Discovery of cryptic largimycins in *Streptomyces* reveals novel biosynthetic avenues enriching the structural diversity of the leinamycin family

Adriana Becerril,^{†,‡,§} Ignacio Pérez-Victoria,^{#,§} Suhui Ye, ^{†,‡} Alfredo F. Braña, ^{†,‡} Jesús Martín, [#]

Fernando Reyes, [#] José A. Salas^{†,‡} and Carmen Méndez^{*,†,‡}

[†]Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias

(I.U.O.P.A), Universidad de Oviedo, Oviedo, Spain

[‡]Instituto de Investigación Sanitaria de Asturias (ISPA), Oviedo, Spain

[#]Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía,

Armilla, Granada, Spain.

[§]These authors contributed equally

* Correspondence: Carmen Méndez (cmendezf@uniovi.es)

Strains, culture conditions, plasmids and DNA manipulations

S. argillaceus ATCC 12956 and Streptomyces canus ATCC 12646 were used as source of DNA and/or as LRGs producers. SM19 and SM30 (Becerril et al., 2018) and SM30a (tomato paste, 40 g l-1; oat flour, 15 g l-1; rice molasses, 2 g l-1; tap water; pH 4.5) media were used for LRGs production. Escherichia coli DH10B (Invitrogen) and E. coli ET12567/pUB307 (Kieser et al., 2000) were used as cloning host and as donor strain for conjugation experiments, respectively. When required, media were supplemented with antibiotics at the following final concentrations: apramycin (25 µg ml⁻¹), thiostrepton (50 µg mL⁻¹), ampicillin (100 µg mL⁻¹), kanamycin (50 µg mL⁻¹), nalidixic acid (25 µg mL⁻¹), and hydromycin (200 µg mL⁻¹). Standard procedures were used to transform/conjugate strains (Kieser et al., 2000; Sambrook and Russell, 2001). PCR amplifications were carried out using oligonucleotides in Table S1, Herculase (Stratagene) and 2.5% dimethyl-Isulfoxide (DMSO). Amplicons were purified and sequenced to confirm their identity. Plasmid pUO9090 (M. C. Martín, unpublished results) was used for subcloning. Plasmids pHZ1358 (Sun et al., 2009) and pBSKTTE (this work) were used to generate mutants. Plasmids pEM4T (Menendez et al., 2006), pEM4ATc (Malmierca et al., 2018) and pSETEH (R. Salcedo, unpublished results) were used for expressing genes in Streptomyces. pBSKTTE was constructed by cloning a BamHI-Xbal fragment containing oriT and ermEp* from pEM4T into the same sites of pBSKT (Lombó et al., 1999). Bioinformatic analyses were carried out using BlastP (Altschul et al., 1997) and antiSMASH (Weber et al., 2015) programs.

Generation of mutants

Several mutants were generated either by inserting a plasmid into the target gene, or by replacing most of the gene by an apramycin resistance cassette that was inserted in the same direction of transcription. To this aim, several plasmids were constructed, introduced by conjugation into *S. argillaceus*, and the corresponding mutants selected by being thiostrepton-resistant (pBSKTTE-based plamids) or apramycin-resistant and thiostrepton-sensitive (pHZ1358-based plasmids). Mutants were genetically confirmed by Southern hybridization or by PCR amplification using specific primers (Figure S1 and Table S1), followed by sequencing the PCR products. Complementation of mutants was carried out by expressing the wild-type copy of the mutated gene *in trans* under the control of the erythromycin resistance promoter (see below). Primers for PCR amplification and DNA sequencing are shown at Table S1. Construction of these plasmids was carried out as follows:

<u>pBSKTTE-AT</u> (to generate *S. argillaceus* △lrgG): a 1.26 kb DNA fragment internal to *lrgG* was PCR amplified using primers MutAT831_A y MutAT831_B, digested with BamHI and EcoRI and subcloned into the same sites of pBSKTTE.

<u>pHZ-IrgR3</u> (to generate *S. argillaceus* △IrgR3): a 1.81 kb DNA fragment containing *IrgT1* and the 5'-end of *IrgR3* was amplified using primers TetR21I up and TetR21I rp, digested with BgIII and EcoRI and subcloned into the same sites of pUO9090 upstream of the apramycin resistance cassette generating pUO-TetR21I. Also, a 2.05 kb DNA fragment containing the 3'-end of *IrgR3*, *IrgP1* and the 5'-end of *IrgC1* was amplified using oligonucleotides TetR21D up and TetR21D rp and subcloned into the BamHI and EcoRV sites of pUO-

TetR21I, downstream of the apramycin resistance gene generating pUO-TetR21. Then, the whole fragment was rescued with Spel and subcloned into the Xbal site of pHZ1358.

<u>pHZ-IrgR4</u> (to generate *S. argillaceus* ∆IrgR4): a 2.04 kb DNA fragment containing *IrgW1* and the 5'-end of *IrgR4* was amplified using primers TetR48I up and TetR48I rp, digested with BgIII and EcoRI and subcloned into the same sites of pUO9090 upstream of the apramycin resistance gene, generating pUO-TetR48I. Then a 2.0 kb fragment containing the 3'-end of *IrgR4*, *IrgO* and the 5'-end of *IrgB* was also amplified using oligonucleotides TetR48D up and TetR48D rp, subcloned into pCR-Blunt and rescued as an EcoRV fragment (using one site from the vector) to be subcloned into the same site of pUO-TetR48I in the right orientation, downstream of the apramycin resistance cassette. Finally, the insert was subcloned as a Spel fragment into the Xbal site of pHZ1358.

<u>pHZ-PH19</u> (to generate *S. argillaceus* △orf18): a 1.98 kb DNA fragment containing the 5'-end of *orf18* and *orf16* and *orf17* was amplified using oligonucleotides PH19I up/PH19I rp, digested with EcoRI and PstI, and subcloned into the same sites of pUO9090 upstream of the apramycin resistance cassette, generating pUO-PH19I. Then, a 2.02 kb DNA fragment containing the 3'-end of *orf18*, *IrgT1* and the 5'-end of *IrgR3* was PCR amplified using primers PH19D up/PH19D rp, digested with BamHI and XbaI, and subcloned into the same sites of pUO-PH19I, downstream of the apramycin resistance gene. Finally, the whole insert was rescued as a Spel fragment and subcloned into the XbaI site of pHZ1358.

<u>pHZ-Trans20</u> (to generate *S. argillaceus* △IrgT1): a 2.02 kb DNA fragment containing the 5'-end of *IrgT1*, *IrgR3* and *IrgP1* was amplified using oligonucleotides orf20Transpl up and orf20Transpl rp, digested with BgIII and KpnI and subcloned into the same sites of pUO9090, upstream of the apramycin resistance gene, generating pUO-Trans20I. Then, a 2.13 kb fragment containing the 3'-end of *IrgT1*, *orf18* and *orf17* and the 5'-end of *orf16* was amplified using primers orf20TranspD up and orf20TranspD rp, digested with BamHI and EcoRV, and subcloned into the same sites of pUO-Trans20I, downstream of the apramycin resistance cassette, generating pUO-Trans20. Finally, the whole insert was rescued as a Spel fragment and subcloned into the Xbal site of pHZ1358.

<u>pHZ-PH22</u> (to generate *S. argillaceus* △IrgP1): a 2.02 kb DNA fragment containing the 5'-end of *IrgP1* and *IrgC1* was amplified using oligonucleotides orf22PHI up and orf22PHI rp, digested with EcoRI and PstI, and subcloned into the same sites of pUO9090 upstream of the apramycin resistance cassette, generating pUO-PH22I. Then, a 1.99 kb DNA fragment containing the 3'-end of *IrgP1*, *IrgR3* and the 5'-end of *IrgT1* was amplified using primers orf22PHD up and orf22PHD rp, digested with BamHI and EcoRV, and subcloned into the same sites of pUO-PH22I downstream of the apramycin resistance gene. Finally, from the resultant construct pUO-PH22 the insert was released with Spel and subcloned into the Xbal site of pHZ1358.

<u>pHZ-cit23</u> (to generate *S. argillaceus* △IrgC1): a 2.06 kb DNA fragment containing the 5'-end of *IrgC1*, *IrgP1* and *IrgR3* was amplified using oligonucleotides cit23I up and cit23I rp, digested with BgIII and HindIII, and subcloned into the same sites of pUO9090 upstream of the apramycin resistance gene, generating pUO-cit23I. Afterwards, a 2.00 kb DNA fragment containing the 3'-end of *IrgC1*, *IrgR1* and the 3'-end of *IrgQ* was amplified

using primers cit23D up and cit23D rp, digested with EcoRV and Xbal, and subcloned into the same sites of pUO-cit23I downstream of the apramycin resistance gene, generating pUO-cit23. Finally, this construct was digested with Spel and the released fragment was subcloned into the Xbal site of pHZ1358.

<u>pHZ-PH53</u> (to generate *S. argillaceus* △orf52): a 2.05 kb DNA fragment containing the 5'-end of *orf52*, *orf53* and the 3'-end of *orf54* was amplified using primers orf53PHI up and orf53PHI rp, digested with EcoRI and HindIII, and subcloned into the sites of pUO9090 upstream of the apramycin resistance gene, generating pUO-PH53I. Then, a 2.04 kb DNA fragment containing the 3'-end of *orf52*, *IrgC3* and the 3'-end of *IrgW2* was amplified using primers orf53PHD up and orf53PHD rp, digested with EcoRV and XbaI, and subcloned into the same sites of pUO-PH53I. Finally, the insert was subcloned as a Spel fragment into the XbaI site of pHZ1358.

<u>pHZ-cit52</u> (to generate *S. argillaceus* △IrgC3): a 1.99 kb DNA fragment containing the 5'-end of *IrgC3*, *IrgW2* and the 3'-end of *IrgB* was amplified using oligonucleotides Cit52 I up and Cit52 I rp, digested with EcoRI and HindIII, and subcloned into the same sites of pUO9090 upstream of the apramycin resistance cassette, generating pUO-cit52I. Then, a 2.01 kb DNA fragment containing the 3'-end of *IrgC3*, *orf52*, *orf53* and the 3'-end of *orf54* was amplified using primers Cit52 D up and Cit52 D rp, digested with EcoRV and XbaI, and subcloned into the same sites of pUO-cit52I downstream of the apramycin resistance gene, generating pUO-cit52. Finally, the insert was rescued as a Spel fragment and subcloned into the XbaI site of pHZ1358.

<u>pHZ-Ox49</u> (to generate *S. argillaceus* △IrgO): a 1.99 kb DNA fragment containing the 3'-end of *IrgW1*, *IrgR4* and the 5'-end of *IrgO* was amplified using oligonucleotides Ox49I up and Ox49I rp, digested with EcoRI and PstI and subcloned into the same sites of pUO9090 upstream of the apramycin resistance cassette, generating pUO-Ox49I. Then, a 2.0 kb DNA fragment containing the 3'-end of *IrgO*, *IrgB* and the 5'-end of *IrgW2* was amplified using oligonucleotides Ox49D up and Ox49D rp, digested with EcoRV and XbaI and subcloned into the same sites of pUO-Ox49I, downstream of the apramycin resistance gene, generating pUO-Ox49. Finally, the insert was rescued as a SpeI fragment and subcloned into the XbaI site of pHZ1358.

Plasmid constructs for gene expression

Several plasmid constructs were generated to overexpress specific *Irg* genes under the control of the erythromycin resistance promoter *ermEp**, using plasmids pEM4T, pEM4ATc or pSETEH. These plasmids were introduced by conjugation into *S. argillaceus* wild type or mutant strains and the corresponding recombinant strains selected by being thiostrepton-resistant (pEM4T-based plamids) or apramycin-resistant (pSETEH- and pEM4Tc-based plasmids). Strains were genetically confirmed by PCR amplification using specific primers (Table S1), followed by sequencing the PCR products. Construction of these plasmids was carried out as follows:

<u>pEM4T-R1 (to overexpress *lrgR1*)</u>: a 700 bp DNA fragment containing *lrgR1* was amplified using oligonucleotides Reg24 up and Reg24 rp, digested with BamHI and subcloned in the right orientation into the same site of pEM4T.

<u>pEM4T-R2 and pEM4ATc-R2 (to overexpress *IrgR2*)</u>: a 1.11 kb DNA fragment containing *IrgR2* was PCR amplified using oligonucleotides Reg831_A and Reg831_B, digested with BamHI and EcoRI and subcloned into the same sites of pEM4T and pEM4ATc, respectively.

<u>pSETEH-cit23 (to complement S. argillaceus △IrgC1)</u>: a 1.39 kb DNA fragment containing *IrgC1* was amplified using oligonucleotides ermECit23 up and ermECit23 rp, digested with NheI and SpeI and subcloned in the right orientation, into the XbaI site of pSETEH.

<u>pSETEH-cit52 (to complement S. argillaceus ∆lrgC3)</u>: a 1.30 kb DNA fragment containing *IrgC3* was amplified using oligonucleotides ermECit52 up and ermECit52 rp, digested with NheI and SpeI and subcloned in the right orientation, into the XbaI site of pSETEH.

<u>pSETEH-Ox49 (to complement S. argillaceus △IrgO)</u>: a 1.31 kb DNA fragment containing *IrgO* was amplified using oligonucleotides ermEOx49 up and ermEOx49 rp, digested with NheI and SpeI and sucloned in the right orientation into the XbaI site of pSETEH

UPLC Analysis and Purification of largimycins

Strains were grown in a two-step culture method (Fernández et al. 1998). A seed culture was prepared in 50ml Erlenmeyer flasks containing 10 mL of Trypticase Soy Broth (TSB) medium, incubated for 48 hours at 30°C and 250 rpm. This culture was used to inoculate 250 mL Erlenmeyer flasks each containing 50 mL of SM30a. Production of LRGs was monitored daily for 8 days. Culture samples of 1 mL were extracted with an equal volume of ethyl acetate containing 1% formic acid, with shaking for 60 min. Organic extracts were dried under vacuum, and residues were dissolved in methanol to evaluate LRGs production by UPLC. Analyses were performed by reversed-phase chromatography on an Acquity UPLC equipment with a BEH C18 column (1.7 mm, 2.1 x 100 mm; Waters, Milford, MA, USA) with acetonitrile and 0.1% trifluoroacetic acid (TFA) in water as eluent. Samples were eluted with 10% (v/v) acetonitrile for 1 min, followed by a linear gradient from 10 to 100% acetonitrile over 7 min at a flow rate of 0.5 mL min⁻¹ and a column temperature of 35°C. Detection and spectral characterization of peaks were carried out with a photodiode array detector and Empower software (Waters). Chromatograms were extracted at 300 or 330 nm.

For purification purposes, *S. argillaceus* WT-R2, *S. argillaceus* △IrgO or *S. canus* WT-R2 strains were grown by the two-step culture method mentioned above, but using five 2-liter Erlenmeyer flasks, each containing SM30a medium (400 mL) in the production step. These cultures were incubated for 3 days (5 days for LRG O1). To purify LRG A1, LRG A2, LRG A3 and LRG A4, cultures were centrifuged and filtered, and applied to a solid-phase extraction cartridge (Sep-Pak Vac C18, 10 g, Waters). The retained material was eluted using a linear gradient from 0 to 100% methanol in 0.05% (v/v) TFA in water for 55 min, at 5 mL min⁻¹. Fractions were taken every 5 min and analyzed by UPLC. Fractions containing the desired compounds were evaporated *in vacuo* and dissolved in a small volume of a mixture of DMSO and methanol. To purify LRG O1, cultures were extracted with ethyl acetate plus formic acid, the organic extract was dried down under vacuum, and residues were dissolved in a small volume of DMSO:methanol (1:1). Afterwards, in all cases the desirable products were finally purified by preparative HPLC using a SunFireC18 column (10 mm, 10 x 150 mm, Waters) at a flow

of 5 mL/min with mixtures of acetonitrile or methanol and 0.05% TFA in water, in isocratic conditions optimized for each compound. The purification procedure afforded LRG A1 (0.8 mg), LRG A2 (0.9 mg), LRG A3 (0.3 mg), LRG A4 (0.9 mg) and LRG O1 (0.8 mg) all as amorphous yellowish solids.

Spectroscopic analysis of largimycins and molecular modelling

Structural elucidation of each compound was carried out by ESI-TOF mass spectrometry and NMR spectroscopy. HRMS spectra were collected by LC-MS analyses using an Agilent 1200RR HPLC equipped with a SB-C8 column (2.1 × 30 mm, Zorbax) and coupled to a Bruker maXis Spectrometer. Chromatographic and ionization conditions were identical to those previously described (Pérez-Victoria et al., 2016; Martín et al., 2014). UV/vis (DAD) spectra were also collected in the same chromatographic analyses. NMR spectra were recorded in DMSO-d₆ or CD₃OD at 24°C on a Bruker AVANCE III-500 MHz (500 and 125 MHz for 1H and 13C NMR, respectively) equipped with a 1.7 mm TCI MicroCryoProbeTM, using the residual solvent signal as internal reference (δ_{H} 2.50 and δ_{C} 39.5 for DMSO-d₆, δ_{H} 3.31 and δ_{C} 49.0 for CD₃OD). Molecular modelling was used in combination with NMR data to determine the relative configurations using 3D structural models generated with Chem3D Pro 12.0 starting from the reported X-ray structure of LNM E2 (Huang et al. 2015). The structures were first constructed to roughly satisfy the observed ³J_{HH} and key NOESY correlations and then submitted to energy-minimization by molecular modelling images (Figure S9) were generated with PyMOL (DeLano, 2002).

