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In [5], V. D. Goppa presents a new family of linear codes over finite fields. This family,

now known as Goppa codes, has been studied for nearly 50 years, including efficient decod-

ing algorithms [12] and its applications in cryptography [8]. Moreover, in [1], de Andrade and

Palazzo present a generalization of Goppa codes to finite rings. Motivated by cryptographic ap-

plications, in this article we focus on Goppa codes over Z/4Z and study some of their properties.
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1 Introduction

Binary Goppa codes were chosen by Robert McEliece for his cryptosystem [8]. These codes have

some interesting properties: namely, distinguishing a generator matrix of Goppa codes from a

random binary matrix of the same size is an open problem, considered hard due to having been

unsolved for 40 years. This property, along with the hardness of decoding an arbitrary linear

code [2], provide the security of the McEliece crypstosystem. It is nowadays considered one of

the main quantum-resitant schemes because it has been well-studied and understood.

In [4], Hammons, Kumar, Calderbank, Sloane and Solé proved that some nonlinear binary

codes can be seen as Gray images of Z/4Z-linear codes. This discovery, along with the work of

Nechaev [10] led to further research on quaternary codes, such as [3]. Namely, new codes with

interesting properties have been found as extended cyclic codes over Z/4Z.
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The goal of this article is to present a version of the McEliece cryptosystem over the Galois

ring Z/4Z. In order to do this, we introduce Goppa codes over such a ring. We start by

recalling classic Goppa codes’ definition and parity-check matrix and de Andrade’s and Palazzo’s

generalization to finite (and particularly Galois) rings in section 2. In sections 3 and 4.1 we

present Goppa codes over Z/4Z as a particular case of de Andrade’s and Palazzo’s definition,

as well as proving some of their properties. We continue by suggesting an alternate definition

of these codes in section 5, closer to Goppa’s original definition. Finally, in section 6 we present

a cryptosystem based on quaternary Goppa codes. We conclude with some final thoughts and

open problems in section 7.

2 Preliminaries

Goppa codes are defined in [5] as follows.

Definition 1. Let h, n ∈ N, g ∈ F2h [X] and L = (α1, . . . , αn) ∈ Fn2h such that αi 6= αj for i 6= j

and g(αi) 6= 0 for all i = 1, . . . , n. The set

Γ2(L, g) =

{
c ∈ Fn2 |

n∑
i=0

ci
X − αi

≡ 0 (mod g(X))

}
is called the binary Goppa code of parameters L and g. If g is irreducible, the code is said to

be an irreducible Goppa code.

A parity-check matrix is also given in the same reference. Namely,

Lemma 1. Let C = Γ2(L, g) be a a binary Goppa code, with L = (α1, . . . , αn). If r = deg g,

then the following matrix

H =



g(α1)−1 g(α2)−1 . . . g(αn)−1

α1g(α1)−1 α2g(α2)−1 . . . αng(αn)−1

α2
1g(α1)−1 α2

2g(α2)−1 . . . α2
ng(αn)−1

...
...

...

αr−11 g(α1)−1 αr−12 g(α2)−1 . . . αr−1n g(αn)−1


(1)

is a parity check matrix for C, i.e., c ∈ Γ2(L, g) if and only if cHᵀ = 0.

Strictly speaking, this is not a parity-check matrix since its entries are not necessarily in

F2. However, substituting them by their coordinates in F2h with respect to a fixed F2-basis
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and removing the redundant rows results in a classic parity-check matrix. Also note that this

parity-check matrix implies that Goppa codes can be formulated as alternant codes [6]. In fact,

we have that

Γ2(L, g) = Altr
(
L, (g(αi)

−1)ni=1

)
,

where Altm(a , b) denotes the alternant code of order m and parameters a and b, i.e., a binary

linear code with parity-check matrix

b1 b2 . . . bn

a1b1 a2b2 . . . anbn

a21b1 a22b2 . . . α2
nbn

...
...

...

am−11 b1 am−12 b2 . . . am−1n bn


.

In [1], de Andrade and Palazzo generalize Goppa codes to finite rings based on the definition

of Goppa codes as alternant codes. Namely, the following definition is introduced.

Definition 2. Let A be a local finite commutative ring with identity with residue field Fpm , R a

Galois extension of A of degree h ∈ N, and let Gs be the roots of xs−1 in R, where s = pmh−1.

Let g(X) ∈ R[X] of degree r ∈ N and L = (α1, . . . , αn) ∈ Gns with αi 6= αj for i 6= j such

that g(αi) are units for i = 1, . . . , n. Then, the Goppa code ΓA(L, g) is the A-linear code with

parity-check matrix (2).

