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1 Introduction

Ever since the advent of the AdS/CFT correspondence in the context of type IIB string

theory [1], it has become increasingly important to extend our encyclopedic knowledge

of supergravity backgrounds involving AdS factors. The opportunity of relating classical

computations in AdS to field theory results in the regime of strong coupling [2] has enor-

mously increased our understanding of non-perturbative effects in quantum field theory. In

particular, one of the important lessons that we learned from this is the existence of non-

Lagrangian phases of quantum fields in which any perturbative treatment is bound to fail.

From the gravity side, the R-symmetry of a supersymmetric conformal field theory

(CFT) turns out to be geometrically realised as an isometry of the internal manifold. Fur-

thermore, in the holographic limit the amount of dynamical degrees of freedom within the

CFT is proportional to the effective lower-dimensional Newton constant in AdS [3], which

is in turn related to the volume of the internal manifold. Hence classifying the range of dif-

ferent CFTs compatible with a given amount of supersymmetry translates into the scan of

all possible geometrical structures and holonomies of the corresponding internal manifolds.

As a consequence, the higher the dimensionality of the internal space, the richer the

structure of all possible geometries and topologies thereof becomes. This makes it increas-

ingly challenging to exhaustively classify AdS vacua with lower and lower dimensionality.

In particular, starting off by the highest dimension possible [4] (i.e. seven), an exhaustive

classification of supersymmetric AdSd solutions has been achieved for every d up to four
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(see e.g. refs [5–24]). When going further down to d = 3 and 2, while it is arguably hard to

exhaust all possibilities, partial attempts of classifications restrict the analysis to specific

classes of geometries [25–50].

Focussing our attention on the case of AdS2, besides presenting technical challenges,

AdS2/CFT1 has been argued to pose far more urgent conceptual puzzles [51–54]. These

issues mainly originate from the crucial fact that the boundary of AdS2 spacetime is non-

connected, its topology being the one of two disjoint lines. This feature was identified

in [55] as the origin of a non-factorisability of the quantum gravity partition function in

AdS2, hence causing an unsolvable holographic mismatch.

A possible way out of this conundrum could be to avoid insisting in retaining an

AdS2/CFT1 correspondence which is supposed to be valid all the way to the UV, and inves-

tigate instead the possibility that its UV completion might resolve it into higher dimensions.

In this work we take this perspective and investigate it in detail within a specific string

theory set-up, where the impossibility to decouple the 2d gravitational degrees of freedom

from the bulk stems from the non-compactness of the corresponding internal manifold.

We will start from an example of solution in type IIB supergravity belonging to the

class studied in [29], whose 10d geometry is given by AdS2×S4×S2 warped over a compact

Riemann surface Σ2, and firstly show how it can be obtained as the near horizon limit of a

semilocalised D1-NS5-D3 intersection. The geometry of the corresponding AdS2 vacuum is

non-compact, and hence a naive calculation of the holographic free energy of the would-be

dual SCFT1 yields a divergent result. In this special set-up we will still be able to argue

for the existence of a superconformal quantum mechanics (SCQM) describing this system

in the IR regime, while we will show how this pathological behaviour of the free energy

is cured in the UV by the emergence of deconstructed extra dimensions yielding a UV

description in terms of a higher-dimensional CFT.

In order to support this claim, we will perform a single (Abelian) T-duality to obtain

another AdS2 geometry, this time in type IIA, whose underlying brane set-up will now

involve D0, as well as KK5 and D4-branes. However, once in IIA it is possible to appeal to

an M-theory description to have the divergence cured. Indeed what we will see is that the

corresponding 11d geometry is nothing but AdS7/ (Zk × Zk′) × S4, describing a stack of

M5-branes carrying momentum and NUT charges. The introduction of an explicit cut-off

regulator in the holographic free energy calculated earlier in IIA (as well as in IIB) will

identify an IR phase describing a D-particle gas, whose free energy will scale as k2, where

k is the number of D0-branes. On the other hand, in a UV regime we will rather recover

the typical N3 scaling of a 6d theory describing a stack of N M5-branes.

Subsequently, in order to further test our novel insight, we will repeat a similar analysis

for another non-compact AdS2 solution in type IIA supergravity, arising from the near

horizon limit of a D0-F1 intersection [56]. The corresponding geometry here is given by

AdS2 × S7 warped over an interval Iα. The 11d uplift of this background is now given

by AdS4/Zk × S7, with the non-compactness of the 10d background hidden within a 4d

AdS geometry. The same logic turns out to go through again, with two different regimes

emerging. The IR phase looks very similar to the one previously discussed, which should

not come as a surprise since it still describes a D0-brane QM, while its UV completion is

now given in terms of longitudinal M2-branes.
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In conclusion, we will provide here suitable candidate realisations of an AdS2/CFT1

correspondence, within explicit controlled string theory set-ups. The important feature

that precisely allows such constructions to hold is non-compactness. This of course also

sets its own limitations in that it requires inserting a cut-off. On the field theory side, it

represents the energy scale up to which we expect our 1d description to be valid. On the

gravity side, it corresponds to probing a regime where the internal geometry is artificially

made compact. Note that this exactly coincides with inserting back gravitational degrees

of freedom in AdS2, which are otherwise absent in a non-compact situation.

Finally, we will briefly discuss another D1-NS5-D3 solution in type IIB in the class

in [29] with a non-compact Riemann surface. This solution is interesting in that it suggests

that wide classes of 1d CFTs should exist emerging as IR fixed points of quantum mechanics

described by linear quivers. The detailed study of these CFTs and their (possibly higher-

dimensional) UV completion is left however for future work.

The organisation of the paper is as follows. In section 2 we construct the AdS2 solution

from D1-NS5-D3 branes that is the main focus of this paper. We discuss its type IIA

realisation as well as its uplift to M-theory. In section 3 we describe its dual interpretation

as a M(atrix) model describing the IR phase of the 6d CFT describing M5-branes with

momentum and NUT charges. In section 4 we discuss the 11d uplift of the AdS2 × S7

solution arising from the near horizon of D0-F1, and provide an interpretation as a D0

quantum mechanics completed in the UV by longitudinal M2-branes. In section 5 we discuss

a type IIB solution arising from a D1-NS5-D3 intersection dual to a 1d CFT described by

a linear quiver. In section 6 we summarise our results and discuss future directions. In

appendix A we show that the AdS2 solution discussed in section 2 is related to a IIB AdS4×
S2×S2×Σ2 solution in the class of [57, 58] through an analytic continuation prescription.

2 AdS2 solutions from D1-NS5-D3 branes

In this section we show that a given class of AdS2 backgrounds arising from D1-NS5-D3

brane intersections provides a holographic low energy description of M(atrix) models for

M5 branes. We start discussing the brane setup in type IIB, together with the physical

properties of the corresponding AdS solutions, including their holographic free energy. Due

to non-compactness, this will yield a divergent result. In order to understand the physical

meaning of this singular behaviour, we will then move to a type IIA picture obtained by

performing a single T-duality. The brane system will be now given by intersecting D0,

KK5 and D4-branes, while the related near horizon geometry will still be given by the

warped product of AdS2 and a non-compact 8-manifold. This non-compactness issue is

finally resolved by lifting this solution to eleven dimensions, where it is identified as the

near horizon geometry of an M5 brane stack with extra momentum and NUT charges.

Our results in this section confirm previous connections in the literature between M(atrix)

models and the AdS/CFT correspondence (see for instance [59–62]).
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0 1 2 3 4 5 6 7 8 9

D1 × ×
NS5 × × × × × ×
D3 × × × ×

Table 1. The 1
4 -BPS intersection involving D1, D3 and NS5 branes. A supersymmetric quantum

mechanics lives in the common x0 direction. The corresponding SO(5)R × SO(3)R R-symmetry is

geometrically realised as rotations in the (x1, . . . , x5) and (x7, x8, x9) coordinates, respectively. An

AdS2 vacuum will be obtained by taking the near horizon limit of this system and a superconformal

quantum mechanics will arise in the IR limit of the QM.

