to redistribute. Our main
physical condition is that the net 7-brane charge is

unchanged by such processes, and also that no antibrane
charge remains uncanceled in any final configuration
obtained after Higgsing.
We also remark that from the standpoint of renormaliza-

tion group flow, these sorts of microscopic details are
expected to be irrelevant at long distances. Said differently,
while there could, a priori, be different UV completions in
the full framework of quantum gravity, such details will not
matter in determining possible fixed points obtained after a
Higgs branch deformation. The brane maneuvers indicated
here are of this sort and are used as a tool to analyze
possible fixed points.
Including these formal structures is useful, in that it

allows us to make sense of the resulting 6D SCFT, even
when the ranks of the intermediate gauge groups are
negative numbers of small magnitude. This procedure
has been used in Refs. [22,30,37,40,64] as a way to track
the effects of Higgs branch flows in certain 6D SCFTs. We
will return to this point in Sec. V.
Our main focus in this section will be on determining the

Higgs branch flows associated with the classical algebras,
since in these cases there is also a gauge theory description
available for some Higgs branch flows in terms of VEVs of
conventional hypermultiplets. Any nilpotent orbit is then
described by stretching the appropriate strings as described
in Sec. III. We then need to propagate the deformation by
removing some strings as we move deeper into the quiver,
which allows us to read off the resulting gauge symmetries
that are left over in the IR. We explain these propagation
rules in the following section.
Before that, however, we need to introduce the possibil-

ity of antibranes. Indeed, while the nodes in the SUðNÞ

FIG. 26. Tensor branch of the UV quiverlike theory with just SUðNÞ gauge algebras.

FIG. 27. Tensor branch of the UV quiverlike theory with just SOð2NÞ gauge algebras. The full tensor branch also includes additional
SpðN − 4Þ gauge algebras coming from blowing up the conformal matter between D-type collisions.

FIG. 28. Tensor branch of the UV theory with just SOð2N − 1Þ gauge algebras. The full tensor branch also includes additional Sp
gauge algebras coming from blowing up the conformal matter between D-type collisions. Any deformation with partition μ ¼ ½fμig� in
SOð2N − 1Þ is equivalent to the partition ν ¼ ½fμig; 3� in SOð2N þ 2Þ.

FIG. 29. UV theory for SpðNÞ.
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quivers all have the same number of branes on each level
(namely N A-branes), the other classical algebras do not.
For instance, a quiver with SOð2NÞ flavor in the UV will
alternate between N and N − 4 A-branes on the so2N and
spN levels, respectively. This introduces an additional
complication, in that we may end up with configurations
that have more strings stretching between branes (as
dictated by the nilpotent orbit configuration of Sec. III)
than are available according to the gauge group on the
quiver node. We remedy this situation by extracting as
many extra A-branes as necessary out of the brane/anti-
brane “Dirac sea” to draw the proper number of string
junctions. These extra branes are then immediately can-
celed with the same number of antibranes.
For example, the theory with SOð8Þ flavor symmetry has

gauge symmetries alternating between sp0 (i.e., a trivial
gauge group associated with an “unpaired tensor” [65]) and
so8, and the nilpotent orbit ½42�I uses strings stretching
between every brane (i.e., all four A-branes and their
images have at least one string attached). However, sp0
only has the BC mirror and no A-brane. So, in order to
describe the ½42�I nilpotent orbit, we must introduce four
A-branes through which we can stretch strings (on each
side of the mirror) and then add them with four antibranes.
This also applies to the nonsimply laced classical algebras,
since they can be obtained from Higgs branch flows of
SOðevenÞ quiverlike theories [5].
Notably, there are a few cases, even for SO- and Sp-type

quivers, which require nonperturbative ingredients such as
E-string/small-instanton deformations. In these cases, the
number of tensor multiplets in the 6D SCFTalso decreases.
Our method using brane/antibrane pairs carries over to
these situations and allows us to obtain a complete picture
of Higgs branch flows in these cases as well. We use this
feature in Sec. V to determine IR fixed points in the case of
short quivers.
Our plan in the rest of this section is as follows: first,

we discuss a IIA realization of quiverlike theories with
classical gauge groups, and especially the treatment of
Hanany-Witten moves in such setups. After this, we state
our rules for how a T-brane propagates into the interior of a
quiver with classical gauge algebras. We then illustrate with
several examples the general procedure for Higgsing such
theories. This provides a uniform account of brane recom-
bination and also agrees in all cases with the result expected
from related F-theory methods (when available). We also
comment on some of the subtleties associated with extend-
ing this to the case of quiverlike theories with exceptional
algebras.

A. IIA realizations of quivers
with classical gauge groups

To aid in our investigation of Higgs branch flows for
6D SCFTs, it will also prove convenient to use the
type-IIA realizations of the quiverlike theories with

classical algebras, as used previously in Refs. [63,66–68].
In the case of quivers with SU gauge group factors, each
classical gauge group factor is obtained from a collection
of D6-branes suspended between spacetime-filling NS5-
branes, with noncompact “flavor” D8-branes emanating
“out to infinity.” The case of SO algebras on the partial
tensor branch is obtained by also including O6− planes
coincident with each stack of D6-branes. In this case, the
NS5-branes can fractionate to 1

2
NS5-branes. Working in

terms of these fractional branes, there is an alternating
sequence of O6þ and O6− planes, and correspondingly
an alternating sequence of SO and Sp gauge group factors.
This all matches up with the F-theory realization of these
theories, where each SO factor originates from an I�n fiber
and each Sp factor from a nonsplit Im fiber.
The utility of this suspended brane description is that

we can write several equivalent brane configurations which
realize the same IR fixed point via “Hanany-Witten
moves,” much as in the original reference [42] and its
application to 6D SCFTs in Ref. [63]. This provides a
convenient way to uniformly organize the data of Higgs
branch deformations generated by nilpotent orbits. In fact,
we will shortly demonstrate that using these brane moves
along with some additional data (such as the appearance of
brane/antibrane pairs) provides an intuitive method for
determining the resulting fixed points in both long and
short quivers.
Since we will be making heavy use of the IIA realization

in our analysis of Higgs branch flows, we now discuss such
constructions in greater detail. In our analysis, we will also
consider formal versions of Hanany-Witten moves which
would seem to involve a negative number of branes. These
cases are closely connected with strong coupling phenom-
ena (such as the appearance of small instanton transitions
and spinor representations) and can be fully justified in the
corresponding F-theory realization of the same SCFT.
Indeed, the description in terms of Hanany-Witten moves
extends to the F-theory description, so we will interchange-
ably use the two conventions when the context is clear.

1. SUðNÞ
We begin with a quiverlike theory with L − 1 tensor

multiplets and for each one a paired SUðNÞ gauge group
factor. The UV theory has a tensor branch given by the
quiver

which is realized in terms of the IIA brane setup:
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From the point of view of the D6-branes, the D8-branes specify boundary conditions, which are controlled by the Nahm
equations [69]. These pick three (Xi, i ¼ 1, 2, 3) out of the N2 − 1 scalars controlling the Higgs branch and relate them to
the distance t of the intersection point by

Xi ∼
Ti

t
: ð4:2Þ

The generators Ti describe an SUð2Þ subgroup of the flavor symmetry SUðNÞ, whose embedding is captured by a partition
of N. This happens on both sides of the quiver. Thus, all the data we need in order to study Higgs branch flows of the UV
theory are two partitions μL and μR of N and the length L.
A partition μ of N is given in terms of l ≤ N integers μi with μ1 ≥ μ2 ≥ � � � ≥ μl and μ1 þ μ2 þ � � � μl ¼ N. In the

corresponding brane realization, the two partitions describe the separation of the stack of N D8-branes on each side into
smaller stacks:

The brane picture is particularly useful because we can easily read off the IR theory from it. This works by applying
Hanany-Witten moves, which swap a D8-brane and an NS5-brane, until all of the D8-branes are balanced. Looking at the
stack of μ1L D8-branes left of the first NS5-branes, we can measure its imbalance by the difference Δn of D6-branes
departing from the right and arriving on the left. A balanced stack would have Δn ¼ 0, but for the setup depicted above we
find Δn ¼ μ1L instead. After performing the Hanany-Witten move described in Fig. 30, Δn becomes

Δn0 ¼ Δn − 1 with Δ ¼ n2 − n1 and Δ0 ¼ n3 − n02: ð4:3Þ

FIG. 30. The basic operation of swappingD8- and NS5-branes. The relation between the number ofD6-branes stretching between the
D8-brane and the NS5-brane before (n2) and after (n02) the swapping is given by n02 ¼ n1 þ n3 − n2 þ 1.
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Hence, we have to perform exactly Δn ¼ μ1L Hanany-
Witten moves to balance this stack. One can always balance
all D8-branes provided that the length of the quiver L is
large enough. This constraint will become important when
we discuss short quivers in Sec. V. Once all D8-branes are
balanced, the resulting IR quiver gauge theory can be read
off by using the building blocks

Applying subsequent Hanany-Witten moves results in a
simple, algebraic description of the Higgs branch flows. Let
us, for simplicity, consider very long quivers. In this case, it
is sufficient to just focus on one partition, i.e., μL, since the
analysis on the right-hand side is perfectly analogous.
Using the fact that a stack of μiL D8-branes moves μiL NS5-
branes to the right until it is balanced, we can read off the
flavor symmetries of the IR theory directly from the
partition. However, obtaining the number of D6-branes
stretched between each pair of adjacent NS5’s is slightly
more complicated. If we denote this number as ni between
the ith and (iþ 1)th NS5’s, we find the following recursion
relation:

ðniÞj ¼
� ðniÞj−1 − μjL þ i for i < μjL

ðniÞj−1 otherwise:
ð4:4Þ

Here ðniÞj denotes the ni after the jth stack of NS5-branes
has been balanced. Hence, the initial condition is ðniÞ0¼N,
and we are interested in ðniÞlL , which describes the number
of D6-branes once all D8-branes have been balanced. An
example for N ¼ 6 is μ ¼ ½321�, for which we find

ðniÞ1 ¼ ð 4 5 6 6 … Þ
ðniÞ2 ¼ ð 3 5 6 6 … Þ
ðniÞ3 ¼ ð 3 5 6 6 … Þ ð4:5Þ

with the resulting IR quiver

B. SOð2NÞ, SOð2N + 1Þ, and SpðNÞ
Gauge groups SOð2NÞ, SOð2N þ 1Þ, and SpðNÞ arise

if the setup from the last subsection is extended to include
O6 orientifold planes placed on top of the D6-branes. In
particular, assume we have N physical D6-branes. Each of
these has a mirror image under the Z2 orientifold action Ω,
and thus we have in total 2N 1

2
D6-branes. Their Chan-

Paton factors transform under Ω as Ωλ ¼ MλTM−1. Since
Ω2 ¼ 1, we therefore find two different solutions for M,
which are denoted as M� ¼ �MT

�. Each of these solutions
gives rise to a distinguished orientifold action Ω�. Only
massless open string excitations satisfying Ω�λ ¼ −λT
survive the orientifold projection. Depending on whether
Ω− (O6−) orΩþ (O6þ) is used, the resulting gauge group is
either SOð2NÞ or SpðNÞ. If a single 1

2
D6-brane is exactly

on top of the O6− plane, it becomes its own mirror and we
obtain the gauge group SOð2N þ 1Þ. Similarly to the D6-
branes, a single NS5-brane on the orientifold plane splits
into two half-NS5-branes:

Here, we depict a stack of 1
2
D6-branes on O6− with a solid

line and a stack of 1
2
D6-branes on O6þ with a dashed line.

Because theD6-charge of theO6þ differs by 4 from that of
the O6−, the number of 1

2
D6-branes changes from n to

nþ n mod 2 − 8 and back.
There are three different classes of UV SCFTs which we

can now realize in terms of suspended branes depicted in
Fig. 31. To study their Higgs branch flow, we follow the
same approach as in the SUðNÞ case: first, we choose two
partitions, which each describe an embedding of su2 into
the corresponding flavor symmetry algebra. These control
how the stacks of 1

2
D8-branes on the left and right sides of

the quiver are split into smaller stacks. Finally, we apply
Hanany-Witten moves to these stacks until they are
balanced.
It is convenient to combine the D6-brane charge of the

orientifold planes with the contribution from the 1
2
D6-

branes. In this case, rules for the Hanany-Witten shown in
Fig. 30 still apply and we can use the results from the last
subsection. The only thing we have to keep in mind is that
we are now counting 1

2
D6-branes.
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C. Propagation rules

In this section, we present a set of rules for working out
Higgs branch deformations in the case of quivers with
classical gauge algebras. The main idea is to consider each
stack of 7-branes wrapped over a curve and strings that
stretch from one stack to the next. To visualize the possible
locations where such strings can begin and end, we will use
the same diagrammatic analysis developed in Sec. III to
track these breaking patterns. When such a string is present,
it signals the presence of a brane recombination move, and
the corresponding brane becomes nondynamical (having
become attached to a noncompact 7-brane on the boundary
of the quiver). On each layer, we introduce a directed graph,
as dictated by a choice of nilpotent orbit. This tells us how
to connect the branes into “blobs” after recombination.
We want to see how these blobs recombine, both with the
noncompact branes at the end of the quiver and with the
compact branes further in the interior.
On each consecutive level of the quiver (i.e., for each

gauge algebra in the quiver), we draw the same string
configuration with a few modifications according to the
following rules for propagating Higgs branch flows into the
interior of a quiver:
(1) First, we consider blobs made only of A-branes. That

is, only one-pronged strings are involved and there is
no crossing or touching the mirror. These configu-
rations cover all possible orbits of SUðNÞ. In such
cases, the one-pronged strings get removed one at
a time (per blob) so that one A-brane is added back
(to each blob) at each step. These steps can be
visualized in the example of SUð6Þ nilpotent orbits
given in Fig. 32.

(2) Next, we consider cases with a two-pronged string,
but in which both legs are disjoint [unlike αN for
SpðNÞ] so that no loop is formed. In this case, the
propagation follows the same rule as for one-
pronged strings. Indeed, in such configurations each
leg becomes independent, and they individually
behave like one-pronged strings. This is the case
for SOð2NÞ whenever the two-pronged string αN is
present but not the string αN−1 below it. [See, for
instance, the partition ½24�II for SOð8Þ in Fig. 33].

(3) Now, suppose (without loss of generality) that
branes A1; A2;…; An are connected via simple
one-pronged strings and that a two-pronged string
attaches the ith and nth branes to the mirror
(1 ≤ i < n). Then, for the next n − i levels, the
rightmost leg moves one step to the left (attaching to
the brane An−1; An−2;…; An−i), and the rightmost
one-pronged string below it is removed, namely αn
followed by αn−1;…; αn−i. After these n − i steps,
both legs overlap, and the rightmost leg cannot move
any further. Instead, we then move the second leg
one step to the left so that one leg stretches from
αn−i−1 and the other stretches from αn−i. We can now
repeat the previous steps once by moving the
rightmost leg one brane to the left (and removing
αn−i−1) so that it overlaps with the leftmost leg. This
process ends whenever the two-pronged string with
both legs overlapping is the last one of the group,
and it is then simply removed for the next node in the
quiver. [See, for instance the partitions [5, 3] or [7, 1]
for SOð8Þ in Fig. 33].

(4) Finally, we can have groups of K branes involving
the short root αN−1 of SOð2N − 1Þ, which connects

FIG. 31. Suspended brane realization of UV quivers with SOð2N − 1Þ, SOð2NÞ, and SpðNÞ flavor symmetries.
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FIG. 32. Nilpotent deformations of the SUð6Þ quiver from the UV configuration of Fig. 26. Each subfigure corresponds to the quiver
diagram of a nilpotent orbit with strings propagating through. The quivers have been rotated to go from top to bottom (rather than left to
right) to fit on the page. On the left-hand side of each subfigure we have the setting in the UV with each −2 curve containing an su6

gauge algebra, while on the right-hand side we give the IR theory induced by the strings stretched in the middle diagram. The theories
are ordered from top to bottom according to their partial ordering of RG flows, which matches their mathematical ordering. The
corresponding partitions are given on the side.
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the Nth A-brane to the one merged onto the mirror.
In this case, the first step consists of lifting the short
string above the middle brane so that it becomes a
doubled-arrow string crossing the mirror and con-
necting K − 1 branes. The next steps in the propa-
gation are then identical to the ones described in the

previous point. [See, for instance, the partitions
½7; 12� or ½9� for SOð9Þ in Fig. 35].