Notice that when A = Z/4Z, the ring R can be taken as the Galois ring GR(4h, 4) =
Z/4Z[X]

(h(X))
, where h(X) ∈ A[X] is a monic polynomial such that its projection · over F2[X] is

irreducible. In this Galois ring, the set

Th = {a ∈ GR(4h, 4) | a2
h

= a}

is called the Teichmüler coordinate set of GR(4h, 4). This set is multiplicatively closed, and it

is a field isomorphic to F2h with respect to the usual multuplication and the addition a⊕ b ∈ Th
such that a+ b = a⊕ b for all a, b ∈ Th.

3 Goppa codes over Z/4Z

In order to define Goppa codes over the ring Z/4Z, we consider the particular case of A = Z/4Z

in Definition 2. In this case, L will be a tuple of elements belonging to the Teichmüller coordinate

set Th of the extension GR(4h, 4) of Z/4Z.
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Definition 3. Let n, h ∈ N, g(X) ∈ GR(4h, 4)[X] of degree r and L = (α1, . . . , αn) ∈ T nh with

αi 6= αj for i 6= j and g(αi) units. The quaternary Goppa code of length n and parameters

g and L is defined as the Z/4Z-linear code with parity-check matrix (2) and it is denoted as

Γ4(L, g).

Again, (2) is not a strict parity-check matrix but we can get one substituting its entries by

their Z/4Z-coordinates with respect to a Z/4Z-basis of GR(4h, 4).

As a particular case of Definition 2, quaternary Goppa codes are guaranteed to have a

minimum distance d ≥ r + 1 and a specific decoding algorithm [1]. But this construction of

Goppa codes given by the parity-check matrix allows us to prove some other properties for their

use in cryptography. We will denote by φ the field isomophism between F2h and Th given by

φ(a) ∈ Th such that φ(a) = a for all a ∈ F2h , and we extend it to tuples, componentwise, and to

codes, applying the function to every codeword. The bar notation will express the projection of

an element in the Galois ring GR(4h, 4) over the finite field F2h . This notation also extends to

polynomials (coefficentwise), tuples and sets. Observe that · restricted to Th is the inverse map

of φ.

Proposition 1. Let Γ4(L, g) be a quaternary Goppa code of length n. Then,

(i) Γ4(L, g) ≤ Γ2(L, g).

(ii) Γ4(L, g) ∩ 2 (Z/4Z)
n ≤ 2φ(Γ2(L, g)). If the leading coefficient of g is a unit, then the

equality holds.

(iii) If the leading coefficient of g is a unit, then |Γ4(L, g)| = |Γ4(L, g)| · |Γ2(L, g)|.

Proof. Let L = (α1, . . . , αn), R = deg g and r = deg g. First, observe that, since for any

quaternary Goppa code Γ4((αi)
n
i=1, g), g(αi) is a unit, g(αi) 6= 0 for i = 1, . . . , n and therefore

the binary Goppa code Γ2(L, g) is well-defined.

(i) Looking at its parity-check matrix (2),

Γ4(L, g) =

{
c ∈ (Z/4Z)n |

n∑
i=1

ciα
j−1
i g(αi)

−1 = 0, j = 1, . . . , R

}
. (2)
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Thus, since r ≤ R,

Γ4(L, g) =

{
c ∈ Fn2 |

n∑
i=1

ciα
j−1
i g(αi)

−1 = 0, j = 1, . . . , R

}

≤

{
c ∈ Fn2 |

n∑
i=1

ciα
j−1
i g(αi)−1 = 0, j = 1, . . . , R

}

≤

{
c ∈ Fn2 |

n∑
i=1

ciαi
j−1g(αi)

−1 = 0, j = 1, . . . , r

}
= Γ2(L, g).

(ii) Since 2φ(F2) = 2(Z/4Z),

Γ4(L, g) ∩ 2 (Z/4Z)
n

=

{
2c ∈ 2(Z/4Z)n |

n∑
i=1

2ciα
j−1
i g(αi)

−1 = 0, j = 1, . . . , R

}

=

{
2c ∈ 2φ(F2)n |

n∑
i=1

ciα
j−1
i g(αi)−1 = 0, j = 1, . . . , R

}

≤

{
2φ(c) ∈ 2φ(F2)n |

n∑
i=1

ciαi
j−1g(αi)

−1 = 0, j = 1, . . . , r

}
= 2φ(Γ2(L, g)).

Moreover, if R = r, this is, if the projection of leading coefficient over the finite field is not

zero, the equality holds. This occurs when the leading coefficient of g is indeed a unit.