Structure elucidation of largimycins

Largimycin A1 (1) was assigned the molecular formula C₃₃H₄₀N₄O₁₄S₃ based on the observed ion [M+H]⁺ at m/z 813.1781 (calcd. for C₃₃H₄₁N₄O₁₄S₃⁺ = 813.1776, $\Delta m = 0.6$ ppm) alongside their corresponding isotopic pattern, indicating 16 degrees of unsaturation. The connectivity of 1 was determined by detailed 1D (¹H) and 2D NMR (COSY, HSQC and HMBC) spectroscopic analyses. Interestingly, the NMR spectroscopic data of 1 (Table S3 and Figure S4) resembled those reported for LNM E2 and LNM E3 (Huang et al., 2015), confirming that LRGs are related to LNMs. Interpretation of the HSQC and HMBC spectra revealed the presence of 13 guaternary carbons (including one α , β unsaturated ketone at δc 201.3, six ester/amide carbonyls in the range ∞ 169-175, three sp² carbons at ∞ 139.1, 152.6 and 153.5 and three sp³ carbons at ∞ 49.0, 51.3 and 61.7), 9 methines (including five olefinic/aromatic carbons, one oxygenated methine, two methines likely corresponding to the CH_a of two amino acid moieties and a final aliphatic methine at $\delta_{\rm C}$ 45.5 and $\delta_{\rm H}$ 3.94 likely bonded to a sulfur atom), 8 aliphatic methylenes (including a methylene within an oxirane ring resonating at δ_c 49.0 and δ_H 3.31, 2.86) and finally 3 methyl groups (two of them corresponding to two Nacetyl groups). Analysis of COSY correlations identified different spin systems (Figure 4B). Two of them are comprised by the α and β protons of two amino acids which, based on the proton and carbon chemical shifts of the corresponding positions, were assigned to two cysteine moleties which turned out to be N-acetylated (CysNAc), based on the key HMBC correlations observed between these α protons and the carbonyl of the acetyl groups (Figure 4B). Another spin system, comprising H-10 to H-13, contains four olefinic protons

corresponding to Z and E double bonds, as indicated by the measured coupling constants. The characteristic proton and carbon chemical shifts of those methines (positions 10 to 13) are indeed very similar to the chemical shifts reported for the olefinic methines of LNMs E2, E3 and E4 (Huang et al., 2015) suggesting they corresponded to identical structural motifs. The *E* double bond of this spin system is conjugated with a ketone. as indicated by the key long-range correlation between H-11 and the C-9 carbonyl, as found in known LNMs. On the Z double bond end, this spin system is conjugated with an aromatic heterocycle, as revealed by the key HMBC correlations between H-15 and C-13, C-14 and C-16. The chemical shifts at the heterocycle discard a possible thiazole ring in favor of an oxazole. Thus, the extended π -system between positions 9 and 16 of **1** is equivalent to the one contained in known LNMs, just differing in the divalent heteroatom present in the azole heterocycle, being sulfur in LNMs and oxygen in 1. Another spin system, comprising H-7 and H-8, is connected to the extended π -system via C-8, as demonstrated by the long-range correlations from H-10 to C-8 and from H-8 to C-9. Interestingly, the proton and carbon chemical shifts at positions 7 and 8 were also remarkably similar to those reported for LNMs E2 and E3, indicating the sulfur substitution at C-7, thus accounting for the third sulfur atom in the molecular formula, the other two being localized in the S-conjugated CysNAc units. It was thus evident that 1 likely contained a tetrahydrothiopyran ring analogous to that found in the previously mentioned LNMs. The HMBC correlations of the methyl protons H-20 with C-5, C-6 and C-7 confirmed the expected substitution position of this methyl group within the saturated heterocycle. The COSY correlations between H-4 and H-5 combined with the HMBC correlations from H-5 to C-3, C-6 and C-7, together with those from H-4 to C-3 unambiguously closed the tetrahydrothiopyran ring. The second substituent at C-6 was found to correspond to the sulfur atom on one of the CysNAc units based on the longrange correlation observed between the β methylene protons of the amino acid and C-6. The chemical shifts of the isolated methylene at position 2 also resembled those reported for LNMs E2 and E3. The HMBC correlations of these methylene protons, H-2, with the carbonyl C-1 and the quaternary carbon C-3 provided the connectivity path for the extension of the macrocycle, while the long-range correlation from H-2 to C-21 provided the linkage between the C-3 side chain substituent and the macrocycle. Such side chain contains only two observable protons belonging to a methylene, H-22, within an oxirane ring. In the edited HSQC spectrum, this methylene cross peaks show a characteristic and diagnostic phase, opposite than expected and equal to methyl and methine groups, due to the partial sp² character of this carbon within the epoxide ring and its associated ${}^{1}J_{CH}$, much larger than the 125 Hz the spectral acquisition is optimized for, thus rendering the unexpected phase for this methylene. Additional evidence for the presence of the epoxide functional group is provided by the value of the corresponding geminal coupling between the H-22 methylene protons, 5.5 Hz, characteristic for oxiranes. The HMBC correlations from H-22 to C-3, C-21 and C-23 rendered the full connectivity of the C-3 side chain. On the other hand, to establish how the macrocycle extends after the oxazole ring it was essential to find a proton displaying a long-range correlation with the quaternary carbon C-16 of the aromatic heterocycle. H-18, corresponding to the only observed oxygenated methine, correlates with such carbon in the HMBC spectrum and also with C-17, a sp² carbon at $\delta_{\rm C}$ 153.5, a chemical shift compatible with an oxime functional group. H-18 belongs to another small spin system involving also methylene H-19, which also displays a long-range correlation with the putative oxime carbon C-17. This methylene was found to be also bound to the sulfur atom of the second CysNAc unit based on the long-range correlations involving the this this three bridge, from H-19 to the β carbon of the amino acid and from the β methylene protons of the amino acid to C-19. Having all the NMR signals accounted for, it was confirmed the mentioned oxime functional group in order to meet with the number of heteroatoms in the molecular formula of 1. To also satisfy all the degrees of unsaturation, it was necessary to close the macrocycle via an ester bond between the oxime oxygen and carbonyl C-1, finally providing the full connectivity of **1** (Figure 4B), which resembles that of LNMs E2 and E3. The oxime double bond was assigned a Z stereochemistry on the basis of the observed $\delta_{\rm C}$ 73.2 for C-18 which would be 2-4 ppm smaller in case of the E geometric isomer (Hawkes et al., 1974), as indicated by comparison with model compounds (Kajiro et al., 1999) and empirically-based prediction of ¹³C NMR chemical shifts (Elyashberg et al., 2009) (a detailed explanation is provided later). To determine the relative configuration of the chiral centers in LRG A1, a 3D structural model of 1 was generated starting from the reported X-ray structure of LNM E2 (Huang et al., 2015). The model was first constructed to roughly satisfy the observed ${}^{3}J_{HH}$ (Table S3) and key NOESY correlations (Figure 4C) before its energy-minimization. The resulting minimized structure (Figure S9A) perfectly accounted for the observed NMR couplings and NOEs. Not surprisingly the pattern of NOESY correlations involving the protons in the macrocycle backbone is identical to that reported for LNM E2 and E3. The relative configuration at the epoxide chiral center, C-21, in the C-3 side chain was established on the basis of the strong NOESY correlation between H_a -22 and H_b -4 and the weaker NOESY correlation between H_a-22 and the methyl protons H-20. Modelling proved that such NOEs would not be observed in the corresponding epimer of 1 at C-21 (data not shown). Interestingly, the determined relative configuration at C-21 matches that for this chiral center in LNM itself (Noriaki and Shimizu, 1993). The absolute configurations at C-3, C-18 and the C_{α} of both S-conjugated CysNAc units were assigned to be the same as those found in LNM, L-Thr and mycothiol respectively, on the basis of biosynthetic and phylogenetic (Pan et al., 2017) arguments as explained in the main text, thus providing the full absolute stereochemistry of **1** (Figure 4A).

Largimycin A2 (2) was assigned the molecular formula $C_{28}H_{31}N_3O_{11}S_2$ based on the observed ions [M+NH₄]⁺ at *m*/z 667.1744 (calcd. for $C_{28}H_{35}N_4O_{11}S_2^+$ 667.1738, $\Delta m = 0.9$ ppm) and [M+H]⁺ at *m*/z 650.1476 (calcd. for $C_{28}H_{32}N_3O_{11}S_2^+ = 650.1743$, $\Delta m = 0.5$ ppm) alongside their corresponding isotopic patterns, indicating 15 degrees of unsaturation. The connectivity of **2** was determined by detailed 1D (¹H) and 2D NMR (COSY, HSQC and HMBC) spectroscopic analyses assisted by comparisons with the NMR data of **1**. As expected, the NMR spectroscopic data of **2** (Table S4 and Figure S5) partially resembled those of **1** and interestingly also those reported for LNM E4 (Huang et al., 2015). Analysis of COSY correlations identified the same number and type of spin systems found in **1** but one of the CysNAc related spin systems which was missing (Figure 4B), in agreement with the number of sulfur atoms in the molecular formula of **2**, one less than in **1**. The methylene at position 19, which was S-conjugated with a CysNAc unit in **1**, now displays in the edited-HSQC spectrum of **2** the characteristic diagnostic phase already mentioned for oxirane rings indicating an epoxide functional group involving C-18/C-19. The pattern of HMBC correlations of **2** also matches that found for **1** but

the important exception of the β methylene protons of the CysNAc unit which now displayed a long-range correlation with C-7 rather than C-6 (as found in 1). Such distinctive feature unambiguously determined the presence of a tetrahydrothiophene ring, involving C-3 to C-6, in the structure of **2** in contrast with the tetrahydrothiopyran ring, involving C-3 to C-7, present in **1**. The determined connectivity of **2** thus resembles that of LNM E4 (Huang et al., 2015). The oxime double bond was assigned a *Z* stereochemistry based on the observed δ_c of 49.9 for C-18 and the same arguments employed for **1** (see detailed explanation later). The relative stereochemistry of **2** could be determined by analysis of the observed ${}^3J_{HH}$ (Table S4) and key NOESY correlations (Figure 4C) combined with molecular modelling (Figure S9A) as previously described for **1**. Likewise, the absolute configurations of the key chiral centers at C-3, C-18 and the C_{α} of the CysNAc unit were assigned to be the same as **1** based on their shared biosynthetic origin, thus providing the full absolute stereochemistry of **2**.

Largimycin A3 (**3**), was assigned the molecular formula $C_{23}H_{23}CIN_2O_8S$ on the basis of the observed ion $[M+H]^+$ at m/z 539.0937 (calcd. for $C_{23}H_{24}N_2O_8S^+ = 539.0936$, $\Delta m = 0.2$ ppm) alongside its corresponding isotopic pattern (Figure S6). Based on this molecular formula (indicating 13 degrees of unsaturation), its shared biosynthetic origin with LRGs A1 and A2, and the reported structure for LNM E4 (Huang et al., 2015) we have proposed a tentative chemical structure for LARG A3 (**3**) (Figure 4A).

Largimycin A4 (4) was assigned the molecular formula C₂₃H₂₄N₂O₉S based on the observed ion [M+NH₄]⁺ at m/z 522.1544 (calcd. for C₂₃H₂₈N₃O₉S⁺ = 522.1541, Δm = 0.6 ppm) alongside its corresponding isotopic pattern, indicating 13 degrees of unsaturation. The single sulfur atom in the molecular formula suggested the absence of any CysNAc moiety. The connectivity of 4 was established after detailed 1D (1H) and 2D NMR (COSY, HSQC and HMBC) spectroscopic analyses further assisted by comparisons with the NMR data of 1 and 2. The NMR spectroscopic data of 4 (Table S4 and Figure S7) are remarkably similar to those of 1 but two important differences. On the one hand, the resonances corresponding to positions 18 and 19 essentially match those found for **2**, indicating the presence of the same oxirane ring. On the other hand, the observed δc of 72.8 for C-6 clearly indicates a hydroxy substitution of the guaternary C-6 carbon instead of the CysNAc-Sconjugate substituent present in 1. In this manner, the connectivity of 2 could be easily established. The pattern of COSY and HMBC correlations of 4 (Figure 4B) corroborated the assignments. The oxime double bond was assigned a Z stereochemistry based the observed & 50.7 for C-18 and the same arguments already employed for 1 and 2 (see detailed explanation later). Not surprisingly, the NOESY correlations observed for 4 (Figure 4C) also match those found in 1, indicating the expected identical relative configuration of both compounds. As already indicated, the cluster scan and lrg belong to the same clade VII of the previously mentioned phylogenetic classification (Pan et al., 2017), thus the absolute configurations of the chiral centers at C-3 and C-18 were assigned to be the same as 1, providing the full absolute stereochemistry of **4**.

Largimycin O1 (**5**) was assigned the molecular formula $C_{29}H_{39}N_3O_8S_2$ based on the observed ion [M+H]⁺ at m/z 622.2255 (calcd. for $C_{29}H_{40}N_3O_8S_2^+$ = 622.2251, Δm = 0.6 ppm) alongside its corresponding isotopic pattern, indicating 12 degrees of unsaturation. The connectivity of **5** was established after detailed 1D (¹H) and

2D NMR (COSY, HSQC and HMBC) spectroscopic analyses further assisted by comparisons with the NMR data of 1, 2, 4, LNM E1 (Huang et al., 2015) and GNM B (Pan et al., 2017). The NMR spectroscopic data of 5 (Table S5 and Figure S8) confirmed a largimycin related structure but showed some important differences compared to the previously elucidated LRGs A1, A2 and A4. The edited HSQC spectrum clearly revealed the presence of three olefinic protons additionally to those found in 1, 2 and 4. Two of these protons correspond to a sp² methylene which turned out to be conjugated with the characteristic extended π -system between positions 9 and 16 of LRGs, as indicated by the long-range correlations from H-10 to both C-9 and C-21 (Figure 4B). Such olefinic exomethylene unit is identical to the one displayed by GNMs and WSMs (Pan et al., 2017) and differs from the ketone at C-9 found in 1-4 and known LNMs. The third proton, H-7, according to the key COSY and HMBC correlations (Figure 4B) was found to be contained in the C-1 to C-8 fragment, a substructural motif identical to that found in GNM B (Pan et al., 2017) (including the methyl substituent at C-6), as reflected by the similar NMR carbon chemical shifts of both GNM B and 5 in these positions. Interestingly, C-1 to C-7, the C-6 methyl and the side chain substituent at C-3 also showed very similar chemical shifts to those of LNM E1 (Huang et al., 2015), indicating that the C-3 alkyl branch in 5 and LNM E1 are identical, as reflected by the key COSY and HMBC correlations involving H-22 and the H-23 methyl group (Figure 4B). After having localized the C-3 thiol substituent in this manner, the second sulfur atom contained in the molecular formula of 5 was determined to belong to a CysNAc-S-conjugate substituent at C-19 as already described for 1. Interestingly, the oxygenated methine proton H-18 is coupled not only to the methylene H-19, as found for 1-4, but also to another methine proton, H-17, which is coupled to the exchangeable proton 17-NH. Thus, the methine at position 17, corresponded to the α position of an amino acid (also reflected in its chemical shifts), another remarkable difference compared to 1-4, where C-17 is the guaternary carbon of the oxime functional group. Long-range correlations of H-17 and H-18 with C-16 confirmed the expected bond between C-17 and the heterocycle (Figure 4B). Finally, the key HMBC correlation between H-17 and 17-NH with the carbonyl C-1 closed the macrocycle with an amide bond, providing the full connectivity of 5. LRG O1 is a macrolactam as are the known LNMs, GNMs and WSMs (Figure 1). The observed NOESY correlations observed for 5 (Figure 4C) are analogous to those found in GNM B, confirming the expected double bonds stereochemistry for 1. Based on its shared biosynthetic origin, the absolute configuration at C-3 and C-18 were assigned to be the same as 1, while the membership of cluster *Irg* to the mentioned clade VII (Pan et al., 2017) also allows assigning to C-22 the same absolute configuration determined for LNM E1 (Huang et al., 2015) and to C-17 the same stereochemistry as the α position of L-Thr, thus providing the full absolute stereochemistry of 5.

Determination of the oxime double bond stereochemistry in LRGs A1, A2 and A4 has relied on the ¹³C NMR chemical shift of C-18 in each largimycin. The ¹³C chemical shift at the α position in oximes is an unambiguous and convenient probe for determining the configuration of the oxime double bond (Hawkes et al., 1974). This is based on the fact that a *syn* α carbon resonates at upper field than the equivalent *anti* α carbon. Thus, for discriminating *E*/*Z* oxime stereoisomers, a simple comparison of the δ_{C} at the relevant α carbon is enough to identify the correct double bond configuration. Such approach is straightforward when the

¹³C NMR data is available for both stereoisomers. However, in the case of largimycins we only have the experimental data for one stereoisomer. To identify whether it corresponds to the *E* or the *Z* isomer we have compared the experimental δ_{C} at C-18 in each largimycin with the empirically-based predicted chemical shift. The application of empirical methods of ¹³C NMR chemical shift prediction has already been successfully employed for determining relative stereochemistry (Elyashberg et al., 2009). To validate this approach, *R*-2-acetoxyiminoindan was employed as model compound. This molecule contains an oxime ester functional group conjugated with an aromatic ring, it also displays an oxygenated methine in the aliphatic α carbon (with respect to the oxime) and experimental ¹³C NMR data is available for both *E* and *Z* oxime stereoisomers (Kajiro et al., 1999). Chemical shift prediction with ACD/Labs predictor shows an excellent agreement between the experimental and the predicted δ_{C} at the aliphatic α carbon, thus validating the use of comparisons between experimental and empirically based predicted chemical shifts for establishing the oxime double bond stereochemistry in largimycins (Figure S9B). Next, the δ_{C} at C-18 for the oxime double bond in all largimycins (Figure S9B).