2.1 The type IIB picture

We start from the D1-NS5-D3 brane intersection described in table 1. It can be shown

to preserve eight real supercharges, as well as SO(5) × SO(3) bosonic symmetry. The

corresponding field theory description is an N = 8 supersymmetric quantum mechanics

whose supercharges transform as spinors of the above R-symmetry group, i.e. in the (4,2).

In particular, the SO(5) factor emerges in the Coulomb branch of the 1d theory, while the

extra SO(3) becomes manifest in the Higgs branch.

The corresponding type IIB supergravity background reads

ds2
10 = −H−1/2

D1 H
−1/2
D3 dt2 +H

1/2
D1 H

1/2
D3

(
dρ2 + ρ2 ds2

S4

)
+H

−1/2
D1 H

1/2
D3 HNS5 dy

2 +

+ H
1/2
D1 H

−1/2
D3 HNS5

(
dr2 + r2 ds2

S2

)
,

eΦ = H
1/2
D1 H

1/2
NS5 , B(6) =

HD3

HNS5
dt ∧ vol(R5) ,

C(2) =
1

HD1
dt ∧ dy , C(4) =

HNS5

HD3
dt ∧ vol(R3) ,

(2.1)

where we denoted by ρ the radial coordinate of R5 parameterised by (x1, . . . , x5) and r

the one of R3 parameterised by (x7, x8, x9). As a consequence, HD1 = HD1(ρ, r), HD3 =

HD3(ρ) and HNS5 = HNS5(r) are suitable functions. The equations of motion of type IIB

supergravity plus the Bianchi identities are satisfied by the following explicit form of the

aforementioned functions

HD1 = 1 +Q−2
D1

(
πQD3

ρ
+QNS5 r

)
, HD3 =

πQD3

ρ3
and HNS5 =

QNS5

r
, (2.2)

where the integration constants appearing above are interpreted as quantised brane charges.

By taking a look at the form of HD1, we immediately see that the near horizon limit

corresponds to the following regime

ρ � QD3 while r � Q−1
NS5 , (2.3)

in such a way that both terms in HD1 compete. In order to better understand this limit,

it is useful to introduce the following change of coordinates

ρ = QD3 ζ sin2 α and r = Q−1
NS5 ζ

−1 cos2 α , (2.4)
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where α ranges from zero to π
2 , while ζ goes from zero to ∞. In terms of these new

coordinates the near horizon limit is achieved by taking ζ → 0. This procedure yields the

following result

ds2
10 =

`2

sin3 α

(
ds2

AdS2
+ 4dα2 + sin2 αds2

S4 + cos2 αds2
S2 +R2

0

sin6 α

cos2 α
dy2

)
, (2.5)

eΦ =
QNS5

QD1
cos−1 α , (2.6)

H(3) = −QNS5 dy ∧ vol(S2) , (2.7)

F(3) = −QD1 vol(AdS2) ∧ dy , (2.8)

F(5) = −3πQD3 vol(S4) ∧ dy + 6π`2
QD3

QNS5

cos3(α)

sin7(α)
dα ∧ vol(AdS2) ∧ vol(S2) , (2.9)

where

`2 =
πQD3

QD1
, R0 =

QNS5QD1

πQD3
, (2.10)

α ∈
[
0, π2

]
and y ∈ [0, π],1 and the D1, D3 and NS5 brane charges appearing above are

integers once measured in string units. This metric represents a foliation of AdS2 × S4 ×
S2 × S1

y with warping over Iα, and belongs to the class of AdS2 × S4 × S2 × Σ2 solutions

studied in [29], where the Riemann surface Σ2 is given by Iα × S1
y , as we show below. It is

worth mentioning that the above background is made non-compact by the specific form of

the warping. As a consequence the 7-form flux,

F(7) = 2`6
QD1

QNS5

cos3 α

sin5 α
dα ∧ vol(S2) ∧ vol(S4) , (2.11)

yields an infinite result for the magnetic D1-brane charge, upon integration along the

warping coordinate α. We will give an interpretation to this divergence when we discuss

below the holographic free energy.

The isometries of the solution are given by SO(2, 1) × SO(5) × SO(3), which should

match the spacetime and R-symmetries of a dual superconformal quantum mechanics with

8 supercharges. The superconformal groups with 8 supercharges containing SO(2, 1) as

a bosonic subgroup were classified in [63]. We list them in table 2, together with the

corresponding R-symmetries. We see that the SO(5) × SO(3) part of the isometry group

matches the R-symmetry of an OSp(4∗|4) supergroup. The type IIB supergravity solutions

realising the OSp(4∗|4) supergroup turn out to be precisely the AdS2 × S4 × S2 × Σ2

geometries classified in [29], to which our solution belongs. There, each AdS2 solution is

specified by the choice of two harmonic functions on Σ2. The specific choice of harmonic

functions underlying our background is given by

h1 =
`2

2

QD1

QNS5
cot2 α h2 =

`2

2
sin−2 α, (2.12)

while for the fluxes we find

hD1 = −1

2
QD1y , hD2 = −1

2
QNS5y . (2.13)

1This choice of parameterisation of the S1
y reproduces in the type IIA picture the right periodicity of

the Hopf fiber coordinate.
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Supergroup R-symmetry

OSp(8|2) SO(8)

SU(1, 1|4) SU(4)×U(1)

OSp(4∗|4) SU(2)× SO(5)

F(4) SO(7)

Table 2. Superconformal algebras with N = 8 supersymmetry containing SO(1, 2) × GR =

ISO(AdS2) × GR. The various R-symmetry groups GR are realised geometrically in the corre-

sponding supergravity duals. Therefore, the relevant one in our case is OSp(4∗|4).

Note that due to the non-compactness of our solution some of the regularity conditions

imposed in [29] are however not satisfied.

Interestingly, the OSp(4∗|4) supergroup allows for a different choice of real section with

SO(3, 2)× SO(3)× SO(3) bosonic subgroup. This is the group of isometries of the AdS4×
S2×S2×Σ2 solutions constructed in [57, 58]. This strongly suggests that the AdS2×S4×S2

solution should be related to a solution in this class upon analytical continuation. This

solution and the corresponding harmonic functions are given in the appendix.

Brane singularities. The metric given in (2.5) exhibits singularities at both boundaries

of the range of α. As α→ 0, the dilaton asymptotes to a constant and hence one expects

a D3 brane singularity. Indeed, after introducing β = α−2, the metric reads

ds2
10 ∼ `2

[
β3/2

(
ds2

AdS2
+ ds2

S2

)
+ β−3/2

(
dβ2 + β2 ds2

S4 + R2
0 dy

2
)]
, (2.14)

which correctly reproduces the metric of a D3 brane with worldvolume AdS2 × S2, placed

at infinity in R52 and smeared over the y circle. On the other hand, as α→ π
2 , the metric

takes the form

ds2
10 ∼ `2

[(
ds2

AdS2
+ ds2

S4

)
+ β−1

(
dβ2 + β2 ds2

S2 + R2
0 dy

2
)]
, (2.15)

where β =
(
π
2 − α

)2
, while the dilaton behaves as eΦ ∼ eΦ

0 β
−1/2. This is the typical form

of an NS5 brane singularity with a worldvolume given by AdS2×S4, localised at the origin

of R3 and smeared over the y circle.

The 2d Riemann surface associated to the solution is the annulus depicted in figure 1.

D3-branes are smeared over the lower boundary at α = 0 and NS5-branes are smeared

along the upper boundary at α = π
2 . The annulus topology follows from the periodicity

under y → y + π.