(iii) By (ii), if the leading coefficient of g is a unit it follows that the additive subgroup S =

Γ4(L, g) ∩ 2(Z/4Z)n ≤ Γ4(L, g) is equal to 2φ(Γ2(L, g)). Thus, the order of the quotient

group Γ4(L, g)/S is precisely |Γ4(L, g)|/|Γ2(L, g))|. Furthermore, as a consequence of (ii),

if c,d ∈ Γ4(L, g), then c = d if and only if their difference belongs to S, i.e. c+S = d +S.

We conclude that |Γ4(L, g)| = |Γ4(L, g)|/|Γ2(L, g))|.

Example 1. Let us present some examples regarding the previous theorem. Let u ∈ GR(45, 4)

such that 〈u〉 = T5 \ {0}. Let g(X) = X5 + u2X4 + uX3 + u2X2 + uX + 1 and

L = (u, u2, u3, u4, u5, u6, u7, u26, u9, u10, u11, u12, u13,

u14, u15, u16, u17, u18, u19, u20, u21, u27, u23, u24, u25) ∈ T 25
5 .

The quaternary Goppa code defined by g and L is

Γ4(L, g) = 〈(2, 0, 2, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 0, 2, 2, 0, 0, 0, 2, 2, 0, 0, 2, 2),

(0, 2, 0, 0, 0, 0, 2, 2, 0, 2, 2, 2, 0, 2, 0, 2, 0, 2, 2, 0, 0, 0, 0, 2, 2)〉
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and the associated binary Goppa code is

Γ2(L, g) = 〈(1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1),

(0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1)〉.

(i) Note that the projection Γ4(L, g) = {0} � Γ2(L, g).

(ii) Part (ii) of Proposition 1 is satisfied, i.e. Γ4(L, g) = 2φ(Γ2(L, g)). However, Γ4(L, g +

2uX9) = {0} and therefore

Γ4(L, g + 2uX9) � 2φ(Γ2(L, g + 2uX9)) = 2φ(Γ2(L, g)).

4 Change of parameters

Looking at Definition 3, one wonders whether changing parameters L and g of the quaternary

Goppa codes has any effect towards the properties proved in section 3. In fact, in this section

we propose modifying the values of L and g modulo 2, thus adding random elements from the

ideals 2GR(4h, 4) and 2GR(4h, 4)[X] to the elements of L and g, respectively.

4.1 Invariance of g modulo 2

We want to prove that, in most of the cases, if we add a polyonomial in 2GR(4h, 4)[X] to

the defining polynomial of a quaternary Goppa code, the code remains the same. First, let us

present the following known lemma, which can be found in Chapter 12 of [6].

Lemma 2. Let h, n ∈ N, L = (α1, . . . , αn) ∈ Fn2h where αi 6= αj for i 6= j and let g ∈ F2h [X] be

a square free polynomial such that g(αi) 6= 0 for all i = 1, . . . , n. Then, Γ2(L, g) = Γ2(L, g2).

With this result we can present the following theorem.

Theorem 1. Let Γ4(L, g) be a quaternary Goppa code, where g is a square free polynomial and

deg g = deg g = r, and let P = {p ∈ GR(4h, 4)[X] |deg p ≤ r}. Then,

Γ4(L, g) = Γ4(L, g + 2g2),

for all g2 ∈ P.

Proof. By hyphotesis g is square free and therefore, by Lemma 2, Γ2(L, g) = Γ2(L, g2). Also,

by part (i) of Proposition 1, Γ4(L, g) ⊆ Γ2(L, g2). This implies that, if c ∈ Γ4(L, g), then
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c ∈ Γ2(L, g2). This last condition can be written using the parity-check matrix (2), as

n∑
i=1

ciα
j−1
i g(αi)−2 = 0, j = 1, . . . , 2r.

Equivalenty,
n∑
i=1

ciα
k+j−1
i g(αi)−2 = 0, j = 1, . . . , r, k = 0, . . . , r.

This can be written as

r∑
k=0

λk

n∑
i=1

ciα
k+j−1
i g(αi)−2 = 0, ∀j = 1, . . . , r, ∀λk ∈ GR(4h, 4).

Rearranging the terms,

n∑
i=1

ciα
j−1
i g(αi)−2

(
r∑

k=0

λkαki

)
= 0,∀j = 1, . . . , r, ∀λk ∈ GR(4h, 4).

If we set g2(X) =
∑r
i=0 λiX

i, then

n∑
i=1

ciα
j−1
i g(αi)−2g2(αi) = 0, ∀g2 ∈ P.

When c ∈ Γ4(L, g), by (2) this is equivalent to

n∑
i=1

ciα
j−1
i g(αi)

−1 + 2

n∑
i=1

ciα
j−1
i g(αi)

−2g2(αi) = 0, j = 1, . . . , r, ∀g2 ∈ P.

