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Abstract: In this contribution a new technique to increase the bandwidth of metasurfaces without 

increasing their profile is presented. This work takes advantage of the potential multiresonant 

behavior of a metamaterial whose unit cells comprise nested metallization geometries in the same 

layer. The novelty stems from the possibility of overlapping these resonances for increasing the 

bandwidth (instead of obtaining a multiresonant metasurface). Several guidelines to achieve the 

aforementioned bandwidth broadening, which are applicable to all metasurface designs, will be 

provided. An equivalent circuit model will be used to better explain the presented technique; then, 

it will be applied to several metasurface absorbers (MTAs), showing not only a bandwidth 

broadening but also an absorption reinforcement. Measurements will be also presented to 

corroborate the simulation results. 
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1. Introduction 

During recent years, many authors have focused their research on metasurfaces, which are two-

dimensional periodic artificial materials that exhibit properties not found in natural ones. Due to such 

properties, they have been used in many applications, such as cloaking or concealing objects [1], 

energy harvesting [2], superlenses in optics [3] and electromagnetic imaging [4]. However, it should 

be mentioned that they exhibit several limitations, such as challenging characterization [5,6], limited 

angular stability and bandwidth [7,9], lack of conformability and manufacturing restrictions [10]. As 

such, many authors have devoted their efforts to overcome some of the aforementioned limitations. 

Metasurfaces have also been designed to absorb or cancel incoming electromagnetic waves. 

They are two-dimensional periodic metamaterials, whose fabrication complexity is often reduced. 

Metasurface absorbers (MTAs) are designed to match the surface impedance of the hosting medium 

and absorb the incoming electromagnetic wave, whilst the checkerboard combination of either 

perfect electric conductors (PECs) and artificial magnetic conductors (AMCs) or two different AMCs 

are employed to cancel the incoming electromagnetic wave [11,12]. 

This paper will be focused on designing MTAs with improved properties. MTAs usually 

comprise a grid, which is a metallo-dielectric frequency selective surface (FSS), on a grounded 

dielectric. MTAs, like any metasurface, exhibit limited bandwidth due to their resonant behavior. 

Many works have been focused on increasing their bandwidth by using thick dielectrics, scaling their 

unit cell’s metallization geometries in one or more layers [13,14], introducing resistors on their unit 

cell’s metallizations [15] or employing magnetic superstrates [16]. However, most of these techniques 

give rise to large profiles. 

Other types of resonant absorbers have been also developed. The first of these absorbers was the 

Salisbury screen (SS), which cancels the wave reflection by resorting to a destructive interference. The 

Jaumann absorber, based on the same principle as the S.S., achieves a widened bandwidth by adding 

multiple layers. Following these, the circuit analog (CA) absorber was developed, which consists of 
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a lossy FSS (behaving as an RLC circuit) on a grounded dielectric [17], instead of a resistive layer, as 

in the case of the Dällenbach absorber.  

The capacitive circuit absorbers (CCAs) are similar to the CA absorbers, but replace the RLC 

circuit with an RC one. Although the CCAs offer slight reductions in dielectric thickness compared 

to the aforementioned absorbers, the structure thickness resulting from the application of the 

mentioned techniques to broaden the bandwidths of metasurfaces is still large. 

Consequently, a new technique to improve the bandwidth and reinforce the absorption of MTAs 

without increasing their profiles would be of major interest. This work pursues this aim, introducing 

a new technique based on properly designing each metasurface unit cell so that its profile can be kept 

whilst its bandwidth is broadened.  

The proposed method to overcome the bandwidth limitations of metasurfaces consists is that of 

overlapping multiple resonances of the presented MTAs. Indeed, in contrast to other authors who 

achieved multiband operation by nesting scaled versions of the unit cell’s metallization geometry 

[18], a new technique to overlap these multiple resonances will be provided in this paper. This 

technique can be achieved by following some guidelines that will be discussed in this contribution. 