Holographic free energy. In order to evaluate the effective number of degrees of free-

dom of the dual 1d theory, we follow the standard prescription that relates it to the inverse

effective Newton constant in the 2d gravity dual. Following the prescription in [64–66] we

have that, for a generic dilaton and background of the form,

ds2
10 = a(ζ, ~θ)

(
dx2

1,d + b(ζ)dζ2
)

+ gij(ζ, ~θ)dθ
idθj , Φ = Φ(ζ, ~θ), (2.16)

2This was previously found in the non-compact spaces constructed in [39].
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α = 0

α = π
2

y = πD3-branes

NS5-branes

Figure 1. Annulus associated to the solution.

the free energy is computed from the auxiliary quantity

Ĥ =

(∫
d~θ

√
e−4Φ det[gij ]a(ζ, ~θ)d

)2

, (2.17)

as

Fhol = 3× dd

GN

b(ζ)d/2(Ĥ)
2d+1

2

(Ĥ ′)d
, (2.18)

where GN is the Newton’s constant in ten dimensions, GN = 8π6. For the case at hand

d = 0 , a(ζ, ~θ) =
`2

sin3 α
ζ2 , b(ζ) =

1

ζ4
(2.19)

and we obtain √
Ĥ =

16

3
π7 Q3

D3

QD1QNS5

∫ π/2

0
dα

cos3 α

sin5 α
(2.20)

The integral in α diverges close to α = 0, as a reflection of the non-compactness of the

internal space. Indeed the divergence is exactly the same as that of the magnetic D1-brane

charge that we mentioned above. Regularising it with a hard cut-off ε we find

Fhol =
π

2

Q3
D3

QD1QNS5
cot4 ε . (2.21)

The same cut-off for the magnetic D1-brane charge, obtained integrating the RR 7-form

flux given by equation (2.11), gives

Qmag
D1 =

1

24

Q3
D3

Q2
D1QNS5

cot4 ε . (2.22)

This regularisation, even if in principle not unique, allows to exhibit a behaviour for the

free energy suggestive of a 6d CFT associated to QD3 M5 branes seated at a ZQD1
×

ZQNS5
orbifold. We show in the next sections that it is indeed possible to give such an

interpretation to the superconformal quantum mechanics dual to the solution.
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0 1 2 3 4 5 6 7 8 9

D0 ×
KK5 × × × × × × ISO

D4 × × × × ×

Table 3. 1
4 -BPS brane intersection underlying the Abelian T-dual solution. The D1-branes become

D0-branes, the D3-branes become D4-branes wrapped on y and the NS5-branes become KK5-

monopoles with y Taub-NUT direction.

2.2 T-dual to type IIA

The previous solution is equivalent upon Abelian T-duality on the y direction to the fol-

lowing solution in type IIA:

ds2
10 =

`2

sin3 α

(
ds2

AdS2
+ 4 dα2 + sin2 αds2

S4 + 4 cos2 αds2
S3/Zk′

)
(2.23)

eΦ =
`

QD0
sin−3/2 α (2.24)

F(2) = −QD0vol(AdS2) (2.25)

F(4) = −3πQD4vol(S4), (2.26)

where, upon T-duality, QD1 = QD0, QD3 = QD4 and QNS5 = QKK5 = k′; `2 = πQD4
QD0

and

the 3-sphere appearing in (2.23) is locally written as a Hopf fibration of a S2 on S1
y ,

ds2
S3/Zk′

=
1

4

[(
dy

k′
+ ω

)2

+ ds2
S2

]
with dω = vol(S2) . (2.27)

This solution can be consistently obtained as the near-horizon of the D0-KK5-D4 brane

intersection depicted in table 3. Indeed, consider the following 10d background in type IIA

supergravity,

ds2
10 = −H−1/2

D0 H−1
D4 dt

2 +H
1/2
D0 H

1/2
D4

(
dρ2 + ρ2 ds2

S4

)
+H

1/2
D0 H

−1/2
D4 H−1

KK5 (dy +QKK5 ω)2

+ H
1/2
D0 H

−1/2
D4 HKK5

(
dr2 + r2 ds2

S2

)
, (2.28)

C(1) = H−1
D0 dt , C(5) = HKK5H

−1
D4 dt ∧ dy ∧ vol(R3) , eΦ = H

3/4
D0 H

−1/4
D4 ,

where, as in the type IIB case, we denoted by ρ and r the radial coordinates of R5 and R3

parameterised, respectively, by (x1, . . . , x5) and (x7, x8, x9). It can be shown that (2.28)

satisfies the equations of motion of type IIA supergravity if HD0 = HD0(ρ, r), HD4 =

HD4(ρ) and HKK5 = HKK5(r) satisfy

HD0 = 1 +Q−2
D0

(
πQD4

ρ
+QKK5 r

)
, HD4 =

πQD4

ρ3
and HKK5 =

QKK5

r
. (2.29)

As in the case of the D1-D3-NS5 brane setup we need to introduce new variables in order

to make manifest the AdS geometry included into the near horizon. In particular, by

– 8 –
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k

N

Figure 2. Quiver describing the D0-D4 brane system.

introducing the (ζ, α) coordinates as in (2.4) and taking the near horizon limit as ζ → 0,

the background (2.23) is recovered. We point out that D0-D4 brane intersections in the

absence of NUT charge were originally considered in [56]. The regime of validity of the IIA

solution, characterised by small string coupling and weakly curved limit, is when

N1/3 � k � N3 , (2.30)

where we have taken k ≡ QD0 and N ≡ QD4. This is therefore the range of parameters

where the superconformal quantum mechanics description is valid.

The quantum mechanical system consisting on k D0 and N D4 branes [67] was used

in [68–70] to describe the IR limit of the longitudinal M5-brane in M(atrix) theory. From

the D4-brane point of view the D0-branes are interpreted as instantons, the moduli space

of which is singular due to the contribution of small instantons. These singularities cannot

be described however just by the 5d N = 2 SYM theory living on the D4-branes, since

this description breaks down at short distances (the theory is non-renormalisable). The

suggestion in [68–70] is that the 6d (2,0) theory is described by the large k limit of the

QM on the moduli space of k instantons. The D4-branes are M5-branes wrapped on the

M-theory circle, and the D0-branes are M0-branes, that is, momentum charge along the

eleventh direction. The D0-D4 system is thus equivalent to N M5-branes compactified on

a circle carrying k units of momentum. The (2,0) six dimensional theory that describes

the M5-branes is recovered from the quantum mechanics on the D0-D4 system in the large

N limit. The D4-branes break half of the supersymmetries of the D0-branes, and this is

modelled by adding some matter content to the U(k) quantum mechanics that describes

them (see the discussion in [71]). The way this is done is by adding N fundamental

hypermultiplets [67]. The resulting quantum mechanics consists on a U(k) gauge theory

with hypermultiplets in the adjoint representation and N fundamentals. The corresponding

quiver is depicted in figure 2. This theory preserves one quarter of the supersymmetries,

and has a SU(2)×SU(2)×SO(5) global symmetry.3 The effect of the hard cut-off introduced

in the previous subsection is to retain this description at short distances.

Note that our solution contains as well KK-monopoles, that arise from the NS5-branes

present in type IIB. They are associated to the ALE singularity introduced by the orbifold-

ing by Zk′ . This orbifolding breaks the global symmetry to SU(2) × SO(5), but does not

3The first SU(2) acts on the field in the adjoint representation, and the SU(2) × SO(5) part is the

R-symmetry.

– 9 –



J
H
E
P
0
4
(
2
0
2
0
)
0
3
7

break any additional supersymmetries.4 We will propose in section 3 a quantum mechan-

ics with eight supercharges that describes the effect of adding the KK-monopoles onto the

D0-D4 system.

2.3 Uplift to M-theory

In the last section we have been able to connect our type IIA picture with previously

known constructions of SQM models arising from D0-D4 systems. It is worth noticing that

the corresponding dual AdS2 backgrounds still suffer from the same non-compactness issue

already discussed in type IIB. This behaviour is suggestive of the presence of deconstructed

extra dimensions within the dual field theory. To support this intuition, we now show that

such non-compact geometry is resolved by going to M-theory. In this picture, the non-

compact direction will be hidden within a higher dimensional AdS geometry.