It can be easily proved that (g(αi) + 2g2(αi))
−1 = g(αi)

−1(1 + 2g(αi)
−1g2(αi)). Thus, if c ∈

Γ4(L, g) then

n∑
i=1

ciα
j−1
i (g(αi) + 2g2(αi))

−1 = 0, j = 1, . . . , r, ∀g2 ∈ P,

and therefore c ∈ Γ4(L, g + 2g2). We have proved that Γ4(L, g) ⊆ Γ4(L, g + 2g2). But deg g +

2g2 = deg g + 2g2 = r and g + 2g2 = g is square free, so Γ4(L, g+ 2g2) ⊆ Γ4(L, g) for all g2 ∈ P.

We conclude that Γ4(L, g + 2g2) = Γ4(L, g).

Example 2. Let us see some examples showing that the result in Theorem 1 fails when one of

the hypothesis is not satisfied. Let u ∈ GR(44, 4) such that T4 \ {0} = 〈u〉 and

L = (u8, u12, u13, u, u11, u9, u6, u14, u3, u10, u7, u2) ∈ T 12
4 .

(i) Let g1(X) = 2X3 +X2 +X. Then

Γ4(L, g1) = 〈(1, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 1), (0, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 2),

(0, 0, 0, 2, 0, 0, 2, 2, 2, 0, 2, 2)〉,
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whereas

Γ4(L, g1 + 2X3) = 〈(1, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 1), (0, 1, 0, 0, 1, 3, 0, 0, 1, 1, 2, 3),

(0, 0, 1, 0, 1, 2, 3, 0, 0, 0, 3, 3), (0, 0, 0, 1, 0, 0, 3, 3, 3, 2, 3, 1)〉.

Note that 3 = deg g1 ≥ deg g1 = 2.

(ii) Let g2(X) = X2 +X.

Γ4(L, g2) = Γ4(L, g1 + 2X3) 6= Γ4(L, g1) = Γ4(L, g2 + 2X3).

In this particular case, note that X3 /∈ P.

(iii) Finally, let g3(X) = X2. In this case, g3(X) is not square free, and Γ4(L, g3) 6= Γ4(L, g3 +

2X + 2X2). In fact,

Γ4(L, g3) = 〈(1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0), (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1),

(0, 0, 1, 0, 0, 0, 0, 1, 0, 2, 2, 3), (0, 0, 0, 1, 0, 0, 0, 1, 1, 3, 2, 3),

(0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 3, 3), (0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 2, 1),

(0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 1), (0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 1),

(0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2)〉,

while

Γ4(L, g3 + 2X + 2X2) = 〈(1, 0, 0, 0, 0, 1, 1, 0, 0, 3, 0, 1), (0, 1, 1, 0, 0, 0, 1, 3, 0, 1, 0, 0),

(0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2), (0, 0, 0, 1, 0, 0, 0, 1, 1, 3, 2, 3),

(0, 0, 0, 0, 1, 1, 0, 2, 1, 3, 1, 0), (0, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 2),

(0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0), (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2)〉.

4.2 Changes in L

Every element in the Galois ring GR(4h, 4) can be uniquely written as a+ 2b, where a, b ∈ Th.

In particular, every element in Z/4Z can be expressed as a + 2b, where a and b are either 0 or

1. The elements a and b are usually denoted by γ0(c) and γ1(c), respectively [10]. For arbitrary

elements αi not necessarily in Th, we define the generalized quaternary Goppa codes as follows.

Definition 4. Let n, h ∈ N, g(X) ∈ GR(4h, 4)[X] of degree r and L = (α1, . . . , αn) ∈ GR(4h, 4)

with αi 6= αj for i 6= j and g(αi) units. We define the generalized quaternary Goppa code of

length n and parameters g and L as the Z/4Z-linear code with parity-check matrix (2) and

denote it by Γ
(e)
4 (L, g).
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This generalized version of quaternary Goppa codes satisfies every property from Proposition

1 and Theorem 1. Moreover, since the difference between two components of L is still a unit,

one can compute the minimum distance of the code based on the Vandermonde-like minors of

the parity-check matrix and obtain as a result that the minimum distance remains greater than

r + 1 [1]. Summarizing, from this point of view the restriction αi ∈ Th is not necessary.