We note that in terms of partitions, these steps simply
translate into every part being reduced by 1, so that the
partition ½μ1; μ2;…; μi; 1k� goes to ½μ1 − 1; μ2 − 1;…;
μi − 1; 1kþi� after each step until there are no more parts

FIG. 33. Nilpotent deformations of the SOð8Þ quiver from the UV configuration of Fig. 27. Each subfigure corresponds to the
quiver diagram of a nilpotent orbit with strings propagating into the interior of the quiver. The quivers have been rotated to go from
top to bottom (rather than left to right) to fit on the page. On the left-hand side of each subfigure, we have the initial UV theory with
alternating −1 and −4 curves containing sp0 and so8, respectively. On the right-hand side, we give the IR theory induced by the
strings stretched in the middle diagram. The vertical line denotes the BCmirror. Whenever antibranes are required, they are denoted
by a white circle below their A-brane counterparts. In some cases, there are extra antibranes indicated in parentheses on the right
(which occur when there are more groups of A-branes than antibranes). The first one is used to blow down the −1 curve it is on
(indicated by the word “down”), while the others get distributed on the following quiver nodes as indicated by the side arrows on the
right. The theories are ordered from top to bottom according to their partial ordering of RG flows. The corresponding partitions are
given on the side.
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with μi > 1, and we are left with the trivial partition
(corresponding to the total absence of strings).

D. Higgsing and brane recombination

Once we have propagated the strings according to the
above rules, we are ready to read off the residual gauge
symmetry on each node. To do so, we note that the strings
force connected branes on each side of the mirror to
coalesce so that a blob of K A-branes behaves like a
single A-brane. We can then directly read off the gauge
symmetry that is described by the resulting collapsed brane
configuration.
For SUðNÞ quivers, which do not involve a mirror,

strings group A-branes without any ambiguity, as no B- or
C-brane is present. Thus, the residual gauge symmetry is
given by the number of groups formed at each level. For
instance, if only one simple string stretches between two
A-branes, these branes coalesce, and we are left with N − 1
separate groups of strings on this level. This yields the
residual gauge symmetry suN−1 as illustrated in the first
orbit of SUð6Þ (see Fig. 32).
Similarly, a blob with K branes connected by strings on

each side of a mirror turns an so2N algebra into so2ðN−Kþ1Þ,
so2N−1 into so2ðN−Kþ1Þ−1, and spN into spN−Kþ1. The same
is true if the blob consists of branes on both sides of the
mirror connected by double-pronged strings. However, if
the blob consists of branes connected by a double-arrowed
string, then the blob of connected branes gets merged onto
the mirror. As a result, an so2K algebra will turn into
so2K−1, and so2K−1 into so2K−2. (See, for instance, the [7,1]
diagrams at the bottom of Fig. 33.) We note that the
propagation rules listed above prevent such a configuration
from ever appearing on a level with spN gauge symmetry.
In some cases, the so quivers require the introduction of

“antibranes.” In our figures, we denote a brane by a filled-
in circle (black dot) and an antibrane by an open circle.
At the final step, all such antibranes must disappear by
pairing up with other coalesced branes, deleting such
blobs from the resulting configuration. This further
reduces the number of leftover blobs which generate
the residual gauge symmetry.
Note that there are also situations where the number of

antibranes is larger than the number of available blobs of
branes on a given layer. This occurs whenever the number
of D6-branes in the type-IIA suspended brane realization
formally becomes negative, signaling that the perturbative
type-IIA description has broken down, and F theory is
required to construct the theory in question. Nevertheless, it
is still useful to write down a “formal IIA quiver,” which
includes negative numbers of D6-branes and hence neg-
ative gauge group ranks. Additionally, as we will now show
with examples, our picture of brane/antibrane nucleation
can be adapted to these situations if we allow extra
antibranes at a given layer to move to other layers and
annihilate other blobs of branes.

Consider, for instance, that the partition [5, 3] of SOð8Þ
requires the presence of four A-branes on the first quiver
node, which only has sp0 symmetry. Thus, we also need to
introduce four antibranes to compensate. Only one blob of
branes is formed on each side of the mirror, so only one of
the four antibranes is used to cancel it, and we are left with
three antibranes. The first antibrane is used to collapse the
−1 curve it is on. The second antibrane is distributed to the
next so quiver node, and the third antibrane is distributed to
the next sp quiver node, where it is used to either reduce the
gauge symmetry from spK to spK−1 or, if K ¼ 0, to blow
down this next −1 curve. The antibrane that lands on a
quiver node with an so algebra also reduces the residual
symmetry according to the following rules:

soN→
Ā
soN−1 for N ≥ 8;

so7→
Ā
g2;

g2→
Ā
su3;

so6 ≃ su4→
Ā
su3;

su3→
Ā
su2;

so5 ≃ sp2→
Ā
sp1 ≃ su2;

so4→
Ā
so3 ≃ su2;

so3 ≃ su2→
Ā
su1 ≃ ∅: ð4:6Þ

Note that for classical quiver theories, there can never be
more than four antibranes, since the quiver nodes with sp
gauge symmetry only have four fewer branes than their
neighboring so nodes.
We illustrate all of these steps through the examples of

SUð6Þ, SOð8Þ, SOð10Þ, SOð9Þ, and Spð3Þ in Figs. 32, 33,

34, 35, and 36, respectively. Explicit examples of g2!Ā su3

and su3!Ā su2 can only be found when dealing with “short
quivers,” which we discuss in Sec. V.

E. Comments on quiverlike theories
with exceptional algebras

It is natural to ask whether the propagation rules given
for quivers with classical algebras also extend to theories
with exceptional algebras. In principle, we expect this to
follow from our description of the nilpotent cone in terms
of multipronged string junctions. Indeed, we have already
explained that at least for semisimple deformations, there is
no material distinction between the quivers of classical and
exceptional types.
That being said, we expect our analysis of nilpotent

deformations to be more subtle in this case. Part of the issue
is that even in the case of the D-type algebras, to really
describe the physics of brane recombination, we had to go
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Fig. 34. (Continued).
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onto the full tensor branch so that both SO and Sp gauge
algebras could be manipulated (via brane recombination).
From this perspective, we need to understand brane
recombination in 6D conformal matter for the following
configurations of ðEN; ENÞ conformal matter:

½E6�; 1; 3; 1; ½E6�; ð4:7Þ

½E7�; 1; 2; 3; 2; 1; ½E7�; ð4:8Þ

½E8�; 1; 2; 2; 3; 1; 5; 1; 3; 2; 2; 1; ½E8�: ð4:9Þ

Said differently, a breaking pattern which connects two
E-type algebras will necessarily involve a number of tensor
multiplets. For the most part, one can work out a set of
“phenomenological” rules which cover nearly all cases
involving quivers with E6 gauge algebras, but its gener-
alization to E7 and E8 appears to involve some new
ingredients beyond the ones introduced already in this
paper. For all these reasons, we defer a full analysis of these
cases to future work.

V. SHORT QUIVERS

In the previous section, we demonstrated that the physics
of brane recombination accurately recovers the expected
Higgs branch flows for 6D SCFTs. It is reassuring to see
that these methods reproduce—but also extend—the struc-
ture of Higgs branch flows obtained through other methods.
The main picture we have elaborated on is the propagation
of T-brane data into the interior of a quiverlike gauge
theory.
The main assumption made in these earlier sections is the

presence of a sufficient number of gauge group factors in
the interior of the quiver so that this propagation is
independent of other T-brane data associated with other
flavor symmetry factors. In this section, we relax this
assumption by considering “short quivers” in which the
number of gauge group factors is too low to prevent such an
overlap. There has been very little analysis in the 6D SCFT
literature on this class of RG flows.
Using the brane recombination picture developed in the

previous section, we show how to determine the corre-
sponding 6D SCFTs generated by such deformations. We
mainly focus on quivers with classical algebras, since this is

FIG. 34. Nilpotent deformations of the SOð10Þ quiver from the UV configuration of Fig. 27. See Fig. 33 for additional details on the
notation and conventions.
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Fig. 35. (Continued).
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the case we presently understand most clearly. Even here,
there is a rather rich structure of possible RG flows.
There are two crucial combinatorial aspects to our

analysis. First of all, we use open strings to collect
recombined branes into “blobs.” Additionally, to determine
the scope of possible deformations, we introduce brane/
antibrane pairs, as prescribed by the rules of Sec. IV. To
track the effects of having a short quiver, we gradually
reduce the number of gauge group factors until the brane
moves on either side of the quiver become correlated. As a
result, we sometimes reach configurations in which the
antibranes cannot be eliminated. We take this to mean that
we have not actually satisfied the D-term constraints in the
quiverlike gauge theory.
The procedure we outline also has some overlap with the

formal proposal of Ref. [37] (see also Ref. [64]), which
analyzed Higgs branch flows by analytically continuing the
rank of gauge groups to negative values. Using our
description in terms of antibranes, we show that in many
cases, the theory we obtain has an anomaly polynomial
which matches to these proposed theories. We also find,

however, that in short quivers (which were not analyzed in
Ref. [37]), this analytic continuation method sometimes
does not produce a sensible IR fixed point. This illustrates
the utility of the methods developed in this paper.
In the case of sufficiently long-quiver-like theories, there

is a natural partial ordering set by the nilpotent orbits in the
two flavor symmetry algebras. In the case of shorter
quivers, the partial ordering becomes more complicated
because there is (by definition) some overlap in the
symmetry-breaking patterns on the two sides of a quiver.
In many cases, different pairs of nilpotent orbits wind up
generating the same IR fixed point simply because most or
all of the gauge symmetry in the quiver has already been
Higgsed. We show in explicit examples how to obtain the
corresponding partially ordered set of theories labeled by
pairs of overlapping nilpotent orbits. We refer to these as
“double Hasse diagrams,” since they merge two Hasse
diagrams of a given flavor symmetry algebra.
To illustrate the main points of this analysis, we

primarily focus on illustrative examples in which the
number of gauge group factors in the interior of a quiver

FIG. 35. Nilpotent deformations of the SOð9Þ quiver from the UV configuration of Fig. 28. See Fig. 33 for additional details on the
notation and conventions.
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is sufficiently small and/or in which the size of the nilpotent
orbits is sufficiently large that there is nontrivial overlap
between the breaking patterns on the left and right. For this
reason, we often work with low-rank gauge algebras such
as suð4Þ and soð8Þ and a small number of interior gauge
group factors, though we stress that our analysis works in
the same way for all short quivers.
The rest of this section is organized as follows: First, we

show how to obtain short quivers as a limiting case in which

we gradually reduce the number of gauge group factors in a
long quiver. We then turn to a study of nilpotent hierarchies
in these models, and we conclude this section with a brief
discussion of the residual global symmetries after Higgsing
in a short quiver.

A. From long to short quivers

In this subsection, we determine how T-brane data
propagating from the two sides of a quiver becomes

FIG. 36. Nilpotent deformations of the Spð3Þ quiver from the UV configuration of Fig. 29. See Fig. 33 for additional details on the
notation and conventions.
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intertwined as we decrease the number of gauge groups/
tensor multiplets. It is helpful to split up this analysis
according to the choice of gauge group appearing, so we
present examples for each different choice of gauge algebras.

1. SUðNÞ short quivers
We begin with quiverlike theories with su gauge

algebras. Applying the Hanany-Witten rules from
Sec. IVA to the type-IIA realization of the SUðNÞ theories,
we have that

kNS5 ≥ Maxfμ1L; μ1Rg þ 1 ð5:1Þ

for left and right partitions μL ¼ ½μi�, μR ¼ ½μj�, respec-
tively. Here, kNS5 denotes the number of NS5-branes in the
corresponding type-IIA picture. When this condition is
violated, it is impossible to balance the D8-branes. Note
that kNS5 is also equal to 1 plus the number of −2 curves
N−2 ¼ NT , the number of tensor multiplets in the UV
quiver, so we may equivalently write this condition as

Maxfμ1L; μ1Rg ≤ N−2; ð5:2Þ

where N−2 denotes the number of −2 curves in the UV
quiver. This is equivalent to saying that, when only one
nilpotent deformation (either μL or μR) is implemented over
the UV quiver (either the left or right partition), there has to
be at least one −2 curve whose fiber remains untouched by
the deformation.
Assuming this restriction is obeyed, we can straightfor-

wardly produce any short SUðNÞ quiver given a UV quiver
and a pair of nilpotent orbits. Before giving the general
formula, however, let us look at a concrete example:
consider a UV theory of SUð5Þ over five −2 curves, and
apply the nilpotent deformations of [3, 2]–½22; 1�, where no
interaction between the orbits takes place. This theory can
be written as

½3; 2�∶ 2
suð2Þ

2
suð4Þ

½Nf¼1�
2

suð5Þ

½Nf¼1�
2

suð5Þ

½SUð2Þ�
2

suð3Þ

½Nf¼1�
∶ ½22; 1�; ð5:3Þ

where the notation ½Nf ¼ 1� refers to having one additional
flavor on each corresponding gauge algebra.
We now decrease the length of the quiver and gradually

turn it into a short quiver. We decrease the number of −2
curves one at a time, and when the nilpotent deformation
from the left and right overlaps, we simply add the rank
reduction effect together linearly. After each step, we get

½3; 2�∶ 2
suð2Þ

2
suð4Þ

½Nf¼1�
2

suð5Þ

½SUð3Þ�
2

suð3Þ

½Nf¼1�
∶ ½22; 1�; ð5:4Þ

½3; 2�∶ 2
suð2Þ

2
suð4Þ

½SUð3Þ�
2

suð3Þ

½SUð2Þ�
∶ ½22; 1�: ð5:5Þ

At this stage, we are unable to decrease the length of
the quiver any further without violating the constraint
of Eq. (5.2).
We note that each step changes the global symmetry, the

gauge symmetry, or both. In particular, after the second
step, we no longer see a node with the UV gauge group
SUð5Þ. The global symmetries also change at each step,
which will be discussed further in Sec. V D.
Let us consider another example of a short quiver with

SUðNÞ gauge groups. If we take the UV quiver theory to be

½SUð6Þ� 2
suð6Þ

2
suð6Þ

2
suð6Þ

2
suð6Þ

2
suð6Þ

½SUð6Þ� ð5:6Þ

and apply the following pair of nilpotent deformations
denoted by partitions μL;R:

μL ¼ ½5; 1�; μR ¼ ½23�; ð5:7Þ

we obtain the resulting IR theory:

2
suð2Þ

½Nf¼1�
2

suð3Þ
2

suð4Þ
2

suð5Þ

½SUð3Þ�
2

suð3Þ

½Nf¼1�
: ð5:8Þ

We illustrate another example with the SUð5Þ UV gauge
group and partitions μL ¼ ½5�, μR ¼ ½4; 1� in Fig. 37,
making the brane recombination explicit.
In general, let us define the conjugate partitions of the

left and right nilpotent orbits to be ρL ≔ μTL and ρR ≔ μTR
and denote their number of elements as N0

L and N0
R, with

the index counting from each of their starting points,

FIG. 37. An SUðNÞ short-quiver brane picture, the pair of
nilpotent deformation being μL ¼ ½5�, μR ¼ ½4; 1� on SUð5Þ UV
theory and four −2 curves. The figure is arranged so that the left
deformation starts from the top and propagates downward (in
black), while the right deformation starts on the bottom and
propagates upward (blue).
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respectively. Then, the gauge group rank at the mth node is
given by

rm ¼ N −
XN0

L

i¼mþ1

ρLi −
XN0

R

j¼ðN−2Þ−mþ1

ρRj ; ð5:9Þ

with the UV gauge group equal to SUðNÞ.