Indeed, uplifting the solution described by equations (2.23)–(2.26) we find

ds2
11 = (πQM5)2/3

(
4 ds2

AdS7/Zk×Zk′
+ ds2

S4

)
, (2.31)

G(4) = −3πQM5 vol(S4) , (2.32)

where, after the uplift, k = QM0, k′ = QKK6, QD4 = QM5, and

ds2
AdS7/Zk×Zk′

=
1

4
dµ2 + cosh2 µ

2
ds2

AdS3/Zk
+ sinh2 µ

2
ds2
S3/Zk′

. (2.33)

Here we have redefined sinα = cosh−1 µ
2 , with µ ∈ [0, π], and

ds2
AdS3/Zk

=
1

4

[(
dz

k
+ η

)2

+ ds2
AdS2

]
with dη = vol(AdS2) . (2.34)

This background describes N longitudinal M5-branes with k momentum at an ALE singu-

larity, associated to k′ KK-monopole charge. The momentum charge along the M-theory

circle (D0 charge in type IIA) quotients AdS3 → AdS3/Zk, such that half of the supersym-

metries of the AdS7×S4 background are broken. However, the amount of supersymmetry

is not further reduced by the presence of the ALE singularity, which sends S3 → S3/Zk′ .
The N = 8 supersymmetries are preserved upon reduction to type IIA and, further, upon

T-dualisation to type IIB.

The brane intersection underlying the solution is depicted in table 4. It is described

by the solution

ds2
11 = H

−1/3
M5

[
−H−1

M0 dt
2 + HM0 (dz + (H−1

M0 − 1) dt)2 + HKK6

(
dr2 + r2 ds2

S2

)]
+ H

−1/3
M5 H−1

KK6 (dy +QKK6 ω)2 +H
2/3
M5

(
dρ2 + ρ2 ds2

S4

)
,

A(6) = HKK6H
−1
M5 dt ∧ dy ∧ vol(R3) ∧ dz ,

(2.35)

where we have denoted by z the coordinate parameterising the M-theory direction. The

functions HM0 = HM0(ρ, r), HM5 = HM5(ρ) and HKK6 = HKK6(r) satisfying the equations

4This can be seen explicitly by observing that the projector acting on the Killing spinor of the brane

setup (2.28) associated to the KK monopole can be obtained from those associated to the D0 and D4-branes.
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0 1 2 3 4 5 6 7 8 9 10

M0 × →
KK6 × × × × × × ISO ×
M5 × × × × × ×

Table 4. 1
4 -BPS brane intersection underlying the AdS7/(Zk×Zk′) M-theory solution. The double

orbifold reduces the supersymmetries of the M5-brane by a half.

of motion of 11d supergravity are given by

HM0 = 1 +Q−2
M0

(
πQM5

ρ
+QKK6 r

)
, HM5 =

πQM5

ρ3
and HKK6 =

QKK6

r
. (2.36)

The integration constants are now interpreted as quantised momentum, M5 and NUT

charges, respectively. The introduction of the (ζ, α) coordinates as in (2.4) gives rise this

time to a locally AdS7 geometry in the ζ → 0 limit. We point out that M0-M5 brane

intersections in the absence of NUT charge were originally considered in [56].

Holographic free energy. The free energy of the 6d CFT dual to the solution can be

computed holographically from the worldvolume of the M5-branes. In this calculation the

singularity found in the type II descriptions is absorbed in the (infinite) worldvolume of

the M5-branes. For N M5-branes wrapped on AdS3/Zk × S3/Zk′ the effective number of

degrees of freedom evaluates to

SM5 = −T5

∫
d6ξ
√

detg̃ = 4π5 sinh3 µVol(AdS2)
N3

kk′
, (2.37)

where g̃ is the induced metric and we have used that T5 = QM5 = N . This result repro-

duces the scaling in (2.21), though within the context of a 6d effective description. This

corroborates our proposal that our 1d CFT is UV completed by a 6d CFT, dual to the back-

ground (2.31)–(2.32). In order to further clarify our proposal we now discuss in more detail

the regime of validity of the type II picture against the M-theory one, and their interplay.

From the point of view of the type II backgrounds, we pointed out that the diver-

gence of the free energy is due to an infinite amount of integrated F(7) (F(8)) flux defining

magnetically the D1 (D0) brane charge. On the other hand, the aforementioned charge

computed electrically is given by k, i.e.

Qel
D1 = Qel

D0 ∼ k and Qmag
D1 = Qmag

D0 ∼
N3

k2k′
cot4 ε , (2.38)

where we have neglected order 1 factors. The 1d theory is consistently described by the

physics of D1 or D0-branes only when it is possible to impose Qel
D1 = Qmag

D1 , Qel
D0 = Qmag

D0 .

This condition forces one to introduce a charge dependent cut-off

cot4 ε ∼ k3k′

N3
, (2.39)
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1
2

QD3D3

QD1D1

QNS5

Figure 3. Circular quiver describing longitudinal M5-branes with momentum charge probing an

ALE singularity.

which stays consistently finite within the IIA regime obtained in (2.30). In this limit the

free energy given by (2.21) has the scaling behaviour

Fhol ∼ k2 , (2.40)

which can be reproduced by evaluating the DBI action of k D0 or D1 brane probes in the

corresponding AdS2 × S4 backgrounds. Remarkably, this is the scaling of the free energy

obtained in [72] for generic AdS2 solutions with non-vanishing electric field.

Conversely, in a limit where the cut-off diverges while remaining charge independent,

one can no longer enforce that the charges computed electrically and magnetically coincide.

As a consequence an M-theory regime emerges, and a way to see this is that the N3

kk′ factor

in the type II free energy will not compensate the unbounded growth of the cot4 ε cut-off, at

least not within a good trustworthy M-theory description.5 Consistently, in this situation

the free energy given by (2.21) reproduces the typical scaling of the free energy of the 6d

theory (2.37) obtained by counting M5-brane worldvolume degrees of freedom.

3 Field theory description

In this section we propose a quantum mechanics with 8 supercharges that describes the

M0-KK-M5 brane system. We consider its realisation in type IIB, depicted in table 1. This

brane set-up can be related by T-dualities to the D3-NS5-D5 brane system first discussed

in [73]. The resulting quantum mechanics living in the D1-branes contains 8 supercharges,

and has an SU(2) × SO(5) global symmetry, which is an R-symmetry. The matter con-

tent consists on a U(QD1)QNS5 gauge group with QNS5 hypermultiplets transforming in

the bifundamental of the two adjacent U(QD1) gauge groups. On top of this there are

QNS5 hypermultiplets in the fundamental of U(QD3). The corresponding circular quiver is

depicted in figure 3.

In the absence of D3-branes (M5-branes in eleven dimensions) the quiver defines the

quantum mechanics with 8 supercharges that describes the KK-monopole in eleven di-

5Note that we better stick to the k � N3 regime if we want to stay within a weakly curved approximation

that allows us to neglect higher derivatives suppressed by powers of the 11d Planck length `11.

– 12 –



J
H
E
P
0
4
(
2
0
2
0
)
0
3
7

mensions [71]. In the opposite situation, when there is just one NS5-brane, and therefore

no KK-monopoles,6 the bifundamental hypermultiplet becomes an adjoint hypermultiplet,

and the 1d theory realises the quantum mechanics that describes the longitudinal M5-

brane [69, 70]. The corresponding quiver is depicted in figure 2. This QM has SO(4)×SO(5)

global symmetries, with SU(2)×SO(5) being R-symmetries and the additional SU(2) being

a global symmetry acting on the adjoint hypermultiplet.

Even if this global symmetry is not manifest in the type IIB description, it becomes

manifest in the type IIA set-up, where the configuration becomes the one depicted in

table 3, for zero KK-monopoles. Our proposal is thus consistent with the descriptions in

the literature of KK-monopoles [71] and longitudinal 5-branes [69, 70] in eleven dimensions.

Note that even if these descriptions were formulated in the context of M(atrix) theory,

they can be extended to the case in which the eleventh direction is not a light-cone but

an ordinary spatial direction [74, 75]. The situation in which both KK-monopoles and

M5-branes are absent can also be considered. In this case the quantum mechanics consists

on a U(QD1) gauge group coupled to a hypermultiplet in the adjoint representation. When

the mass of the adjoint is zero the number of supersymmetries is enhanced from 8 to 16,

and the QM becomes just the BFSS proposal [76].