Alignments of Lrg proteins with Lnm proteins

LrgT1 vs LnmY

Lnm	25	LILVTLLMAELLIQVDQTIVNVALPFIQRDLDFTESGLPWVVNAYGLLYGGLLPLGGRIG	84
Lrg	23	LMLVVIAMAQLMVILDATIVNVALPSVQTSLGFSTQNLSWVVNAYILAFGGLLLLGGRVG	82
Lnm	85	DLFGRRRVLIIGVTVFTLASVVCGFSTDPTVMVIARAVQGMGGALTAPVVLSLIITSFEE	144
Lrg	83	DLLGRRPAFIGGVLLFTLGSLLGGLAQNSGWLLGMRVIQGAGAAIVVPTVLSLIATGFPT	142
Lnm	145	GPSRQRAFALWGSAQAAGALFGLIVGGLLTSGPGWEFSFFVAVPIGALVVGLAATTIK R RAFA++ AG GL+ GGLLT W + V VPIG + + LAA K	202
Lrg	143	ERERNRAFAVFAGVSGAGGAIGLVAGGLLTEWASWRWVLLVNVPIG-VALALAAPLFIGK	201
Lnm	203	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	261
Lrg	202	TPRSEGRFDVGGAITSTGGVALLVYGFIHASDSGWREATTIGSFIGAVVLLVAFVFIE	259
Lnm	262	RRQGHPFVPLQVFRLRNTSGALAIMAIFGATQMSYFFFVTLYLQEILGFSALQTGLAYLP R P +PL++F RN SG A+ + + FFF+TL+ Q +LG+S L+TGLA+LP	321
Lrg	260	SRTPQPIIPLRLFASRNRSGIYALGVAMMGSLIGMFFFLTLFFQNVLGYSPLKTGLAFLP	319
Lnm	322	LIATLLVFAQVCMKTVARVGLTRMLMTGLLCLGLGMGWLGLAASSGSFVGTVLGPTIISG L +++V + V M+ + ++G L+ G L + + WL ++ +++G +LGP ++ G	381
Lrg	320	LSVSIIVVSGVMMQLIPKIGQRLPLVAGTLLITGSLIWLSAISADSAYLGDLLGPMLLYG	379
Lnm	382	IGLGLTMMPAGTLATTGVDPADAGAVSGLFNTAILVGGSLGLAVLTTVT-QAVGGLGGTH G G+ MP + + V+ D GA SGL N +GGSL LAV+ TV A G G	440
Lrg	380	FGAGMVFMPMTMVGVSDVEMQDTGAASGLLNATQQMGGSLSLAVIITVYGAATNGATGDP	439
Lnm	441	GYTVAFLCSAGLAAA 455 + +A SAG A	
Lrg	440	AHVLAKGASAGFLVA 454	

<u>LrgR1 vs LnmO</u>

Lnm	16	LRDFLRDQSPHTTTTMVRRNQSAYSCGGQDRNVYFLESGRLKTVMFSRSGKECLLRIHTPLRD +T + R ++ YS G D ++Y +E G++K V S GK CLL +	75
Lrg	13	LRDRMVGSGRSAPTVRLVRGENVYSSGQSDNSLYLVEEGQVKIVSGSLDGKRCLLSVCVE	72
Lnm	76	GSIFGELCSLGGIREESAIAMRDSVVHRMSYEHFLSSITEAGIVDEFINHLTRRLAEQQQ G FGEL L G+R E+A AM+ SV+ ++S H + + + + + + + + + + + + + + + +	135
Lrg	73	GEFFGELGILQGMRAETATAMKRSVLRKLSAAHVAAVLQDLENAEEFALHLMEQLSWQQR	132
Lnm	136	SITHLVTVDSEQRLGEILLDLARKLGRGDGRRPHIAERITHEELAGMVGTTRSRVGHFLK I ++VT++ EORL LLDLARK+GR G + RITHEEL+ MVGTTRSRVG FLK	195
Lrg	133	LIANMVTMNCEQRLAVTLLDLARKVGRRQGAELRMERRITHEELSEMVGTTRSRVGFFLK	192
Lnm	196	GFRDRGLVEVTRESHLIIDQSRLAAYL 222 F D GL+ + + L + ++BLA Y+	
Lrg	193	RFSDDGLLVHSGSAQLTVHETRLARYV 219	

LrgC2 vs LnmA and LrgC2 vs LnmZ

LrgC2 vs LnmA

Lnm	25	FAELRETDPLARVRLPYGGEGWMVTRYDDVRAANSDPRFSR-AQIGEDTPRTTPLAR ++++R + +R P G +V RY + R +D RF++ + D R +	80
Lrg	32	YSDMRAEGVVHTIREPNGLHRRLVLRYAEARDVMNDARFAKDPGLAWDQLRDAGYVKGER	91
Lnm	81	RSDTILSLDPPEHTRLRRLLSKAFTARRMGAMQSWLEELFAGLLDGVERTGHP R+D + L DPP+HTRLR+L+SKAFT RRM AM+ + E+ LLDG+ +RT	133
Lrg	92	DNRADYLYHLVNTDPPDHTRLRKLISKAFTNRRMEAMRPRVREIAEQLLDGLAGQRT	148
Lnm	134	ADIVRDLAQPFTIAVICRLLGVPYEDRGRFQHWSEVIMSTTAYSKEEAVSADASIRA D++ D A P VIC +LGVP DR F+ W+ +++ E A++ A++++	190
Lrg	149	VDLIEDYAHPLATTVICEILGVPNADRENFRIWATAMLTAPDAVVEGALTPQEGYAAMQS	208
Lnm	191	YLADLVSARRAAPHDDLLGVLVSARDDDDRLTEDELITFGVTLLVAG	237
Lrg	209	FFTELLARRREELKDLAETDEDTSDQQPDVITGLIVARDEGNRLTEIEMVSTAMLLLSAG	268
Lnm	238	HETSAHQLGNMVYALLTHEDQLSLLREQPELLPRAVEELLRFVPLGNGVGNARIALEDVE E + + + N AL + +0 +LLR +P+L+ AVEE LR+ P + R++ EDVE	297
Lrg	269	QEPTVNLIANGTLALFDNPEQFALLRAKPDLVASAVEEFLRYDPPVE-LSTMRVSTEDVE	327
Lnm	298	LSGGTVRAGEGVVAAAVNANRDPRAFDDPDRLDITREKNPHLAFGHGAHYCLGAQLARME ++G + AG V + + +RD R F++PD+LDITR NPHLAFG+G H+CLGA LAR+E	357
Lrg	328	VAGTVIPAGSVVTVSIASTSRDERQFENPDQLDITRTDNPHLAFGYGLHHCLGAPLARIE	387
Lnm	358	LRVAIGGLLERFPGLRLAVPADQVEWKTGGLFRGPQRLPI 397	
Lrg	388	GQEAIAALVGRYPGISLSGTRDDLRWRPTRIMRGLVELPV 427	

LrgC2 vs LnmZ

Lnm	29	YAKLFEDGDPIRVQLPFGEPAWLVTRYDDARFVLTDRRFSRHLATQRDEPRMTPRAVPE-	87
		Y+ + +G ++ P G LV RY +AR V+ D RF++ D+ R E	
Lrg	32	YSDMRAEGVVHTIREPNGLHRRLVLRYAEARDVMNDARFAKDPGLAWDQLRDAGYVKGER	91
Lnm	88	SILTMDPPDHTRLRTLVSKAFTPRRIESKRAWIGELAAGLVADMKAGGAPAE	139
Lrg	92	DNRADYLYHLVNTDPPDHTRLRKLISKAFTNRRMEAMRPRVREIAEQLL-DGLAGQRTVD	150
Lnm	140	LVGSYALAIPVTVICELLGVPEDDRTRLRGWCDAALSTGELTDEECVQSFMDLQ L+ YA + TVICE+LGVP DR R W A L+ G LT +E + +Q	193
Lrg	151	LIEDYAHPLATTVICEILGVPNADRENFRIWATAMLTAPDAVVEGALTPQEGYAAMQ	207
Lnm	194	KYFEDLVKERRAEPRDDLTSALIEARDAHDRLAEPELIGLCISILIG+F +L+RR E +DD+ + LI ARD+RL E E+++ + LI	240

Lrg	208	SFFTELLARRREELKDLAETDEDTSDQQPDVITGLIVARDEGNRLTEIEMVSTAMLLLSA	267
Lnm	241	GFETTASEISSFVHVLQQRRELWTRLCADPEAIPAAVEELLRFVPFAANGISPRYALEDM G E T + T++ T, E + T, A P+ + +AVEE LR+ P + R + ED+	300
Lrg	268	GQEPTVNLIANGTLALFDNPEQFALLRAKPDLVASAVEEFLRYDP-PVELSTMRVSTEDV	326
Lnm	301	TVGGVLVREGEPVIVDTSAVNRDGLVFDNADEVVIDRADNRHMVFGHGAHHCLGAHLARV	360
Lrg	327	EVAGTVIPAGSVVTVSIASTSRDERQFENPDQLDITRTDNPHLAFGYGLHHCLGAPLARI	386
Lnm	361	ELQEALKALVEGMPGLRLSGDVEWKADMIIRA 392 E OEA+ ALV - PG+ LSG - D+ W+ - T+R	
Lrg	387	EGQEAIAALVGRYPGISLSGTRDDLRWRPTRIMRG 421	

<u>LrgR2 vs LnmO</u>

Lnm	7	TEPTGFDARLRDFLRDQSPHTTTTMVRRNQSAYSCGGQDRNVYFLESGRLKTVMFSRSGK	66
Lrg	28	T+ F RLR + T T V R Y GG+DR++Y +E+G++KT+M + SGK TDSVRFRTRLRALCATRLHDTPTLTVPRRGHVYVDGGRDRHIYVIETGQVKTLMTTGSGK	87
Lnm	67	ECLLRIHTPGSIFGELCSLGGIREESAIAMRDSVVHRMSYEHFLSSITEAGIVDEFINHL	126
Lrg	88	CLL I G + GEL L R ++A+A+ + + R+ + FLS + E G++ E++ HL RCLLSISGAGDVLGELGLLASERSDTAVALEPATLRRIPGDRFLSVLAEEGLLPEYVRHL	147
Lnm	127	TRRLAEQQQSITHLVTVDSEQRLGEILLDLARKLGRGDGRRPHIAERITHEELAGMVGTT	186
Lrg	148	R+ EQQ+ I +VT++ E+RL LL L++++G G I RIT EELA MVGTT GERVIEQQKIIVDMVTMECERRLAARLLLLSQQIGTRHGPLVLIRARITQEELAEMVGTT	207
Lnm	187	RSRVGHFLKGFRDRGLVEVTRESHLIIDQSRLAAYLESR 225	
Lrg	208	RSRVG FLK FR+ GLV++ + S L++D RL Y+E R RSRVGLFLKRFREAGLVDMAQGS-LVVDDRRLGDYIEGR 245	

LrgE vs LnmE and LrgE vs LnmH

LrgE vs LnmE

Lnm	26	LLHSGNAGFIIHRAGQLNHAFRAQGRQFATDLVGHLNKVVEGVATIVVHEEILGTADRLH	85
Lrg	27	LL+S +AGF+IHR GQL + FR +G F+ DLV +N G +I EE+ GT RLH LLNSADAGFLIHRVGQLKNEFREEGMSFSADLVDLINNAQVGYVSIFAFEELFGTQSRLH	86
Lnm	86	WLIHMKQPNDYSRFLEIADHDRSFKEITEADRIAAAEGAGNWERMFVEGSFQERVYVPQH WL+H+K+P+DY R L++ DH + + E++ DR+ A +G GNWERMFVEGS E + POH	145
Lrg	87	WLLHLKEPSDYRRMLDMVDHSQKWAEVSAGDRLPA-KGGGNWERMFVEGSMTETIICPQH	145
Lnm	146	GLDEHDDDHDHDHHDEPSDTFVPPARHQTGLPDSRMRSSVDSGLTIIRTAQTAFRFRTEA GL HD+D DH P DTF PPAR+Q+ L ++ SV++ LT+ R Q + R EA	205
Lrg	146	GLSHHDEDDDHPLDTFQPPARYQSRLAPEQLLHSVNTPLTVHRRLQVRYALREEA	200
Lnm	206	REFAFAWASEVNRALGGELTVYLYEETFGQQDRIHWMIHLDSLDTYRKLTELSRHDADYQ R+F F WA V+ A+ G T +LYEE +GOODR+H +IHL S + Y +L +L + D + +	265
Lrg	201	RKFWFEWAGHVSEAMVGRATAFLYEEMWGQQDRLHLLIHLASAEAYHELMDLQQTDPELR	260
Lnm	266	ALFGRQFVPDFKGGGGWEQTFVSPTIQDTVLTPLH 300 L Q VPD KGGGGW +T + T+ DT+ PLH	
Lrg	261	RLMASQVVPDGKGGGGWHRTVLDGTMTDTLWAPLH 295	

LrgE vs LnmH

⊦ RLHW
2SRLHW 87
[PQHWG 114
PQH G
TDOLL C 14C
[

Lnm 115 MYGTDEALPEGTVIDAAAPDLRVPPAQRQTSMSPERTLNSSGAGLMIHRVAQPKYAFRAE 174 + DE D D PPA+ Q+ ++PE+ L+S L +HR Q +YA R E Lrg 147 LSHHDED-----DDHPLDTFQPPARYQSRLAPEQLLHSVNTPLTVHRRLQVRYALREE 199 Lnm 175 ARLFARRITESINTRLPGIASSFLYEEAFGPADRVHWLIHMKSEDTYYDLIDMHMRMDDA 234 AR F ++ + G A++FLYEE +G DR+H LIH+ S + Y++L+D+ + D Lrg 200 ARKFWFEWAGHVSEAMVGRATAFLYEEMWGQQDRLHLLIHLASAEAYHELMDLQ-QTDPE 258 Lnm 235 TRAIYLDEIIAPEKGGGTWNRLFVEESMGDIAFSPV 270 R + +++ KGGG W+R ++ +M D ++P+ Lrg 259 LRRLMASQVVPDGKGGGGWHRTVLDGTMTDTLWAPL 294

LrgM2 vs LnmM

Lnm	8	QAYGIEALNVWCGLARLTAADLFAGRGLDPERLDNLMMSERSIGLPIEDPVTNAVNAARP A G+EA N + G A L +LF RGLD +R DNLMM ++S+ LP EDPVTNAVNAARP	67
Lrg	1	MAVGVEAANAYVGRAALDVRELFHARGLDLDRFDNLMMVQKSVNLPCEDPVTNAVNAARP	60
Lnm	68	LIEALSPEERARIELVVTSTESGVDYSKSLTSYVHKYLGLNRHCRLIEVKQACFGATAAV +++ L+ E+R IE V+ TESG+D+ K +++YVH YLGL R CR EVK AC+G TAA+	127
Lrg	61	ILDRLTGEQRDSIEAVIVGTESGLDFGKPISTYVHHYLGLGRRCRSFEVKHACYGGTAAL	120
Lnm	128	QTAVGYLASGISPGAKALVIATDVAVVDEKAEYSEPAAGHGAAAMLLSDRPRVLAMDLGA +TA+G LA P A+ALVIA D Y EP+ G GAAA+LL P VL +D GA	187
Lrg	121	RTALGLLAGSPRPRARALVIAADAGGSVVGMPYWEPSHGAGAAALLLGPEPEVLDLDPGA	180
Lnm	188	FGNYSYETLDSARPSPRFDIADVDRSLFAYLDCLKNAYADYAARVTDVDFTRDFDHLVMH G YSYE +D+ RP P D D SL AYL+CL+ ++ADY V D FDHL H	247
Lrg	181	AGLYSYEVMDTCRPRPDLAAGDSDLSLLAYLECLERSFADYRDTVAGADIVETFDHLAFH	240
Lnm	248	TPFAGLVKAGHRKMMREQGVTGPR-IDEDFARRVAPSLIYPGSVGNLCSGSVYLALASLLTPF G+VKHRPI+DFR+ASL+PHGN++++ALSL+	306
Lrg	241	TPFGGMVKGAHRHLMRRVKRMPPDAIEADFRARMAASLVNPARIGNTYAAGLFVALLSLI	300
Lnm	307	DSGVVTAPSRVGLFSYGSGCSSEFFSGIVDEQSAATVAEQGIGKRLEARARITFDEYLAV + G + P RVGLFSYGSGC+SEF+SG+V + A +A+ + L+AR R+ +Y +	366
Lrg	301	EHGDFSEPRRVGLFSYGSGCASEFYSGVVGAGAPALLAQYRTAEHLDARHRLAVADYDRL	360
Lnm	367	LEHNLECLVPVENRTVDPAEWEPLLDRVGDRPEILTFTGVKDYHRQYAW 415 +H E V++ +D + + + + E L ++++HR+Y W	
Lrg	361	AKHTAEGAPGVQDAVLDVSPYADVYEPALHGREQLVLDRIENFHRRYRW 409	

LrgF vs LnmF

Lnm	4	IGPTHRGVRLTAEPHVLRATLTSPDGLNSLSGAALDALGAALDRAEADPECRVLLLEGSG +G HR +RL+ P VL TL PD NS+ A + L AALD AEADP+CRV++L G	63
Lrg	3	LGTDHRTIRLSGTPGVLTVTLDRPDAQNSIDTAMIRELHAALDTAEADPDCRVVVLTGGD	62
Lnm	64	GTFCTGLDFEEAAGDPAGGASQAGRGGAEFLALMRRFGETPLAVVACVDGRAAGGGVGLA G FCTG+D AA + +A +GGAEFL L++R TP VVA VDGR AGGGVGL	123
Lrg	63	GVFCTGMDLLGAAAEGRPDRERAAQGGAEFLGLLKRLTLTPRVVVATVDGRVAGGGVGLV	122
Lnm	124	AAADLVIATERSEFSLPEALWGLVPCCVLPVLVRRTGFQPAYAMALSTQPVSARRAADFR AA+D V+AT RS FSLPEALWGL+PC V P L+RRTGFQ AYAM+LST PV+A +A	183
Lrg	123	AASDFVLATPRSTFSLPEALWGLLPCSVAPFLIRRTGFQKAYAMSLSTLPVTADQALLSG	182
Lnm	184	LVDEVVPDPDAAVRRLLVRLTRLDPATIGELKQYFRAMWFTTEDTDAFALREFTRLIDSP LVD++ A+RRL R+T+++ AT+G+LK+YF MW T + + A+ EF RL+ S	243
Lrg	183	LVDQLADQLQPALRRLAFRVTKVEGATVGDLKRYFAKMWIITPEVERAAIDEFARLMSSD	242
Lnm	244	VARRRITDYTTTRRLPWE 261 RRI D+ +R PWE	
Lrg	243	GVGRRIADFAERQRFPWE 260	