2. Materials and Methods  

Prior to properly designing the unit cell, it is crucial to understand the behavior of an MTA 

comprising nested unit cells. Therefore, an MTA with canonical unit cells, such as the one presented 

in Figure 1a, will be firstly analyzed. This unit cell consists of outer and inner metallization geometries 

(OMG and IMG, respectively) on a commercially available Arlon25N dielectric with 𝜖𝑟 =

3.38, 𝑡𝑎𝑛𝛿 = 0.0025  and 0.762 mm thickness. The OMG has the following parameters: 𝑙𝑒 =

5.1 𝑚𝑚, 𝑙𝑖 = 4.6 𝑚𝑚 and 𝑎 = 𝑏 = 14.33 𝑚𝑚, whereas the IMG is obtained by scaling the OMG by 

0.8. This first MTA will be regarded to as DS1. 

 

The equivalent circuit of this type of metasurface can be generically modeled using the 

equivalent circuit of Figure 1b [19]. The OMG and IMG can be represented as RLC circuits. The 

transmission line is used to represent the grounded dielectric. Without loss of generality, it will be 

assumed that 𝐿1, 𝐶1 and 𝑅1 are the circuit components that model the OMG and that 𝐿2, 𝐶2 and 𝑅2 

are the circuit components that model the IMG.  

 

Figure 1. (a) Unit-cell geometry of the initial nested metasurface (DS1); (b) equivalent circuit model; 

(c) absorption results of the DS1. 

Assuming that both structures can be decoupled, their resonance frequencies can be computed 

as follows: 

𝑓𝑟 =
1
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where I = O or I, depending whether the outer or inner metallization, respectively, is considered. For 

the case under analysis, one can consider 𝐿𝐼 ≪ 𝐿𝑂, since the inductance is proportional to the length 

of the metallization [20,21]. Therefore, the first absorption peak at 4.758 GHz in Figure 1c can be 

attributed to the resonance of the outer metallization, and the peak at 6.242 GHz can be attributed to 

the inner metallization [22]. 

 

From the previous result, one can clearly notice that the inductance of the inner metallization 

should be increased, so that both resonances can be brought close to each other. The latter cannot be 

achieved by using a scaled version of the outer metallization, since it will always exhibit a smaller 

inductance. Consequently, another inner metallization geometry has to be devised, such as the one 

presented in Figure 2a, which has the following parameters: 𝑅1 = 2.4 𝑚𝑚 , 𝑅2 = 2 𝑚𝑚 ,  𝑅3 =

1.4 𝑚𝑚 , 𝑙𝑒 = 5.1 𝑚𝑚 , 𝑙𝑖 = 4.6 𝑚𝑚  and 𝑎 = 𝑏 = 14.33 𝑚𝑚 . It should be mentioned that the 

center position of the circumferences of radii 𝑅1 , 𝑅2  and 𝑅3  are located in the negative x-axis, 

considering the coordinate system at the unit cell center, at −𝑏/2, −𝑏_2/2 and −𝑡, respectively, 

where 𝑏2 = 4𝑝2 + 4𝑡2 , 𝑝2 = 𝑅2𝑠𝑖𝑛(𝛼), 𝑡2 = 𝑅2𝑐𝑜𝑠(𝛼), 𝑡 = 𝑅1𝑐𝑜𝑠(𝛼) and 𝛼 =  22.5∘ . This MTA 

will be named DS1+. 

 

 

Figure 2. (a) Unit cell geometry of the improved nested metasurface (DS1+); (b) absorption results of 

the DS1 and DS1+. 

From the results (see Figure 2b) it is possible to observe that even though the distance between 

the absorption peaks has been reduced by more than 100 MHz, it is still wide. Several parametric 

analyses were conducted trying to bring both resonances closer, but none of them provide the desired 

resonance overlapping. Therefore, it can be concluded that the equivalent circuit of either the inner 

or outer metallization geometries should be modified, so that the frequency positions at which the 

resonances arise can be reversed. The latter means that the resonance attributable to the OMG should 

appear at higher frequencies than that of the IMG, or vice versa. Then, by scaling one or the other 

metallization geometry, the resonances could be overlapped. 

 

3. Results and Validation of the Method 

In this paper, it is chosen to modify the outer metallization, so that its equivalent circuit model 

can be altered. For achieving this goal, a gap is introduced in the outer metallization, so that a 

capacitance 𝐶𝑔𝑎𝑝 is added (see Figure 3). After performing this modification, it was observed that the 

resonance attributable to the outer metallization will appear at higher frequencies than the inner one. 

 

1.484

1.303
a) b)

OMG

IMG

  

  

  



Materials 2020, 13, x FOR PEER REVIEW 4 of 12 

 

 

Figure 3. Equivalent circuit model of the new proposed metasurface. 