2. Interlude: SO and Sp short quivers

In the case of quivers with SU gauge groups, the
Higgsing of the corresponding quiverlike gauge theories
is controlled by VEVs for weakly coupled hypermultiplets.
In this case, the physics of brane recombination primarily
serves to simplify the combinatorics associated with
correlated breaking patterns in the quiver. Now, an impor-
tant feature of the other quiverlike theories with flavor
groups SO or Sp is the more general class of possible Higgs
branch flows as generated by 6D conformal matter. Recall
that on the full tensor branch of such a theory, we have a
gauge group consisting of alternating classical gauge
groups. These gauge groups typically have bifundamental
matter (in half-hypermultiplets of SO × Sp representa-
tions), which in turn leads to Higgs flows generated by
“classical matter,” much as in the case of the SU quivers.
There are, however, more general Higgs branch flows
connected with VEVs for conformal matter. Recall that
these are associated with a smoothing deformation for a
collapsed −1 curve, namely the analog of a small instanton
transition as in the case of the E-string theory. The
combinatorics associated with this class of Higgs branch
flows is more subtle, but as we have already remarked, the
brane/antibrane description correctly computes the result-
ing IR fixed points in this case as well.
By definition, in the case of a short quiver, the effects of

Higgsing on the two sides of the quiver become correlated.
It is therefore helpful to distinguish a few specific cases of
interest as the size of the nilpotent orbit/breaking pattern
continues to grow. As the size of the nilpotent orbit grows,
the appearance of a small instanton deformation becomes
inevitable. The distinguishing feature is the extent to which
small instanton transitions become necessary to realize the
corresponding Higgs branch flow. When there is at least
one −1 curve remaining in the tensor branch description of
the Higgsed theory, we refer to this as a case where the
nilpotent orbits are “touching.” The end result is that so
many small instanton deformations are generated that the
tensor branch of the resulting IR theory has no −1 curves at
all. We refer to this as a “kissing case,” since the partitions
are now more closely overlapping. Increasing the size of a
nilpotent orbit beyond a kissing case leads to a problematic
configuration: There are no more small instanton transi-
tions available (as the −1 curves have all been used up). We
refer to these as “crumpled cases.” In terms of our brane/
antibrane analysis, this leads to configurations with Ā

branes which cannot be canceled off. Such crumpled
configurations are inconsistent and must be discarded.
Summarizing, we refer to the different sorts of overlapping
nilpotent orbit configurations as
(1) A “touching” configuration: One in which all gauge

groups of the quiverlike theory are at least partially
broken, but at least one −1 curve remains in the
tensor branch of the Higgsed theory.

(2) A “kissing” configuration: One in which all groups
of the quiverlike theory are at least partially broken,
and there are no −1 curves remaining in the Higgsed
theory.

(3) A “crumpled” configuration: One in which the orbits
have become so large that there are leftover Ā branes
which cannot be canceled off, and therefore such
configurations are to be discarded.

Of course, there are also nilpotent orbits which are
uncorrelated, as will occur whenever the quiver is suffi-
ciently long or the nilpotent orbits are sufficiently
small, which we can view as “independent cases.” Such
“independent/touching cases” fall within the scope of the
long-quiver analysis that we have discussed previously—
the latter just marginally so. We illustrate all four configu-
rations in Fig. 38 for SOð10Þ with partitions μL ¼ μR ¼
½9; 1� going from an “independent” (long) quiver configu-
ration all the way down to a forbidden “crumpled”
configuration.
Following the IIA realization from Sec. IVA, we can

formally perform Hanany-Witten moves even when small
instanton transitions occur by allowing for a negative
number of D6-branes, or in the string-junction picture
by allowing brane/antibrane pairs as intermediate steps in
our analysis. The formula (5.2) generalizes to the other
quiverlike theories with classical algebras:

k1
2
NS5 ≥ Maxfμ1L; μ1Rg þ 1;

rounded up to the nearest even number: ð5:10Þ

⇔ NT ≥ Maxfμ1L; μ1Rg: ð5:11Þ

Here, k1
2
NS5 is the number of half-NS5-branes in the

corresponding type-IIA picture, and it equals 1 plus the
number of tensor multiplets in the UV quiver (NT ¼
2N−4 þ 1) in the UV. One might worry that this becomes
meaningless whenever small instanton transitions occur.
Indeed, the quivers described after such transitions all have
matter with spinor representations, and therefore no per-
turbative type-IIA representation. While we can formally
draw suspended brane diagrams with gauge groups of
negative ranks, physically there is no corresponding sus-
pended brane diagram. However, by analytically continu-
ing the anomaly polynomials of these quivers to the case of
negative ranks, we find perfect agreement with the anomaly
polynomials of the actual, physical theory constructed via F
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(a)

(b)

(c)

(d)

FIG. 38. Holding fixed the partitions μL ¼ μR ¼ ½9; 1�, we can decrease the number of curves to go from a long quiver (where the
deformations are independent) all the way to a forbidden crumpled configuration.
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theory. This gives us strong reason to believe that the rules
for Hanany-Witten moves should likewise carry over to the
formal IIA brane diagrams, which implies that the formal
quiver must be of length at least Maxfμ1L; μ1Rg.
Finally, from the brane/antibrane analysis, we note that

there should not be any residual Ā’s in the IR theories. Any
configuration yielding extra Ā’s that cannot be canceled are
said to “crumple” and are therefore forbidden. This further
restricts the above constraints from Hanany-Witten moves.
As an example, an SOð2NÞ quivers with partitions

μL ¼ μR ¼ ½2N − 1; 1� ð5:12Þ

requires that

k1
2
NS5 ≥ 2N þ 4; ð5:13Þ

which is a strictly stronger lower bound than the one
imposed by Eq. (5.11). This particular example is illus-
trated for SOð10Þ with partitions μL ¼ μR ¼ ½9; 1� in the
“crumpling” example of Fig. 38(d).

3. SOð2NÞ short quivers
As we did in the SUðNÞ case, we now show how to

produce short SOð2NÞ quivers beginning from long ones.
For our first example, we consider the following formal
SOð8Þ quiver:

½5; 3�∶ 1
spð−3Þ

4
soð4Þ

1
spð−1Þ

4
soð7Þ

1 4
soð8Þ

1
spð−1Þ

4
soð4Þ

1
spð−3Þ

∶ ½42�;
ð5:14Þ

which is converted into the following F-theory quiver:

½5; 3�∶ 2
suð2Þ

3
g2
1 3

soð7Þ

½SUð2Þ�
2

suð2Þ
½42�: ð5:15Þ

If we reduce the length by 1, we would get a kissing theory
(that is, every −1 curve has been blown down):

½5; 3�∶ 2
suð2Þ

½Nf¼1�
2

suð3Þ

½SUð2Þ�
2

suð2Þ

½Nf¼1�
½42�: ð5:16Þ

However, if we try to further reduce the length, we will
reach a case that “crumples” due to an excess of Ā’s that
cannot be canceled, and therefore is invalid.
We can also keep the length of the quiver fixed and

follow the RG flows along the nilpotent orbits (we will
discuss this part in more detail in Sec. V C). Consider the
same example, but now increase the right nilpotent orbit
from ½42� to [5, 3]. We still get an “independent” theory:

½5; 3�∶ 2
suð2Þ

3
g2

1
½SUð2Þ�

3
g2

2
suð2Þ

½5; 3�: ð5:17Þ

If we further increase the right nilpotent orbit to [7, 1], we
will instead get a kissing theory:

½5; 3�∶ ½SUð2Þ × SUð2Þ� 2
suð2Þ

2
suð2Þ

2
suð2Þ

½Nf¼3=2�
2½7; 1�: ð5:18Þ

At this step, increasing the left orbit also up to [7, 1] would
give a crumpled configuration, which is not allowed.
We can describe all of this in general using the string

junction picture previously developed. Following our
previous proposal for long-quiver brane pictures, we start
from the outermost curves of the quiver, where we initialize
our nilpotent deformation in terms of the string junction
picture. Then, following the SO=Sp propagation rule, we
propagate the clusters from both sides toward the middle
simultaneously. In the case of short quivers, strings from
both sides might end up touching, sharing different
intermediate layers, in which case the gauge group reduc-
tion effects from both sides add together. For example,
Fig. 39 illustrates the action of μL ¼ ½9; 1�, μR ¼ ½52� for
SOð10Þ in a theory with 11 curves.
We note that we can have new situations that could not

previously occur in long quivers. The first novelty comes
from the fact that levels with so gauge algebra can now be
Higgsed by two Ā’s: one from the left nilpotent deforma-
tion and one from the right. As a result, we get configu-
rations where two antibranes accumulate on the same −4
curve and reduce it to a −2 curve. The resulting gauge
algebra is then given by two applications of the rules for
antibrane reductions given in Sec. IV D. Figure 40 illus-
trates this phenomenon for a pair of theories, which,
respectively, involve the reductions

so7!Ā g2!Ā su3; ð5:19Þ

so6 ≃ su4!Ā su3!Ā su2: ð5:20Þ

The second novelty is that, in the SOð8Þ case, partitions
related by the triality outer automorphism do not neces-
sarily yield the same IR theory. We saw previously that the
long quivers for μ ¼ ½24�I;II and μ ¼ ½3; 15� are identical, as
well as long quivers with deformations μ ¼ ½42�I;II and
μ ¼ ½5; 13�. In the case of a long quiver, both of the ½42� and
½5; 13� deformations reduce the UV theory to the following
IR theory [22]:

2
suð2Þ

3
soð7Þ

½SUð2Þ�
1 4
soð8Þ

…½SOð8Þ�: ð5:21Þ

However, if we go to the short-quiver cases from a UV
theory of three −4 curves, we see that the pairs of ½42�–½42�
and ½42�–½5; 13� both yield the following quiver theory:
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FIG. 39. An SOð10Þ short-quiver brane picture for nilpotent deformations μL ¼ ½9; 1�, μR ¼ ½52�. Additional branes are needed in
order to construct the associated string diagrams, which in turn introduces antibranes (depicted by white circles). The figure is arranged
so that the left deformation starts from the top and propagates downward (in black), while the right deformation starts on the bottom and
propagates upward (in blue). After the blowdown and Higgsing procedures, all but one of the −1 curves are blown down, and the
remaining curves now have self-intersection −2 or −3.
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2
suð2Þ

½Nf¼1=2�
2
g2

½Spð2Þ�
2

suð2Þ

½Nf¼1=2�
: ð5:22Þ

However, the pair of deformations ½5; 13�–½5; 13� gives a
different short-quiver theory:

2
suð2Þ

2
suð4Þ

½SUð4Þ�
2

suð2Þ
: ð5:23Þ

This is a new effect regarding the outer automorphism of
SOð8Þ, which is specific to having a short quiver. The main
point is that is that both the ½42�–½42� and ½42�–½5; 13� pairs
have one or two Ā branes involved, making it possible to
reduce the gauge symmetry to g2, while the ½5; 13�–½5; 13�
pair does not involve Ā branes. Instead, the strings break the
UV gauge group down to soð6Þ ≃ suð4Þ.
These phenomena are recorded in Figs. 43, 44, and 45,

but we show explicitly the string junction pictures in
Fig. 41 for the partitions μL ¼ μR ¼ ½42� vs the partitions
μL ¼ μR ¼ ½5; 13�. In Sec. V B 2, we will justify this
surprising conclusion by an analysis of the anomaly
polynomials for these respective theories.

4. SOðoddÞ case
In general, SOð2N − 1Þ short quivers can be reinter-

preted as SOð2N þ 2Þ short quivers deformed by a pair of
nilpotent orbits. For example, suppose we start from an
SOð7Þ short-quiver UV theory, written as

½SOð7Þ�1 4
soð9Þ

1
spð1Þ

½Nf¼1�
4

soð9Þ
1½SOð7Þ�: ð5:24Þ

This can be reinterpreted as starting from the following
SOð10Þ UV theory:

½SOð10Þ� 1
spð1Þ

4
soð10Þ

1
spð1Þ

4
soð10Þ

1
spð1Þ

½SOð10Þ� ð5:25Þ

and applying the pair of nilpotent deformations
½3; 17�–½3; 17�.
In general, any SOð2N − pÞ quiver with deformations

parametrized by the partitions μoddL , μoddR of 2N − p can be
reinterpreted as an SOð2NÞ quiver with associated parti-
tions μevenL , μevenR obtained by simply adding a “p” to the
partitions μoddL and μoddR , respectively. For instance, for the

(a) (b)

FIG. 40. Two interesting examples where two Ā’s land on the same −4 curve, resulting in a chain of Higgsings that was not previously
observed for long quivers.
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minimal choice p ¼ 3 with μoddL ¼ ½19�, μoddR ¼ ½7; 12�, we
can equivalently express the theory as an SOð12Þ quiver
with μevenL ¼ ½3; 19�, μevenR ¼ ½7; 3; 12�. In this way, the rules
we developed for SOð2NÞ quivers above carry over
straightforwardly to SOð2n − pÞ quivers for p odd.

5. Sp case

We now turn to quiverlike theories in which the flavor
symmetries are a pair of Sp type. The first thing we should
note is that no blowdowns can happen. As a result, there
are no “kissing” or “crumpled” configurations. The only
constraint that needs to be imposed comes from the
Hanany-Witten moves:

NT ≥ Maxfμ1L; μ1Rg; ð5:26Þ

with NT being the number of tensor multiplets in the UV
theory.
The behavior of the Sp short quivers is then the same as

for SOð2NÞ, where the contributions from each side can
overlap, but without any of the complications found due to
small-instanton transitions or antibranes. Indeed, no anti-
branes are necessary for Sp-Sp quivers.

6. Mixed [G]-½G0� case
It is interesting to consider mixed quivers where the left

and right flavors are not equal. The advantage of our

analysis is that it straightforwardly generalizes to these
cases. Indeed, without loss of generality, let M ≤ N; then
(1) Quivers with SUðMÞ-SUðNÞ, M < N flavor sym-

metries are obtained from partitions of N with
μL ¼ ½νiL; N −M� and μR ¼ ½μiR�, where ½νiL� is a
partition of M.

(2) Quivers with SOð2MÞ-SOð2NÞ,M < N flavor sym-
metries are similarly obtained from partitions of 2N
with μL ¼ ½νiL; ðN −MÞ2� and μR ¼ ½μiR�, where ½νiL�
is a partition of 2M.

(3) Quivers with SOðevenÞ-Sp flavors can be viewed as
two SOðevenÞ flavor symmetries with the rightmost
−1 curve decompactified. Small instanton transi-
tions of the interior −1 curves on the righthand side
of this quiver are allowed only if the resulting base is
given by 223 or 23.

(4) Any quiver involving SOðoddÞ flavor symmetries
can be embedded inside an SOðevenÞ quiver, as seen
in Sec. VA 4. Thus, these reduce to the cases above.

B. Anomaly matching for short quivers

In this subsection, we propose a method for computing
the anomalies of short quivers with classical algebras. We
begin by introducing the notion of a “formal SO quiver.”
We then show how these can be useful in determining the
true F-theory quiver of a 6D SCFT via anomaly polynomial
matching. In some cases of short quivers, there is a

(a) (b)

FIG. 41. Nilpotent orbits with μ ¼ ½5; 13� or μ ¼ ½42� yield the same IR theories for long quivers (see Fig. 33, for instance). However,
here we see a clear difference for short quivers.
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mismatch between the anomaly polynomial computed via
the formal SO quiver and the quiver obtained through the
string junction picture described previously. However, this
mismatch seems to take a universal form, indicating that the
string junction approach may nonetheless give the correct
answer, even when there is a disagreement with the formal
quiver approach. We conclude the subsection with illus-
trative examples.