Theorem 2. Let Γ
(e)
4 (L+2L2, g) be a generalized quaternary Goppa code, where L = (α1, . . . , αn)

and L2 = (β1, . . . , βn) and L,L2 ∈ T nh . If c is a codeword of Γ2(L, g), then, for all d ∈ (Z/4Z)n,

c + 2d ∈ Γ
(e)
4 (L+ 2L2, g) if and only if

n∑
i=1

ci

(
γ1(αj−1i g(αi)−1) + (j − 1)αj−2i βig(αi)−1 + αj−1i βig(αi)−2g′(αi)

+

n∑
k=i+1

ck

√
αj−1i g(αi)−1α

j−1
k g(αk)−1

)
=

n∑
i=1

diα
j−1
i g(αi)−1

for all j = 1, . . . , r. Moreover, if c + 2d ∈ Γ
(e)
4 (L, g), then c + 2d ∈ Γ

(e)
4 (L+ 2L2, g) iff

n∑
i=1

ciα
j−2
i βig(αi)−1 (j − 1 + αig(αi)−1g′(αi)) = 0

for all j = 1, . . . , r.

Proof. On the one hand, it is easy to prove that g(αi+2βi) = g(αi)+2βig
′(αi), so g(αi+2βi)

−1 =

g(αi)
−1(1 + 2βig(αi)

−1g′(αi)). Moreover, it is also straightforward that (αi + 2βi)
j−1 = αj−1i +

2(j − 1)αj−2i βi. By definition, c + 2d ∈ Γ
(e)
4 (L+ 2L2, g) iff

n∑
i=1

ci(αi + 2βi)
j−1g(αi + 2βi)

−1 = 0, j = 1, . . . , r,

or equivalently,

n∑
i=1

(ci + 2di)α
j−1
i g(αi)

−1 + 2

n∑
i=1

ciα
j−2
i βig(αi)

−1 (j − 1 + αig(αi)
−1g′(αi)

)
= 0. (3)

If c + 2d ∈ Γ4(L, g), then the first term is zero and we conclude the proof. If c ∈ Γ2(L, g),

then we have γ0(
∑n
i=1 ciα

j−1
i g(αi)

−1) = 0, so
∑n
i=1 ciα

j−1
i g(αi)

−1 = 2γ1(
∑n
i=1 ciα

j−1
i g(αi)

−1),

which results in (as showed in [10])

n∑
i=1

ciα
j−1
i g(αi)

−1 = 2

(
n∑
i=1

ciγ1(αj−1i g(αi)
−1) +

n∑
i=1

n∑
k=i+1

cick

√
αj−1i g(αi)−1α

j−1
k g(αk)−1

)
.

Substituting this expression in (3) concludes the proof.
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Example 3. As we can see in this example, generalized quaternary Goppa codes are not

invariant under L modulo 2. In fact, let us reconsider Example 2, and let L2 = (u, 0, . . . , 0) ∈

T 12
5 . Then

Γ
(e)
4 (L+ 2L2, g2) = 〈(1, 0, 0, 0, 1, 3, 3, 3, 0, 0, 2, 3), (0, 1, 0, 0, 1, 3, 0, 0, 1, 1, 2, 3),

(0, 0, 1, 0, 1, 2, 3, 0, 0, 0, 3, 3), (0, 0, 0, 1, 0, 0, 3, 3, 3, 2, 3, 1)〉,

which differs from Γ
(e)
4 (L, g2) = Γ4(L, g2).

We leave the problem of simplifying conditions in Theorem 2 open, in order to determine

more precisely the changes in the code implied by varying the elements in L modulo 2.

5 Alternate definition

In section 3 we have defined quaternary Goppa codes by generalizing the definition of binary

Goppa codes as alternant codes as introduced in [1]. Definition 3 is used in the proofs of sections

3 and 4.1, but now we want to generalize Definition 1 directly, in terms of polynomial modular

arithmetic.

Definition 5. Let n, h ∈ N, g(X) ∈ GR(4h, 4)[X] of degree r and L = (α1, . . . , αn) ∈ T nh with

αi 6= αj for i 6= j and g(αi) units. We define the polynomial quaternary Goppa code as

Γ
(p)
4 (L, g) =

{
c ∈ (Z/4Z)n |

n∑
i=1

ci
X − αi

≡ 0 (mod g(X))

}
.

If the elements of L are taken in the Galois ring GR(4h, 4) with αi 6= αj for i 6= j, we will refer

to the resulting code as a generalized polynomial quaternary Goppa code and we denote it by

Γ∗4(L, g).

In the case of classic Goppa codes, Definitions 3 and 5 are equivalent [5]. In the quaternary

case, they are also equivalent provided the leading coefficient of g is a unit in the Galois ring

GR(4h, 4).

Lemma 3. Let Γ4(L, g) be a quaternary Goppa code and Γ
(p)
4 (L, g) the corresponding polynomial

quaternary Goppa code. Then, Γ4(L, g) ≤ Γ
(p)
4 (L, g) and, if the leading coefficient of g is a unit,

the equality holds.