The first proposed metasurface is presented in Figure 4a. Initially, the OMG and the IMG are 

designed independently to resonate around 9 GHz (an interesting frequency for radar applications) 

using the same grounded dielectric (Arlon25N of 1.524 mm thickness). After several parametric 

adjustments aimed at overlapping the resonances, it was found that the outer metallization should 

have the following parameters: 𝑙𝑒 = 8.68 𝑚𝑚 , 𝑙𝑖 = 8.23 𝑚𝑚 , 𝑔𝑎𝑝 = 0.6 𝑚𝑚  and 𝑎 = 𝑏 =

21.97 𝑚𝑚. It can be noticed that the inner metallization was slightly modified with respect to the 

one in Figure 2a. It is now composed of two intersected ellipses (instead of circles), having semi-major 

axes of 4 and 3.5 𝑚𝑚 and semi-minor axes of 2 and 1.75 𝑚𝑚, with center positions on the x-axis 

at 6.27 and 5.23 𝑚𝑚, respectively. This metallization is obtained by intersecting these ellipses and 

duplicating the resultant structure each 45∘. Then, a scaling factor of 0.98 is applied to the inner 

metallization, so that both resonances overlap, as seen in Figure 4b. In this figure, the absorption of 

the MTA considering both the IMG and OMG (in blue), which will be called DO1, and the absorptions 

obtained when considering just the IMG or OMG (in red and green, respectively) are presented. 

 

From the results, it can be clearly noticed that not only is the bandwidth broadened, but also the 

absorption is reinforced (84%).  

Figure 4c shows the absorption properties of the structure when the gap is removed. One can 

notice that the fundamental resonance of the OMG shifts downwards to 2.439 𝐺𝐻𝑧. The peak that 

appears around 8.077 𝐺𝐻𝑧 is due to the excitation of the OMG second mode, as one can observe in 

Figure 5, where the electric fields on the IMG and OMG are shown. It should be noticed that this 

second mode is weaker than the fundamental one (providing a much smaller absorption peak). 
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Figure 4. (a) Unit cell geometry of the first proposed metasurface absorber (MTA) with overlapping 

resonances. (b,d) Absorption results of the DO1 and the MTA whose grids consist of the IMG or OMG 

using (b) Arlon 25N as dielectric and (d) FR4. (c) Absorption results of the DO1 when gap is removed. 

 

Figure 5. Electric fields of the DO1 when the gap is removed, at the absorption peaks of (a) 2.439, (b) 

8.077 and (c) 9.553 GHz. 

As a perfect absorption is not obtained, several modifications can be introduced on the MTA to 

achieve it, such as the adjustment of the grid geometric parameters, the introduction of resistors or 

the modification of the dielectric.  

In this case, an FR4 dielectric of 0.8 𝑚𝑚 will be now considered, and a scaling factor of 0.81 is 

applied to the IMG to couple both resonances. The results are depicted in Figure 4d. Moreover, in 

Table 1 the results depicted in Figure 4b and 4d are detailed, and the resonance frequency (𝑓𝑟 ), 

absorption peak (𝐴𝑝), bandwidth at 50% of absorption (𝐵𝑊50%) and the full width at half maximum 

(FWHM) are presented. Consequently, one can clearly quantify not only the improvement in the 

bandwidth, but also the reinforcement of the absorption peak when the resonances attributable to the 

IMG and OMG are coupled. It should be mentioned that the 𝐵𝑊50%, which is a more interesting 

parameter for assessing the performance of nonperfect absorbers, is almost doubled in both cases. 
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Table 1. Resonance frequency, absorption peak and bandwidth of the DO1 when considering the full 

metallization or just the IMG or OMG for different dielectric substrates. 