1. Formal SO theories

“Formal” SO quivers involve analytically continuing the
gauge algebra SOð8þmÞ or SpðnÞ so that m, n ≤ 0. This
is only an intermediate step, and the motivation for
introducing such formal quiver is to help determine the
actual F-theory quiver via anomaly polynomial matching
(see Ref. [37] for a detailed construction of such formal
quivers). Here, we present a brief review of how this
is done.
We start from the long-quiver case, where we make a

comparison between a long SOð8Þ quiver theory and its
formal quiver theory and show that the anomaly poly-
nomials between the two agree. The actual F-theory quiver
is obtained by a [5, 3] deformation to the left:

½5; 3�∶ 2
suð2Þ

3
g2
1 4
soð8Þ

� � � 1½SOð8Þ�∶ ½18�: ð5:27Þ

On the other hand, we can also express this in terms of a
formal quiver by allowing for gauge groups with negative
rank:

½5;3�∶ 1
spð−3Þ

4
soð4Þ

1
spð−1Þ

4
soð7Þ

1 4
soð8Þ

� � �1½SOð8Þ�∶ ½18�: ð5:28Þ

If we truncate both of these theories, keeping only the part
of the quiver to the left of the “� � �”, then their anomaly
polynomials are both given by

I8 ¼
6337

168
c2ðRÞ2 þ

25

336
c2ðRÞp1ðTÞ

þ 631

40320
p1ðTÞ2 −

79

1440
p2ðTÞ: ð5:29Þ

In the case of the formal quiver, this anomaly polynomial
computation is performed by analytically continuing the
formula for an Sp-SO quiver to negative gauge group rank
(see Ref. [37]).
This example illustrates the utility of the formal quiver

for anomaly matching. In our short-quiver theories, the
actual F-theory quivers can be difficult to read off, whereas
these formal SO quivers are easy to determine. As a result,
we can use them together with their associated anomaly
polynomials relation to check our proposal for the F-theory
quiver, as described below.
The general formula for formal quivers—both long and

short—is similar to the formula (5.9) for the SU case. We

define the partition of the left and right nilpotent orbits
of SOð2NÞ to be μjL; μ

j
R, and we define their conjugate

partitions ρjL; ρ
j
R. We have an alternating sequence of SO

and Sp gauge algebras on the full tensor branch. Indexing
the gauge algebras by a parameter m which starts with
Spðq1Þ on the left and continues to SOðp2Þ…, and
terminating with an Sp factor, we have the assignments

SOðpmÞ; pm ¼ 2N −
XN0

L

i¼mþ1

ρLi −
XN0

R

j¼NT−mþ2

ρRj ðm evenÞ;

ð5:30Þ

SpðqmÞ; qm ¼ 1

2

�
2N −

XN0
L

i¼mþ1

ρLi −
XN0

R

j¼NT−mþ2

ρRj

�

− 4ðm oddÞ: ð5:31Þ
Here, NT is the number of tensor multiplets in the UV
F-theory description, and N0

L; N
0
R are the lengths of left and

right conjugate partitions, respectively.
Let us illustrate the construction of short-quiver formal

SO theories by starting with a sufficiently long formal
theory and then reducing the length. Consider the SOð8Þ
theory with [5, 3] and ½32; 12� nilpotent deformations and
four −4 curves, so that the pair of deformations does not
overlap:

½5; 3�∶ 1
spð−3Þ

4
soð4Þ

1
spð−1Þ

4
soð7Þ

1 4
soð8Þ

1 4
soð4Þ

1
spð−1Þ

∶ ½32; 12�:
ð5:32Þ

Now we decrease the length of the quiver. In each step, we
start from a shorter UV theory by removing one group of
ð−1;−4Þ curves. We get the following set of theories after
each step:

½5; 3�∶ 1
spð−3Þ

4
soð4Þ

1
spð−1Þ

4
soð7Þ

1 4
soð4Þ

1
spð−1Þ

∶ ½32; 12�; ð5:33Þ

½5; 3�∶ 1
spð−3Þ

4
soð4Þ

1
spð−1Þ

4
soð5Þ

1
spð−2Þ

∶ ½32; 12�: ð5:34Þ
We stop at this point, following the constraints from the

Hanany-Witten moves. We see that the formal gauge
algebra goes down to the unphysical values of spð−3Þ
and soð2Þ.
However, from such a quiver we may still extract its

anomaly polynomial by analytically continuing the for-
mulas developed in the physical regime, spðmÞ; m > 0 and
soðnÞ; n ≥ 8. In the long-quiver case, the anomaly poly-
nomial of the formal quiver exactly matches that of the
actual quiver [37], as in the example in Eqs. (5.27)–(5.29).
This serves as a strong motivation for us to test the
relationship between SO short quivers and their formal
counterparts via anomaly matching.
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2. Anomaly polynomial matching and correction terms

For theories with long quivers, there is a well-defined
prescription in the literature for producing the F-theory
quiver of a given formal type-IIA quiver (see Ref. [37]). For
short-quiver theories, however, the situation becomes much
more complicated, and there is at present no well-defined
proposal in the literature. Nonetheless, the rules we have
introduced in Sec. IV carry over to the case of short quivers,
so we may check that these rules give the correct answer
by comparing the anomaly polynomials of the proposed
short-quiver theories to those obtained from the formal
quiver. This check has been done explicitly for all cases in
Tables II and III in Appendix C.
In general, we find that there is frequently a mismatch in

the p1ðTÞ2 and p2ðTÞ coefficients of the anomaly poly-
nomials computed via the formal quiver vs the actual
F-theory quiver. However, this is not very concerning, as
the mismatch can always be canceled by adding an
appropriate number of neutral hypermultiplets, each of
which contributes ð4p1ðTÞ2 − 7p2ðTÞÞ=5760 to the
anomaly polynomial. Indeed, such a mismatch in short-
quiver theories was previously noted in Ref. [30].
More concerning are the mismatches in the coefficients

of the c2ðRÞ2 coefficient and the c2ðRÞp1ðTÞ coefficient
(denoted α and β, respectively). These mismatches are
relatively rare, arising only in a smaller number of kissing
cases (see Tables II and III in Appendix C). This could be
an indication that these theories are sick and should be
discarded. However, we note that these mismatches seem to
follow a universal set of rules, which indicates that our
proposed F-theory quiver may nonetheless represent an
accurate translation of the formal quiver.
Theories with mismatches always involve two antibranes

acting on a curve carrying an so gauge algebra according to
the rules in Eq. (4.6), and it depends on the size of the gauge
group. In particular, denoting the mismatch in the anomaly
polynomial coefficients α and β by Δα, Δβ, respectively,
we have
(1)

soð8Þ!2Āg2∶ ðΔα;ΔβÞ ¼ ð0; 0Þ ð5:35Þ

[see Fig. 41(a) for an example].
(2)

soð7Þ!2Āsuð3Þ∶ ðΔα;ΔβÞ ¼
�
1

24
;
1

48

�
ð5:36Þ

[see Fig. 40(a) for an example].
(3)

soð6Þ ≃ suð4Þ!2Āsuð2Þ∶ ðΔα;ΔβÞ ¼
�
1

12
;
1

24

�

ð5:37Þ

[see Fig. 40(b) for an example].

(4)

soð5Þ!2Āsuð1Þ∶ ðΔα;ΔβÞ ¼
�
1

6
;
1

12

�
: ð5:38Þ

(5)
All remaining cases∶ ðΔα;ΔβÞ ¼ ð0; 0Þ: ð5:39Þ

Note that the kissing condition and Hanany-Witten con-
straints only allow one −4 curve to have 2 Ā’s simulta-
neously attach to the curve. There is one borderline case
involving soð4Þ gauge symmetry and a pair of Ā’s. In
both long and short quivers, we have a consistent rule

soð4Þ!Ā suð2Þ, but adding an additional Ā brane appears to
be problematic in general. Including this case would
generate a curve without any gauge symmetry, which in
many examples leads to a quiver where the “convexity
condition” required of gauge group ranks is violated. This
is best illustrated with an example. Consider the UV quiver

½116� 1
spð4Þ

4
soð16Þ

1
spð4Þ

4
soð16Þ

1
spð4Þ

4
soð16Þ

1
spð4Þ

½116�:

If we were to naively assume that soð4Þ!2Ā∅ without
crumpling, then the deformation μL ¼ μR ¼ ½72; 12� would
yield the following sick IR theory:

½72; 12� 2
suð2Þ

2
∅

2
suð2Þ

½72; 12�:

From this, we conclude that whenever soð4Þ is hit by two
Ā’s simultaneously, it must crumple, so we forbid these
configurations.
In summary, in cases without a double Ā Higgsing chain

(“all remaining cases”), we never have such a mismatch,
and in many cases with a double Ā Higgsing chain, there is
also no mismatch. There are a few cases where there is a
mismatch, which always involve two Ā’s in the Higgsing
chain. The above proposal has been explicitly verified in
the SOð8Þ and SOð10Þ catalogs of Appendix C.
What is the physical interpretation of these mismatches?

We note that in case (1), where there is no mismatch, the

gauge group is reduced from soð8Þ!2Āg2, and the brane
picture and the string junction root system make perfect
sense. However, when there is a mismatch [as in
cases (2)–(5)], we always start from an SO brane picture
with an orientifold and somehow end up with a SU brane
without an orientifold. We leave further explanation of this
issue for future work.

3. Examples

In this section, we present a number of examples to
demonstrate our procedure of anomaly matching explicitly
and to reveal some of the subtleties of our procedure
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regarding different quiver lengths, different UV gauge
groups, and different types of Higgsing.

(i) Example 1:
We start with the pair of orbits ½5; 13�; ½5; 13� on an

SOð8Þ UV theory with tensor branch given by three
−4 curves. The resulting description in F theory is

2
suð2Þ

2
suð4Þ

½SUð4Þ�
2

suð2Þ
: ð5:40Þ

This theory gives the same anomaly polynomial as
the corresponding formal SO quiver:

½5;13�∶ 1
spð−2Þ

4
soð5Þ

1
spð−1Þ

4
soð6Þ

1
spð−1Þ

4
soð5Þ

1
spð−2Þ

∶ ½5;13�:
ð5:41Þ

The anomaly polynomial reads

I8 ¼
77

4
c2ðRÞ2 −

3

8
c2ðRÞp1ðTÞ þ

73

2880
p1ðTÞ2

−
49

720
p2ðTÞ: ð5:42Þ

(ii) Example 2:
For a second example, we deform the UV theory

of three −4 curves by the pair of orbits of ½42�; ½42�
(our analysis does not distinguish between the two
nilpotent orbits associated with this partition). The
formal theory

½42�∶ 1
spð−3Þ

4
soð4Þ

1
spð−1Þ

4
soð8Þ

1
spð−1Þ

4
soð4Þ

1
spð−3Þ

∶ ½42�
ð5:43Þ

gives the following anomaly polynomial:

463

24
c2ðRÞ2 −

17

48
c2ðRÞp1ðTÞ þ

73

2880
p1ðTÞ2

−
101

1440
p2ðTÞ: ð5:44Þ

If we subtract off the contribution of one neutral

hypermultiplet Ineutral ¼ 7p1ðTÞ2−4p2ðTÞ
5760

, we get the
F-theory quiver anomaly polynomial

IF ¼ Iformal − Ineutral ¼
463

24
c2ðRÞ2 −

17

48
c2ðRÞp1ðTÞ

þ 139

5760
p1ðTÞ2 −

97

1440
p2ðTÞ; ð5:45Þ

which can be obtained from the F-theory quiver:

½42�∶ 2
suð2Þ

½Nf¼1=2�
2
g2

½Spð2Þ�
2

suð2Þ

½Nf¼1=2�
∶½42�: ð5:46Þ

This result is actually quite surprising: the nilpo-
tent deformations considered in these past two
examples are related by triality of SOð8Þ. Indeed,
their long F-theory quivers are identical, and they
have identical anomaly polynomials, even though
their formal quivers differ. However, we have just
seen that their kissing cases actually differ. We have
confirmed this surprising result via anomaly poly-
nomial matching.

(iii) Example 3:
Next, we consider a pair of cases with an anomaly

polynomial mismatch.
(a) Consider the theory with μL ¼ ½7; 1�, μR ¼ ½42�

on an SOð8Þ UV quiver with four −4 curves.
The brane pictures for this example are depicted
in Fig. 40(a). The theory has the following IR
quiver:

½7; 1�∶2 2
suð2Þ

½Nf¼1=2�
2

suð3Þ

½SUð2Þ�
2

suð2Þ

½Nf¼1�
∶½42�: ð5:47Þ

The curve carrying SUð3Þ naively has soð7Þ
gauge algebra, but it is hit by two Ā’s, one
from the right and one from the left. As a result,
the gauge algebra is reduced according to

soð7Þ!2Āsuð3Þ. This puts us in the situation of
rule (2), shown in Eq. (5.36), so we expect an
anomaly correction term of the form
ðΔα;ΔβÞ ¼ ð1=24; 1=48Þ.
Indeed, the formal quiver in this case is

given by

½7; 1�∶ 1
spð−3Þ

4
soð3Þ

1
spð−2Þ

4
soð5Þ

1
spð−1Þ

4
soð7Þ

1
spð−1Þ

4
soð4Þ

1
spð−3Þ

∶½42�: ð5:48Þ

The anomaly polynomial of the F-theory quiver
is given by

IF ¼ 1331

60
c2ðRÞ2 −

5

24
c2ðRÞp1ðTÞ

þ 37

1440
p1ðTÞ2 −

31

360
p2ðTÞ; ð5:49Þ

which is indeed the same as Iformal−c2ðRÞ2=24−
c2ðRÞp1ðTÞ=48−2Ineutral.

(v) Consider the SOð8Þ theory with nilpotent de-
formations ½3; 22; 1� and ½24� on a UV quiver
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with a single −4 curve. The F-theory quiver is
given by

½3; 22; 1�∶ 2
suð3Þ

½SUð6Þ�
∶½24�: ð5:50Þ

Here, we again have one antibrane from both the
left and the right, which collide on the −4 curve

and reduce it as soð7Þ!2Āsuð3Þ. The formal
quiver is given by

½3; 22; 1�∶ 1
spð−2Þ

4
soð7Þ

1
spð−2Þ

∶½24�: ð5:51Þ

The anomaly polynomial of the F-theory quiver
is given by

IF ¼ 47

24
c2ðRÞ2 −

7

48
c2ðRÞp1ðTÞ

þ 31

1920
p1ðTÞ2 −

13

480
p2ðTÞ; ð5:52Þ

which is equal to Iformal − c2ðRÞ2=24−
c2ðRÞp1ðTÞ=48 − 4Ineutral, as expected
from Eq. (5.36).

Note that the rule from Eq. (5.36) has worked correctly for
both examples, despite the difference in size of their
respective quivers.
(iv) Example 4:

As a final example, let us consider a pair of
theories with a similar mismatch in the anomaly
polynomial but different UV gauge groups.
(a) First, we consider the theory with SOð8Þ UV

gauge groups, nilpotent deformations [7, 1] and
[5, 3], and a theory with four −4 curves, whose
brane diagrams are depicted in Fig. 40(b). The
IR quiver takes the form

½7; 1�∶2 2
suð2Þ

½Nf¼3=2�
2

suð2Þ
2

suð2Þ
½SUð2Þ × SUð2Þ�∶½5; 3�:

ð5:53Þ

Here, the middle suð2Þ gauge algebra comes
from two antibranes acting on an soð6Þ. Per
rule (3) [Eq. (5.37)], we expect a mismatch of the
form ðΔα;ΔβÞ ¼ ð1=12; 1=24Þ. Indeed, the for-
mal quiver is given by

½7; 1�∶ 1
spð−3Þ

4
soð3Þ

1
spð−2Þ

4
soð5Þ

1
spð−1Þ

4
soð6Þ

1
spð−1Þ

4
soð4Þ

1
spð−3Þ

∶½5; 3�: ð5:54Þ

The anomaly polynomial of the F-theory quiver
is given by

IF ¼ 1943

120
c2ðRÞ2 −

5

48
c2ðRÞp1ðTÞ

þ 47

1920
p1ðTÞ2 −

41

480
p2ðTÞ; ð5:55Þ

which is indeed the same as Iformal − c2ðRÞ2=
12 − c2ðRÞp1ðTÞ=24 − 2Ineutral.

(b) Finally, consider the SOð10Þ theory with nilpo-
tent deformations ½52�, ½32; 22� on a quiver with
two −4 curves. This gives

½52�∶½SUð2Þ� 2
suð2Þ

2
suð2Þ

½SUð2Þ × SUð2Þ�∶½32; 22�:
ð5:56Þ

The suð2Þ gauge algebra on the right-hand side
again comes from two antibranes acting on
soð6Þ. The formal quiver is given by

½52�∶ 1
spð−3Þ

4
soð4Þ

1
spð−1Þ

4
soð6Þ

1
spð−2Þ

∶½32; 22�: ð5:57Þ

The anomaly polynomial of the F-theory quiver
is given by

IF ¼ 23

6
c2ðRÞ2 −

1

12
c2ðRÞp1ðTÞ þ

11

720
p1ðTÞ2

−
2

45
p2ðTÞ; ð5:58Þ

which is indeed the same as Iformal − c2ðRÞ2=
12 − c2ðRÞp1ðTÞ=24 − 4Ineutral, as expected
from Eq. (5.37).

Note that the rule from Eq. (5.37) has worked correctly for
both examples, despite the difference in size of their
respective quivers as well as their UV gauge groups.
Further examples of anomaly polynomial matching can

be found in the catalogs in Appendix C.

C. Nilpotent hierarchy of short quivers

Using our analysis above, we now determine a partial
ordering for 6D SCFTs based on pairs of nilpotent orbits,
which works in both long and short quivers. We refer to this
as a “double Hasse diagram,” since it generalizes the
independent Hasse diagrams realized by nilpotent orbits
on each side of a long quiver (see Refs. [22,70]) to the case
of a short quiver, where the nilpotent deformations overlap.
We will see that as we reduce the length of the quiver,
several nilpotent orbits will end up generating the same IR
fixed point. Said another way, different pairs of nilpotent
orbits actually give rise to the same IR theory.
Constructing the double Hasse diagrams proceeds in

two steps. First, we apply the product order to the tuple of
left and right partitions μL and μR. It is defined by
ðμL; μRÞ ≼ ðνL; νRÞ, which holds if and only if μL ≼ νL
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and μR ≼ νR. However, because several deformations in the
UV can flow to the same IR theory, we refine this partial
ordering in the second step by merging all partitions which
result in the same IR quiver. We obtain the same result from
a microscopic perspective by appropriately adding strings
to the left and right sides of the string junction picture,
exactly as we did for the long quivers.