Proof. Let g(X) =
∑r
i=0 giX

i and H as in (2). By definition, c ∈ Γ4(L, g) iff cHᵀ = 0, and

10



this implies cHᵀHᵀ
g = 0, where

Hg =



gr 0 0 . . . 0

gr−1 gr 0 . . . 0
...

...
. . .

. . .
...

g2 g3 . . . gr 0

g1 g2 . . . gr−1 gr


.

Observe that when the leading coefficient of g is a unit, the condition is equivalent since Hg is

invertible. This matrix equality represents the following equalities.

gr(c1g(α1)−1 + · · ·+ cng(αn)−1) = 0

gr−1(c1g(α1)−1 + · · ·+ cng(αn)−1) + gr(c1α1g(α1)−1 + · · ·+ cnαng(αn)−1) = 0
...

g1(c1g(α1)−1 + · · ·+ cng(αn)−1) + gr−1(c1α1g(α1)−1 + · · ·+ cnαng(αn)−1)

+ · · ·+ gr(c1α
r−1
1 g(α1)−1 + · · ·+ cnα

r−1
n g(αn)−1) = 0


,

which can be written compiled into one polynomial equality. Namely,

r−1∑
k=0

r−k∑
j=1

gk+j

n∑
i=1

ciα
j−1
i g(αi)

−1

Xk = 0.

Rearranging the terms,
n∑
i=1

cig(αi)
−1

r−1∑
k=0

Xk
r−k∑
j=1

gk+jα
j−1
i = 0. (4)

Note that

r−1∑
k=0

Xk
r−k∑
j=1

gk+jα
j−1
i =

r−1∑
j=0

gj

j∑
k=1

αj−ki Xk =

r∑
k=0

gk

(
Xk − αki
X − αi

)
=
g(X)− g(αi)

X − αi
.

Thus, and since the degree of g is greater than the term on the left-hand side of (4), such

equation can be written as

n∑
i=1

ci

(
g(αi)

−1 g(X)− g(αi)

X − αi

)
≡ 0 (mod g(X)).

Therefore, c ∈ Γ4(L, g) implies (and is equivalent to, when the leading coefficient of g is a

unit)
n∑
i=1

ci
X − αi

≡ 0 (mod g(X)), i.e. c ∈ Γ
(p)
4 (L, g).

11



Example 4. In general, if the leading coefficient of g is not a unit, then the equality does not

hold. For instance, let us consider Example 2 again, and let g(X) = 2X3 +X2 +X. Then,

Γ
(p)
4 (L, g1) = Γ4(L, g2)  Γ4(L, g1).

The following lemma is a key ingredient to relate the two definitions of quaternary Goppa

codes.

Lemma 4. Let g(X) be a regular polynomial in GR(4h, 4)[X], i.e. g(X) 6= 0. Then, there exists

a monic polynomial g∗(X) ∈ GR(4h, 4) such that g(X) = g∗(X), g and g∗ have the same roots

and there exists a unit u(X) ∈ GR(4h, 4)[X] such that u(X)g(X) = g∗(X).

Proof. The proof can be found in Chapter XIII of [7].

Theorem 3. There exists a monic polynomial g∗ such that Γ
(p)
4 (L, g) = Γ

(p)
4 (L, g∗).

Proof. We know, by Lemma 4, that Γ
(p)
4 (L, g) = Γ

(p)
4 (L, ug∗), where u(X) is a unit inGR(4h, 4)[X]

and g∗(X) is a monic polynomial such that g(X) = g∗(X). By Definition 5, c ∈ Γ
(p)
4 (L, ug∗) if

n∑
i=1

ci
X − αi

≡ 0 (mod u(X)g∗(X))

Since the elements in L are not roots of g, then (u(X), X−αi) = 1 for i = 1, . . . , n. Multiplying

the term in the left-hand side by
∏n
i=1(X − αi), it follows that c ∈ Γ

(p)
4 (L, ug∗) if and only if

u(X)g∗(X) divides
n∑
i=1

ci
∏

1≤j≤n
j 6=i

(X − αi).

But, since u is a unit, this condition is verified exactly when g∗(X) divides this term. Since

g∗ has the same roots as g and therefore (g∗(X), X − αi) = 1 for every i = 1, . . . , n, this is

equivalent to c ∈ Γ
(p)
4 (L, g∗).

A whole diagram of the relations between the various versions of Goppa codes can be seen

in Figure 1. It follows that the polynomial versions of Goppa codes have similar properties to

the originals.

Corollary 1. Let Γ
(p)
4 (L, g) be a polynomial quaternary Goppa code.