<u>LrgG vs LnmG</u>

Lnm	2	VALVFPGQGSQRKGMGADLFARFPDLTRQADTVLGHSVEELCRSSGDGRLDRTEYAQPAL	61
Lrg	5	TAWLFPGQGAQRRGMGRDLFDRYPEAMAAADRILGFSVRELCLGDAGERLTDTRYLQPAL	64
Lnm	62	FVVSALSYLARDPGLPQPTLLAGHSLGEYGALFAAGCFDFATGVRLVRERGALMGRA	118
Lrg	65	FVVN LT I ARTE F LAGHSLGET AL AA FDF IGT LV RG LMGRA FVVNELTRRAYAAREPAPDFLAGHSLGEYNALLAADAFDFETGLALVARRGELMGRA	121
Lnm	119	QGGGMLAVLGVDGDEVQALLAGTGARQVDVANYNTPTQTVLSGPLDELRMVSAALGQRPG GG M AV+G + LLA G VD+AN N+ O VLSGP + LR + A+	178
Lrg	122	TGGAMTAVVGPGAARIADLLAEAGLGDVDLANLNSAEQVVLSGPAESLRRAAGAVTAAGA	181
Lnm	179	VRCVPVRVSAAFHSRHMRPAAQEFATFLTGFSFADPHRTVISSVTARPYGAGQVAELLSR RCVP+RVSAAFHSR+M AA+EFA FL GF DP VI++VTARPY G+V LL+	238
Lrg	182	GRCVPLRVSAAFHSRYMADAAREFAAFLDGFELRDPRLPVIANVTARPYRPGEVRRLLAA	241
Lnm	239	QIESPVRWSETMAYLRERGTTELEEMGPGKVLTGLWKQGRADGAKARAVAPAPVAVVAGV O+ S VRWSE+M +L RG + E GPG+VLTGLW D A A AP A	298
Lrg	242	QVHSAVRWSESMRHLLARGVDRIAEQGPGRVLTGLWDAAVKDAANGPAPAPRRAAGGDPA	301
Lnm	299	PAAAAARAPASPAPVAARAATAAPARPSDPAPPAPRTAPSPASPVPPASVSRGQRAEELG P AA A PA A T + PS A A A PA VP G AE LG	358
Lrg	302	PPAAGAAPPAVGAAADPAPGTGPASAPSPAAGSATPLADRPAEGVPGPTAERLG	355
Lnm	359	SAEFRQDYGIRYAYLAGAMFRGIASAELVIRMGRAGLMGFFGAGGLGLDKVESALVRIKD SA FR DYG+RYAYLAG+M++GIAS ELV RMGRAGL+G+FG GGL ++++E+A+ ++	418
Lrg	356	SAAFRADYGVRYAYLAGSMYKGIASTELVARMGRAGLLGYFGTGGLRMERIEAAIAALRA	415
Lnm	419	ALGPDGRYGMNLLHSIDDPAYEHAVVDLCLKHGVHDVEAAGFTQLTPAVVQFRFSGAHRD LGP G +GMNLLH++ DPA E A V L L+HGV VEA+GFTO T A+V +R SGAHRD	478
Lrg	416	ELGPGGGFGMNLLHALHDPALEEATVRLFLRHGVRFVEASGFTQPTRALVLYRLSGAHRD	475
Lnm	479	AAGRAVAVRRVLAKVSRPEVAAAFMAPAPAAILRRLTADGRLTPQEAEIAAELPVGQDIC AGRAVA R+LAKVSRPEVA AFM PAP A++R L ADG LT EA LP+ ++C	538
Lrg	476	GAGRAVAPNRLLAKVSRPEVATAFMEPAPEALVRGLLADGLLTAAEAGAGRALPLAGEVC	535
Lnm	539	VEADSGGHTDGGAALTLLPSMIRHRDAAMARHGYGRRIRIGAAGGIGAPEAVAAAFVLGA EADSGGHTD A TL+P+M RD +A GY IR+GAAGG+GAPE++AAAFVLGA	598
Lrg	536	AEADSGGHTDAAVAYTLMPAMTDLRDRIVAERGYPDGIRVGAAGGLGAPESLAAAFVLGA	595
Lnm	599	DFVLTGSVNQCSPEAGTSDAVKDILAGLDVQDTAYAPAGDMFEIGARVQVVRKGTLFAAR DFV+TGSVNQC+P+AGTSDAVKD+LA DVQDT YAPAGDMFEIGARVQV+R+GTLFAAR	658
Lrg	596	DFVVTGSVNQCTPQAGTSDAVKDLLAQADVQDTGYAPAGDMFEIGARVQVLRRGTLFAAR	655
Lnm	659	GNKLYQLYRSHDSWESIDAGTRRSVEETYFKRPFAEVWEETRAYHLGRGRDAEIEKADRL NKLYQ YR +D E+IDA RR++EE +F+R +VW+ETR YHL GR E+E+A+R	718
Lrg	656	ANKLYQAYRRYDGLEAIDAKLRRTIEEGWFRRDLEQVWKETREYHLRAGRPQEVERAERD	715
Lnm	719	PKHRMALAFRWYFARSVRWGLEGEPTQKVNYQIQCGPAIGAFNHVVRGTGLEDWRHRHVD PKHRMAL FRWYF S R + G+P ++VNYQI GPAIGAFN GT L DWR+RHVD	778
Lrg	716	PKHRMALVFRWYFVHSTRTAMRGDPAERVNYQIHTGPAIGAFNRFAAGTALADWRNRHVD	775
Lnm	779	LIAEHLMTGAADVLARR 795 +AE LM GAA+VL R	
Lrg	776	AVAEALMAGAAEVLRDR 792	

LrgP2 vs LnmH and LrgP2 vs LnmE

LrgP2 vs LnmH

Lnm	6	FHSTNSGVIVERTAQLKQAHRAEGRRIALEQAAYLNDKFAGQTTVTVHEETFGVRDRLHW	65
		HS N+GV+VER QL+ R+EGR+ A E + YLN ++ G T V+EETFG +D LHW	
Lrq	26	LHSANAGVVVERVGOLRAEFRSEGROFARELSEYLNTRYVGVATTFVYEETFGTKDTLHW	85
2			
T.nm	66		113
	00		TTJ

Lrg	86	L+H+ L + + R+ DEG W MF+DG ET LIPQ + LLHMRSLEAYETLVRMGSQDEGWREVMFRNRIPEERGGGSWDRMFLDGGLKETVLIPQSF	145
Lnm	114	GMYGTDEALPEGTVIDAAAPDLRVPPAQRQTSMSPERTLNSSGAGLMIHRVAQPKYAFRA	173
Lrg	146	GMYGTADTELSSVVEDSGVDRFVVPTAEHQTSQKPDELLHSANSGIIMHRTGELKYEFRA	205
Lnm	174	EARLFARRITESINTRLPGIASSFLYEEAFGPADRVHWLIHMKSEDTYYDLIDMHMRMDD E R FAR +TES N L G A+ FLYEEAFG +DR+HW IH++ +YY+L+ + R	233
Lrg	206	EGREFARALTESWNASLGGEATIFLYEEAFGLSDRIHWFIHLRKLSSYYNLMGLRARTSP	265
Lnm	234	ATRAIYLDEIIAPEKGGGTWNRLFVEESMGDIAFSP 269 A R ++ + I EKGGG W R+FV+ S+ D+A +P	
Lrg	266	AAREVFTKQWIPEEKGGGGWERMFVQGSLQDLALTP 301	

<u>LrgP2 vs LnmE</u>

24	SDLLHSGNAGFIIHRAGQLNHAFRAQGRQFATDLVGHLNKVVEGVATIVVHEEILGTADR	83
23	+D+LHS NAG ++ R GQL FR++GRQFA +L +LN GVAT V+EE GT D ADVLHSANAGVVVERVGQLRAEFRSEGRQFARELSEYLNTRYVGVATTFVYEETFGTKDT	82
84	LHWLIHMKQPNDYSRFLEIADHDRSFKEITEADRIAAAEGAGNWERMFVEGSFQERVYVP LHWL+HM+ Y + + D ++E+ +RI G G+W+RMF++G +E V +P	143
83	LHWLLHMRSLEAYETLVRMGSQDEGWREVMFRNRIPEERGGGSWDRMFLDGGLKETVLIP	142
144	QH-GL-DEHDDDHDHDHHDEPSDTF-VPPARHQTGLPDSRMRSSVDSGLTIIRTAQTAFR Q G+ D + D D F VP A HQT + S +SG+ + RT + +	200
143	QSFGMYGTADTELSSVVEDSGVDRFVVPTAEHQTSQKPDELLHSANSGIIMHRTGELKYE	202
201	FRTEAREFAFAWASEVNRALGGELTVYLYEETFGQQDRIHWMIHLDSLDTYRKLTEL-SR FR E REFA A N +LGGE T++LYEE FG DRIHW IHL L +Y L L +R	259
203	FRAEGREFARALTESWNASLGGEATIFLYEEAFGLSDRIHWFIHLRKLSSYYNLMGLRAR	262
260	HDADYQALFGRQFVPDFKGGGGWEQTFVSPTIQDTVLTPLHPGAPA 305 + +F +0++P+ KGGGGWE+ FV ++0D LTP H G A	
263	TSPAAREVFTKQWIPEEKGGGGWERMFVQGSLQDLALTPQHWGMYA 308	
	24 23 84 83 144 143 201 203 260 263	 24 SDLLHSGNAGFIIHRAGQLNHAFRAQGRQFATDLVGHLNKVVEGVATIVVHEEILGTADR +D+LHS NAG ++ R GQL FR++GRQFA +L +LN GVAT V+EE GT D 23 ADVLHSANAGVVVERVGQLRAEFRSEGRQFARELSEYLNTRYVGVATTFVYEETFGTKDT 84 LHWLIHMKQPNDYSRFLEIADHDRSFKEITEADRIAAAEGAGNWERMFVEGSFQERVYVP LHWL+HM+ Y ++ D ++E+ +RI G G+W+RMF++G +E V +P 83 LHWLLHMRSLEAYETLVRMGSQDEGWREVMFRNRIPEERGGGSWDRMFLDGGLKETVLIP 144 QH-GL-DEHDDDHDHDHHDEPSDTF-VPPARHQTGLPDSRMRSSVDSGLTIIRTAQTAFR Q G+ D + D D F VP A HQT + S +SG+ + RT + + 143 QSFGMYGTADTELSSVVEDSGVDRFVVPTAEHQTSQKPDELLHSANSGIIMHRTGELKYE 201 FRTEAREFAFAWASEVNRALGGELTVYLYEETFGQQDRIHWMIHLDSLDTYRKLTEL-SR FR E REFA A N +LGGE T++LYEE FG DRIHW IHL L +Y L L +R 203 FRAEGREFARALTESWNASLGGEATIFLYEEAFGLSDRIHWFIHLRKLSSYYNLMGLRAR 260 HDADYQALFGRQFVPDFKGGGGWEQTFVSPTIQDTVLTPLHPGAPA 305 + +F +Q++P+ KGGGGWE FV ++QD LTP H G A 263 TSPAAREVFTKQWIPEEKGGGGWERMFVQGSLQDLALTPQHWGMYA 308

<u>Lrgl vs Lnml</u>

Lnm	23	VMVRVLSAARPDAQPVTAACELRGLGLDSMTAARLWLAVQGECAADVPLGWLTEATTVGE	82
Lrg	14	ILHRLLAEVRPDGAEPLPPGGLADWGLTSLALTRLWAGVRREFGIDLPPARLA-AATLDE	72
Lnm	83	YAQRVADHASQAVPVQGAGAVGAQVAADPDALHEPFPLTPLQEAYLIGKEPELQADAVGC	142
Lrg	73	LTATVATGTAGTAP-RPATAVGADGREPFPVTDLQQAYLVAKGSDLGGEAVGC	124
Lnm	143	HLYREFDVPALDTERLRAAWQRLVEHHDILRATVTEDGRQQITAQAPRWDLAVHGSATRA	202
Lrg	125	HLYREFAVPDLDPDRLRRAWQDLIDQHGMLRAVVDDDGTQHIRPRADDWQLPVHGPGG	182
Lnm	203	EFTETATAVRARMSHHLFPAGHCPPFAIEVTLGPDGTGRVHFGIDAIVTDGQGLDLLTAQ	262
Lrg	183	-AEDRDTVRARLSHRCYRPGAWPLFAIEVTRTGTGPDIVHLSLDTLITDGHGYAVLLQQ	240
Lnm	263	WEACYADPSHLLPAPTAPLSVRDCVVALDAARRTEAHRRDLDHWVRRLRELPGAPGLFTA	322
Lrg	241	WHQRYHHPEQPLPAAGPSVAELVPALLAERGSDAHRADLAYWKDELADLPAGPGLVAP	298
Lnm	323	DAPERGTGLSCVRRSSRTARLTAAEWRSLRARAEELAVSPTSLVLTVFTEALARHGAHEP	382
Lrg	299	VPAAAPAG-GCRERRPLDAELPADQWRALTVRAARLGVSPTALVLALFAEALDRRAPQRR	357
Lnm	383	FSLVVTTSRRPQLPPEADHLVGPFTGTTFVEAVPPQQHTFEEAARLTHEGLWQALEHSAV	442
Lrg	358	TALVVTTSSRPYLAAETPHLVGPFTSTAVLVLEREADETLDEQAAAVHARLGEHLRHGLV	417

Lnm	443	CGVSAQRALRGGGPGPLPVVFTSMLDAAGRP-RARGFAAAPVYAVSQTSGVWLDHQMWEQ	501
Lrg	418	G+ A R R G P P VVFTS+LD P A GF AA Y VSQT+ V LDHQMWEQ SGIEALREQRTGRPAPA-VVFTSLLDVGPPPGVAGGFGAAIEYGVSQTTDVALDHQMWEQ	476
Lnm	502	DGALHLRWDTADGCFAPGVVEAAFASLCNGLRALAVAGPVVTRPLNDLQQAYFVARAAGE	561
Lrg	477	DGALRYRWDVDPTRFAPGAVETAFAAFGNALAGACAEPAGDPRPPRALQEAYMVARTAAG	536
Lnm	562	PGPWRGCQVVVPYDTDERVDPVRLESAVVRLVEAYDVLRSAVTQDGVVEVRAGAPRRWTV	621
Lrg	537	DGPAEGCQCYQSFEVDA-LDLEALADALRRLVDGHAVLRAAFAADGVTDRRRG-PGQWRI	594
Lnm	622	PVVAGGCPDEVRDAMAAANFPLGRYPQFEVRVVRGDDGDTVL-MSMDLTLTDA	673
Lrg	595	PVF G P FRD M FPLG FP FFRV R D G FVF F DL F D PVIEAGDPAAHPALRALIRDEMTNRPFPLGSWPLVDLRVTRDDSGFSVVHCAFDLLVADG	654
Lnm	674	RGIHLTGRELMRLYADPAAEPRPAEAARDSARDADEQARSRAHWQDRLRALPPGVPLPGP	733
Lrg	655	IH R+L RLYADPAA P PA A A EQAR +W++RL LP G L P LSIHRLYRDLWRLYADPAARPVPAGPDPAPASPAAEQARYWRERLSELPAGPELGPP	711
Lnm	734	RDADGPDR-RVRLAGAPLALRPLTDRCAEHGLSLDAVLLTAFTDVLARTYGTDFAVPVVR	792
Lrg	712	GGPARAGRGRTRLAGRIDGYRRLARRAAEYGLHPDDLLLAALTRAVSSHTAQPWALPVVL	771
Lnm	793	WDHGLDPQRPGEFTALSWLPCAPRELSFTARARTYQEGLERDADVSGSG-LPELRRAVAR	851
Lrg	772	W + RPGE + ++W+ AP E+ T AR I+ L+ D G+G L E+RR V R WPKTAEAARPGEHSFMTWVTAAPAEVPLTTAARDYRRVLDADLAEGGTGGLGEMRRQVLR	831
Lnm	852	SGGAGYPVVYTCALDLTDRPLPGSVRAGQWLSCTPDVFLDCITTVDAGQLQLAWDAVDGR	911
Lrg	832	GSDAAHPVVII +DLIDRPLP VR G+WL+ IP LD + + +L+ WD V GSDAAHPVVYTALVDLTDRPLPAGVRQGEWLTSTPGCALDSVAVAEGDELRYCWDIVHAD	891
Lnm	912	APQGGWSELHAEYRRSVARLADDAAAWQEPAGGDTSGADDGEVRGAELHKILHEWNDTTR	971
Lrg	892	FPDGLAERMFAVFENGLRLLADDATWAGDPAGGLTAEERHTVLYAWNETTV	942
Lnm	972	AFPDDRLMHQLFEEQAAQQPRAEALRWRGGGTMTYQELNRRANRIAARLAAEDVGPETVV	1031
Lrg	943	PDD A LFF QAA F A ALKWRGG IMII ELNRRANRIA RL A VGF FV PVPDDGPAHLLFQRQAASTPEAVALRWRGG-TMTYGELNRRANRIAHRLTAAGVGPRHLV	1001
Lnm	1032	AVSVPRGPMMVAVVLGILKAGGVYLPMEPHLPAERAAVILEEAHAEVVVTTADREGWPVP	1091
Lrg	1002	GVRIRRGPEMVAALHGILKAGAGYLPIDPALPGTRVAAMLGLARATTVLTTSDTPAAALP	1061
Lnm	1092	DGYARVCADAAVEGPHPADADNCPRPVTQPHNTAYIIFTSGSTGRPKGVAVAHRPVLNLI	1151
Lrg	1062	G + D PA ++ P + +TAI+IFISGSIG PKGV VAHR V NL+ AGVTGIETDTDPAINDPAAREDDPETRSTRDDTAYVIFTSGSTGTPKGVQVAHRSVRNLL	1121
Lnm	1152	NWCRRTFGFGPGDMGLCVTSLGFDLSVFDVFGLLGTGAALYIADAEQQRDPALLLDVLIE	1211
Lrg	1122	NFC RIF P DFGL VISL FDLSVFDF GLLG GA FIFAD QQRDP LLLDFLF NFCHRTFELRPSDLGLAVTSLSFDLSVFDMLGLLGCGAGVYLADETQQRDPELLLDILLT	1181
Lnm	1212	EPVTFWNSAPTTLAQVGPLLD-TVGTAGTGDLRLVFLSGDFTPLPLPDEVRAVFPRADMI	1270
Lrg	1182	EPITFWNSAPTTL QF PLL G A LR+V L+GDF PL LP +R FP AF I EPITFWNSAPTTLHQLTPLLTPDTGDAAAAHLRIVALAGDFIPLSLPGAIREAFPNAETI	1241
Lnm	1271	SLGGATEATVWSNWFRIGAIDPAWRSIPYGRPIDNSRYHVLDEALRPCPVGVEGDLYIGG	1330
Lrg	1242	ALGGPTETTVWSN +R+ +DP WRSIPIGRPIDN+R++VLDE L PCP+GVEGDLY GG ALGGPTETTVWSNVYRVTTVDPDWRSIPYGRPIDNTRHYVLDEHLEPCPIGVEGDLYTGG	1301
Lnm	1331	ECLALGYVNQPELTADRFIPDPFHEDPQERLYKTGDRALYYPDGNLSFQGRADGQVKVRG	1390
Lrg	1302	ECLAVGFCNQPELTARLFLPDPFVDTPGERMYRTGDRALWLPDGNLRVTGRGDRQVKIRG	1361
Lnm	1391	FRVELAEIEHRLRAHDGVKDAVVLAREDGCGDRTLVAYLVALPGS-APSGRELRGFAG	1447
Lrg	1362	HRVELGEVEHRLRAHPAVQEVVAVLRDDEPPSGDARLVAYVVTDPAAPAVTVAELRAHTA	1421