 
𝒇𝒓  

(GHz) 

𝑨𝒑  

(%) 

𝑩𝑾𝟓𝟎%   

(%) 

FWHM 

(%) 

Arlon25N 

1.524 mm 

IMG and OMG 9.32 84 5.38 6.51 

IMG 8.88 73 2.23 3.42 

OMG 9.81 28 0 5.38 

FR4 

0.8 mm 

IMG and OMG 9.52 98 6.93 7.07 

IMG 9.4 77 2.25 2.95 

OMG 9.2 99 4.02 4.02 

 

Aiming at further validating the proposed method, it is applied to another designed MTA. The 

new structure is the one presented in Figure 6 (DO2). It has the following geometric parameters: 𝑅1 =

4.65 𝑚𝑚 , 𝑅2 = 4.25 𝑚𝑚 , 𝑔𝑎𝑝 = 0.4 𝑚𝑚  and 𝑎 = 𝑏 = 21.74 𝑚𝑚 . The center position of the 

circumferences to achieve the OMG can be obtained as in the previous section for the IMG of DS1, by 

using the new values of 𝑅1 and 𝑅2. For better manufacturing tolerance, the IMG is intersected with 

a circumference of radius 3.6 𝑚𝑚 and scaled by a factor of 1.11. In this case, aiming at obtaining a 

low profile, Arlon25N with a thickness of just 0.762 𝑚𝑚 is considered. 

The results from the application of the proposed method (introducing gaps in the OMG to 

change its equivalent circuit model) are presented in Figure 6b. One can clearly notice not only a 

bandwidth broadening, but also an absorption reinforcement. Figure 6c shows the behavior of the 

metasurface when the gaps on the OMG are removed. It can be observed that the resonances 

attributable to the IMG and OMG appear far away from each other. 

On the other hand, the structure is analyzed under different incidence angles showing proper 

absorption and bandwidth behavior for a range of incidence angles from 0 to 60°. 

One should notice that the angular sensitivity is strongly dependent on the dielectric properties 

of the substrate, which are not modified in the application of this technique; hence, the angular 

sensitivity of the final metasurface will highly depend on the initial one. 

 

In Table 2, the results obtained for this new proposed metasurface are presented. Once again, it 

is possible to corroborate not only a bandwidth widening (the bandwidth is almost doubled), but 

also an absorption reinforcement. Therefore, the proposed method is once more proved. 

 

Figure 6. (a) Unit cell geometry of the second proposed MTA with overlapping resonances (DO2) and 

(b) the absorption results of the DO2 and the MTA whose grids consist of the IMG or OMG. (c) 

Absorption results of the DO2 when the gap is removed. (d) Angular stability analysis of the DO2. 
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Table 2. Resonance frequency, absorption peak and bandwidth of the DO1 when considering the full 

metallization or just the IMG or OMG. 

 
𝒇𝒓  

(GHz) 

𝑨𝒑  

(%) 

𝑩𝑾𝟓𝟎%   

(%) 

FWHM 

(%) 

Arlon25N 

0.762 mm 

IMG and OMG 9.24 99 3.92 3.92 

IMG 9 97 1.56 1.56 

OMG 8.96 92 2.36 2.36 

 

To further clarify the previous ideas, the electric fields at the resonance frequencies of the 

proposed MTAs are analyzed. The electric field of the DO1 on FR4 at 9.22 GHz and the DO2 at 9.24 

GHz are presented in Figure 7a and 7b, respectively. It can be observed that both metallic structures 

are excited at the absorption peaks. Therefore, the resonance overlapping phenomena is once more 

verified. 

 

Figure 7. Electric fields of the DO1 when the gap is removed at the absorption peaks of (a) 2.439, (b) 

8.077 (c) and 9.553 GHz. 

Finally, the presented method will be compared with others already in the literature. It should 

be noticed that the metamaterial absorber bandwidth depends on the operation frequency band, the 

dielectric properties and the unit cell geometry. For a given relative permittivity and loss tangent, 

increasing the dielectric thickness broadens the bandwidth. On the other hand, it is easier to obtain 

wider absolute bandwidth at higher frequencies.  

Moreover, one should keep in mind that the aim of the paper is not to show the best possible 

design in terms of bandwidth, but rather to introduce a novel method that broadens the bandwidth 

of a given metasurface absorber and exhibits certain advantages, namely that it requires no profile 

modification, exhibits symmetry preservation, is easy to be implement and is frequency-scalable, 

among other advantages. 

 

For a fair comparison and given that the final achievable MTA bandwidth is dependent on the 

initial one, the different methods in the literature will be compared in terms of bandwidth 

improvement from the initial MTA to the final one after applying each method.  

Apart from increasing the dielectric thickness to increase the bandwidth (which is a well-known 

method), other methods have been presented in the literature and applied to different metasurface 

absorber unit cells [23]. As previously mentioned, these methods are the scaling of the unit cell’s 

metallization geometries in the same layer (horizontal scaling [24,25]) or in stacked layers (vertical 

scaling [26], the design of fractal structures [27], the employment of magnetic materials [28] or the 

introduction of lumped resistors [29]. 