The previous construction should be extendable to non-compact D1-NS5-D3 brane

systems defining linear quiver quantum mechanics with 8 supercharges. These quantum

mechanics would flow to superconformal quantum mechanics in the IR, that would be

holographically dual to solutions in the class in [29] for which the 2d Riemann surface

is non-compact. The one to one mapping found in [77] between 3d SCFTs described by

linear quivers and AdS4 × S2 × S2 × Σ2 solutions in the classification in [57, 58], for Σ2

an infinite strip,7 suggests that a similar mapping should be possible between 1d SCFTs

and AdS2 × S4 × S2 × Σ2 solutions for Σ2 an infinite strip, upon analytical continuation.

We will discuss in section 5 a particular AdS2 × S4 × S2 solution to type IIB in the class

in [29] associated to a linear quiver quantum mechanics.

4 AdS2 solutions from D0-F1 branes

In the previous sections we have worked out the relation between a certain non-compact

ten dimensional background involving AdS2 and a 1d superconformal quantum mechanics

capturing the physics of an IR phase of the worldvolume theory of an M5-brane stack. From

the supergravity viewpoint an important piece of evidence for this was provided by the

emergence of a locally AdS7 geometry when constructing the corresponding M-theory lift.

The aim of this section is to provide a similar mechanism, this time within the context

of the worldvolume theory of a stack of M2-branes instead. To this end, we show that the

AdS2 × S7 × Iα solution of massless type IIA supergravity constructed in [38] (suffering

from a similar non-compactness problem in the α-direction) is dual to the superconformal

quantum mechanics with 8 supercharges that describes M2-branes with momentum charge.

6Recall that one KK-monopole is indistinguishable from no KK-monopoles.
7Or upper half-plane.
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0 1 2 3 4 5 6 7 8 9

D0 ×
F1 × ×

Table 5. 1
4 -BPS brane intersection underlying the AdS2 × S7 × Iα solution. This brane setup is a

particular example in the class of [78].

We start with the solution constructed in [38]:

ds2
10 =

π `2

8
√

2 sin3 α

(
ds2

AdS2
+ 4dα2 + 16 sin2 αds2

S7

)
, (4.1)

eΦ =
π1/2

25/4

Q
1/4
F1

Q
3/2
D0

sin−3/2 α , (4.2)

F(2) = QD0 vol(AdS2) , (4.3)

H(3) = − 3π

8
√

2

Q
1/2
F1

QD0
sin−4 α vol(AdS2) ∧ dα , (4.4)

where `2 = Q
1/2
F1 Q

−1
D0, while QD0 = k and QF1 = N are quantised in string units. This

solution is obtained as the near horizon limit of the (semilocalised) D0-F1 system shown

in table 5 [56]. Specifically, the AdS radial coordinate turns out to be a non-trivial combi-

nation of x1 and the radial coordinate of the transverse R8 parameterised by
(
x3, . . . , x9

)
in table 5. The SO(2, 1) × SO(8) isometries of the solution match the bosonic subgroup

of the OSp(8|2) supergroup (see table 2). Thus, this should be the supergroup associated

to the superconformal quantum mechanics dual to the solution. Note that the OSp(8|2)

supergroup allows as well for a bosonic subgroup SO(2, 6) × SO(3). This is the group of

isometries of the AdS7×S2 solutions to massive Type IIA supergravity constructed in [16],

which, as shown in [38], are related to the AdS2×S7 solutions upon analytical continuation.

Holographic free energy. Given the non-compactness of the supergravity background

shown in (4.1)–(4.4), we do expect once again to find a divergent result when holographi-

cally evaluating the effective number of degrees of freedom of the dual field theory. We point

out that such a computation holds in the regime characterised by small string coupling and

weakly curved limit for the background (4.1). This amounts to requiring

N1/6 � k � N6 . (4.5)

By specifying the formulas (2.17) and (2.18) to this case, we obtain√
Ĥ =

π13

3 · 215/2

N3/2

k
cot ε , (4.6)

where we have regularised the divergence due to the non-compactness of Iα with a hard

cut-off ε. Substituting this into equation (2.18) we find

Fhol =
π7

221/2

N3/2

k
cot ε . (4.7)
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The divergence of the free energy suggests that the ultimate dual desciption in the UV

should be given by a higher dimensional CFT rather than a superconformal quantum

mechanics. Nevertheless, in analogy to what happened for the previous case of the M5-

branes, we do expect to retain a 1d effective description valid in the IR. In the following

we will argue, by looking at the uplift to eleven dimensions, that the higher dimensional

UV completion should be the 3d CFT associated to M2-branes, supplemented with extra

momentum states.

4.1 Uplift to M-theory

The D0-F1 brane intersection illustrated above has a natural interpretation in M-theory

in terms of longitudinal M2-branes, i.e. M2-branes carrying momentum charge. The cor-

responding supergravity background is semilocalised [56], its near horizon geometry being

ds2
11 = L2

(
ds2

AdS4/Zk
+ 4ds2

S7

)
(4.8)

G(4) = 3L3volAdS4/Zk
(4.9)

where L6 is proportional to the quantised M2-brane charge QM2 = QF1 = N through the

relation L6 = 2−1π2QF1. The metric of AdS4/Zk is parametrised as

ds2
AdS4/Zk

= dµ2 + cosh2 µds2
AdS3/Zk

(4.10)

and the µ coordinate relates through sinα = cosh−1 µ to the IIA warping coordinate α.

The metric ds2
AdS3/Zk

reads as in (2.34). The above solution describes N M2-branes with

k momentum charge. This sends AdS3 → AdS3/Zk, such that half of the supersymmetries

of the AdS4 × S7 background are broken.

The free energy can be computed from the worldvolume of the M2-branes. In this

calculation the singularity found in the type IIA description is absorbed in the (infinite)

worldvolume of the M2-branes. For N M2-branes wrapped on AdS3/Zk we find

SM2 = −T2

∫
d3ξ
√

detg̃ =
π2

25/2

N3/2

k
cosh3 µVol (AdS2) , (4.11)

where we have used that T2 = QM2 = N . This result is in agreement with the type

IIA calculation (4.7). We may now proceed with a similar analysis to the one done in

section 2.3.

The divergence of the free energy (4.7) is again due to an infinite amount of integrated

F(8) flux, from which the D0-brane charge is computed magnetically. In particular we have

that

Qel
D0 ∼ k and Qmag

D0 ∼
N3/2

k2
cot ε , (4.12)

where we have neglected order 1 factors. By imposing that Qel
D0 = Qmag

D0 , one again finds a

charge dependence for the cut-off

cot ε ∼ k3

N3/2
, (4.13)
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which stays consistently finite within the IIA regime obtained in (4.5). This situation turns

out to describe again a D0-brane quantum mechanics. By virtue of (4.13) the free energy

in (4.7) evaluates to

Fhol ∼ k2 . (4.14)

Remarkably the last result manifests the same universal scaling behaviour for AdS2 solu-

tions found in [72], and reproduced when studying the IR phase of longitudinal M5-branes

in section 2.3. Moreover, also in this case the same outcome is reproduced by directly eval-

uating the DBI action of k D0-brane probes in AdS2×S7× Iα. This analogy confirms that

in both situations the IR descriptions of worldvolume theories of M-branes may be given in

terms of a D0-brane quantum mechanics. Reversely, in the regime in which the M-theory

description is valid the charge dependence of the cut-off in (4.13) does not make sense, and

one has to resort to the eleven dimensional description, given by (4.11). Consistently, in

this situation the free energy reproduces the typical scaling of the free energy of the 3d

theory associated to M2-branes.

Our previous result is in agreement with the M(atrix) theory description of longitudinal

M2-branes [79]. In this framework computations such as the potential between a pair of

branes and between branes and gravitons were shown to agree with the supergravity results.

Note that, as in section 2.3, the momentum direction is not a light-cone direction in this

case but an ordinary spatial direction, with both of them being related through the Sen-

Seiberg limit [74, 75].

5 AdS2 × S4 × S2 × Σ2 solutions and linear quivers

As we discussed at the end of section 3, it should be possible to construct more general

type IIB AdS2×S4×S2 solutions dual to superconformal quantum mechanics described by

linear quivers. In this section we provide one such example through non-Abelian T-duality

(NATD) [80, 81]. We argue that the resulting solution is associated to a superconformal

quantum mechanics described by a linear quiver of gauge groups with increasing ranks.