1. Example: SUð4Þ
As a first example, we consider an SUð4Þ double Hasse

diagram. We begin with the UV theory:

½14�∶ 2
suð4Þ

½SUð4Þ�
2

suð4Þ
2

suð4Þ

½SUð4Þ�
∶½14�: ð5:59Þ

Then we turn on nilpotent deformations on both sides,
as in the single-sided versions that were plotted in
Ref. [22]. Note that SUð4Þ only has five nilpotent orbits
—½14�; ½2; 12�; ½22�; ½3; 1�; ½4�—but the ½4� orbit is prohibited
on N−2 ¼ NT ¼ 3 curves by the Hanany-Witten moves
constraint of Eq. (5.2). We are then left with the double
Hasse diagram of Fig. 42. This generalizes straightfor-
wardly to all SUðNÞ quivers.

2. Example: SOð8Þ
Next, we look at the double Hasse diagrams for the

SOð8Þ UV theories. For SOð2NÞ; N > 4 the story is

similar, but we choose to illustrate with SOð8Þ for sim-
plicity. We look at UV quivers with one, two and three −4
curves, respectively:

½18�∶ 1
½SOð8Þ�

4
soð8Þ

1
½SOð8Þ�

∶½18�; ð5:60Þ

½18�∶ 1
½SOð8Þ�

4
soð8Þ

1 4
soð8Þ

1
½SOð8Þ�

∶½18�; ð5:61Þ

½18�∶ 1
½SOð8Þ�

4
soð8Þ

1 4
soð8Þ

1 4
soð8Þ

1
½SOð8Þ�

∶½18�: ð5:62Þ

The associated double Hasse diagrams are shown in
Figs. 43, 44, and 45. We see that as the number of curves
decreases, the Hanany-Witten constraints forbid more and
more deformations that were allowed in the long quiver. In
each diagram, we highlight in red the “kissing” configu-
rations which have all of their −1 curves blown down. We
also use dashed lines to indicate theories with an anomaly
polynomial mismatch with their associated formal quiver,
and we denote flows to these theories with dashed lines.
It is worth pausing here to elaborate on a surprising point

noted in example 2 of Sec. V B 3 above: SOð8Þ nilpotent
orbits related by triality always give the same long-quiver
theory, but they do not always generate the same short-
quiver theory. When they do yield the same quiver, they are

FIG. 42. Half of the double Hasse diagram of SUð4Þ short quivers. The full diagram is obtained by reflection across the leftmost nodes,
as the quivers can always be flipped under the reflection μL ↔ μR.
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drawn in the same box, but when they give rise to distinct
theories, we use separate boxes to denote them.
As an example in which the two disagree, consider the

short quivers ½3; 15�–½3; 15� and ½24�–½3; 15� on a UV quiver
with a single −4 curve. These yield, respectively,

½3; 15�∶ 2
su4½SUð8Þ�∶½3; 15�; ð5:63Þ

½24�∶2
g2½Spð4Þ�∶½3; 15�: ð5:64Þ

For the first case, with ½3; 15�–½3; 15�, there are two double
strings stretching on the middle curve, so the original so8 is
Higgsed to so6 ≃ su4. On the other hand, the quiver with
½24�–½3; 15� has a single double string stretching on the
middle curve (coming from the right deformation) and one
extra Ā coming from the left, so the original so8 is Higgsed

to so7!Ā g2.

The rules that lead us to these quivers can be verified in
other examples as well. For instance, consider an SOð10Þ
theory with three −4 curves in the UV quiver, deformed
by μL ¼ ½7; 13�, μR ¼ ½5; 3; 12�. The resulting theory is
given by

½7; 13�∶ 2
suð2Þ

2
suð4Þ

½SUð4Þ�
2

suð2Þ
∶½5; 3; 12�: ð5:65Þ

In the brane picture, the suð4Þ on the middle −2 curve
comes from two double strings, one each from the left and
right, exactly parallel to the ½3; 15�–½3; 15� case above.
Similarly, for μL ¼ ½7; 3�, μR ¼ ½5; 3; 12�, the kissing

theory is given by

2
suð2Þ

½Nf¼1=2�
2
g2

½Spð2Þ�
2

suð2Þ

½Nf¼1=2�
: ð5:66Þ

FIG. 43. Double Hasse diagram for SOð8Þ short-quiver theories with one −4 curve in the UV theory. This diagram is again half of a
full figure, following the same convention as in Fig. 42. “Kissing” configurations are highlighted in red. For concision, several pairs of
nilpotent deformations that yield the same IR theory are written in the same box. We separate partitions with semicolons μL; νL-μR; νR to
denote all possible combinations μL-μR, μL-νR, νL-μR, and νL-νR. On the other hand, slashes denote one-to-one pairings, so
μL=νL-μR=νR means μL-μR and νL-νR only. We also mark theories with ðΔα;ΔβÞ anomaly mismatches with dashed frames and draw the
RG flows toward these cases using red dashed arrows. Note that, whenever there is a dashed frame with more than one possible pair of
nilpotent orbits, at least one pair of nilpotent orbits out of them has a ðΔα;ΔβÞ anomaly mismatch, and in some cases not all of them
have such mismatches. See Table II for more details of anomaly mismatches in SOð8Þ short-quiver theories.
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The second −2 curve now has a g2 gauge algebra, which in
the brane picture comes from a single double string coming
from one side and an extra Ā coming from the other, just as
in the case of the ½24�–½3; 15� theory above.
This example nicely illustrates the utility of the string

junction approach for determining the nilpotent hierarchy
of short quivers, as the short quivers in two cases (which are
different) cannot be determined unambiguously from their
associated long quivers alone (which are identical).
Finally, it is also worth noting that additional RG flows

have opened up in these short quivers that were not available
in the case of long quivers. For instance, in an SOð8Þ long
quiver of fixed size, there is no RG flow from the theory with
μL ¼ ½3; 22; 1�; μR ¼ ½18� to the theory with μ0L ¼ μ0R ¼ ½24�,
because although μR ≼ μ0R, we also have μL⋠μ0L.
However, for a sufficiently short quiver with these

nilpotent orbits, there is a flow from the former to the
latter. In particular, there is a flow from

½3; 22; 1�∶ 3
g2

½Spð1Þ�
1
½F4�

∶½18� ð5:67Þ

to the theory

½24�∶ 2
g2

½Spð4Þ�
∶½24�: ð5:68Þ

This is related to the fact that short quivers are often
degenerate: in particular, the theory of Eq. (5.68) can also
be realized by the nilpotent orbits μ0L ¼ ½3; 22; 1�,
μ0R ¼ ½22; 14�, which do satisfy μR ≼ μ0R, μL ≼ μ0L.

D. Flavor symmetries

The structure of nilpotent orbits also provides a helpful
guide to the analysis of flavor symmetries in 6D SCFTs
[22]. Given a nilpotent orbit, the commutant subalgebra
specifies an unbroken symmetry inherited from the UV. For
the classical groups, the resulting flavor symmetry algebra
associated with a given nilpotent orbit is given simply in
terms of the data of partition (see, e.g., Ref. [62]):

FIG. 44. Double Hasse diagram of SOð8Þ short-quiver theories over two −4 curves in the UV theory. The notation is the same as in
Fig. 43.
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s½⊕i uðriÞ� when g ¼ suðNÞ;
⊕iodd soðriÞ ⊕⊕ieven spðri=2Þ
when g ¼ soð2N þ 1Þ or soð2NÞ;

⊕iodd spðri=2Þ ⊕⊕ieven soðriÞ when g ¼ spðNÞ:
ð5:69Þ

In a long quiver, the flavor symmetry inherited from the
parent UV theory is thus given by the products of these
flavor symmetries. For short quivers, on the other hand, we
typically observe enhancements of the flavor symmetry
whenever flavors coming from the left and from the right
end up sharing the same node. As usual, this is easiest to see
in theories with su gauge symmetries. Here, if flavor
symmetries ½SUðmÞ�L and ½SUðnÞ�R share the same node,
the symmetry enhances from ½SUðmÞ� × ½SUðnÞ� to
½SUðmþ nÞ�. For SO=Sp quivers without any small
instanton transitions, flavor symmetries of ½SOðmÞ�L and

½SOðnÞ�R get enhanced to ½SOðmþ nÞ�, and similarly for
the Sp cases. To illustrate this fact, we start with the theory

½3; 2�∶ 2
suð2Þ

2
suð4Þ

½Nf¼1�
2

suð5Þ

½Nf¼1�
2

suð5Þ

½SUð2Þ�
2

suð3Þ

½Nf¼1�
∶½22; 1�: ð5:70Þ

We can then shorten the quiver to have only four curves:

½3; 2�∶ 2
suð2Þ

2
suð4Þ

½Nf¼1�
2

suð5Þ

½SUð3Þ�
2

suð3Þ

½Nf¼1�
∶½22; 1�: ð5:71Þ

After this first step, we already see an enhancement: the
½SUð3Þ� factor comes from two components: SUð2Þ from
the left and Uð1Þ from the right. Removing yet another
curve, we have

½3; 2�∶ 2
suð2Þ

2
suð4Þ

½SUð3Þ�
2

suð3Þ

½SUð2Þ�
∶½22; 1�: ð5:72Þ

FIG. 45. Double Hasse diagram of SOð8Þ short-quiver theories over three −4 curves in the UV theory. The notation is the same as in
Fig. 43.
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Here the enhancement is even greater. Indeed, both
of the ½SUð3Þ� and ½SUð2Þ� flavors come from similar
enhancements.
Ignoring Abelian factors, enhancements occur in the

following two cases:
(1) When flavor symmetries coming from the left and

from the right end up sharing the same node.
(2) When a −1 curve has its surrounding gauge sym-

metry lowered by short-quiver effects (as detailed
below). This can happen either for a −1 at the edge
of the quiver or in the interior.

As a first example of the former, consider the theory with
nilpotent orbits ½3; 15� and ½24� on an SOð8ÞUV quiver with
two −4 curves:

2
g2

½Spð4Þ�
: ð5:73Þ

We see that the flavor symmetry Spð2Þ × Spð2Þ present in
the case of a long quiver has been enhanced to Spð4Þ.
As another example of the former case, consider the theory

with nilpotent orbits μL ¼ μR ¼ ½3; 12N−3� on an SOð2NÞ
quiver with one −4 curve, which can equivalently be
regarded as an SOð2N − 3Þ quiver with μL ¼ μR ¼ ½12N−3�:

½SOð2N − 2Þ� 1
spðN−5Þ

4
soð2N−2Þ

1
spðN−5Þ

½SOð2N − 2Þ�: ð5:74Þ
We see that the flavor symmetries of the left and right have
been enhanced from SOð2N − 3Þ to SOð2N − 2Þ.
Finally, as an example of the latter case, consider the

theory of nilpotent orbits [7, 1] and ½18� on an SOð8Þ UV
quiver with three −4 curves:

2 2
suð2Þ

3
g2
1½F4�: ð5:75Þ

The flavor symmetry on the right has been enhanced from
SOð8Þ to F4.
In all cases, we find that the flavor symmetry of a short

quiver is enhanced relative to the flavor symmetry of a long
quiver associated with the same nilpotent deformations.

VI. CONCLUSIONS

In this paper, we have developed general methods for
determining the structure of Higgs branch RG flows in 6D
SCFTs. In particular, we have analyzed several aspects of
VEVs for “conformal matter.” We have seen that the entire
nilpotent cone of a simple Lie algebra, including its
structure as a partially ordered set, can be obtained from
simple combinatorial data connected with string junctions
stretched between bound states of 7-branes. Recombination
moves involving intersecting branes as well as brane/
antibrane pairs fully determine the Higgs branch of quiver-
like 6D SCFTs with classical gauge algebras. An added
benefit of this approach is that it also extends to short-
quiver-like theories where Higgsing from different

nilpotent orbits leads to correlated symmetry-breaking
constraints. In the remainder of this section, we discuss
some other potential areas for future investigation.
In this paper, we have primarily focused on Higgsing in

quiverlike theories with classical algebras. We have also
seen that we can understand the nilpotent cone of the
E-type algebras using multipronged string junctions. This
suggests that by including additional 7-brane recombina-
tion effects, it should be possible to cover these cases as
well. This would provide a nearly complete picture of
Higgs branch flows for 6D SCFTs engineered via F theory.
This work has primarily focused on the case of 6D

SCFTs in which Higgs branch deformations can be under-
stood in terms of localized T-brane deformations of a non-
compact 7-brane. We have already noted how “semisimple”
deformations fit into this picture. The other class of Higgs
branch deformations which appear quite frequently involve
discrete group homomorphisms from finite subgroups of
SUð2Þ into E8 [5,39,40]. Obtaining an analogous corre-
spondence in this case would cover another broad class of
Higgs branch deformations in 6D SCFTs.
The main emphasis of this work has centered on

combinatorial data connected with Higgs branch flows
and 7-brane recombination. That being said, it is also clear
that explicit complex structure deformations of the asso-
ciated F-theory models should describe some of these
deformations as well, a point which deserves to be clarified.
Lastly, the overarching aim in this work has been to

better understand the structure of all possible 6D RG flows
obtained from deformations of different conformal fixed
points. The fact that we now have a fairly systematic way to
also understand deformations of short quivers suggests that
the time may be ripe to obtain a full classification of such
RG flows.
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APPENDIX A: PARTIAL ORDERING FOR
NILPOTENT ORBITS

In this Appendix, we review some aspects of nilpotent
orbits of simple Lie algebras and their partial ordering. We
refer the interested reader to Ref. [71] for further details.
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The general linear group GLðN;CÞ acts on its Lie
algebra gln of all complex n × n matrices by conjugation;
the orbits are similarity classes of matrices. The theory of
the Jordan form gives a satisfactory parametrization of
these classes and allows us to regard two kinds of classes as
distinguished: those represented by diagonal matrices, and
those represented by strictly upper triangular matrices—
i.e., nilpotent matrices. There are only finitely many
similarity classes of nilpotent matrices, which are labeled
by partitions of n. There is a similar parametrization of
nilpotent orbits by partitions in any classical semisimple
Lie algebra, with some additional restrictions imposed.
Semisimple orbits are parametrized by points in a

fundamental domain for the action of the Weyl group on
a Cartan subalgebra. In particular, there are infinitely many
semisimple orbits.

1. Weighted Dynkin diagrams

Associated with each nilpotent orbit is a unique (com-
pletely invariant) weighted Dynkin diagram [71]. In gen-
eral, the Dynkin labels αiðHÞ, 1 ≤ i ≤ rankðGÞ of a
weighted Dynkin diagram are defined by the commutator
relation:

½H;Xi� ¼ αiðHÞXi; ðA1Þ

where the Xi’s are the raising operators corresponding to
the positive simple roots of g, and H is directly constructed
from the partition d ¼ ½d1;…; dn� associated with the
nilpotent orbit as follows:

H½d1;…;dn� ¼

0
BBBBB@

Dðd1Þ 0 � � � 0

0 Dðd2Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � DðdkÞ

1
CCCCCA
; ðA2Þ

where

DðdiÞ ¼

0
BBBBBBBBBB@

di − 1 0 0 � � � 0 0

0 di− 3 0 � � � 0 0

0 0 di −5 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � −diþ 3 0

0 0 0 � � � 0 −diþ 1

1
CCCCCCCCCCA
:

ðA3Þ

The nilpositive element X in the fH;X; Yg Jacobson-
Morozov standard triple is then given by

X½d1;…;dn� ¼

0
BBBBB@

Jþðd1Þ 0 � � � 0

0 Jþðd2Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � JþðdkÞ

1
CCCCCA
; ðA4Þ

where now

Jþi;jðdmÞ ¼ δiþ1;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
idm − i2

q
¼

0
BBBBBBBBBBBBB@

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dm − 1

p
0 0 � � � 0 0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dm − 4

p
0 � � � 0 0

0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3dm − 9

p � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 � � � 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dm − 4

p
0

0 0 0 � � � 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dm − 1

p

0 0 0 � � � 0 0 0

1
CCCCCCCCCCCCCA

; ðA5Þ

and similarly the nilnegative element Y is given by

Y ½d1;…;dn� ¼

0
BBBBB@

J−ðd1Þ 0 � � � 0

0 J−ðd2Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � J−ðdkÞ

1
CCCCCA
; ðA6Þ

where J− ¼ ðJþÞ† so that Y ¼ X†:

J−i;jðdmÞ ¼ δjþ1;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdm − j2

q
: ðA7Þ

Direct matrix multiplication then gives the required
commutation relations:

½X; Y� ¼ H;

½H;X� ¼ 2X;

½H; Y� ¼ −2Y: ðA8Þ
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This nilpositive matrix is similar to the nilpotent matrix
XO we used to generate the partition in the first place.
Indeed, any two matrices with the same Jordan block
decomposition (and therefore corresponding to the same
partition) are similar matrices and thus belong to the same
nilpotent orbit.
As a summary, the following are equivalent:
(1) A nilpotent orbit.
(2) A given Bala-Carter label.
(3) A corresponding set of simple roots generating the

Levi subalgebra and one or more positive roots (Xαi )
for the distinguished orbits.