For an optimum comparison, the compared structures should be in the same frequency band. 

However, most authors do not provide the required data for such comparison. 

 

 

a) b)
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The following table presents different works in which the aforementioned methods were applied 

and compares them with the one proposed in this paper: 

Table 3. Comparison of the method with others previously presented in the literature. 

Ref. Method 
𝒇𝒄 

(GHz) 

𝑻𝒉𝒊𝒄𝒌𝒏𝒆𝒔𝒔 

(mm)* 
Dielectric 

Initial 

BW 

(%) 

Final 

BW 

(%) 

𝑩𝑾 

Improvement 

(times) 

Symmetry 

Keeping 

[26] 
Horizontal 

Scaling 
10.37 

1.07 

𝜆𝑔/12.5 

FR4 

(𝜀𝑟 = 4.4) 
3.86% 6.56% 1.7 No 

[27] 
Horizontal 

Scaling 
5.26 

1.67 

𝜆𝑔/15.4 

FR4 

(𝜀𝑟 = 4.4) 
7.79% 10.91% 1.4 No 

[28] 
Vertical 

Scaling 
4.91 

0.97 

𝜆𝑔/28.9 

FR4 

(𝜀𝑟 = 4.4) 
3.2% 7.91% 2.5 Yes 

[29] 
Fractal 

Structure 
9.32 

1.67 

𝜆𝑔/8.4 

FR4 

(𝜀𝑟 = 4.4) 
10.73% 18.56% 1.7 Yes 

[30] 
Magnetic 

material 
2.65 

2.42 

𝜆𝑔/15.9 
- 41.5% 76.63% 1.9 Yes 

[31] 
Lumped 

Resistors 
4.1 

5.034** 

𝜆𝑔/5.15 

FR4 

(𝜀𝑟 = 4.4) 
4.94% 68.8% 13.9 Yes 

This 

Work 

(DO1) 

Nested 

Coupling 
9.52 

0.836 

𝜆𝑔/17.4 

FR4 

(𝜀𝑟 = 4.4) 
4.02% 7.07% 1.8 Yes 

This 

Work 

(DO2) 

Nested 

Coupling 
9.24 

0.798 

𝜆𝑔/21.7 

Arlon25N 

(𝜀𝑟 = 3.38) 
2.36% 3.92% 1.7 Yes 

*𝜆𝑔 is the guided wavelength at the highest operation frequency of the structure. ** Resistor height not considered 

Although it seems that the method based on introducing lumped resistors improves the 

metasurface absorber bandwidths more, it is a different technique from the others as it is based on 

introducing lumped components, which increases the fabrication cost and greatly increase the profile 

(due to the resistor height and the circuit analog absorber consideration on which most of the works 

are based [30]). The manufacturing process is also arduous, as these resistors have to be precisely 

welded. On the other hand, this technique does not always ensure a broadening in the bandwidth 

[31], as the unit cell geometry has to be properly designed and the dielectric must be properly chosen, 

and may also fully shift the frequency band from the initial structure [29]. 

It should also be mentioned that this technique is only suitable at microwave frequencies, since 

at higher ones the resistor parasitic effects increases, its availability is reduced and a more precise 

mounting procedure is required. 

 

One of the major drawback of applying the horizontal scaling method, apart from increasing the 

unit cell size, is the difficulty in retaining the symmetry of the unit cells. As different scaling factors 

are applied to the initial unit cell metallization geometry, the resulting unit cell is not symmetric, 

which gives rise to worse angular stability. Moreover, slightly lower bandwidth improvement is 

obtained as compared to the proposed method, as one can see from the previous table.  

On the other hand, the vertical scaling is an alternative that clearly increases the metasurface 

thickness. Moreover, it can give rise to manufacturing difficulties, as misalignments between the 

layers may occur when they are arranged. 
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Complex structures have also been introduced to increase the bandwidth, as is the case of the 

fractal structures presented in [27]. However, though the symmetry can be kept, it is not easy to 

completely couple the resonances; hence, absorption valleys may appear between them [27]. 

Moreover, there are no guidelines for designing this type of structure. 

The use of magnetic materials, though it improves the metasurface bandwidth, may increase the 

metasurface weight and complicate its manufacturing. Moreover, such materials are not as 

commonly available as the dielectric ones. 