Our starting point is the AdS2 × S4 × S3/Zk′ solution to type IIA discussed in sec-

tion 2.2. We consider the simpler case in which k′ = 1 and perform a non-Abelian T-duality

transformation with respect to a freely acting SU(2) on the S3. The resulting solution fits

locally in the class of solutions constructed in [29] for Σ2 an infinite strip and, as the solu-

tions in this class, it is related through analytical continuation to the AdS4×S2×S2×Σ2

solutions in [57, 58]. The specific AdS4×S2×S2×Σ2 solution involved is dual to a 3d CFT

in the class of [82], described by a linear quiver of gauge groups with increasing ranks. This

strongly suggests that a similar description should be at play for the AdS2 solution. As

in similar examples in which non-Abelian T-duality has been applied to holography [83–

89], the solution constructed through non-Abelian T-duality would not be describing the

same physics as the type IIA seed solution, which would be consistent with the fact that

non-Abelian T-duality has not been proved to be a string theory symmetry [90, 91].

– 16 –



J
H
E
P
0
4
(
2
0
2
0
)
0
3
7

We start by describing the non-Abelian T-dual solution. It is given by

ds2
10 =

`2

sin3α

(
ds2

AdS2
+4dα2 +sin2αds2

S4

)
+
`2 cos2αsin3α

∆
r2ds2

S2
+

sin3α

`2 cos2α
dr2 , (5.1)

eΦ =
sin3α

QD0 cosα
√

∆
, (5.2)

B(2) = −sin6α

∆
r3vol(S2) , (5.3)

F(3) = −QD0

(
rdr+6`4

cos3α

sin7α
dα

)
∧vol(AdS2) , (5.4)

F(5) = −πQD4

(
3rdr+2`4

cos3α

sin5α
dα

)
∧vol(S4)

−`
2πQD4 cos3α

∆
r2
(

cosαdr−6
r

sinα
dα
)
∧vol(AdS2)∧vol(S2) , (5.5)

where we have introduced

∆ = `4 cos4 α+ r2 sin6 α (5.6)

and `2 = πQD4/QD0, in terms of the quantised charges of the type IIA solution prior to

the dualisation. It can be seen that it fits in the general classification in [29], for the choice

of harmonic functions

h1 =
`2

2
QD0γ r, h2 =

`2

2
(1 + γ),

hD1 = −`
2QD0(1− 2γ2) + 2(2c0 +QD0r

2)

8
, hD2 =

r − nπ
2

, (5.7)

where we introduced γ = tan−2 α, d(c0) = 0 and n is associated to large gauge transfor-

mations of the B(2)-field (see below).

Quantised charges. The quantised charges are obtained from the Page fluxes

F̂(3) = F(3) , (5.8)

F̂(5) = −πQD4

(
3rdr + 2`4

cos3 α

sin5 α
dα

)
∧ vol(S4) −QD0r

2dr ∧ vol(AdS2) ∧ vol(S2) , (5.9)

F̂(7) = −3πQD4r
2dr ∧ vol(S4) ∧ vol(S2). (5.10)

From them we can infer that the D0-brane of the type IIA solution gets mapped onto a

D1-brane extended in r plus a D3-brane wrapped in r × S2. As is common through non-

Abelian T-duality, the D3-brane carries dielectric charge due to D1-branes opening up onto

an S2, because of non-vanishing B(2)-charge. We will use D3-branes as colour branes for

our solution. In turn, the D4-branes wrapped on AdS2 × S3 are mapped onto D1-branes

wrapped on AdS2 and D3-branes wrapped on AdS2 × S2. These are non-compact branes

that play the role of flavour branes. As we show below, they do not carry independent

charges either. We will choose the D1-branes to play the role of flavour branes of our

configuration. With these choices the brane set-up is read from a D1-NS5-D3 brane con-

figuration, as the (Abelian T-dual) solution discussed in section 2.1. One can easily check

that the solution in section 2.1 arises in the r →∞ limit, as it should be the case [83, 92].
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For the correct computation of the quantised charges it is necessary to include large

gauge transformations of the B(2)-field. The 3d internal space spanned by (r, S2) is topo-

logically I × S2, so there are large gauge transformation associated to the S2. Given the

form of the B(2)-field we need to divide the r direction into [rn, rn+1) intervals, for rn sat-

isfying that B(2)(rn) = nπvolS2 . Given this, one unit of NS5-brane charge is being created

at each interval, and a large gauge transformation of parameter n needs to be performed

to enforce that 1
4π2

∮
S2 B(2) ∈ [0, 1). Due to the non-compactness of the internal space,

the D3 and D1 colour charges computed from the F̂(5) and F̂(7) magnetic Page fluxes are

infinite. As in previous sections we have to compute the charges as electric charges, from

the F̂(5) and F̂(3) electric Page fluxes, respectively. We then find

QD1 =
π2

2
(2n+ 1)QD0 QD3 = 2π4

(
n+

2

3

)
QD0 , (5.11)

in each of the [rn, rn+1) intervals. In turn, the flavour branes can be computed from the

magnetic F̂(7) and F̂(5) fluxes, leading to

Q̃D1 =
π

4

(
n+

2

3

)
QD4 , Q̃D3 =

π

4
(2n+ 1)QD4 . (5.12)

We will choose QD3, Q̃D1 and QNS5 as independent charges of our configuration in a given

[rn, rn+1) interval.

Brane singularities. The solution (5.1) has two singularities at the boundaries of the

range of α. The first lies at α = 0. After introducing β = α−2 one finds

ds2
10 ∼ `2β3/2ds2

AdS2
+ `2β−3/2

(
dβ2 + β2ds2

S4 + `−4
(
dr2 + r2ds2

S2

))
, (5.13)

eΦ ∼ `−2Q−1
D0 β

−3/2. (5.14)

This is the behaviour of D1-branes with worldvolume AdS2, localised at infinity in R5 and

smeared on S2 × I. The second singularity at α = π
2 is almost identical to the behaviour

at α = π/2 found in section 2.1. We have

ds2
10 ∼ `2

(
ds2

AdS2
+ ds2

S4

)
+ `2β−1

(
dβ2 + β2ds2

S2
+ `−4dr2

)
, (5.15)

eΦ ∼ r−1Q−1
D0 β

−1/2 , (5.16)

where β = (π2 − α)2. This reproduces the behaviour of NS5-branes with worldvolume on

AdS2 × S4, localised at the origin of R3 and smeared on the r coordinate.

The Riemann surface associated to the solution is the infinite strip depicted in figure 4.

D1-branes are smeared over the lower boundary at α = 0 and NS5-branes are smeared on

the upper boundary at α = π
2 . The strip topology follows from the unboundedness of the

r direction.

Brane set-up. The previous analysis is consistent with the brane set-up depicted in

figure 5. The quantum mechanics would live on D3-branes, carrying QD3 charge, wrapped

on S2 and stretched between NS5-branes wrapped on AdS2 × S4 and located at α = π/2,
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α = 0

α = π
2

r ∈ R+D1-branes

NS5-branes

Figure 4. Infinite strip associated to the NATD solution.

D1

D3

nD1

2D3

2D1

nD3

Figure 5. Brane set-up underlying the non-Abelian T-dual solution. The D3-branes are wrapped

on S2, such that the effective field theory living in them is one dimensional at low energies.

r = rn. D1-branes, carrying Q̃D1 charge, wrapped on AdS2 and located at α = 0 would

provide additional flavour charges. The numbers of colour D3 and flavour D1 branes

increase, together with the number of NS5-branes, as we move in r, which plays in this

sense the role of field theory direction. The number of D3-branes increases in one unit in

units of 2π4QD0, while the number of D1-branes increases in units of π2QD0.