Lnm Lrg	1448 1422	QTLPEYMVPNFIGFLAGFPATANGKLDRAALPWPL 1482 + LP YMVPNF+ L FPATANGKLDR ALPWPL EALPGYMVPNFVALLPSFPATANGKLDREALPWPL 1456	
Lnm	1527	VSVPSRDELCAEIADLFAQALGVESVDADTDLWDQGATSFTMVRVSGSLQRSYKQRFPVS + V S L E+a +Fa+ LGV++VD DLWDOGATSFTMV++S L++ Y+OF PVS	1586
Lrg	1534	IPVASPAALAEEVAAMFARHLGVDTVDPALDLWDQGATSFTMVQISAGLRKRYQQRVPVS	1593
Lnm	1587	ALLDNPSVSAIAGWVHAQLGGGADAESTAAAEAETATSVDAETTATTVTQTTAASDERPD AL+ P+ + IA + +LG A + AA E P+	1646
Lrg	1594	ALISEPTAAGIARILADRLGLRAQPDPAAAPEPGAGPE	1631
Lnm	1647	SGPGPVDFFATEERERFKRQHWNRRPDEPGLPEVPLGDARFEDELHAWRASRRDFLDQPV +GPG VD F+ +ER+ FK WN R PG + L + + WR S RD+ D P+	1706
Lrg	1632	AGPGTVDMFSPQERDAFKAAAWNLRRPAPGARRIALPETTVHPAHYDWRGSHRDYRDTPL	1691
Lnm	1707	PHRSFSRLLGLLRETTGADGTGALYPSAGDTYSVQVYLHLTPDAVEGLDAGLYYYDPSRH P + +RLLGLLRE GT LYPSAGDTY+VQ Y+H+ PDAV+GL G+YYYDP H	1766
Lrg	1692	PAEALTRLLGLLREAPVEGGTRRLYPSAGDTYAVQAYVHVKPDAVDGLAGGIYYYDPRGH	1751
Lnm	1767	SLRLLRSGVLPDRGAHFYYNRPVFDRSRFGIYLFGQRHGIEPLYAEESLRYLTLESGYMS +L L+ + DR HFYYNRPVFD S FGI+L GQ GI PLY E + +LTLE+GY+	1826
Lrg	1752	ALELVNAEPRIDRTVHFYYNRPVFDGSAFGIFLIGQTRGIAPLYQEVAEHFLTLEAGYVG	1811
Lnm	1827	QLLMLGQAAHGVGLCPIGALNTEQLSQWLGLDEGHVFLQAFLGGAAEHPQRTAGGTVPFF QLLM GQAA G+GLCP+G L + + LD+GHVFL +F+GG + TA PF	1886
Lrg	1812	QLLMTGQAACGIGLCPVGTLTFDDIRDQFALDDGHVFLHSFMGGGVDR-TGTADLRPPFA	1870
Lnm	1887	TEPTDSDGNSGSGDSSTVITDAVAPVSAAAEDADAEPPAHTAEPAAVIGMAGRLPGAGDL	1946
Lrg	1871	EQPKAAEVAVVGMAGRFPGAEDL	1902
Lnm	1947	DAFWDNLVSGRTAIGPAPASRPETAPSGARATGGFLPHIDRFDSLLFHVSPQEAPA +W L +GR A+GP PA R P+G GGFL ID FDSL F ++P EA A	2002
Lrg	1903	GEYWRQLSTGRCAVGPLPAGRGFAEDGRLPTGLHGGFLTGIDNFDSLHFRIAPVEAAA	1960
Lnm	2003	LDPQARLMLESVWQCLDDAGHTADSLRRSAGRVGVFIGSMWHDYRQQGADRWNGGDSAEV LDPQ RL+L++VW CL+DAGHTA+SLR +A RVGVF +MWHD++ G + W+ +A V	2062
Lrg	1961	LDPQLRLLLQTVWTCLEDAGHTAESLRAAAPRVGVFTAAMWHDHQHTGKETWDADAAARV	2020
Lnm	2063	AATASDIANRVSHFFDFRGPSLAVDTSCSSSFAALHLAVESLRRGECGAAVVGAVNLLAH AA A D+ R+SH F F GPS+AVDT+CSSS ALHLA E+LRRGEC AAVVGAVNL+AH	2122
Lrg	2021	AALAGDMPGRISHCFGFDGPSVAVDTACSSSLTALHLAAEALRRGECDAAVVGAVNLVAH	2080
Lnm	2123	PYHWGLLDGLELLAADAPPAAYAAEGSGWHPGEGVGVLLLRPADAARRAKDTVHGLIEGT PYH LL LLA P A+AA+ SGW PGEGV +LLRPA AA R DTV G++E T	2182
Lrg	2081	PYHLALLAEAGLLAEGGPVRAFAADSSGWCPGEGVAAVLLRPAAAADRDGDTVRGVLEAT	2140
Lnm	2183	RIGHAGRAPRYGAPHTAALADSLARALADASVIPDEVDYVECAAAGAGIADAAELEALGS IGHAG R+G P ALA S+ AL A + P +VDYVE A AGAG+ADAAELEA	2242
Lrg	2141	WIGHAGSGGRFGVPDPRALAGSVGAALDRAGITPAQVDYVELAVAGAGVADAAELEAFAE	2200
Lnm	2243	VLARCAGASPVPVGTLKPNIGHLEAASGLSQLIKVLLQIRHGRIAPTLVSGELSPLVDWD	2302
Lrg	2201	VFAGNPVLAGTVKPNIGHLESASGLSQLLKVLLQFEHDRIAPTLTAGRRSDLVDWD	2256
Lnm	2303	GLPVELVDTPRALTPRAADGRATVLVNAVGATGSYGHVVVRAPHAHGTGPAAQDGL	2358
Lrg	2257	DLPLRVPEHLVDWPSAATARRAVVNAVGASGAYAHAVLRAATSADDGPAP	2306
Lnm	2359	AGAGAAPSASGPRTVVLSAASPEGLTAAAGRLRDHLAGAGRALCLDDVAWTLQTGRASLG GA A G + VVLSA S +GL AAGRL +HLA G + L D+A+TLQ GR +	2418
Lrg	2307	-GATADGRAPGRQAVVLSAGSADGLRRAAGRLAEHLAN-GASPALADLAFTLQDGRVPMP	2364
Lnm	2419	HRLTLSADGLDGVRAGLTAFLDGRACPGLATAAADPALAGVPAGAQDLARAAGDWLRGHA HRL + + VR L F GR P LA A P D AA WLRG	2478

Lrg	2365	HRLAVVTSDIAEVRTALAEFAAGRTAPALADAVVGPGRPAAGLVPADADAAAAGWLRGAP	2424
Lnm	2479	VDFARLWSAPARRVPLPVQDFTVLAQERHWLAAPAARRPDGAAGSAPAAPESGQSAPPAS V + LWS RRVPLP TV A E H L AP A + P A+	2538
Lrg	2425	VAWHALWSPGRRRVPLPGTVFAGEEHRLTAPPRTASAPARPVPVAA	2470
Lnm	2539	PQVQDDRADRAQEHVAACFAEVSGIPAEQLHPRVPLEHYGLSSRLVARFNERLRQD-VQG	2597
Lrg	2471	P + D +++V A +AE SGIP E+L PRVPLEHYGL+S +V + N RL +D + PAPVAEVPDTVRQYVLAVYAEASGIPVERLDPRVPLEHYGLTSYVVGQLNARLAEDFTEP	2530
Lnm	2598	VSSTVLFEYPDLAGVAAHLAAHHEGPWSAAPDTQPSPPVPSPDPLPVPRTPAAALG VS T+ FE+ DLAGVAA LAA +GPW + AP +P+P	2653
Lrg	2531	VSRTLFFEHQDLAGVAAELAARVDGPWQPVRTEAPGDRPAP	2571
Lnm	2654	ESAAADGPEPIAVIGIAGRYPGAGDLETFWSNLAEGVDSVGPLPAERARDGWPTEQMW	2711
Lrg	2572	AGNRPEDTAIAVVGLAGRYPQAADLDRFWQLLEQGYDAIGPLPAERHRPGWPVDLMW	2628
Lnm	2712	GGFLDGVDRFDALFFGIAPRDAQLMDPQERQFLQVVWETLEDAGCTRARIREQLGSDVGV G FLD VDRFD LFF I+PRDA LMDPQER FL+V WE LEDAG TRAR+REQ G VGV	2771
Lrg	2629	GAFLDDVDRFDPLFFAISPRDAVLMDPQERLFLEVAWEALEDAGYTRARLREQHGGRVGV	2688
Lnm	2772	FVGTMYNEYPFFGVERSLAGESADTGSAVAGIANRVSYFLDLHGPSLAVDTMCSSSLTAL F G MYNEYPF GVE+SL G +ADTGSA+AGIANRVSYFLDL+GPS+ VDTMCS+SLTA+	2831
Lrg	2689	FAGAMYNEYPFLGVEQSLLGPAADTGSALAGIANRVSYFLDLNGPSMTVDTMCSASLTAV	2748
Lnm	2832	HLAVESLRRGECAAAVAGGVNLSLHPHKFRQQTRLKMSSSDHRCRSFGAGGDGFVPAEGV	2891
Lrg	2749	HLAVRALRQGECEAALVGGVNLSAHPHKFRQQHRLRMASTDHRCRSFGAGGDGFTPGEGV	2808
Lnm	2892	GAVLLKPLSAAEADGDRIHAVIRGTAVNHGGKTNGYMVPNPVAQGDLVRAALRRAGADPA G VLLKPL+ A ADGDRIH VIRGTAVNHGG+T+GYMVPNPVAOG+LV AALR AG P	2951
Lrg	2809	GVVLLKPLARAIADGDRIHGVIRGTAVNHGGRTSGYMVPNPVAQGELVAAALRDAGVGPG	2868
Lnm	2952	TIGYVEAHGTGTQLGDPVEINGLNRAFAGASVAPASRAIGSVKANIGHAEAAAGIAGLTK +IGY+EAHGTGT LGDPVEINGL RAFAG V + AIGSVK+NIGH EAAAG+AGLTK	3011
Lrg	2869	SIGYLEAHGTGTALGDPVEINGLARAFAGVEAGTCAIGSVKSNIGHLEAAAGLAGLTK	2926
Lnm	3012	VVLQLRHRHLVPSLHTEELNDAVDWASSPFEVVREGRPWAPLTGADGAPLPRRAGLSAFG	3071
Lrg	2927	VLLQLRHRRLVPSLHAEQLNPDIDWARSPFAVQREAAPWPARRAADGTPVPRRAGLSAFG	2986
Lnm	3072	AGGANAHVVVEEYVPGTAPEPTEPGVPGVLEPQLIVLSAHDLGRLRALAGRLRDRLGRDD	3131
Lrg	2987	AGGANAHLVIEEYLPQPAAEPVRPAGPQLFVLSARDEQRLTELAHRWADFLARPE	3041
Lnm	3132	RPAPALADVAHTLQSGREPLRERVALVAYDVAGLCRALDLFASGDTGAWVHGRTPGGALP P AD+AHT OSGREPLRER+A+VA A I. I. F GD+G V GRTPG P	3191
Lrg	3042	LPPFADLAHTAQSGREPLRERLAVVAAGPAELRAKLLRFLDGDSGDVVRGRTPGADAP	3099
Lnm	3192	DGPKAVLDAAADRDAELLRLGRHWTGGGTVDWPGLHPVRR-RLVSLPSYPFAEDRHWLPE GP + D LL L RHWT GG VDW LH R R + PSYPFA R+W PE	3250
Lrg	3100	AGPHPADGSYGDLLLLARHWTAGGRVDWSRLHTGDRPRRAAAPSYPFARGRYW-PE	3154
Lnm	3251	PRTAAPAAAAATLTEPSGTTLYGRTWRALPPLAAAAAPAP-SGRVLCVFSAPGEPVAR	3307
Lrg	3155	PAKTVEAAPVQEPDGRQPLLFTKRWRSAGQPRPEPVTGRIVCLYTDRSREAAR	3207
Lnm	3308	ALAALLGPDRVTLVRAGADAGNGVPGITGIGDEAEAAAFAQGLRADGPDAVGGLIDLTDL	3367
Lrg	3208	QVAEAFGRDRVIPVREGGPA-DGDAGFTGEQDAIALLDGLADRHPD-LTGWLDLSEL	3262
Lnm	3368	GGPAHGDAGSWTARLVLLRRLVRTLRGHGGRVLHVTEGLYGPAGPAPSLAGARMAGFVRM PA D G WTARL L+RL+ G R++H G G R+AC VR+	3427
Lrg	3263	DRPA-ADPGPWTARLAALQRLLARRPGTALRIVHAVRDRGGADGRRLAGVVRL	3314
Lnm	3428	LGAEYGRVTGTVLDLDVSAVGPDAAARQILAEYTGPYGPGDVSVRGGVRHRPELVALPDA LGAE+ V TV++ D GP AR++LAE+ G +V RGG R P L +P	3487