(4) A corresponding partition.
(5) An fH;X; Yg Jacobson-Morozov standard triple,

where H is explicitly built out of the partitions as
described above and X is similar to the sum of the
Xαi specified in our brane diagrams.

(6) A weighted Dynkin diagram with weights αiðHÞ
given by the relation ½H;Xi� ¼ αiðHÞXi for H
defined above in the standard Jacobson-Morozov
triple and the Xi’s being the positive simple roots.

Finally, we remark that the dimension of the orbit is
given by

dimðOÞ ¼ dimðgÞ − dimðg0Þ − dimðg1Þ; ðA9Þ

where

gj ¼ fZ ∈ gj½H;Z� ¼ jZg: ðA10Þ

APPENDIX B: REVIEW OF ANOMALY
POLYNOMIAL COMPUTATIONS

In this Appendix, we briefly review the computation of
the anomaly polynomial I8 for any 6D SCFT, as originally
developed in Ref. [46]. For explicit step-by-step examples
of anomaly polynomial computations, we refer the inter-
ested reader to Sec. 7.1 of Ref. [11].
In a theory with a well-defined tensor branch and

conventional matter, the anomaly polynomial can be
viewed as a sum of two terms, a one-loop term and a
Green-Schwarz term:

I8 ¼ I1-loop þ IGS: ðB1Þ
The full anomaly polynomial of a 6D SCFT takes the form

I8 ¼ αc2ðRÞ2 þ βc2ðRÞp1ðTÞ þ γp1ðTÞ2 þ δp2ðTÞ

þ
X
i

½μiTrF4
i þ TrF2

i

�
ρip1ðTÞ þ σic2ðRÞ

þ
X
j

ηijTrF2
j

��
: ðB2Þ

Here, c2ðRÞ is the second Chern class of the SUð2ÞR
symmetry, p1ðTÞ is the first Pontryagin class of the tangent

bundle, p2ðTÞ is the second Pontryagin class of the tangent
bundle, and Fi is the field strength of the ith symmetry,
where i and j run over the flavor symmetries of the theory.
The one-loop term receives contributions from free

tensor multiplets, vector multiplets, and hypermultiplets:

Itensor ¼
c2ðRÞ2
24

þ c2ðRÞp1ðTÞ
48

þ 23p1ðTÞ2 − 116p2ðTÞ
5760

;

ðB3Þ

Ivector ¼ −
tradjF4 þ 6c2ðRÞtradjF2 þ dGc2ðRÞ2

24

−
tradjF2 þ dGc2ðRÞp1ðTÞ

48

− dG
7p1ðTÞ2 − 4p2ðTÞ

5760
; ðB4Þ

Ihyper ¼
trρF4

24
þ trρF2p1ðTÞ

48
þ dρ

7p1ðTÞ2 − 4p2ðTÞ
5760

:

ðB5Þ

Here, trρ is the trace in the representation ρ, dρ is the
dimension of the representation ρ, and dG is the dimension
of the group G. In computing the anomaly polynomial, one
should convert the traces in general representations to the
trace in a defining representation. One may write

trρF4 ¼ xρTrF4 þ yρðTrF2Þ2; ðB6Þ

trρF2 ¼ IndρTrF2; ðB7Þ

with xρ, yρ, and Indρ being well-known constants in group
theory, which can be found in the appendixes of Refs. [46]
or [11]. For the adjoint representation, Indρ is also known as
the dual Coxeter number, h∨G. Note that the groups SUð2Þ,
SUð3Þ, G2, F4, E6, E7, and E8 do not have an independent
quartic Casimir TrF4, so xρ ¼ 0 for all representations of
these groups.
The Green-Schwarz term takes the form

IGS ¼
1

2
AijIiIj; ðB8Þ

where Aij is a negative-definite matrix given by the inverse
of the Dirac pairing on the string charge lattice. The term Ii
can be written as

Ii ¼ aic2ðRÞ þ bip1ðTÞ þ
X
j

cijTrF2
j : ðB9Þ

The coefficients ai, bi, and cij are chosen so that the gauge
anomalies ðTrF2

i Þ2 and mixed gauge-gauge or gauge-global
anomalies [e.g., TrF2

iTrF
2
j , TrF2

i c2ðRÞ, TrF2
i p1ðTÞ]
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vanish. In other words, these anomalies must precisely
cancel between the Green-Schwarz term and the one-loop
term. In practice, one need not compute the individual Ii’s:
one can simply complete the square with respect to the
quadratic Casimir TrF2

i of each of the gauge groups in turn.
This is guaranteed to cancel out the gauge anomalies and
mixed gauge anomalies, and what is left is simply the total
anomaly polynomial I8.

APPENDIX C: CATALOGS OF SHORT-QUIVER
THEORIES

In this Appendix, we present explicit catalogs of “kissing
cases” for SOð8Þ and SOð10Þ short-quiver theories, each

under a particular UV gauge group but varying UV length.
For each case, we give the exact “kissing case,” together
with the “preceding theory” obtained from the nilpotent
orbit but with a slightly longer quiver to illustrate how such
collisions between the nilpotent deformations take place.
As in Ref. [30], we may compute the anomaly polynomial
of the kissing theory directly, but we can also compute it via
analytic continuation from a formal type-IIA quiver. In
most cases, this procedure gives the same result, but in
some cases, there is an additional correction term, which
we display in the right-hand columns of the following
tables. This additional correction term can also be read off
from the brane picture, as explained in Sec. V B 2.

TABLE II. A catalog for SOð8Þ kissing short-quiver cases, their preceding longer theory, and the relevant terms for anomaly matching.
The OL;R columns correspond to the left and right deformations. Here Δα ¼ αformal − αF, and likewise for Δβ. The “Preceding theory”
column gives the theory whose length is one longer than the kissing theory, under the same pair of nilpotent orbits. The “Theory”
column gives the actual deformed short-quiver theory, while the #In column stands for the number of anomaly of neutral hypermultiplets
to be added to the F-theory quiver in order to match the coefficients γ and δ of the formal quiver. The last entry indicates that there is an
SUð2Þ ⊂ Spð2ÞR flavor symmetry. By this, we mean that the IR theory ends up flowing to a theory with N ¼ ð2; 0Þ supersymmetry,
where the R-symmetry group is Spð2ÞR. Viewed as an N ¼ ð1; 0Þ SCFT, there is an SUð2Þ flavor symmetry and an SUð2ÞR R
symmetry.

OL OR Preceding theory Kissing theory #In Δα Δβ

[7, 1] [7, 1]
2 2
suð2Þ

3
g2

1
½SUð2Þ�

3
g2

2
suð2Þ

2 2 2
suð2Þ

½Nf¼3=2�
2

suð2Þ

½SUð2Þ�
2

suð2Þ

½Nf¼3=2�
2

2 1
12

1
24

[7, 1] ½42�
2 2
suð2Þ

3
g2
1 3

soð7Þ

½SUð2Þ�
2

suð2Þ
2 2

suð2Þ

½Nf¼1=2�
2

suð3Þ

½SUð2Þ�
2

suð2Þ

½Nf¼1�

2 1
24

1
48

[7, 1] ½5; 13�
2 2
suð2Þ

3
g2
1 3

soð7Þ

½SUð2Þ�
2

suð2Þ
2 2

suð2Þ

½Nf¼1=2�
2

suð3Þ

½SUð2Þ�
2

suð2Þ

½Nf¼1�

2 0 0

[7, 1] [5, 3]
2 2
suð2Þ

3
g2

1
½SUð2Þ�

3
g2

2
suð2Þ

2 2
suð2Þ

½Nf¼3=2�
2

suð2Þ
2

suð2Þ
½SUð2Þ × SUð2Þ� 2 1

12
1
24

½42� ½42�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1 3

soð7Þ

½SUð2Þ�
2

suð2Þ
2

suð2Þ

½Nf¼1=2�
2
g2

½Spð2Þ�
2

suð2Þ

½Nf¼1=2�

2 0 0

½5; 13� ½42�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1 3

soð7Þ

½SUð2Þ�
2

suð2Þ
2

suð2Þ

½Nf¼1=2�
2
g2

½Spð2Þ�
2

suð2Þ

½Nf¼1=2�

1 0 0

½5; 13� ½5; 13�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1 3

soð7Þ

½SUð2Þ�
2

suð2Þ
2

suð2Þ
2

suð4Þ

½SUð4Þ�
2

suð2Þ 0 0 0

[5, 3] ½42�
2

suð2Þ
3
g2
1 3

soð7Þ

½SUð2Þ�
2

suð2Þ
2

suð2Þ

½Nf¼1�
2

suð3Þ

½SUð2Þ�
2

suð2Þ

½Nf¼1�

2 1
24

1
48

[5, 3] ½5; 13�
2

suð2Þ
3
g2
1 3

soð7Þ

½SUð2Þ�
2

suð2Þ
2

suð2Þ

½Nf¼1�
2

suð3Þ

½SUð2Þ�
2

suð2Þ

½Nf¼1�

2 0 0

[5, 3] [5, 3]
2

suð2Þ
3
g2

1
½SUð2Þ�

3
g2

2
suð2Þ

½SUð2Þ × SUð2Þ� 2
suð2Þ

2
suð2Þ

2
suð2Þ

½SUð2Þ� 2 1
12

1
24

[7, 1] ½22; 14�
2 2
suð2Þ

3
g2
1 3

soð8Þ

½SUð2Þ⊗3�
2 2
suð2Þ

2
g2½Spð3Þ� 2 0 0

[7, 1] ½24�
2 2
suð2Þ

3
g2
1 3

soð7Þ

½Spð2Þ�
2 2

suð2Þ

½Nf¼1=2�
2

suð3Þ
½SUð4Þ� 3 1

24
1
48

[7, 1] ½3; 15�
2 2
suð2Þ

3
g2
1 3

soð7Þ

½Spð2Þ�
2 2

suð2Þ

½Nf¼1=2�
2

suð3Þ
½SUð4Þ� 4 0 0

(Table continued)
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TABLE II. (Continued)

OL OR Preceding theory Kissing theory #In Δα Δβ

[7, 1] ½3; 22; 1�
2 2
suð2Þ

3
g2

1
½SUð2Þ�

3
g2

½SUð2Þ�
2 2

suð2Þ

½Nf¼3=2�
2

suð2Þ
½SUð2Þ × SUð2Þ� 4 1

12
1
24

[7, 1] ½32; 12�
2 2
suð2Þ

3
g2

1
½SUð3Þ�

3
suð3Þ

2 2
suð2Þ

½SUð3Þ�
2

4 1
6

1
12

½42� ½22; 14�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1 3

soð8Þ

½SUð2Þ⊗3�
2

suð2Þ
2

soð7Þ
½Spð3Þ × Spð1Þ� 1 0 0

½42� ½24�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1 3

soð7Þ

½Spð2Þ�
2

suð2Þ

½Nf¼1=2�
2
g2½Spð3Þ� 3 0 0

½42� ½3; 15�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1 3

soð7Þ

½Spð2Þ�
2

suð2Þ

½Nf¼1=2�
2
g2½Spð3Þ� 2 0 0

½42� ½3; 22; 1�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1 3

g2

½SUð2Þ�
2

suð2Þ

½Nf¼1�
2

suð3Þ
½SUð4Þ� 3 1

24
1
48

½42� ½32; 12�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1

½SUð2Þ�
3

suð3Þ
½SUð2Þ� 2

suð2Þ
2

suð2Þ
½SUð2Þ × SUð2Þ� 4 1

12
1
24

½5; 13� ½22; 14�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1 3

soð8Þ

½SUð2Þ⊗3�
2

suð2Þ
2

soð7Þ
½Spð3Þ × Spð1Þ� 0 0 0

½5; 13� ½24�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1 3

soð7Þ

½Spð2Þ�
2

suð2Þ

½Nf¼1=2�
2
g2½Spð3Þ� 1 0 0

½5; 13� ½3; 15�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1 3

soð7Þ

½Spð2Þ�
2

suð2Þ
2

suð4Þ
½SUð6Þ� 0 0 0

½5; 13� ½3; 22; 1�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1 3

g2

½SUð2Þ�
2

suð2Þ

½Nf¼1�
2

suð3Þ
½SUð4Þ� 2 0 0

½5; 13� ½32; 12�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1

½SUð2Þ�
3

suð3Þ
½SUð2Þ� 2

suð2Þ
2

suð2Þ
½SUð2Þ × SUð2Þ� 4 0 0

[5, 3] ½22; 14�
2

suð2Þ
3
g2
1 3

soð8Þ

½SUð2Þ⊗3�
2

suð2Þ

½Nf¼1=2�
2
g2½Spð3Þ� 2 0 0

[5, 3] ½24�
2

suð2Þ
3
g2
1 3

soð7Þ

½Spð2Þ�
2

suð2Þ

½Nf¼1�
2

suð3Þ
½SUð4Þ� 3 1

24
1
48

[5, 3] ½3; 15�
2

suð2Þ
3
g2
1 3

soð7Þ

½Spð2Þ�
2

suð2Þ

½Nf¼1�
2

suð3Þ
½SUð4Þ� 4 0 0

[5, 3] ½3; 22; 1�
2

suð2Þ
3
g2

1
½SUð2Þ�

3
g2

½SUð2Þ�
½SUð2Þ� 2

suð2Þ
2

suð2Þ
½SUð2Þ × SUð2Þ� 4 1

12
1
24

[5, 3] ½32; 12�
2

suð2Þ
3
g2

1
½SUð3Þ�

3
suð3Þ

½G2� 2
suð2Þ

2
4 1

6
1
12

½22; 14� ½22; 14�
3

soð8Þ

½SUð2Þ⊗3�
1 3

soð8Þ

½SUð2Þ⊗3�
2

soð8Þ
½Spð2Þ × Spð2Þ × Spð2Þ� 0 0 0

½24� ½22; 14�
3

soð7Þ

½Spð2Þ�
1 3

soð8Þ

½SUð2Þ⊗3�
2

soð7Þ
½Spð4Þ × Spð1Þ� 1 0 0

½3; 15� ½22; 14�
3

soð7Þ

½Spð2Þ�
1 3

soð8Þ

½SUð2Þ⊗3�
2

soð7Þ
½Spð4Þ × Spð1Þ� 0 0 0

½24� ½24�
3

soð7Þ

½Spð2Þ�
1 3

soð7Þ

½Spð2Þ�
2
g2½Spð4Þ� 4 0 0

½3; 15� ½24�
3

soð7Þ

½Spð2Þ�
1 3

soð7Þ

½Spð2Þ�
2
g2½Spð4Þ� 2 0 0

½3; 15� ½3; 15�
3

soð7Þ

½Spð2Þ�
1 3

soð7Þ

½Spð2Þ�
2

suð4Þ
½SUð8Þ� 0 0 0

(Table continued)
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TABLE II. (Continued)

OL OR Preceding theory Kissing theory #In Δα Δβ

½3; 22; 1� ½22; 14�
3
g2

½SUð2Þ�
1 3

soð8Þ

½SUð2Þ⊗3�
2
g2½Spð4Þ� 2 0 0

½3; 22; 1� ½24�
3
g2

½SUð2Þ�
1 3

soð7Þ

½Spð2Þ�
2

suð3Þ
½SUð6Þ� 4 1

24
1
48

½3; 22; 1� ½3; 15�
3
g2

½SUð2Þ�
1 3

soð7Þ

½Spð2Þ�
2

suð3Þ
½SUð6Þ� 4 0 0

½3; 22; 1� ½3; 22; 1�
3
g2

½SUð2Þ�
1

½SUð2Þ�
3
g2

½SUð2Þ� 2
suð2Þ

½SOð7Þ� 6 1
12

1
24

½32; 12� ½22; 14�
3

suð3Þ
1 3

soð8Þ

½SUð2Þ⊗3�
2

suð3Þ
½SUð6Þ� 4 0 0

½32; 12� ½24�
3

suð3Þ
1

½SUð2Þ�
3

soð7Þ

½Spð2Þ�
2

suð2Þ
½SOð7Þ� 6 1

12
1
24

½32; 12� ½3; 15�
3

suð3Þ
1

½SUð2Þ�
3

soð7Þ

½Spð2Þ�
2

suð2Þ
½SOð7Þ� 8 0 0

½32; 12� ½3; 22; 1�
3

suð3Þ
1

½SUð3Þ�
3
g2

½SUð2Þ�

2½SUð2Þ ⊂ Spð2ÞR� 7 1
6

1
12

TABLE III. SOð10Þ short-quiver tangential cases, in parallel to Table II. See Table II for conventions and notation.