(i) The minimum distance of Γ
(p)
4 (L, g) is d ≥ deg g + 1.

(ii) Γ
(p)
4 (L, g) ≤ Γ2(L, g).

12



Γ
(p)
4 (L, g∗) Γ

(p)
4 (L, g)

Γ4(L, g)Γ4(L, g∗)2φ(Γ2(L, g))

Γ4(L, g)U ∩ (Z/4Z)n

=

=

⊆

⊆

⊆

Figure 1: A map showing the relations between the different versions of quaternary Goppa codes

presented in this article. Polynomial g∗ is the monic polynomial associated with g by Lemma 4

and U is a diagonal matrix formed by the inverses of u(αi), where u is a unit in GR(4h, 4)[X]

that satisfies g∗(X) = g(X)u(X).

(iii) Γ
(p)
4 (L, g) ∩ 2 (Z/4Z)

n ≤ 2φ(Γ2(L, g)).

(iv) |Γ4(L, g)| = |Γ4(L, g)| · |Γ2(L, g)|.

(v) If g is square free, then Γ
(p)
4 (L, g) = Γ

(p)
4 (L, g + 2g2), for all g2(X) ∈ GR(4h, 4)[X].

Proof. Applying Theorem 3, there exists a monic polynomial g∗(X) ∈ GR(4h, 4) such that

Γ
(p)
4 (L, g) = Γ

(p)
4 (L, g∗). This, along with Lemma 3, the proof of the minimum distance in [1]

and Proposition 1, proves parts (i) to (iv).

Let us prove part (v). Let g2(X) ∈ GR(4h, 4)[X]. We know by Lemma Theorem 3 that

there exists a monic g∗2(X) ∈ GR(4h, 4)[X] such that, by Definition 5,

Γ
(p)
4 (L, g + 2g2) = Γ

(p)
4 (L, g∗2).

On the other hand, g∗ and g∗2 are both monic and have the same degree since by Lemma 4

g∗ = g = g + 2g2 = g∗2 , so there exists g′2 such that g∗2 = g∗ + 2g′2 and deg g′2 ≤ deg g∗. But,

since by Lemma 3 Γ
(p)
4 (L, g∗) = Γ4(L, g∗), Γ

(p)
4 (L, g∗2) = Γ4(L, g∗2) and g∗ = g is square free,

Theorem 1 implies that necessarily Γ
(p)
4 (L, g∗) = Γ

(p)
4 (L, g∗2). We conclude that Γ

(p)
4 (L, g) =

Γ
(p)
4 (L, g + 2g2).

Finally, it should be noted that these results also work with the generalized version of the

polynomial quaternary Goppa codes. In fact, the same proofs are valid for any choice of L’s.
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However, regarding the generalization of polynomial quaternary Goppa codes we present the

following result.

Theorem 4. Let n, h ∈ N, g(X) ∈ GR(4h, 4)[X] of degree r, and let L = (α1, . . . , αn) and

L2 = (β1, . . . , βn) be with L,L2 ∈ GR(4h, 4)n, αi 6= αj for i 6= j and g(α+ 2βi) units for every

i = 1, . . . , n. Then,

Γ∗4(L+ 2L2, g) =

{
c ∈ (Z/4Z)n |

n∑
i=1

ci
X − αi

+ 2

n∑
i=1

βi
ci

(X − αi)2
≡ 0 (mod g(X))

}
.

Proof. It is easy to check that the inverse of X − αi + 2βj modulo g(X) is (X − αi)
−1(1 +

2βi(X − αi)−1) and thus

Γ∗4(L+ 2L2, g) =

{
c ∈ (Z/4Z)n |

n∑
i=1

ci
X − αi + 2βi

≡ 0 (mod g(X))

}

=

{
c ∈ (Z/4Z)n |

n∑
i=1

ci
X − αi

+ 2

n∑
i=1

βi
ci

(X − αi)2
≡ 0 (mod g(X))

}
.

Corollary 2. Let Γ∗4(L + 2L2, g) be a generalized polynomial quaternary Goppa code, where

L2 = (β1, . . . , βn). If β1 = · · · = βn then

Γ∗4(L+ 2L2, g) = Γ∗4(L, g).