Lrg	3315	LGAEHRTVRATVVESDAGPAELARRLLAEWAGGEATAEVRHRGGERLTPVLEPVPVP	3371
Lnm	3488	GHRSLTPAVDRAYLVTGGTRGIGARVARLLVRRGARRIALTGARPQPPRADWPLLSPGTP + YLVTGGTRGIGA VAR LV RGARR+ALT A P PPR W	3547
Lrg	3372	APAEFPADPAKVYLVTGGTRGIGAEVARRLVERGARRLALTCAHPLPPRHRWSAPELSDR	3431
Lnm	3548	EAETASLVAELEAQGARVLVHSGPLSERERTDRFLREVREVLGPIGGVVHCAGRGPVGRP EA V LE GA+V++H + FL VR LGPIGGVVHCAG GRP	3607
Lrg	3432	EAVAVRNVQALERAGAQVMLHGEAPATETGLGAFLTGVRRSLGPIGGVVHCAGLPSRGRP	3491
Lnm	3608	SFIGKELADFDPVLEPKTTGLEVLDELCAGDRPEFFVLFSSLSAVAPGLAAGVLDYAAAN SF+ K AD V EPKT G ++L+ LCA D+PEFFVL SS S + P L AGV DYAAAN	3667
Lrg	3492	SFVHKTAADIAEVFFFVLMSASTLLPRLGAGVTDYAAAN	3551
Lnm	3668	AFLDCYADHQVRSGRPWFRSVAWPTWSESGMGADRPDSCAPVGVGPLGDEEGLRVLERIL A L+ AD + R+GR F +V WPTW +GMGAD+PD CAP G+ + EEGLRVLE +L	3727
Lrg	3552	AHLEYLAD-RTRAGRTRFHAVHWPTWLGTGMGADQPDGCAPAGLDAITVEEGLRVLEAVL	3610
Lnm	3728	ALPAEQARIVPCPPIDGIAADPAALLGSPRDTDATASVGSTTSAGSTPMAGSTPMAGS LPA+ +VP P DP LL + R A + T+A	3785
Lrg	3611	TGTLPAQLLPVVPLPGRFDPETLLHANRAPAAPVDAPAATAAA	3653
Lnm	3786	TPAAGSAPVPTTTGATPPRPREEEHTVPNTSVTGPPWLAPLFSELLAIPEDALDPTALLG T +GA P P WL LFSE L IP LD TA	3845
Lrg	3654	TFSGAPAATAAPTRSDAPPDWLLALFSEALEIPLPDLDATAPFS	3697
Lnm	3846	DLGVESVLLGEILLRLEELTGLSLDPATLLDHPTLELLGRHLADLGVPSAPPAPAATT DLGVESV+LGE++ +E+ G SL+PA LL+H TLE L +L G+ +A PA	3903
Lrg	3698	DLGVESVMLGELVELIEQQVGSSLEPAVLLEHQTLERLAGYLRKAGLDRAAADAPPAPEP	3757
Lnm	3904	APAVAPVTPVTPTAPVAVAPVTPVAPSGKIAVIGLSCRFPGAEDAAAFARNLLGGPAVTPAPVTPAS+IA+IGLCRFPGADAFLG	3958
Lrg	3758	LPAAGSVTKAQPQSAPVTPPAASREPADRRIAIIGLDCRFPGAPDPDAFWAALAAG	3813
Lnm	3959	TCSVTEVPPSRWDVGELYRPELEPGRSTSKWGGFLDGIEDFDPEWFGMSEDEARCLDPAV SVTEVPPSRWD LYRPE G S S+WGGF+DGIEDFDPEWFGM+E+E RCLDPAV	4018
Lrg	3814	RNSVTEVPPSRWDHRALYRPEHRIGSSISRWGGFVDGIEDFDPEWFGMTEEEGRCLDPAV	3873
Lnm	4019	RLFLEGSATCLTDAGYGARELAGRDVGVFAGARMSHYGRRVGERRGLVGMGSDQNFIAAR RL LEG+A C DAGY EL GR+VGVF GAR+ YGRR+G R G +G DQNF+AAR	4078
Гцд	38/4	RLVLEGIANCFADAGIRIEELQGREVGVFVGARLGDIGRRIGLRSGPAALGGDQNFVAAR	3933
Lnm	4079	IAHHFDLHGPNLVVDSACSSSLVALQLACRSLLDGESELALAGGVDVLLDEEPYLDFSAA +AHHFDLHGPNL VDSACSS+L A+QLACRSLL+GESELA+AGGVD+LLDE PYL+FSA	4138
Гцд	3934	VAHHFDLHGPNLIVDSACSSALAAVQLACKSLLEGESELAVAGGVDILLDEKPILEFSAV	3993
Lnm	4139	KALSRHGRCATFDEDADGFVPGEGCGVVLLKPLEKALRDGDRIHAVIDAVAVNNDGRTMG +ALS GRCATFD DADGFVPGEGCG+VLLKPL +AL DGDR+ AV+DAVA+NNDGRTMG	4198
Lrg	3994	RALSPTGRCATFDRDADGFVPGEGCGLVLLKPLARALADGDRVLAVVDAVALNNDGRTMG	4053
Lnm	4199	LTTPNPAAQAKVVRRALAAAGRRADEVGLIEAHGTGTMIGDPIELRALTEVFREETGRTG LTTPNP AQAK +RRALA AG A+ VG++EAHGTGTMIGDPIELRALT+V+RE T G	4258
Lrg	4054	LTTPNPVAQAKAIRKALATAGMSAERVGMVEAHGTGTMIGDPIELRALTDVYRETTDARG	4113
Lnm	4259	FCAIGSVKTNVGHLLSAAGMAGLIKAVLAVRDGRIAPTLFCERPNPRFDFAASPFYPSRT FCAIGSVK+N+GHLLSAAG AGL+KAVLA+R+ + PTL CE PNPRFDFA SPFYP+	4318
Lrg	4114	FCAIGSVKSNIGHLLSAAGAAGLVKAVLALRNRLLPPTLHCEHPNPRFDFADSPFYPNTA	4173
Lnm	4319	AHDWVPEPGRVRVAGVSAFGLGGTNAHAVVSQLDPVLAAAHRPRPALPAPN-FARRRLWL DW P+PGR RVA VSAFGLGGTNAH +VS+ D AAH P F	4377
Lrg	4174	LRDW-PDPGRPRVAAVSAFGLGGTNAHLIVSEPDENAVAAHPPTRRPLPRPVFDRRRLWL	4232
Lnm	4378	EA 4379 EA	
Lrg	4233	EA 4234	

<u>LrgJ vs LnmJ</u>

Lnm	15	CHLVLEHSDFIMQNHRVHGVSVMPGVTFLDIVFRILRDRGFDTARAELRNVLFHEAIATS	74
Lrg	8	CRLVLRHDDFIMQNHRVHGVSVMPGVIFLDIV RYL YG D ELR YYF EAIAIY CRLVLRHDDFIMQNHRVHGVSVMPGVTFLDIVLRVLAAQGLDPTTVELRGIVFAEAIATA	67
Lnm	75	EGCDRDIRITVSTSTDGSRWITAESRRREGGESAADYQENFRGELVLHDVPEPGPLDVDR EG DR+IR+ + DG R +T SR G E +++EN R EL LD	134
Lrg	68	EGDDREIRVVIGEPADGVRPVTGTSRWLRGDEPYGEWRENIRAELHPAGPSAVPDLDAAA	127
Lnm	135	LRTTARRVADLDEMYARARAEEIRHGSAMRCFGRLYYGDGELLAELGLDGEAAALDEHFH L A R + +MYA R+ EI HG+AM+C G ++ G LLAEL L D F	194
Lrg	128	LVAGAVRTRSMADMYAHTRSREIVHGAAMQCAGPMHLGADHLLAELSLVLPETGEDRAFL	187
Lnm	195	LHPAKMDCATIAAFAQVPPPDQDPFIPVFIESFRAPRPLTGVAYAHMPRPETYAQSGDIM LHPAKMD ATI A+ 0 +PFIP+FI+ FRA PL G H+P+PE SG++	254
Lrg	188	LHPAKMDAATIVAYGQREITAAEPFIPMFIDRFRAHGPLHGAFLVHVPQPEELTPSGELF	247
Lnm	255	HNDCALYDADGRFLAGFTKLTCKRIRNPELITRLLDAPDVTRTAAPAPAAVS-PSPVVAP	313
Lrg	248	RSTFSLHDRQGRTVAEFDRLTCKRIRRPESIRDLLLETTGARQPAAVAGPQAPTAP	303
Lnm	314	ASSDGGAGPDAVRAHLRELVGTLLGRAPHAIRTDAGFYDLGLDSGHMLDISRRLEEYVCA	373
Lrg	304	AADYRHWLRGRIARMLDRSADTVDDGLGFYDMGLTSVDMLRISNELEEVVGS	355
Lnm	374	PLYPTLLFEFSDIDSLAAHLYAEFGAQVRSAPANPPATPATPGEDAGAPPASAARSTARA	433
Lrg	356	ALYPTLLFEHTTVDGLARHLEETYGAPAAPAPQPSAPAAPAEPARPHRARL	406
Lnm	434	VAPALGCHRPVWTPLPADPGAFAADGARTVVLVGADAATAAALRDAAAPARVVRAERASA	493
Lrg	407	LRPVWQRVAHSAPTVPTDLAVLGADPALLAVLTERAAA	444
Lnm	494	FQRLAADHYRLDPADPDQL-ASLTAALATDGISATAYVRCARTRDTDGAGSALPDAY	549
Lrg	445	TGALVVAVDPGDRALLGARLSALPERRGRSWTLLDATGLGGSSADPAEVA	494
Lnm	550	LESWALAVAVTGTRPTGPVPVLFLHPRDPAAPRPHEDALGALARTVAAEAPQLRCRAVGH + +WA A + RPT VLF H R +P A+ AL RTV AE P L RAV	609
Lrg	495	VAAWAACAAASERRPTRVRAVLFAHRRQPEYAAVAALGRTVTAELPALAVRAVEV	549
Lnm	610	DATATAGDLAAVIAAESTDLSAESEVRHTGGTRLTVRHETLAVPSGNGAGVLREDGVYLV A A +LA ++ AE+ D SAESEVRH GG R R + + P+ G LRE GVYL+	669
Lrg	550	AAAGPA-ELAELLLAEAADPSAESEVRHAGGERSARRFQVVESPARAGEAGLRERGVYLI	608
Lnm	670	TGGGGSLAALLVDRLVTRGPVRLVLTGRSAPGPELTQRIEGWRRRGAEVTHVRGDVAHTD	729
Lrg	609	TGGGGGLGPMLAEHLARTRRARILLSGRSAPGEALLGRMREWQRYGADAQYRTADVTDPA	668
Lnm	730	DVLAAVTCARETYGRIDGVFHCAGSVDDGMFFRKDPERSAAVLAAKVAGTRNLDEATADD	789
Lrg	669	QVRELVAAARELYGRIDGVVHCAGVVRDGIFLAKRPEQIREVLAPKISGIRHLDEATRAD	728
Lnm	790	GLAFFALFSSVSASVANPGQADYAYGNAFMEHFAEQRAARADRPGVSVAVGWPLWADGGM	849
Lrg	729	GLDFLAAYSSLSAVIGNPGQSDYAYANAYIDHYLAARPGRSLSVDWPLWAEGGM	782
Lnm	850	RVSEDVLRRSADTSGLHALPADAGLDALFGLLSGAAPRAVVTYGDQERIAELLP	903
Lrg	783	RVDAEVTERAARAHGASPLPTGTGVELFERALAAGDSRLVVTHADPARSDDRLPLADGDL	842
Lnm	904	-APRPSAAQSGRTGSPDSPDSPDGDDIAIIGVAGRY	938
Lrg	843	AAPDTAAPDTAAPGLAAPGLATPDTAAPGFAAPDGHGPDAVTPGEHGPDAIAVIGLAGQY	902
Lnm	939	PEAEDLEAFWRNLAEGRDCVGEVPADRWDHAAYYDPERGKEGRTYGRRGGFLDGVDRFDA P+A D++AFWR LAEGRDC+ EVP +RWDHAA +DPE G+ GRTYGR GGFLDG+DRFD	998

Lrg	903	PQAADVDAFWRLLAEGRDCITEVPRERWDHAAIHDPEHGRPGRTYGRWGGFLDGMDRFDP	962
Lnm	999	ASFGISRREAELMDPQERLFLTVGRQAVENAGYRPEELARTRVGVFAGVMWNHYQLCTDG A FGISRR+AE MDPOERLFLT 0 ++ AG+ VGVFAGVMWNHYOL G	1058
Lrg	963	AFFGISRRDAERMDPQERLFLTTCWQTLQEAGHPASRTTAAPVGVFAGVMWNHYQLV-QG	1021
Lnm	1059	SAEPVAPTALHCSVANRLSYCLDLSGPSMAVDTACSSSLTSLHLAVESIRRGECALAVAG	1118
Lrg	1022	AEDGVQPTAMHAAVANRVSYTLNLAGPSMAVDTACSSSLTAIHLAVESLRRGECEMALAG	1081
Lnm	1119	GVNVAAHPQKYLQLAQGRFLSSDGRCRAFGADGDGYVPGEGVGAVLLKPLADALADGDHV GVNVAAHPOKYLOLAOGRFLS DGRCR+FGA G GYVPGEGVGAVLLKPLA A ADGDH+	1178
Lrg	1082	GVNVAAHPQKYLQLAQGRFLSDDGRCRSFGAGGTGYVPGEGVGAVLLKPLAKAEADGDHI	1141
Lnm	1179	HAVIKGSFLNHSGRTSGFTVPSPAAQATLIADALDRSGVAADSVGYIEAHGTGTALGDPI	1238
Lrg	1142	HGVIRATRLNHTGRTSGFTVPSPTSQAALIRAALDAAGLPPSGIGYLEAHGTGTALGDPI	1201
Lnm	1239	EIEGLRQAFADAGLAPGSCAIGSVKSGIGHLESAAGIAAVTKVLLQMRHRELVPSLHSEQ	1298
Lrg	1202	EIIGLKYAFA AG G CAIGSVKS IGHLESAAGIA VIK LLQYHIKYL FSLIFE EIDGLRKAFAGAGTGSGGCAIGSVKSNIGHLESAAGIAGVTKALLQLKHRQLAPSLHAEV	1261
Lnm	1299	PNPHIDFAATPFAVQRTRAPWVPRPGSTVLRAGVSAFGAGGSNAHVLLESA-PPAPATPV	1357
Lrg	1262	VNPAIDLATTPFRLQRELTDWPAPADGSPRRAGVSAFGAGGSNAHLVLEEYRAPADRPAR	1321
Lnm	1358	AGPQLFVFSAKDERTLREVVRRQLRHLDGPG-PVGSSADEATALLTGEVAALLDVPVDAV	1416
Lrg	1322	GGRELIVLSARDADALRVYAERIRAVLHGAAEPSTAGAAELRRVLTGAVAQVLGVPDDAV	1381
Lnm	1417	DVRENLADLGVDRLALAELGRRVEGRLPAGVPLSGQASVTELAASAALAARPDALPL	1473
Lrg	1382	DPAEPLVDLGVDRTGLALVRKVLDEHRPGLGGPLPVEGDRSIDQLAGQLGTEPRP-AVPL	1440
Lnm	1474	ADIAHTLRVGRSPLAVRLAVVCGEPEELRRRLAAFLDGDEPGEGVFTGRADDDKEPVRLE	1533
Lrg	1441	AALAHTLRVGRDQLSSRLAVLAADHAELLAALDRYLSGAAPEAGQYWGREGAGTAEPRPE	1500
Lnm	1534	RAAELFRLGRLSELARAWADGAAVEWDDCRAGDGVRPRRVPLPAHPLDERSYWIGGWR	1591
Lrg	1501	-LAELVRAGRLEEVAAAWSAGADVPWADC-APTGPAPRRVSLPVPPLREERHWLGGWQ	1556
Lnm	1605	TAHAPTAVPAAPVDQADLPEVREERPGL-DPQEVLWAVVDAVRTR	1648
Lrg	1845	TAAAPVEVPVTPQAAPPAEVPVPVPAAARPVDVPEAGLPDPAEVERLVVATLCGI	1899
Lnm	1649	LYLERDEVDHRLSFNEMGVDSVGAVEIVEQLGARFALEMDPVTLFDHPTVPRLAEHVREL	1708
Lrg	1900	VYATEDEIDRRLSFSESGVDSIGAVEIV L KF LIID V IIDHFIV KL HV E VYATEDEIDRRLSFSESGVDSIGAVEIVRSLNQRFGLDIDSVAVYDHPTVARLTAHVLET	1959
Lnm	1709	HRQSPAPRPQAAPAAPA	1722
Lrg	1960	Q+ A A AP AEQARALHRSALTQAPAPAPAPAPASAPEPAPAPAPAPAPAPAPAPAPAPAPAP	2019
Lnm	1723	PAQPAAPEAAALPAPAPAPAPAPAPAPASK	1752
Lrg	2020	PAQP P A P A S+ PAAAAPVAPLAPATPGQTSLRPLRGTPVQQPAQPLQPAQPAQPVRLAPLAPRAEGAEPSR	2079
Lnm	1753	PEPAASPDACDDIAVIGMSGRFPGAEDLDAFWENIAAGRDSFTEVPAQRWDVGPVFDADR	1812
Lrg	2080	P PA D D IA+IG++GRFP AEDLDAFW N+AAGR S +EVP RW G FD DR P-PADDADGIAIIGVAGRFPDAEDLDAFWANLAAGRTSISEVPEARWGTG-WFDPDR	2134
Lnm	1813	LVPDRTYSKWAAMLPEVGRFDAAFFNHSPLEAEVMDPQQRLFLEQSWAALEHAGYAVGAD	1872
Lrg	2135	VPDR+IS+WAA+LP++G FD FF SP+EAE MDPQQR FL+Q+W ALE AGYA RVPDRSYSRWAALLPDLGGFDPRFFQLSPMEAEAMDPQQRQFLQQAWTALEDAGYA-APG	2193
Lnm	1873	DRTSCGVFVGCAPGDYSTLLTEAGRADTGHAFLGTTSSLLPARIGYFLNLDGPTMAVDTA R CGV+VG + GDY LL AG+ADTG AFLG ++L AR+ Y L+L GPTM VDTA	1932