OL OR Preceding theory Kissing theory #In Δα Δβ

[9, 1] [9, 1]
2 2
suð2Þ

3
g2
1 4
soð8Þ

13
g2

2
suð2Þ

2 2 2
suð2Þ

½Nf¼1=2�
2

suð3Þ

½Nf¼1�
2

suð3Þ

½Nf¼1�
2

suð2Þ

½Nf¼1=2�
2

1 0 0

[9, 1] ½7; 13�
2 2
suð2Þ

3
g2
1 4
soð8Þ

1 3
soð7Þ

½SUð2Þ�
2

suð2Þ
2 2

suð2Þ

½Nf¼1=2�
2

suð3Þ
2

suð4Þ

½SUð3Þ�
2

suð2Þ 0 0 0

[9, 1] [7, 3]
2 2
suð2Þ

3
g2
1 4
soð8Þ

13
g2

2
suð2Þ

2 2
suð2Þ

½Nf¼1=2�
2

suð3Þ

½Nf¼1�
2

suð3Þ

½Nf¼1�
2

suð2Þ

½Nf¼1�

1 0 0

½7; 13� ½7; 13�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1 4
soð8Þ

1 3
soð7Þ

½SUð2Þ�
2

suð2Þ
2

suð2Þ
2

suð4Þ

½SUð2Þ�
2

suð4Þ

½SUð2Þ�
2

suð2Þ 0 0 0

[7, 3] ½7; 13�
2

suð2Þ
3
g2
1 4
soð8Þ

1 3
soð7Þ

½SUð2Þ�
2

suð2Þ
2

suð2Þ

½Nf¼1�
2

suð3Þ
2

suð4Þ

½SUð3Þ�
2

suð2Þ 0 0 0

[7, 3] [7, 3]
2

suð2Þ
3
g2
1 4
soð8Þ

13
g2

2
suð2Þ

2
suð2Þ

½Nf¼1�
2

suð3Þ

½Nf¼1�
2

suð3Þ

½Nf¼1�
2

suð2Þ

½Nf¼1�

1 0 0

[9, 1] ½42; 12�
2 2
suð2Þ

3
g2
1 4

soð9Þ

½Spð1Þ�
1 3
suð3Þ

2 2
suð2Þ

2
g2

½Spð2Þ�
2

suð2Þ

½Nf¼1=2�

1 0 0

[9, 1] ½5; 15�
2 2
suð2Þ

3
g2
1 4
soð8Þ

1 3
soð7Þ

½Spð2Þ� 2 2
suð2Þ

½Nf¼1=2�
2

suð3Þ
2

suð4Þ
½SUð5Þ� 0 0 0

[9, 1] ½5; 22; 1�
2 2
suð2Þ

3
g2
1 4
soð8Þ

1 3
g2

½SUð2Þ�
2 2

suð2Þ

½Nf¼1=2�
2

suð3Þ

½Nf¼1�
2

suð3Þ
½SUð3Þ� 1 0 0

[9, 1] ½5; 3; 12�
2 2
suð2Þ

3
g2
1 4
soð8Þ

1 3
suð3Þ

2 2
suð2Þ

½Nf¼1=2�
2

suð3Þ

½SUð2Þ�
2

suð2Þ

½Nf¼1�

2 0 0

½52� ½52�
2

suð2Þ
3

soð7Þ
1

spð1Þ

½SOð4Þ�
3

soð7Þ
2

suð2Þ
½SUð2Þ� 2

suð2Þ
2

suð2Þ
2

suð2Þ
½SUð2Þ × SUð2Þ� 2 1

12
1
24

(Table continued)
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TABLE III. (Continued)

OL OR Preceding theory Kissing theory #In Δα Δβ

½7; 13� ½42; 12�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1 4

soð9Þ

½Spð1Þ�
1 3
suð3Þ

2
suð2Þ

2
soð7Þ

½Spð2Þ×Spð1Þ�
2

suð2Þ 0 0 0

½7; 13� ½5; 15�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1 4
soð8Þ

1 3
soð7Þ

½Spð2Þ� 2
suð2Þ

2
suð4Þ

½SUð2Þ�
2

suð4Þ
½SUð4Þ� 0 0 0

½7; 13� ½5; 22; 1�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1 4
soð8Þ

13
g2½SUð2Þ� 2

suð2Þ
2

suð4Þ

½SUð3Þ�
2

suð3Þ
½SUð2Þ� 0 0 0

½7; 13� ½5; 3; 12�
2

suð2Þ
3

soð7Þ

½SUð2Þ�
1 4
soð8Þ

1 3
suð3Þ

2
suð2Þ

2
suð4Þ

½SUð4Þ�
2

suð2Þ 0 0 0

[7, 3] ½42; 12�
2

suð2Þ
3
g2
1 4

soð9Þ

½Spð1Þ�
1 3
suð3Þ

2
suð2Þ

½Nf¼1=2�
2
g2

½Spð2Þ�
2

suð2Þ

½Nf¼1=2�

1 0 0

[7, 3] ½5; 15�
2

suð2Þ
3
g2
1 4
soð8Þ

1 3
soð7Þ

½Spð2Þ�
2

suð2Þ

½Nf¼1�
2

suð3Þ
2

suð4Þ
½SUð5Þ� 0 0 0

[7, 3] ½5; 22; 1�
2

suð2Þ
3
g2
1 4
soð8Þ

1 3
g2

½SUð2Þ�
2

suð2Þ

½Nf¼1�
2

suð3Þ

½Nf¼1�
2

suð3Þ
½SUð3Þ� 1 0 0

[7, 3] ½5; 3; 12�
2

suð2Þ
3
g2
1 4
soð8Þ

1 3
suð3Þ

2
suð2Þ

½Nf¼1�
2

suð3Þ

½SUð2Þ�
2

suð2Þ

½Nf¼1�

3 0 0

½42; 12� ½42; 12�
3

suð3Þ
1 4
soð10Þ

½Spð2Þ�
1 3
suð3Þ

½SUð3Þ� 2
suð3Þ

2
suð3Þ

½SUð3Þ� 1 0 0

½5; 15� ½42; 12�
3

soð7Þ

½Spð2Þ�
1 4

soð9Þ

½Spð1Þ�
1 3
suð3Þ

½Spð3Þ × Spð1Þ� 2
soð7Þ

2
suð2Þ 0 0 0

½5; 15� ½5; 15�
3

soð7Þ

½Spð2Þ�
1 4
soð8Þ

1 3
soð7Þ

½Spð2Þ�
½SUð4Þ� 2

suð4Þ
2

suð4Þ
½SUð4Þ� 0 0 0

½5; 22; 1� ½42; 12�
3
g2

½SUð2Þ�
1 4

soð9Þ

½Spð1Þ�
1 3
suð3Þ

½Spð3Þ�2
g2

2
suð2Þ

½Nf¼1=2�

1 0 0

½5; 22; 1� ½5; 15�
3
g2

½SUð2Þ�
1 4
soð8Þ

1 3
soð7Þ

½Spð2Þ�
½SUð2Þ� 2

suð3Þ
2

suð4Þ
½SUð5Þ� 0 0 0

½5; 22; 1� ½5; 22; 1�
3
g2

½SUð2Þ�
1 4
soð8Þ

1 3
g2

½SUð2Þ�
½SUð3Þ� 2

suð3Þ
2

suð3Þ
½SUð3Þ� 1 0 0

½5; 3; 12� ½42; 12�
3

suð3Þ
1 4

soð9Þ

½Spð1Þ�
1 3
suð3Þ

½SUð4Þ� 2
suð3Þ

2
suð2Þ

½Nf¼1�

2 0 0

½5; 3; 12� ½5; 15�
3

suð3Þ
1 4
soð8Þ

1 3
soð7Þ

½Spð2Þ�
2

suð2Þ
2

suð4Þ
½SUð6Þ� 0 0 0

½5; 3; 12� ½5; 22; 1�
3

suð3Þ
1 4
soð8Þ

1 3
g2

½SUð2Þ�
2

suð2Þ

½Nf¼1�
2

suð3Þ
½SUð4Þ� 2 0 0

½5; 3; 12� ½5; 3; 12�
3

suð3Þ
1 4
soð8Þ

1 3
suð3Þ

½SUð2Þ� 2
suð2Þ

2
suð2Þ

½SUð2Þ × SUð2Þ� 4 0 0

½52� ½24; 12�
2

suð2Þ
3

soð7Þ
1

spð1Þ

½Nf¼1�
3

soð10Þ

½Ns¼1�
½Spð2Þ� 2

suð2Þ
2

soð7Þ
½Spð3Þ × Spð1Þ� 1 0 0

½52� ½3; 22; 13�
2

suð2Þ
3

soð7Þ
1

spð1Þ

½SOð3Þ�
3

soð9Þ

½Spð1Þ×Spð1Þ�
2

suð2Þ

½Nf¼1=2�
2
g2½Spð3Þ� 2 0 0

½52� ½32; 14�
2

suð2Þ
3

soð7Þ
1

spð1Þ

½SOð4Þ�
3

soð8Þ

½Spð1Þ×Spð1Þ�
2

suð2Þ

½Nf¼1�
2

suð3Þ
½SUð4Þ� 4 0 0

½52� ½32; 22�
2

suð2Þ
3

soð7Þ
1

spð1Þ

½SOð4Þ�
3

soð7Þ

½Spð2Þ�
½SUð2Þ� 2

suð2Þ
2

suð2Þ
½SUð2Þ × SUð2Þ� 4 1

12
1
24

½52� ½33; 1�
2

suð2Þ
3

soð7Þ
1

spð1Þ

½SOð5Þ�
3
g2 ½G2� 2

suð2Þ
2

4 1
6

1
12

(Table continued)
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APPENDIX D: GENERATORS OF E6;7;8

In this section, we list the generators Xi and Yi for the exceptional algebras E6;7;8 in the basis used throughout this paper.
All other generators can be obtained from appropriate commutators.
The six positive simple roots of E6 are associated with

X1 ¼ E1;2 þE12;13 þE15;16 þE17;18 þE19;20 þE21;22;

X2 ¼ E4;6 þE5;8 þE7;9 þE19;21 þE20;22 þE23;24;

X3 ¼ E2;3 þE10;12 þE11;15 þE14;17 þE20;23 þE22;24;

X4 ¼ E3;4 þE8;10 þE9;11 þE17;19 þE18;20 þE24;25;

X5 ¼ E4;5 þE6;8 þE11;14 þE15;17 þE16;18 þE25;26;

X6 ¼ E5;7 þE8;9 þE10;11 þE12;15 þE13;16 þE26;27: ðD1Þ

TABLE III. (Continued)

OL OR Preceding theory Kissing theory #In Δα Δβ

½24; 12� ½24; 12� ½Spð2Þ� 3
soð10Þ

½Ns¼1�
1

spð1Þ
3

soð10Þ

½Ns¼1�
½Spð2Þ� 2

soð10Þ
½Spð4Þ × SUð2Þ� 0 0 0

½3; 22; 13� ½24; 12�
3

soð9Þ

½Spð1Þ×Spð1Þ�
1

spð1Þ

½Nf¼1=2�
3

soð10Þ

½Ns¼1�
½Spð2Þ� 2

soð9Þ
½Spð3Þ × Spð2Þ� 0 0 0

½3; 22; 13� ½3; 22; 13�
3

soð9Þ

½Spð1Þ×Spð1Þ�
1

spð1Þ

½Nf¼1�
3

soð9Þ

½Spð1Þ×Spð1Þ�
2

soð8Þ
½Spð2Þ × Spð2Þ × Spð2Þ� 0 0 0

½32; 14� ½24; 12�
3

soð8Þ

½Spð1Þ×Spð1Þ�
1

spð1Þ

½Nf¼1�
3

soð10Þ

½Ns¼1�
½Spð2Þ� 2

soð8Þ
½Spð2Þ × Spð2Þ × Spð2Þ� 0 0 0

½32; 14� ½3; 22; 13�
3

soð8Þ

½Spð1Þ×Spð1Þ�
1

spð1Þ

½SOð3Þ�
3

soð9Þ

½Spð1Þ×Spð1Þ�
2

soð7Þ
½Spð4Þ × Spð1Þ� 0 0 0

½32; 14� ½32; 14�
3

soð8Þ

½Spð1Þ×Spð1Þ�
1

spð1Þ

½SOð4Þ�
3

soð8Þ

½Spð1Þ×Spð1Þ�
2

suð4Þ
½SUð8Þ� 0 0 0

½32; 22� ½24; 12�
3

soð7Þ

½Spð1Þ�
1

spð1Þ

½Nf¼1�
3

soð10Þ

½Ns¼1�
½Spð2Þ� 2

soð7Þ
½Spð4Þ × Spð1Þ� 1 0 0

½32; 22� ½3; 22; 13�
3

soð7Þ

½Spð1Þ�
1

spð1Þ

½SOð3Þ�
3

soð9Þ

½Spð1Þ×Spð1Þ�
2
g2½Spð4Þ� 2 0 0

½32; 22� ½32; 14�
3

soð7Þ

½Spð1Þ�
1

spð1Þ

½SOð4Þ�
3

soð8Þ

½Spð1Þ×Spð1Þ�
2

suð3Þ
½SUð6Þ� 4 0 0

½32; 22� ½32; 22�
3

soð7Þ

½Spð1Þ�
1

spð1Þ

½SOð4Þ�
3

soð7Þ

½Spð1Þ�
2

suð2Þ
½SOð7Þ� 6 1

12
1
24

½33; 1� ½24; 12�
3
g2

1
spð1Þ

½SOð3Þ�
3

soð10Þ

½Ns¼1�
½Spð2Þ� 2

g2½Spð4Þ� 2 0 0

½33; 1� ½3; 22; 13�
3
g2

1
spð1Þ

½SOð4Þ�
3

soð9Þ

½Spð1Þ×Spð1Þ�
2

suð3Þ
½SUð6Þ� 4 0 0

½33; 1� ½32; 14�
3
g2

1
spð1Þ

½SOð5Þ�
3

soð8Þ

½Spð1Þ×Spð1Þ�
2

suð2Þ
½SOð7Þ� 8 0 0

½33; 1� ½32; 22�
3
g2

1
spð1Þ

½SOð5Þ�
3

soð7Þ

½Spð1Þ�

2½SUð2Þ ⊂ Spð2ÞR� 7 1
6

1
12
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The corresponding negative roots are Yi ¼ XT
i and the Cartans Hi ¼ ½Xi; Yi�.

The seven positive simple roots of E7 are taken to be

X1 ¼ E7;8 þ E9;10 þ E11;12 þ E13;14 þ E16;17 þ E19;20 þ E37;38 þ E40;41 þ E43;44 þ E45;46 þ E47;48 þ E49;50;

X2 ¼ E5;6 þ E7;9 þ E8;10 þ E22;25 þ E24;28 þ E26;30 þ E27;31 þ E29;33 þ E32;35 þ E47;49 þ E48;50 þ E51;52;

X3 ¼ E5;7 þ E6;9 þ E12;15 þ E14;18 þ E17;21 þ E20;23 þ E34;37 þ E36;40 þ E39;43 þ E42;45 þ E48;51 þ E50;52;

X4 ¼ E4;5 þ E9;11 þ E10;12 þ E18;22 þ E21;24 þ E23;26 þ E31;34 þ E33;36 þ E35;39 þ E45;47 þ E46;48 þ E52;53;

X5 ¼ E3;4 þ E11;13 þ E12;14 þ E15;18 þ E24;27 þ E26;29 þ E28;31 þ E30;33 þ E39;42 þ E43;45 þ E44;46 þ E53;54;

X6 ¼ E2;3 þ E13;16 þ E14;17 þ E18;21 þ E22;24 þ E25;28 þ E29;32 þ E33;35 þ E36;39 þ E40;43 þ E41;44 þ E54;55;

X7 ¼ E1;2 þ E16;19 þ E17;20 þ E21;23 þ E24;26 þ E27;29 þ E28;30 þ E31;33 þ E34;36 þ E37;40 þ E38;41 þ E55;56: ðD2Þ

Again, the corresponding negative roots are Yi ¼ XT
i and the Cartans Hi ¼ ½Xi; Yi�.