 

Consequently, it could be mentioned that the proposed technique, which considers the worst 

case (broadest initial bandwidth of IMG or OMG), provides proper bandwidth improvement, 

without increasing the metasurface profile or degrading the unit cell symmetry, and it can be applied 

to any frequency band of interest. Moreover, it is easily applicable to any metasurface, following the 

guidelines provided in the paper.  

Due to the versatility of the method, it can be combined with the other ones presented in Table 

3 to further broaden the bandwidth [32,33]. 

 

4. Experimental Validation and Discussion 

Due to the current availability of Arlon 25N with 0.762 𝑚𝑚 thickness in our facilities, the DO2 

presented in Figure 6 was manufactured, using a PCB prototyping plotter LPKF ProtoMat H100. The 

manufactured prototype is presented in Figure 8a and has 8 × 8 unit cells with a total dimension of 

174 × 174 𝑚𝑚. The measurements were conducted in a semi-anechoic environment and under 

normal incidence using two Narda 640 waveguide horn antennas, one acting as transmitter and the 

other as receiver. The set-up calibration was conducted using an identical-sized metallic plate as the 

MTA. To conduct proper measurements under far-field condition in a frequency band from 8 −

12 𝐺𝐻𝑧, the distance between the MTA and the prototype should be about 4.8 𝑚 [34]. This distance 

may be excessive for some measurement set-ups, even in an anechoic chamber. However, as shown 

in [35], proper measurements with small errors can be obtained when measuring the prototype under 

normal incidence in the Fresnel region.  

Owing to the manufacturing tolerances and deviations in the dielectric properties and thickness, 

there is a slight shift in the resonant frequency of the measured prototype. For a clearer comparison 

in terms of absorption and bandwidth, the simulation results are superposed with the measurement 

ones (see Figure 8b). From the measurement results, one can observe suitable absorption around 

10.5 𝐺𝐻𝑧 , with a 3.52%  relative bandwidth at 50%  of absorption. The slight frequency shift 

compared to simulation can be attributed to manufacturing tolerances and deviations in the dielectric 

properties and thickness. Nevertheless, one can also notice the enlargement of the absorption 

bandwidth due to the coupling between the resonances attributable to the IMG and OMG. 

 

Figure 8. (a) Manufactured prototype (DO2) and semi-anechoic measurement set-up. (b) Measured 

vs. simulation absorption results of the DO2. 

a)

174mm

174mm

Tx

Rx

369.6 MHz
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Until now, other authors have achieved multiband operation by nesting scaled versions of the 

unit cell’s metallization geometry [¡Error! No se encuentra el origen de la referencia.]. Other studies 

have been devoted to broadening the metasurface bandwidth at the expense of increasing its profile. 

However, no study has been addressed to increasing this bandwidth without increasing the 

metasurface profile [12-15]. Consequently, this paper has tackled this concern and shown that the 

metasurface bandwidth broadening can be attained by properly designing the unit cell’s 

metallization geometries so that their resonance frequencies can be overlapped. Moreover, the 

presented technique is not restrictive; other methods, such as the increase of the dielectric thickness, 

the introduction of magnetic superstrates or resistors or the implementation of the capacitive circuit 

method, can be additionally applied to the considered metasurface to further increase its bandwidth. 

 

5. Conclusions 

In this paper, a new technique to increase the bandwidth of metasurface absorbers (MTAs) 

comprising two independent nested metallization geometries in the same unit cell has been 

presented. It is shown for the first time that by properly devising the aforementioned metallization 

geometries, instead of obtaining a multiresonant MTA, a broadband MTA can be developed, since 

their resonances can be overlapped. Indeed, the key aspect in obtaining this overlapping was found 

to be the modification of the equivalent circuit of either the inner or outer metallization geometry so 

that their resonance frequencies can be swapped. Hence, the resonance frequency attributable to the 

inner metallization appears at a lower frequency than the that of the outer metallization. As an 

additional reward, the absorption peak when both resonances overlap has been reinforced. Good 

agreement between simulation and measurements has been also obtained in terms of coupling the 

resonances and reinforcing the absorption. 

In this first analysis, only two metallization geometries have been considered, but this technique 

can be applied to any metasurface and to cases where more than two metallization geometries are 

nested. 
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