Lrg	2194	KRLRCGVYVGASGGDYYHLLRAAGQADTGQAFLGNNMAILAARVAYLLDLSGPTMTVDTA	2253
Lnm	1933	CSSSLVAVHLAADSIRRGECAMALAGGVALMVTPQLHVRASKVGMLSPRGTCVPFDASAD	1992
Lrg	2254	CSSSL AVHLA FFIR GFC FARAGOVATH HIGT V FSFVGHLSF G VIFDA AD CSSSLTAVHLACEAIRGGDCELAVAGGVAVMTTPQMQVWSSRVGMLSPTGRSVPFDAGAD	2313
Lnm	1993	GTVLGEGVGAVVLKRLDRAVADGDHIHGVIKATGVNGDGRTNGITAPSALSQAALIADVH	2052
Lrg	2314	GIVLGEGVGAVVLKEL ATADGD I VIKATGVNGDGKINGITALSA SQA LT VI GIVLGEGVGAVVLKSLRAALADGDRIQAVIKASGVNGDGRTNGITAPSATSQAELLRAVH	2373
Lnm	2053	RRAGVGADDIGYVEAHGTGTALGDPIEVRALTEVFRRSTDRSGYCGIGTVKANIGHTTMA RRAGV A DIGYVEAHGT T LGDPIEV+AL +V + D G+ +G+VKANIGHTT A	2112
Lrg	2374	RRAGVEAGDIGYVEAHGTATNLGDPIEVKALNQVL-GAADGPGFTALGSVKANIGHTTTA	2432
Lnm	2113	AGIAGLLKTLLALRHSELPPAPAFDTPNPKTELDSSPFFVVRDRQEWEPGPGGQRIATVS AGIAGLLK +LALRH LPP P F NPK +L VVR+ WEPG G R+ TVS	2172
Lrg	2433	AGIAGLLKVVLALRHRALPPLPGFAEANPKLDLSGGRLRVVRELTPWEPGANGVRVGTVS	2492
Lnm	2173	SFGFSGTNAHAVLAQAPEPQARPEEPDQER-LFAVSARDGAALDRLLLRLADS-DLD-GV SFGFSGTN H VLA+ P A P R L +SAR AL R+ LA++ + D +	2229
Lrg	2493	SFGFSGTNCHVVLAEPPARPAPERRPRAARHLVPLSARTPEALTRVAADLAEALEHDPAL	2552
Lnm	2230	TPADLAFTLGVGRAHLPVRAAVIARNVPELRRRLRLLQSGAQAPGCFRTGQGAAAGDLDEPAD+++T+GRAHLVRAA++ELEL+LRLG++PGCA+LDE	2289
Lrg	2553	EPADISYTRALGRAHLTVRAALLTGGREELLEQLRKLADGQESPGCHLADSAGLDE	2608
Lnm	2290	QTRAELAGRARSGSPAERVAALERLAAAYAAGQDLDWQSLSYGDRPRRVPLPTYPFGGDR A S P L R AAAY G DW +L+ G RRV +PTY F +	2349
Lrg	2609	AAGSDDPLVRAAAAYVRGDTPDWAALTAGGRRVAVPTYRFAREH	2652
Lnm	2350	HWITLP-DTDRTAVPATAPATSRVDLPGQSPQSTPHPLLGAVSGAPGDPDGARFPVPVPA+W T P TD P TA LP + Q+ P P PDG V V	2408
Lrg	2653	YWATGPAATDHVVPPGTADDHRLPAPTRQAAPEPDRPAGPDGGADGVAVVR	2703
Lnm	2409	AHW-VLDHHRIGDRPVLPGAAGLDLAVAAARRCGLRGTVRLHGVQWLRLIDAEAAGTLRL V HR+ RP LPG A L LA A RL V+WLR + LRL	2467
Lrg	2704	PEDPVATDHRVAGRPTLPGTAALALAAGLAGLPYRLSAVRWLRPCELSEPRRLRL	2758
Lnm	2468	TLTSDGEGYRFAL-STGDDGTVCSRGSLTVRPDAQDAAAPAASSETLDVAEIAARCPYEV G F L + G DG G + ++ AA A+ LD+ A RCP	2526
Lrg	2759	AGEESAAGRSFRLEAEGADGPYVRGGFAALTEEEAAAFAAEPPLDLRLTADRCPAAR	2815
Lnm	2527	PAERFYDDFRSGGIAYGPSFRVLEKITFGDDEVLGTLRATPDSGGFALHPALLDGAQQTI A+ Y FR+ G+AYGPSFR LE++ GD E LGTLR G+ A+LD Q +	2586
Lrg	2816	SADEVYGAFRAAGLAYGPSFRRLEQVRVGDGETLGTLRPADGPAGWQALAAVLDAGLQVL	2875
Lnm	2587	A-ALEGGNDATLVPFSVETVEVVDATAVPAFAHVVRAGKHRYTVRLADRSGRVCVRYEGL A L+ L+PF+V+ V V+ + + ++H R G+ R+TV L D SG +CVR++G+	2645
Lrg	2876	APLLDADGPQALLPFAVDRVTVLRSPGLARYSHARRTGQDRFTVSLTDGSGALCVRFDGV	2935
Lnm	2646	ALRAQHNPVDSMMYRPVWRPAPLPQPGNAPAGGRTVVVHTADSTTLAAALAA +LRA P + ++RPVW A P P A GG ++ H + LA AL	2697
Lrg	2936	SLRAVPRPAAAAAAVPEGPGIFRPVWEDA-GPAPAEAAGGGTVLICHPEAAGALAGALTD	2994
Lnm	2698	RTGAGLVALSGAQDAAPDPYAVLEQPLETVYFVARTGDAEGPAEADRTALDLFRLVKRMLVGDVVPEDR++RLV+R+L	2757
Lrg	2995	VHRNCHVRTVGHHDIDTVTEVP-DRVYFLTDPAPVHRP-EQDRSVPAMLRLVQRLL	3048
Lnm	2758	AVGRARDRIALRIVLAGAVPADPEDMTETVRPHAAGVLGLARAIESECPRWSVACVDVGAA+G+A+RVLGAVE+RPHAAG+LGL+EPRW+VCVDGtd>G	2817
Lrg	3049	ALGAAHTGLAVRAVLFGAVAVTGGEPLRPHAAGLLGLCATTAAEYPRWTVGCVDAGT	3105
Lnm	2818	DGGTVGAERAAERIVAEPGTEPLVLLRGEERLERVFEPLRPAAPRGTEPFREGGVYVIVG G + A +V EP + L+ LR +RL R PA G P+REGG YVI+G	2877
Lrg	3106	TPAAPGQLAALLVREPAADRLIALRDGQRLRRTLLAASPAGGEPPWREGGAYVILG	3161
Lnm	2878	GAGGIGFALSRLLARIARARLVWIGRSPEGPEHRAKAEEIAALGGQVLYVQADVADEAAL GAGG+G AL R LAR RARL IGR + P A EI LGG+ +Y++AD AD A L	2937

Lrg	3162	GAGGLGRALGRHLARTHRARLALIGRRAQDPAIDAALAEITELGGEAVYLRADAADPAQL	3221
Lnm	2938	RRGLASVHTRFGQVDGAVHAALDLRDRTIALMDEEDFLAGLAPKVAGVTAFARVFGAEPL R +A+ RFG ++GAVHAALDLRDRT+ D + F LAPKVAG AFA +PL	2997
Lrg	3222	$\label{eq:rescaled} ARAVAAARDRFGTLNGAVHAALDLRDRTLLHADPQTFGEVLAPKVAGTAAFADALRGDPL$	3281
Lnm	2998	DFMLVFSSAVSFVEAGGQANYAAASTFEDAYVQWLDRRHDYPVSVVNWGFWGSVGAVADD D + VFSSAVSF ++ GOA YAAASTF+DAY OWLD B YPV V+NWGFWGSVG VAD+	3057
Lrg	3282	DLLAVFSSAVSFTDSPGQAAYAAASTFQDAYAQWLDSRVPYPVQVLNWGFWGSVGVVADE	3341
Lnm	3058	RMRAAFARLGVGSVEPAEGMAVLRRIIAGRLPQTLAMKADRAALPAMGIR 3107 R A GVGS+EPAEG+A L R++A LPQT+ +KAD L +G+R	
Lrg	3342	RYGERLAAFGVGSIEPAEGLAALDRVLAAGLPQTVVVKADARGLARLGVR 3391	
Lnm	3275	FARAQEAFAAVEAFSRDLLRRTFPRLDGVPRPGERITADELASRLGVVRRHRRLFDAALS ARA+ FAA++ + DLLR F L +P E T + A RLG V R R + A L	3334
Lrg	3398	LARARAGFAALDVVAADLLRAEFAALPELPPLEEPSTLEAFAGRLGAVGRDRSVLGAVLR	3457
Lnm	3335	ILRSCGAVTGDAD-TLTFAEPSAAPGARVEGAEVAALYPEMSGHVTLLERTLGALGEVLA +L GA T D D TLTF P AR+ E AA +P M H+TLL+ + + +L+	3393
Lrg	3458	VLERAGAATLDRDGTLTFRRALLDP-ARLPVVEFAAAHPAMVPHLTLLQACVAGVPGILS	3516
Lnm	3394	GRRNPMDVLFPKGSVALVEPIYKGQPIADHYNRLLADEVADAARRVRAQEGRPVRVLEIG GR +VLFPKGS ALVEP+Y P A+H++RL+A EV +A+R+ E RP+R++EIG	3453
Lrg	3517	GRTAATEVLFPKGSPALVEPVYADGPGAEHFHRLMAAEVVGSAQRLTGGE-RPLRIVEIG	3575
Lnm	3454	AGTGASSRTVLAALAAADAGAHYCYTDISPAFLRHGEREFGPTYPQLAFHTLDISRDPVE AGTG+++R VLAA AAA Y YTD+SPAFLRHGE G P + + LDI RDP	3513
LIG	3514	AGIGSAIRHVLAACAAAGVPIAIRIIDVSPAFLRHGEAGHRAPGMRIELLDIERDPAA	3573
Lra	3634	QG E DV+L T+VLHAT D+ RTL N+RTLLRPGG++ VNE+TR SEF+TLTFGLT OGFEPGCADVVLATNVLHATRDIGRTLANVRTLLRPGGVLAVNEVTRSSEFVTLTFGLTE	3693
Lnm	3574	GWWMYEDAQCRLPHSPLLAPVQWRQSAAAAGLRTVRTGGLPGVPADELEQSLVVAERPVE	3633
Lrg	3694	GWW +ED Q RLP S LL P QWR AG R G+PG P DELEQ LV +ER + GWWRFEDPQRRLPDSALLGPAQWRACLTEAGFRVTGVRGIPGTPEDELEQCLVTSERELN	3753
Lnm	3634	DSGDASPDGAADEQSPESVRSYVTGVFAEVLKYRAEDLDPAVTLENFGVDSLVSLNIVDR	3693
Lrg	3754	+ + + P A + VR IV VFAEVLK+RA +LD T E +G+DSLV NIV R VTAEQTPVPTAAQVRGYVRQVFAEVLKFRAAELDDHATFETYGIDSLVGQNIVYR	3808
Lnm	3694	LEQDLGDLPQTLLFEYTSIDSIAEYLSAEHGERLARVLGGAPAAAQAQPSAPVPAPVSVD +EODLG LP TLLFE+ +ID +A +L + ERL +LG A ++PV PV	3753
Lrg	3809	MEQDLGALPATLLFEHLTIDQLANHLRTDRAERLTALLGPAAPPVAPPVASPVAPPVEAA	3868
Lnm	3754	VPAPIPAPIPAPVSVPVDVQEPESEPEPAAAVRTPAGDDPADPLDIAVIGVVGPAP+ PVV EP + PPAA+ PDIAVIV G	3806
Lrg	3869	PPAQPGPVAPVAPVVQATPPVPVAEP-ARPGPAAHGEPADIAVIAVSG	3918
Lnm	3807	RYPQSPDLEAFWRNLSEGRSCITEIPSERWDWRRNFDPDKSRKHRSYSRWGGFLEDIEMF RYP +PD+E FWRNL +GR +TE+P++RWDWR FD + R RSYSRWGGFL+DI+ F	3866
Lrg	3919	RYPGAPDVETFWRNLEDGRDAVTEVPADRWDWRPTFDAQRGRGDRSYSRWGGFLDDIDKF	3978
Lnm	3867	DAPLFGILPRDAADIDPQERLFLESCWELLETAGYLGTYTHEPQTGVFAGLMYGEYGLLA D F ILPRDAADIDPQERLFLE+CW+LL+ AGYLG THE TGVFAG+MYG YG LA	3926
Lrg	3979	DPAFFNILPRDAADIDPQERLFLETCWDLLDRAGYLGGSTHETMTGVFAGVMYGSYGRLA	4038
Lnm	3927	AATDWPEGRYATGHSAYWSMANRVSYTFDLQGPSLAVDSACSSALSAIQLACESLRRGES A T W G+ + HSAYWS+ANRVSY FD QGPS AVDSACSS+L+A+ LA ESLRRGE	3986
Lrg	4039	A-TGWAHGKLSGAHSAYWSVANRVSYHFDFQGPSFAVDSACSSSLTAVHLAVESLRRGEC	4097
Lnm	3987	RMAIAGGTNLILHPAHFAALCARNMLSAADACRVFDDGADGFVPGEGAGAVLLKPLAQAE RMA+AGG NLILHPAH +L A NML+ AC+VFD+ ADGFVPGEG GAVLLKPLA AE	4046
Lrg	4098	RMAVAGGVNLILHPAHHVSLSALNMLAGDGACKVFDERADGFVPGEGVGAVLLKPLADAE	4157
Lnm	4047	ADGDTIWGVVKGAFSNAGGKVSGYTVPNPNAQARLVERTLRRSGVHPRTVSYVEAHGTGT	4106

Lrg	4158	DGD I V+KG+ NAGGK GYTVPNP AQA L+ +RRSGV PRT+ +EAHGTGT RDGDEILAVIKGSTVNAGGKTGGYTVPNPQAQAALIAEAVRRSGVDPRTIGSLEAHGTGT	4217
Lnm	4107	ALGDPIELGGLTKAFRAAGAT-GDGYCAVGSVKSNIGHLEGAAGIAAVTKVLLQLKHRAL	4165
Lrg	4218	ALGDPIEIAALTRAFEELGADPGEFRCAVSSVKAAIGHLEGAAGIAGLTRALLQLQHGRI	4277
Lnm	4166	APTIHLDRLNPKIDFAGSPFGPQRTAEPWDRPVAGVDGAERSWPRRAGISSFGAGGANVH ++L+ +NP+IDFAGSPF P R W P G PRRAG+S+FGAGGAN H	4225
Lrg	4278	TRCVNLENVNPRIDFAGSPFYPPRETAAWPAPADGSPRRAGVSAFGAGGANAH	4330
Lnm	4226	MILEEYTGQDPRDAEDTMGAAGAEEPELFVLSALDRETLARHAGRVADFVAGPEGARVRL ++LEEY PR A T E +LF+LSA R L R+A RVA+ +A PEGA + L	4285
Lrg	4331	VVLEEYRPRTAPATPRLPDGEQLFLLSARTRGQLVRYAERVAELLATPEGAELPL	4385
Lnm	4286	ADLAHTSRVGRRELPERLAVTAASHAQLAARLREFAATGVAGEGVSTGTARKGGAGSGL- A LA TS++GRRE+ ERLAV A +OLA RL +F A G GV G+A G L	4344
Lrg	4386	AALARTSQIGRREMAERLAVLATDTSQLADRLHDF-ARGAESAGVVVGSAGGDSGGWSLL	4444
Lnm	4345	GAOELTAALAGRRWADAVEHWTLGGRVDWRTADAGRLVRKVAFPTYPFNRSRHWI	4399
Lrg	4445	GA + LA R+ WT G VDW+ R+V P YPF RSRHW+ DDEDGAALVATILAKRQLPKLARLWTAGVPVDWQLCWTAPHPRRVQLPPYPFERSRHWL	4503
Lnm	5385	PAARAEIAVIGIAGVFPGSADTDEFWEHLAGGVDLVRPVPKDRTAIRANPATRELRGGFL P A IAV+GIAG PGSAD DEFW HLA G LV PVP DRT +R +P TRELRGGFL	5444
Lrg	5224	PYGPAPIAVVGIAGRLPGSADLDEFWRHLAAGDHLVGPVPADRTDLRQDPETRELRGGFL	5283
Lnm	5445	DSVDTFDARLFGISPNEAALMDPQQRLFLQTAWRVFEDAGYRPADLAGAPCGLFVGVATH +++ FDA FGIS EA LMDPQQRLFL+ WR E+AGY P++LAG+ GLF GV+T	5504
Lrg	5284	ENIADFDAAFFGISATEAGLMDPQQRLFLEVVWRAVENAGYPPSELAGSATGLFAGVSTT	5343
Lnm	5505	DYDDLLKENGVAVQAHTATGIAHSVLANRVSYLFDLNGPSEAVDTACSSSLVAIHRALRA DYDDL++ NGVAVQAHTATG++H+VLANR+S L DL GPSEAVDTACSS+LVAIHRA+RA	5564
Lrg	5344	DYDDLMRTNGVAVQAHTATGLSHAVLANRISRLLDLRGPSEAVDTACSSALVAIHRAVRA	5403
Lnm	5565	IQDGECELAVAGGVNVILTPGLLESFTQSGMLSPDGRCKTFDADADGYVRGEGVGAVLLK	5624
Lrg	5404	ILDGDCDLAIAGGVNATLSPGLFTAFTKSGMLSPDGRCKTFDAAADGYVRGEGAGAVELK	5463
Lnm	5625	PLARAEADGDHIYAVVKGTAVNHGGRSNSLTAPNPESQARVVAAAVREAGVEPDTITYIE	5684
Lrg	5464	RLDRAQADGDHIHGVIRATAVNHGGRSTSLTAPNPEAQAQVLVQAYRRAALSPDTVSHIE	5523
Lnm	5685	AHGTGTRLGDPIEIEGLKKAFTTLHEERGEAVPDTGRIAIGAVKTNIGHLETASGIAGVL AHGTGT LGDP+E EGLK+AF L E IA+GAVKTNIGHLE ASGIAGVL	5744
Lrg	5524	AHGTGTSLGDPVETEGLKRAFAQLSAEAGLPPVRRPHIALGAVKTNIGHLEAASGIAGVL	5583
Lnm	5745	KVVQSMRHRVLPASLHLRRLSPYLRLDGTPFTVNDRHRPWEPALTPDGRQVLRAGVSSFG K + S++HR LPA+LHL L+PYLRLDGTPF VNDR PW+ GR V RAGVSSFG	5804
Lrg	5584	KTLLSLKHRQLPATLHLTELNPYLRLDGTPFYVNDRTAPWDGVDDGTGRTVRRAGVSSFG	5643
Lnm	5805	FGGSNAHVVLEAYPART-APAVQDFAPHTVPLSAGDPDDLRGYAARLARHLARTPEADLA	5863
Lrg	5644	FGGSNAHVVLEEYRDETPTPTELPSAATLFPLSAPTAAALRDYAATLARHLEANPDAEPA	5703
Lnm	5864	RVAYTLQTGRTGHRHRFAVRVRDRDELIGALEAFAAGELPDHAATGTARRDAPSVQSDED	5923
Lrg	5704	RAAWTLQTGRDAHAERVVLAAADRDRLLARLGAVARGDLIDCPPD	5748
Lnm	5924	PALLRKSWCEGADVPWHTWWPKT-PGRVPLPTAPFARTRHWF 5964	
Lrg	5749	PAAREWLDTGRTAWASHWPATRPRRLPLPGFPLAPVRHWF 5788	
Lnm	6153	EDLVQDVIERELGRTADPAKSFVDNGFGSFDMLRVVASLERVFGALRKTLLFDHPTIGAL ++L+ D+I GRT P +F D+G SFDMLR V++LE+ FGA RKTL+FDHPT+ AL	6212