Finally, the eight positive simple roots of E8 are taken to be

X1 ¼ E8;9 þ E10;11 þ E12;13 þ E14;15 þ E17;18 þ E20;21 þ E24;25 þ E46;47 þ E52;53 þ E57;59 þ E58;60 þ E63;65

þ E64;66 þ E68;71 þ E69;72 þ E70;73 þ E75;78 þ E76;79 þ E77;80 þ E82;85 þ E83;86 þ E84;87 þ E90;92 þ E91;93

þ E97;99 þ E98;100 þ E105;106 þ E112;113 þ E120;121 þ 2E121;129 − E122;129 þ E136;137 þ E143;144 þ E149;151

þ E150;152 þ E156;158 þ E157;159 þ E162;165 þ E163;166 þ E164;167 þ E169;172 þ E170;173 þ E171;174 þ E176;179

þ E177;180 þ E178;181 þ E183;185 þ E184;186 þ E189;191 þ E190;192 þ E196;197 þ E202;203 þ E224;225 þ E228;229

þ E231;232 þ E234;235 þ E236;237 þ E238;239 þ E240;241;

X2 ¼ −E6;7 − E8;10 − E9;11 − E23;28 − E27;32 − E30;35 − E31;36 − E33;39 − E34;40 − E37;43 − E38;44 − E42;49

− E48;54 − E70;77 − E73;80 − E76;84 − E79;87 − E81;89 − E83;91 − E86;93 − E88;95 − E90;98 − E92;100 − E94;102

− E97;105 − E99;106 − E101;108 − E107;114 þ E115;128 − E123;134 þ 2E128;134 − E135;142 − E141;148 − E143;150

− E144;152 − E147;155 − E149;157 − E151;159 − E154;161 − E156;163 − E158;166 − E160;168 − E162;170 − E165;173

− E169;176 − E172;179 − E195;201 − E200;207 − E205;211 − E206;212 − E209;215 − E210;216 − E213;218

− E214;219 − E217;222 − E221;226 − E238;240 − E239;241 − E242;243;

X3 ¼ −E6;8 − E7;10 − E13;16 − E15;19 − E18;22 − E21;26 − E25;29 − E41;46 − E45;52 − E50;57 − E51;58 − E55;63

− E56;64 − E61;68 − E62;69 − E67;75 − E73;81 − E74;82 − E79;88 − E80;89 − E86;94 − E87;95 − E92;101 − E93;102

− E99;107 − E100;108 − E106;114 − E112;120 þ E113;122 − E121;136 þ 2E122;136 − E123;136 − E129;137 − E135;143

− E141;149 − E142;150 − E147;156 − E148;157 − E154;162 − E155;163 − E160;169 − E161;170 − E167;175 − E168;176

− E174;182 − E180;187 − E181;188 − E185;193 − E186;194 − E191;198 − E192;199 − E197;204 − E203;208 − E220;224

− E223;228 − E227;231 − E230;234 − E233;236 − E239;242 − E241;243;

X4 ¼ E5;6 þ E10;12 þ E11;13 þ E19;23 þ E22;27 þ E26;30 þ E29;33 þ E36;41 þ E40;45 þ E43;50 þ E44;51 þ E49;55 þ E54;61

þ E64;70 þ E66;73 þ E69;76 þ E72;79 þ E75;83 þ E78;86 þ E82;90 þ E85;92 þ E89;96 þ E95;103 þ E102;109 þ E105;112

þ E106;113 þ E107;115 þ E108;116 þ E114;123 − E122;135 þ 2E123;135 − E124;135 − E128;135 þ E133;141 þ E134;142

þ E136;143 þ E137;144 þ E140;147 þ E146;154 þ E153;160 þ E157;164 þ E159;167 þ E163;171 þ E166;174 þ E170;177

þ E173;180 þ E176;183 þ E179;185 þ E188;195 þ E194;200 þ E198;205 þ E199;206 þ E204;209 þ E208;213 þ E216;220

þ E219;223 þ E222;227 þ E226;230 þ E236;238 þ E237;239 þ E243;244;
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X5 ¼ −E4;5 − E12;14 − E13;15 − E16;19 − E27;31 − E30;34 − E32;36 − E33;37 − E35;40 − E39;43 − E51;56 − E55;62

− E58;64 − E60;66 − E61;67 − E63;69 − E65;72 − E68;75 − E71;78 − E90;97 − E92;99 − E96;104 − E98;105 − E100;106

− E101;107 − E103;110 − E108;114 − E109;117 þ E116;124 − E123;133 þ 2E124;133 − E125;133 − E132;140 − E135;141

− E139;146 − E142;148 − E143;149 − E144;151 − E145;153 − E150;157 − E152;159 − E171;178 − E174;181 − E177;184

− E180;186 − E182;188 − E183;189 − E185;191 − E187;194 − E193;198 − E206;210 − E209;214 − E212;216 − E213;217

− E215;219 − E218;222 − E230;233 − E234;236 − E235;237 − E244;245;

X6 ¼ E3;4 þ E14;17 þ E15;18 þ E19;22 þ E23;27 þ E28;32 þ E34;38 þ E37;42 þ E40;44 þ E43;49 þ E45;51 þ E50;55

þ E52;58 þ E53;60 þ E57;63 þ E59;65 þ E67;74 þ E75;82 þ E78;85 þ E83;90 þ E86;92 þ E91;98 þ E93;100 þ E94;101

þ E102;108 þ E104;111 þ E109;116 þ E110;118 þ E117;125 − E124;132 þ 2E125;132 − E126;132 þ E131;139 þ E133;140

þ E138;145 þ E141;147 þ E148;155 þ E149;156 þ E151;158 þ E157;163 þ E159;166 þ E164;171 þ E167;174 þ E175;182

þ E184;190 þ E186;192 þ E189;196 þ E191;197 þ E194;199 þ E198;204 þ E200;206 þ E205;209 þ E207;212 þ E211;215

þ E217;221 þ E222;226 þ E227;230 þ E231;234 þ E232;235 þ E245;246;

X7 ¼ −E2;3 − E17;20 − E18;21 − E22;26 − E27;30 − E31;34 − E32;35 − E36;40 − E41;45 − E42;48 − E46;52 − E47;53

− E49;54 − E55;61 − E62;67 − E63;68 − E65;71 − E69;75 − E72;78 − E76;83 − E79;86 − E84;91 − E87;93 − E88;94

− E95;102 − E103;109 − E110;117 − E111;119 þ E118;126 − E125;131 þ 2E126;131 − E127;131 − E130;138 − E132;139

− E140;146 − E147;154 − E155;161 − E156;162 − E158;165 − E163;170 − E166;173 − E171;177 − E174;180 − E178;184

− E181;186 − E182;187 − E188;194 − E195;200 − E196;202 − E197;203 − E201;207 − E204;208 − E209;213 − E214;217

− E215;218 − E219;222 − E223;227 − E228;231 − E229;232 − E246;247;

X8 ¼ E1;2 þ E20;24 þ E21;25 þ E26;29 þ E30;33 þ E34;37 þ E35;39 þ E38;42 þ E40;43 þ E44;49 þ E45;50 þ E51;55

þ E52;57 þ E53;59 þ E56;62 þ E58;63 þ E60;65 þ E64;69 þ E66;72 þ E70;76 þ E73;79 þ E77;84 þ E80;87 þ E81;88

þ E89;95 þ E96;103 þ E104;110 þ E111;118 þ E119;127 − E126;130 þ 2E127;130 þ E131;138 þ E139;145 þ E146;153

þ E154;160 þ E161;168 þ E162;169 þ E165;172 þ E170;176 þ E173;179 þ E177;183 þ E180;185 þ E184;189 þ E186;191

þ E187;193 þ E190;196 þ E192;197 þ E194;198 þ E199;204 þ E200;205 þ E206;209 þ E207;211 þ E210;214 þ E212;215

þ E216;219 þ E220;223 þ E224;228 þ E225;229 þ E247;248: ðD3Þ

The corresponding negative roots are almost the transpose of these positive roots:

Y1 ¼ E9;8 þ E11;10 þ E13;12 þ E15;14 þ E18;17 þ E21;20 þ E25;24 þ E47;46 þ E53;52 þ E59;57 þ E60;58 þ E65;63

þ E66;64 þ E71;68 þ E72;69 þ E73;70 þ E78;75 þ E79;76 þ E80;77 þ E85;82 þ E86;83 þ E87;84 þ E92;90 þ E93;91

þ E99;97 þ E100;98 þ E106;105 þ E113;112 þ 2E121;120 − E122;120 þ E129;121 þ E137;136 þ E144;143 þ E151;149

þ E152;150 þ E158;156 þ E159;157 þ E165;162 þ E166;163 þ E167;164 þ E172;169 þ E173;170 þ E174;171 þ E179;176

þ E180;177 þ E181;178 þ E185;183 þ E186;184 þ E191;189 þ E192;190 þ E197;196 þ E203;202 þ E225;224 þ E229;228

þ E232;231 þ E235;234 þ E237;236 þ E239;238 þ E241;240;

Y2 ¼ −E7;6 − E10;8 − E11;9 − E28;23 − E32;27 − E35;30 − E36;31 − E39;33 − E40;34 − E43;37 − E44;38 − E49;42

− E54;48 − E77;70 − E80;73 − E84;76 − E87;79 − E89;81 − E91;83 − E93;86 − E95;88 − E98;90 − E100;92 − E102;94

− E105;97 − E106;99 − E108;101 − E114;107 − E123;115 þ 2E128;115 þ E134;128 − E142;135 − E148;141 − E150;143

− E152;144 − E155;147 − E157;149 − E159;151 − E161;154 − E163;156 − E166;158 − E168;160 − E170;162 − E173;165

− E176;169 − E179;172 − E201;195 − E207;200 − E211;205 − E212;206 − E215;209 − E216;210 − E218;213 − E219;214

− E222;217 − E226;221 − E240;238 − E241;239 − E243;242;
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Y3 ¼ −E8;6 − E10;7 − E16;13 − E19;15 − E22;18 − E26;21 − E29;25 − E46;41 − E52;45 − E57;50 − E58;51 − E63;55

− E64;56 − E68;61 − E69;62 − E75;67 − E81;73 − E82;74 − E88;79 − E89;80 − E94;86 − E95;87 − E101;92 − E102;93

− E107;99 − E108;100 − E114;106 − E120;112 − E121;113 þ 2E122;113 − E123;113 þ E136;122 − E137;129 − E143;135

− E149;141 − E150;142 − E156;147 − E157;148 − E162;154 − E163;155 − E169;160 − E170;161 − E175;167 − E176;168

− E182;174 − E187;180 − E188;181 − E193;185 − E194;186 − E198;191 − E199;192 − E204;197 − E208;203 − E224;220

− E228;223 − E231;227 − E234;230 − E236;233 − E242;239 − E243;241;

Y4 ¼ E6;5 þ E12;10 þ E13;11 þ E23;19 þ E27;22 þ E30;26 þ E33;29 þ E41;36 þ E45;40 þ E50;43 þ E51;44 þ E55;49 þ E61;54

þ E70;64 þ E73;66 þ E76;69 þ E79;72 þ E83;75 þ E86;78 þ E90;82 þ E92;85 þ E96;89 þ E103;95 þ E109;102 þ E112;105

þ E113;106 þ E115;107 þ E116;108 − E122;114 þ 2E123;114 − E124;114 − E128;114 þ E135;123 þ E141;133 þ E142;134

þ E143;136 þ E144;137 þ E147;140 þ E154;146 þ E160;153 þ E164;157 þ E167;159 þ E171;163 þ E174;166 þ E177;170

þ E180;173 þ E183;176 þ E185;179 þ E195;188 þ E200;194 þ E205;198 þ E206;199 þ E209;204 þ E213;208 þ E220;216

þ E223;219 þ E227;222 þ E230;226 þ E238;236 þ E239;237 þ E244;243;

Y5 ¼ −E5;4 − E14;12 − E15;13 − E19;16 − E31;27 − E34;30 − E36;32 − E37;33 − E40;35 − E43;39 − E56;51 − E62;55

− E64;58 − E66;60 − E67;61 − E69;63 − E72;65 − E75;68 − E78;71 − E97;90 − E99;92 − E104;96 − E105;98 − E106;100

− E107;101 − E110;103 − E114;108 − E117;109 − E123;116 þ 2E124;116 − E125;116 þ E133;124 − E140;132 − E141;135

− E146;139 − E148;142 − E149;143 − E151;144 − E153;145 − E157;150 − E159;152 − E178;171 − E181;174 − E184;177

− E186;180 − E188;182 − E189;183 − E191;185 − E194;187 − E198;193 − E210;206 − E214;209 − E216;212 − E217;213

− E219;215 − E222;218 − E233;230 − E236;234 − E237;235 − E245;244;

Y6 ¼ E4;3 þ E17;14 þ E18;15 þ E22;19 þ E27;23 þ E32;28 þ E38;34 þ E42;37 þ E44;40 þ E49;43 þ E51;45 þ E55;50

þ E58;52 þ E60;53 þ E63;57 þ E65;59 þ E74;67 þ E82;75 þ E85;78 þ E90;83 þ E92;86 þ E98;91 þ E100;93 þ E101;94

þ E108;102 þ E111;104 þ E116;109 þ E118;110 − E124;117 þ 2E125;117 − E126;117 þ E132;125 þ E139;131 þ E140;133

þ E145;138 þ E147;141 þ E155;148 þ E156;149 þ E158;151 þ E163;157 þ E166;159 þ E171;164 þ E174;167 þ E182;175

þ E190;184 þ E192;186 þ E196;189 þ E197;191 þ E199;194 þ E204;198 þ E206;200 þ E209;205 þ E212;207 þ E215;211

þ E221;217 þ E226;222 þ E230;227 þ E234;231 þ E235;232 þ E246;245;

Y7 ¼ −E3;2 − E20;17 − E21;18 − E26;22 − E30;27 − E34;31 − E35;32 − E40;36 − E45;41 − E48;42 − E52;46 − E53;47

− E54;49 − E61;55 − E67;62 − E68;63 − E71;65 − E75;69 − E78;72 − E83;76 − E86;79 − E91;84 − E93;87 − E94;88

− E102;95 − E109;103 − E117;110 − E119;111 − E125;118 þ 2E126;118 − E127;118 þ E131;126 − E138;130 − E139;132

− E146;140 − E154;147 − E161;155 − E162;156 − E165;158 − E170;163 − E173;166 − E177;171 − E180;174 − E184;178

− E186;181 − E187;182 − E194;188 − E200;195 − E202;196 − E203;197 − E207;201 − E208;204 − E213;209 − E217;214

− E218;215 − E222;219 − E227;223 − E231;228 − E232;229 − E247;246;

Y8 ¼ E2;1 þ E24;20 þ E25;21 þ E29;26 þ E33;30 þ E37;34 þ E39;35 þ E42;38 þ E43;40 þ E49;44 þ E50;45 þ E55;51

þ E57;52 þ E59;53 þ E62;56 þ E63;58 þ E65;60 þ E69;64 þ E72;66 þ E76;70 þ E79;73 þ E84;77 þ E87;80 þ E88;81

þ E95;89 þ E103;96 þ E110;104 þ E118;111 − E126;119 þ 2E127;119 þ E130;127 þ E138;131 þ E145;139 þ E153;146

þ E160;154 þ E168;161 þ E169;162 þ E172;165 þ E176;170 þ E179;173 þ E183;177 þ E185;180 þ E189;184 þ E191;186

þ E193;187 þ E196;190 þ E197;192 þ E198;194 þ E204;199 þ E205;200 þ E209;206 þ E211;207 þ E214;210 þ E215;212

þ E219;216 þ E223;220 þ E228;224 þ E229;225 þ E248;247: ðD4Þ
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