Proof. It is a direct consequence of Theorem 4. In fact, let c,d ∈ {0, 1}n. By Corollary

1 both c + 2d ∈ Γ∗4(L + 2L2, g) and c + 2d ∈ Γ∗4(L, g) imply c + 2d ∈ Γ2(L, g) and thus∑n
i=1 ci/(X − αi) ≡ 0 modulo g(X). Hence, squaring the term and multiplying it by the con-

stant βi, it follows that
∑n
i=1 βici/(X − αi)2 ≡ 0 modulo g(X), or equivalently, 2

∑n
i=1 βici/(X−

αi)
2 ≡ 0 modulo g(X). We conclude that

∑n
i=1

ci+2di
X−αi

≡ 0 if and only if
∑n
i=1

ci+2di
X−αi

+

2
∑
i=1 βi

ci
(X−αi)2

≡ 0 and therefore Γ∗4(L+ 2L2, g) = Γ∗4(L, g).

Example 5. Let g2, L and L2 be as in Example 3. Then

Γ∗4(L+ 2L2, g2) = Γ
(e)
4 (L+ 2L2, g2) 6= Γ

(e)
4 (L, g2) = Γ∗4(L, g2).

This shows that generalized versions of polynomial quaternary Goppa codes are not invariant

under L modulo 2.
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6 Applications to cryptography

Goppa codes are the core of the original McEliece cryptosystem [8]. In this article we present

the following variation of the scheme, orientated to Galois rings. Niederreiter’s cryptosystem

[11] can be equally generalized to rings.

Definition 6. Let R be a Galois ring, n ∈ N and C ⊆ Rn be a R-linear code with generator

matrix G, error-correcting capacity t ≥ δ and an efficient decoding algorithm D. We define

the Ring McEliece Cryptosystem as follows. The secret key is formed by G, D, a random

permutation matrix P and a random nonsingular matrix S. The pair (G′, δ) forms the public

key, where G′ = SGP . We define the encryption function as E(m) = mG′ + e , where e ∈ Rn

verifies w(e) ≤ δ. In order to decrypt a ciphertext, we multiply it by P−1, apply the decoding

algorithm D and we conclude by solving linear equation systems to obtain the original message.

The security of both schemes (the original and the ring-based) is based on two major points.

On the one hand, the problem of decoding random linear codes over the ring R. The proof

presented by Berlekamp, McEliece and van Tilborg in [2] can be easily generalized to any Galois

ring by just working with the zero and identity elements of the ring. On the other hand, one

should ask the code C to be indistinguishable from a random code, i.e., one should not give any

hint of G when publishing G′.

One of the most well-known families of linear codes over finite fields are Kerdock codes.

These codes are binary and nonlinear, but their preimage under the Gray map is Z/4Z-linear [4].

However, the linear closure of classic Kerdock codes [6] and relatives [3] are Reed-Muller codes of

order 2, which were proved to be distinguishable [9]. This also implies that Preparata, Delsarte-

Goethals and other related codes are also distinguishable. Therefore, an indistinguishable code

for the ring (or at least Z/4Z) version of McEliece needs to be found. Given their use in the

binary version, Goppa codes seem as a good candidate for this task. In fact, Goppa codes

distinguishability has not been proved for 40 years, and given the relations we have presented

in this article, it seems likely that the distinguishability of their quaternary version is hard to

prove as well. We now present a relation between the distinguishability of both version of codes.

Theorem 5. Let C be the family of quaternary Goppa codes with generator polynomial whose

leading coefficient is a unit. The Goppa distinguishability problem is as (computationally) hard

as the distinguishability of codes from C.

Proof. Let us assume there exists a distinguisher D for binary Goppa codes, and let Γ4(L, g) ∈ C.
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Then, computing Γ4(L, g) ∩ 2 (Z/4Z)
n

results in a subcode of Γ4(L, g) equivalent to Γ2(L, g), a

binary Goppa code. Applying D to this code we could also distinguish Γ4(L, g). We have there-

fore reduced the distinguishability of an arbitrary code from C to the Goppa distinguishability

problem.

This result is valid also for the polynomial and generalized versions of the codes. Moreover,

by Lemma 3, in polynomial versions of the code, the leading coefficient needs not be a unit.

However, the converse is yet to be proved.

7 Conclusions

In this article we have studied the Goppa codes version over the ring Z/4Z. We have generalized

de Andrade and Palazzo’s definition in a particular case, and showed the ‘inclusion’ of binary

Goppa codes in their quaternary versions. Finally, in terms of the coefficients, we have proved

that in most of the cases varying g modulo 2 does not modify the code at all. Moreover, if we

add a constant modulo 2 to each element in L, the code remains the same. An open question is

whether we can manipulate this adding term to obtain stricter results in Proposition 1.

With cryptographic purposes, the results obtained inspire a version of McEliece cryptosystem

over Z/4Z. This cryptosystem is promising to be secure with quaternary Goppa codes, due to

the similarities with the binary version. However, the indistinguishability of these codes, and

therefore, the security of the scheme, with respect to the binary case is yet to be proved.
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