The brane set-up depicted in figure 5 suggests that it should be possible to construct

superconformal quantum mechanics with 8 supercharges built out of linear quivers con-

structed from gauge groups of increasing ranks and increasing number of flavours. One

would of course have to give a meaning to the r non-compact direction, inherent to solu-

tions constructed through non-Abelian T-duality, and to the non-compactness along the

α-direction, inherited from the type IIA solution. We will find an interesting relation be-

tween the corresponding divergences below when we address the free energy calculation.

A more careful study of linear quivers superconformal quantum mechanics will however be

left for future analysis.

Free energy. As in section 2 we can compute the free energy using that

F =
3

GN

√
Ĥ (5.17)

In
√
Ĥ the volume of the internal space appears, which is divergent due to the non-

compactness of both the r and α directions. We regularise it introducing an IR cut-off in
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r (P ), as well as a UV cut-off in α (ε), and we get

√
Ĥ =

26π6

3

Q3
D4

QD0

∫ P

0
r2dr

∫ π/2

ε

cos3 α

sin5 α
dα, (5.18)

F =
2

3

Q3
D4

QD0
P 3 cot4 ε (5.19)

In terms of the quantised charges of the non-Abelian T-dual solution this can be expressed

as

F ∼
Q̃3

D1

QD3QNS5
cot4 ε , (5.20)

where Q̃D1 here states for the total flavour D1-brane charge in the r ∈ [0, P ] interval, QD3

for the total colour D3-brane charge in this interval and QNS5 for the total NS5-brane

charge, that is, QNS5 = P . Note that even if there is a striking similarity between this

expression and the expression (2.21) for the free energy of the solution discussed in section

2.1 in terms of the corresponding colour and flavour charges, now QNS5 is infinite, due to

the non-compactness of the r direction. In fact, an obvious way to regularise the expression

in (5.20) is to take the limits P → ∞, ε → 0 such that (cot4 ε)/P remains finite. With

this regularisation the free energy would correspond to that of Q̃D1 M5-branes with QD3

momentum charge. We finish this section with this suggestive relation that should be the

subject of a more careful study.

6 Conclusions

In this paper we have provided two explicit realisations of AdS2/CFT1 dualities with eight

supercharges, one with OSp(4∗|4) supergroup and a second one with OSp(8|2). Both

realisations emerge from controlled string theory set-ups, consisting on D0-NS5-KK or D0-

F1 brane intersections (in type IIA language). The first solution belongs to the general

class of AdS2 × S4 × S2 × Σ2 solutions constructed in [29], for a Riemann surface with

the topology of an annulus. We have computed the corresponding holographic central

charges and shown that in the regime of validity of the type IIA description they share the

same universal behaviour with the electric field found in [72]. It would be interesting to

provide explicit checks on the field theory side of these scalings, possibly along the lines of

I-extremization (see [43–45, 93]), or using the index recently derived in [94] for quantum

mechanical systems with OSp(4∗|4) superconformal symmetry. We have shown that in the

UV the non-compactness of the internal space of the AdS2 solutions is resolved in M-theory

in terms of either M5 or M2 branes with momentum charge, thus providing 6d (2,0) or 3d

N = 4 CFT completions of the respective superconformal quantum mechanics, explicitly

realising deconstructed extra dimensions.

In a less controlled string theory setting, we have provided an explicit example in the

class of AdS2 × S4 × S2 ×Σ2 solutions in [29] for which the Riemann surface is an infinite

strip. This solution is related through analytic continuation to a AdS4 × S2 × S2 × Σ2

solution in the class of [57, 58] for which the 3d dual SCFT is described by a linear quiver
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with gauge groups of increasing ranks, living in a D3-NS5-D5 Hanany-Witten brane set-

up. Analytic continuation suggests that the superconformal quantum mechanics dual to

the AdS2 × S4 × S2 × Σ2 solution should arise as the IR fixed point of a supersymmetric

quantum mechanics described by a linear quiver with gauge groups of increasing ranks,

living in a D1-NS5-D3 brane intersection. It would be interesting to show if a one to one

mapping between AdS2 × S4 × S2 × Σ2 solutions and 1d SCQM similar to the one found

in [77] between AdS4 × S2 × S2 × Σ2 solutions and 3d N = 4 SCFTs [82] can be found.

In this set-up it would be interesting to clarify whether deconstruction plays a role in the

UV completion of the associated non-compact superconformal quantum mechanics.

Finally, our interpretation for holography within AdS2, suggests that a similar logic

could be used to try and make sense of holography within other non-compact geometries

in higher dimensions. One case are the ones generated through non-Abelian T-duality, an

example of which we have encountered in this paper. Thinking along the same lines would

support their holographic descriptions as emergent IR conformal phases within higher-

dimensional CFTs.

We hope to report progress in these interesting open problems in future work.
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A Relation with AdS4 backgrounds

As we have mentioned, the type IIB AdS2 backgrounds discussed in sections 2 and 5 are

related to a known family of AdS4 type IIB solutions through an analytic continuation

prescription. A first hint of this may be found at the level of the common underlying su-

pergroup, up to a different choice of real section. Specifically, the OSp(4∗|4) supergroup, be-

sides SO(1, 2)×SO(3)×SO(5), also admits SO(3, 2)×SO(3)×SO(3) as a bosonic subgroup.

This is the group of isometries of an AdS4×S2×S2 solution, dual to a 3d SCFT with 8 su-

percharges. These solutions were classified in [57, 58], where they were indeed associated to

the OSp(4∗|4) supergroup. In this section we show the details of the analytic continuation

relating the solution in section 2 with an AdS4×S2×S2 solution in the class in [57, 58]. The

AdS4×S2×S2 solution related to the solution constructed through non-Abelian T-duality

in section 5 can be worked out in a very similar way. The result is the background discussed

at length in [84], obtained from AdS4 × S7/(Zk × Zk′) through a chain of dualities.

We focus on the type IIB AdS2 background analysed in section 2. Acting with the

following “quadruple” analytic continuation

ds2
AdS2

→ −ds2
S̃2
, ds2

S4 → −ds2
AdS4

, α→ −ir − π

2
, eΦ → ieΦ , (A.1)
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0 1 2 3 4 5 6 7 8 9

D3 × × × ×
D5 × × × × × ×
NS5 × × × × × ×

Table 6. 1
4 -BPS intersection involving D3, D5 and NS5 branes. The intersection is SO(3)× SO(3)

invariant due to rotational symmetry along (x3, x4, x5) and (x7, x8, x9). An AdS4 vacuum with the

same isometries emerges in the near horizon limit.

on the background (2.5)–(2.9), plus the change of variables cosh−1 r = sinβ, one finds the

following AdS4 × S2 × S2 × Σ2 solution

ds2
10 = `2 sinβ

(
ds2

AdS4
+ 4dβ2 + cos2 βds2

S2 + sin2 βds2
S̃2 +

R2
0

sin2 β cos2 β
dy2

)
, (A.2)

eΦ =
QNS5

QD1
tanβ , (A.3)

H(3) = −QNS5dy ∧ vol(S2) , (A.4)

F(3) = QD1vol(S̃2) ∧ dy , (A.5)

F(5) = (1 + ?10)
(
3πQD3vol(AdS4) ∧ dy

)
. (A.6)

After the analytical continuation the D1-brane charge becomes D5-brane charge, and the

resulting AdS4 vacuum is supported by D3, D5 and NS5-brane charges. This solution

was found originally in [56], as the near horizon limit of a D3-NS5-D5 brane intersection.

This brane set-up consists on D3-branes wrapped on the y direction, stretched between

NS5-branes, located at fixed values of y, with additional perpendicular D5-branes. The

configuration is depicted in table 6.

The near horizon limit of the solution describing the D3-NS5-D5 brane intersection

gives rise to the background given by (A.2)–(A.6), which fits in the classification of AdS4×
S2 × S2 × Σ2 solutions to type IIB in [57, 58], for the choice of harmonic functions

h1 =
`2

2

QD1

QNS5
cos2 β , h2 =

`2

2
sin2 β (A.7)

and

hD1 = −1

2
QD1 y , hD2 = −1

2
QNS5 y . (A.8)

This solution was discussed at length in [95] (see also appendix A of [84]), as a concrete

example of the one to one mapping found in [77] between AdS4×S2×S2×Σ2 solutions in the

classification of [58]8 and 3d SCFTs with 8 supercharges [82]. For this solution the Riemann

surface is an annulus, with boundaries at β = 0, π/2, where smeared D5 and NS5 branes

are located. The associated quiver, depicted in figure 6, becomes circular. After T-duality

8Note that within the aforementioned class one should also find the analytic continuation of the AdS4

background found in [96], which is characterised by a linear dilaton profile obtained through an SL(2,Z)

duality twist.
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1
2

kD5

ND3

k′

Figure 6. Brane set-up underlying the AdS4 × S2 × S2 solution.

along the y-circle and uplift to eleven dimensions the solution becomes AdS4×S7/(Zk×Zk′).
Therefore, it describes N M2-branes at a C4/(Zk×Zk′) singularity, with N , k and k′ given

by the numbers of D3, D5 and NS5 branes in the type IIB set-up. Consistently, the AdS4×
S7/(Zk×Zk′) background is also related to the AdS7/(Zk×Zk′)×S4 background obtained

by uplifting the AdS2 × S4 × S2 solution in section 2 through analytical continuation.
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[48] Y. Lozano, N.T. Macpherson, C. Núñez and A. Ramirez, AdS3 solutions in massive IIA with

small N = (4, 0) supersymmetry, JHEP 01 (2020) 129 [arXiv:1908.09851] [INSPIRE].
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[65] N.T. Macpherson, C. Núñez, L.A. Pando Zayas, V.G.J. Rodgers and C.A. Whiting, Type IIB

supergravity solutions with AdS5 from Abelian and non-Abelian T dualities, JHEP 02 (2015)

040 [arXiv:1410.2650] [INSPIRE].

– 26 –

https://doi.org/10.1007/JHEP11(2019)127
https://arxiv.org/abs/1908.08518
https://inspirehep.net/search?p=find+EPRINT+arXiv:1908.08518
https://doi.org/10.1007/JHEP01(2020)129
https://arxiv.org/abs/1908.09851
https://inspirehep.net/search?p=find+EPRINT+arXiv:1908.09851
https://doi.org/10.1103/PhysRevD.101.026014
https://arxiv.org/abs/1909.09636
https://inspirehep.net/search?p=find+EPRINT+arXiv:1909.09636
https://arxiv.org/abs/1911.04439
https://inspirehep.net/search?p=find+EPRINT+arXiv:1911.04439
https://doi.org/10.1088/1126-6708/1999/02/011
https://doi.org/10.1088/1126-6708/1999/02/011
https://arxiv.org/abs/hep-th/9812073
https://inspirehep.net/search?p=find+EPRINT+hep-th/9812073
https://doi.org/10.1007/JHEP03(2012)071
https://arxiv.org/abs/hep-th/0703252
https://inspirehep.net/search?p=find+EPRINT+hep-th/0703252
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1103/PhysRevD.94.106002
https://arxiv.org/abs/1604.07818
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.07818
https://doi.org/10.1093/ptep/ptw124
https://arxiv.org/abs/1606.01857
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.01857
https://doi.org/10.1007/JHEP02(2020)177
https://doi.org/10.1007/JHEP02(2020)177
https://arxiv.org/abs/1804.01081
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.01081
https://doi.org/10.1103/PhysRevD.62.122003
https://doi.org/10.1103/PhysRevD.62.122003
https://arxiv.org/abs/hep-th/0005246
https://inspirehep.net/search?p=find+EPRINT+hep-th/0005246
https://doi.org/10.1088/1126-6708/2007/06/021
https://arxiv.org/abs/0705.0022
https://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0022
https://doi.org/10.1088/1126-6708/2007/06/022
https://arxiv.org/abs/0705.0024
https://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0024
https://doi.org/10.1016/S0370-2693(98)01167-8
https://arxiv.org/abs/hep-th/9802026
https://inspirehep.net/search?p=find+EPRINT+hep-th/9802026
https://doi.org/10.1103/PhysRevD.59.026003
https://arxiv.org/abs/hep-th/9805136
https://inspirehep.net/search?p=find+EPRINT+hep-th/9805136
https://doi.org/10.4310/ATMP.1999.v3.n1.a6
https://doi.org/10.4310/ATMP.1999.v3.n1.a6
https://arxiv.org/abs/hep-th/9812218
https://inspirehep.net/search?p=find+EPRINT+hep-th/9812218
https://doi.org/10.1088/1126-6708/1999/11/037
https://arxiv.org/abs/hep-th/9907100
https://inspirehep.net/search?p=find+EPRINT+hep-th/9907100
https://arxiv.org/abs/hep-th/9607161
https://inspirehep.net/search?p=find+EPRINT+hep-th/9607161
https://doi.org/10.1016/j.nuclphysb.2007.12.017
https://doi.org/10.1016/j.nuclphysb.2007.12.017
https://arxiv.org/abs/0709.2140
https://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2140
https://doi.org/10.1007/JHEP02(2015)040
https://doi.org/10.1007/JHEP02(2015)040
https://arxiv.org/abs/1410.2650
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.2650


J
H
E
P
0
4
(
2
0
2
0
)
0
3
7

[66] Y. Bea et al., Compactifications of the Klebanov-Witten CFT and new AdS3 backgrounds,

JHEP 05 (2015) 062 [arXiv:1503.07527] [INSPIRE].

[67] M.R. Douglas, D.N. Kabat, P. Pouliot and S.H. Shenker, D-branes and short distances in

string theory, Nucl. Phys. B 485 (1997) 85 [hep-th/9608024] [INSPIRE].

[68] M. Berkooz and M.R. Douglas, Five-branes in M(atrix) theory, Phys. Lett. B 395 (1997) 196

[hep-th/9610236] [INSPIRE].

[69] O. Aharony, M. Berkooz, S. Kachru, N. Seiberg and E. Silverstein, Matrix description of

interacting theories in six-dimensions, Adv. Theor. Math. Phys. 1 (1998) 148

[hep-th/9707079] [INSPIRE].

[70] O. Aharony, M. Berkooz and N. Seiberg, Light cone description of (2, 0) superconformal

theories in six-dimensions, Adv. Theor. Math. Phys. 2 (1998) 119 [hep-th/9712117]

[INSPIRE].

[71] A. Hanany and G. Lifschytz, M(atrix) theory on T 6 and a m(atrix) theory description of K

K monopoles, Nucl. Phys. B 519 (1998) 195 [hep-th/9708037] [INSPIRE].

[72] T. Hartman and A. Strominger, Central charge for AdS2 quantum gravity, JHEP 04 (2009)

026 [arXiv:0803.3621] [INSPIRE].

[73] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional

gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

[74] A. Sen, D0-branes on Tn and matrix theory, Adv. Theor. Math. Phys. 2 (1998) 51

[hep-th/9709220] [INSPIRE].

[75] N. Seiberg, Why is the matrix model correct?, Phys. Rev. Lett. 79 (1997) 3577

[hep-th/9710009] [INSPIRE].

[76] T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a

conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].

[77] B. Assel, C. Bachas, J. Estes and J. Gomis, Holographic duals of D = 3, N = 4

superconformal field theories, JHEP 08 (2011) 087 [arXiv:1106.4253] [INSPIRE].

[78] Y. Imamura, 1/4 BPS solutions in massive IIA supergravity, Prog. Theor. Phys. 106 (2001)

653 [hep-th/0105263] [INSPIRE].

[79] O. Aharony and M. Berkooz, Membrane dynamics in M(atrix) theory, Nucl. Phys. B 491

(1997) 184 [hep-th/9611215] [INSPIRE].

[80] X.C. de la Ossa and F. Quevedo, Duality symmetries from non-Abelian isometries in string

theory, Nucl. Phys. B 403 (1993) 377 [hep-th/9210021] [INSPIRE].

[81] K. Sfetsos and D.C. Thompson, On non-Abelian T-dual geometries with Ramond fluxes,

Nucl. Phys. B 846 (2011) 21 [arXiv:1012.1320] [INSPIRE].

[82] D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills

theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].
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