Lrg	6119	QELLVDLISTISGRTLTPGVTFADDGLTSFDMLRTVSALEKRFGAQRKTLMFDHPTVPAL	6178
Lnm	6213	AAHLAETHGPEAASRLSSPPQDRPRPGPAASQ-EPYTGGALVVEKKALAGQPE HL +GP EAS++P+ P AA E +GG V+K+L +PE	6264
Lrg	6179	TGHLLAEYGPATAGGLREALSSVVAGPEQAAAPTKAAVPPEQSSGGWTVLRKRQLPQRPE	6238
Lnm	6265	LASAVAGLESAYGREGGLPGRDIAPLIFLGAGRTAYFNFSVRDDAMLTWSYVGPTEEMPA	6324
Lrg	6239	LAAVVAEVDARWAKEGGLAGRDIAPLMFLGAEREGYFNFSRKGGVLFAWSYVGSREYFPK	6298
Lnm	6325	LATEFVRYGQAHGLAANIVSLIRLEEVDGVRFTATPFGALQRLEGIKDFSLEGGRMQRLR L ++V Y HGL N +S+ +E V G F+ATPFGA+ORL+ + F++EG RM+RLR	6384
Lrg	6299	LIEQYVAYADRHGLQPNFLSVEHIESVAGRPFSATPFGAVQRLDDLSTFTMEGTRMRRLR	6358
Lnm	6385	YAVRKFEKAGTCRTEEYAVGSDPRTDQEITTLIDRWSAAKEMVNPYVSTVRDEIGRGILA Y V +F AG C TEEY VGSDP DQEI ++ RW K+MVNPYV+ V +EIGRG LA	6444
Lrg	6359	YMVNRFTAAGECATEEYRVGSDPAVDQEIVAMMSRWGETKQMVNPYVAVVSEEIGRGQLA	6418
Lnm	6445	ARHRMFLTYLDDRMVSAVIVTKIPSEDGYLLDLEFYPEDAPLGSLDHTVVKIIERTAAEG RHRMFLT +D + SA+IVTKIPSE G+LLDLEFYP++APLG L+ +V+IIE+ AAEG	6504
Lrg	6419	ERHRMFLTRVDGELASAIIVTKIPSESGWLLDLEFYPKEAPLGGLEFAIVRIIEKLAAEG	6478
Lnm	6505	CTVFSFGGSFGAKVCESPNAAPEAEAALTELRSRGIFTGDGNLRFKNKFRTENLPLYLCQ +FSFG SFG K ESPN++PE E L ELRS GIF +GN +FKNKFR N +YLCQ	6564
Lrg	6479	VEIFSFGASFGVKAGESPNSSPEVENGLAELRSVGIFD-EGNFQFKNKFRPANSTIYLCQ	6537
Lnm	6565	PADAERTDVSRLILMIANPEVGGDRAPTAPTALAAPAPREAPAAPAPR P D R+ V+ +ILMIANP D TAP AL + +	6612
Lrg	6538	PDDERRSAVADVILMIANPDLDTTAPEALDDLPATSDSTSDSTSTSDSDTVSEPEP	6593
Lnm	6613	QAPAPGQAPAARPKPAAAPPAAVAAQATEVPADARRRERQLADHGWNALHLASGDVEF + +AP +PAA PA +A VPA A +D G+ N + L + V F	6670
Lrg	6594	VSEPEPKAPVRPAAPEPAVASAPERPVPARAAAPRPAGSDSGYGRNPITLPTSAVRF	6650
Lnm	6671	DLITDSWAELDRPFVHARTARLHAGAAGRPVGQTLEGLDLLPFSCVVATTSGRAAEA DLITDSWAEL P V R ARL AAG +G EGL +P F CVV T SGR AEA	6727
Lrg	6651	DLITDSWAELATPAVTERMARLTEAAAGVELGAEGLPRVPWLDFECVVPTPSGRTAEA	6708
Lnm	6728	ALCRAWPQ-QGVVVHNSLFPTWYFNHLDHGFTPVAARRAAGAD-DGVFRGDLDLGHLNGL LCR+WP + VVHN LFPT + D+GF PV G FR D+D L +	6785
Lrg	6709	LLCRSWPGIRQAVVHNGLFPTLLMSLADNGFEPVELPGCRPVTRTGPFR-DVDPEALRRI	6767
Lnm	6786	LTEHAGRIAFLCVEVSNNAQGGAALSLHNLTGIRETADRHGLQLVLDATRVLDNAALIAA L E G ++ +C+E+S+NAQGG +SL NL +R A G+ LVLDATR L+NAA +	6845
Lrg	6768	LAERPGGVSMICLELSDNAQGGYPISLANLREVRRIAVAAGIPLVLDATRALENAASVVE	6827
Lnm	6846	HEPGQTGRDPLDVARELLSLADSVTISLSKDFGVDTGGIVATDDPTVAHHLRERIALRGP H+ GQ GR V +LL+ AD+VT+ LSKDFG+D GG+VAT P + LRE+++ RG	6905
Lrg	6828	HDEGQQGRGIWKVTADLLATADAVTMGLSKDFGIDFGGLVATSRPGLVERLREQVSTRGH	6887
Lnm	6906	EAGRATRALAAAALDDLGWAATATGERVRRVADLRQALAAAGAPVAPGTGTHCVLLDTAR + A R AAAL D G A G R V L L+ AG PV HCVLLDTA	6965
Lrg	6888	QVNLAGRRQIAAALADSGGVAEQVGRRRAAVKMLWNLLSRAGLPVIGPAAGHCVLLDTAA	6947
Lnm	6966	LPALRGHEHPVPAFLAWLYLHTGIRAAAHLDDGPGTSSLVRLALPVGLGQRETAELTARL + EHPVP+ L W++ HTG+R HL G G + L+RLA+PVG G + E+ RL	7025
Lrg	6948	MKQFADFEHPVPSCLDWIFEHTGVRGGPHLATGAGAAPLIRLAIPVGTGTPDIREIGKRL	7007
Lnm	7026	TALFGAPQQIPELLLAASDGPAALASYHPVEQVPDDIREAMAEGHTAENDNWAVLREHHPTL+AA+YHVP+DI+A+EGA++DNVL+	7085
Lrg	7008	TRLYRSGPAPVELIPVDPTAAPAQAAYHTAAVVPEDIKAALREGVRAKDDNLGVLTDFGA	7067
Lnm	7086	GVERVLLRLPAGDGGGDVEVFTAGAGPALLMMLPFNIGAGLFGPQFAALSERYRVIVVHH VE ++ +P GG+VE F AG GP LL + PFNIGAG+F QFA LS+RYRV+VVH	7145
Lrg	7068	PVEHRIVGVPQGGEVEAFMAGHGPTLLFIHPFNIGAGVFRHQFAGLSDRYRVVVVHA	7124
Lnm	7146	PGVGDTTACEELGYEGIADLCLRALRRLGVQGPVHVAGASFGGITAQTFALRHPESTASL PGVG T A +L G+A++ ALR LG GPVH+AGASFGG+TAQT+AL HP+ ASL	7205

Lrg	7125	PGVGRTNASADLTLHGLAEVHRAALRELGATGPVHLAGASFGGLTAQTYALEHPDEVASL	7184
Lnm	7206	TLIGSSYKLGNRAGEVNRLALVAKEDFDQVQSLSGSSRLDRERAR-FERLLLRCESMDPQ	7264
Lrg	7185	TLICSSYKCANRVGEVNRLDVVLQEDFDRIAAADGAGAPDEHRRRQLEAVLLRSESMDPQ	7244
Lnm	7265	TGLRYLDVFATAPDLLGRLGDIAVPTLIVQGRHDTVIPQKTAHLLHGAIPDARYHEVPDA TGLRYLDVFAT PDLL RL IAVPTL+VOGR+DTVIPOKTAHLLHGAI D+RY E+ DA	7324
Lrg	7245	TGLRYLDVFATEPDLLSRLPRIAVPTLVVQGRYDTVIPQKTAHLLHGAIADSRYAEIDDA	7304
Lnm	7325	GHFPSLSSSEEFNAVLSAFLEEH 7347 GHFP+L+ + FN+VL+AFL EH	
Lrg	7305	GHFPALTRPDVFNSVLTAFLSEH 7327	

<u>LrgK vs LnmK</u>

Lnm	1	MTITSSLDVRPEIKQAVTVRPGMCGPGSLFVGQLGDWTWETVSAQCDTDVFA	52
Lrg	2	M T + +RPE+ +A VIV+PGMCG SLFV Q+GDWIWEIVS C TD F MPRTENPLLRPEVWRAPDGSVGRLVTVKPGMCGHNSLFVSQVGDWTWETVSEVCGTDAFN	61
Lnm	53	ARDASGNPTYLAFYYFRVRGGRELHPGSLTFGDRLTVTSGCYDQGTESVLTLHRIDRAGS	112
Lrg	62	AVDDRGRPTYLSFYYFRVRSGGQLHPGALTFGDRIETTSRVFGFGSESVLTLHRIRRVPP	121
Lnm	113	DDAQRPLDLHEFYERPRDGSLYVENFNRWVTRSAPGSNEDLVKSSPPGFRNDGLPQL +P LD EF+ + LYV+NENRWYTRS SNE L+ S+P ER+ LP+L	169
Lrg	122	GAELKPEQGLDPEEFFAARQPDCLYVQNFNRWVTRSRADSNEGLISSAPADFRHAHLPRL	181
Lnm	170	PAAYSPRAVYREARTAHTFRALDEPGFRLLPDTVEVEHPVDIVRDVNGVGLLYFASYFSM	229
Lrg	182	PAAHSPRAAYGVARARRTFHDPADPEWEELVAADEVEYPIDITRDINGVGLLYFASYFSI	241
Lnm	230	VDKAALALWRRLGRSDRAFLRRVVVDQQMCYLGNADLDSVLTLGARVRVSTETPGEELVD +D A L +WR GR+DR FL R V+D O+CYLGNAD DSVL + R P EE +	289
Lrg	242	IDGAMLKMWRNQGRADRRFLDRTVLDHQLCYLGNADADSVLRIRLRSWRRRGDPAEERWN	301
Lnm	290	VVISDRDSGRVIAVSTLHTQ 309 V+ D S R +AV TLH +	
Lrg	302	AVVEDAASDRCLAVCTLHVR 321	

<u>LrgL vs LnmL</u>

Lnm	9	RAQTARLVVEVVTE	LPGVDPQLIGGKRHLKDLGADSVDRVEIIAALLDRTRVDAPMSDF	68
		RA ARLV E V I	LP V + I G +HLKDLGADSVDRVEII AL+D V PM+ F	
Lrg	9	RAGVARLVHETVAA	LPQVPAERITGDKHLKDLGADSVDRVEIIMALIDTLGVREPMAGF	68
Lnm	69	SDLPDIDSLIDFL	81	
		S LPDID+LIDFL		
Ira	69	STIPDIDALIDEL	81	

<u>LrgM1 vs LnmM</u>

Lnm	11	GIEALNVWCGLARLTAADLFAGRGLDPERLDNLMMSERSIGLPIEDPVTNAVNAARPLIE	70
		GIEALN+ GLA+L+ A+LF GRGLD ER+ +LMMS RSI LP EDP+TNAVNAA P++	
Lrg	6	GIEALNIHAGLAQLSTAELFEGRGLDRERIGHLMMSARSIALPCEDPITNAVNAAAPIVG	65
-			
Lnm	71	ALSPEERARIELVVTSTESGVDYSKSLTSYVHKYLGLNRHCRLIEVKQACFGATAAVQTA	130
		L+P ++ RIEL++TS+ESGVDYSKS+ SYVH+YLGL+R CR++EVKQAC+ AT A+Q A	
Lrq	66	RLAPRDKERIELILTSSESGVDYSKSIASYVHEYLGLSRKCRVMEVKOACYAATGALOIA	125
2		~ ~	
Lnm	131	VGYLASGISPGAKALVIATDVAVVDEKAEYSEPAAGHGAAAMLLSDRPRVLAMDLGAFGN	190
		GYLASG+SPGAKALVI TDV++VD +A Y+EPA G GAAAMLL D PRVLA+DLGAFG	
Lrq	126	AGYLASGVSPGAKALVIGTDVSMVDARAGYAEPATGTGAAAMLLGDDPRVLALDLGAFGA	185

Lnm	191	YSYETLDSARPSPRFDIADVDRSLFAYLDCLKNAYADYAARVTDVDFTRDFDHLVMHTPF +S+ET+DSARP P +DIADVD SLF YLDCL N++ADY +V DVD + FD L +HTPF	250
Lrg	186	HSHETMDSARPMPDYDIADVDGSLFTYLDCLSNSFADYCGKVADVDLSTTFDQLALHTPF	245
Lnm	251	AGLVKAGHRKMMREQGVTGP-RIDEDFARRVAPSLIYPGSVGNLCSGSVYLALASLLDSG AGLVKAGHRK+MRE P ++ DFA RV+PSL+YP VGNLCSGSVYLALASL+D+	309
Lrg	246	AGLVKAGHRKLMREHARAAPDAVEADFAARVSPSLVYPSQVGNLCSGSVYLALASLIDNA	305
Lnm	310	VVTAPSRVGLFSYGSGCSSEFFSGIVDEQSAATVAEQGIGKRLEARARITFDEYLAVLEH +RVGLFSYGSGC+SEFFSG+VDE S A +AE I RL AR + F EY +L	369
Lrg	306	PYRGTARVGLFSYGSGCASEFFSGLVDEGSRAALAELDIAGRLNARVPLDFAEYTELLAE	365
Lnm	370	NLECLVPVENRTVDPAEWEPLLDRVGDRPEILTFTGVKDYHRQYAW 415 N CLVPVE+R ++ + LD R +L + G + YHR Y W	
Lrg	366	NSRCLVPVEDRKIEVERYRRFLDARPGREPLLAYRGTEGYHRTYEW 411	

<u>LrgN vs LnmN</u>

Lnm	14	DGAAAGLRLFCFAHAGGGSSFFHPWRRALGPGVDVRPVVLPGRERRARETSHTRMGPLVE +G +RLFC HAGGG +FFHPWR AL PGV+VRPVVLPGRE R RE + M +	73
Lrg	2	NGTEPEIRLFCLPHAGGGGAFFHPWRAALAPGVEVRPVVLPGRESRIRELPYVTMEQAIG	61
Lnm	74	GLVTELAPQLDLPYVLFGHSLGSIVAYETARALLERGSRPPLALLVSGRRGPFVPDHRRP L LAPQLD PY LFGHS+G+ V YE AR L G P+ L VS RR P +P R	133
Lrg	62	PLAELLAPQLDRPYALFGHSMGAAVGYELARRFLALGLPAPVRLFVSARRAPHLPARRAS	121
Lnm	134	VHNLPEDEFLAEVSRLGGTPSEVLRQRDLLRHFLPPLRADHEVNETYRPVPPPGPALTCP L + FLAEVSRL GTPS+VL O +L+R FLP LRAD E+N+TY P+ P P L CP	193
Lrg	122	YAGLDDAAFLAEVSRLNGTPSDVLEQPELVRLFLPTLRADFELNDTYTPLPAPRLDCP	179
Lnm	194	VFAFTGDADPLADPHAVARWREVTSGDFRLRVFPGDHFYLKGAPDDLMSALRAAM 248 + AF G DP AD + W +VT+G FR R F GDHFYLK DL+ +RA +	
Lrg	180	ISAFVGRDDPEADARELKAWEQVTAGAFRFREFDGDHFYLKDRAADLLDEIRADL 234	

<u>LrgX vs LnmX</u>

Lnm	3	DTLLELPDDFSRVLAIVAHPDDIEFGAGPAVAQWTAQGREVAYLLVTRGEAGISDLEPAQ	62
Lrg	4	+ L LPDD+SR LA+VAHPDDIEFG AVA WTA G+ V+YLLVT+G+AGI L PA+ EELQTLPDDWSRALAVVAHPDDIEFGTSSAVAAWTAAGKSVSYLLVTKGQAGIDGLAPAE	63
Lnm	63	CGPVREAEQRKAAAELGVHEVDFLDHYNDGTIEYGPGLRRDLARAVRRHRPELIVTFNHH VREAEOR +A +GV EV+FLDH DG IEYG GLRRD+A A+RRHRPE ++ FN	122
Lrg	64	SAVVREAEQRASAKIVGVGEVEFLDH-RDGEIEYGLGLRRDIAAAIRRHRPEFVLGFNGR	122
Lnm	123	DTWASGAWNTPDHRAVGLAALDAVADAANRWIFPELLDEGLEPWRAGK-VAIAGSPHATH +T ++G WNTPDHR A LDAV DA NRWIF +L GLEPW K VA+A SP TH	181
Lrg	123	ETTSTGKWNTPDHRHTAHALLDAVGDAGNRWIFEDLGLEPWGGVKYVAMANSPQPTH	179
Lnm	182	AVAVDDDSRDRAVRSLAAHDRYLGSLSDDPPQERARFILGHLLAATAPRFGGRDGVAFQI AV V D + + SL AH YLG L +PP R + RFGGR VA +I	241
Lrg	180	AVDV-TDHLEAGIASLEAHSAYLGGLNPPVTSVREPMTAFAELVGERFGGRPAVALEI	236
Lnm	242	V 242	
Lrg	237	I 237	

<u>LrgZ vs LnmZ'</u>

Lnm	1	MTQMRIQATFVVDVWDGTDD-EPVDGGPVTGRVELTKTYTEGDVKGSATGHMVTTQ-GPG	58
		MTQ+ + + W+ ++ EP DG P+ R ++ + + GDV+G+ ++ +	
Lrg	1	MTQI-ANSAWETSSWEESNYFEPADGPPLI-RADVKRVF-RGDVEGTGEAVLLCCRPDEK	57
Lnm	59	GAAYVAQERVTGIMGGRTGTFVLEHRATQVPGTD-PVTWAGIVPGSGTGELAGVSGEGSL A YV+ E + + GR+GTFV++H A+ G D P T +VP SGTG L G++G +	117
Lrg	58	SAGYVSTEHIVATLAGRSGTFVVQHGASMGDDEPQTLGFVVPNSGTGGLTGLTGTCAF	115

Lnm 118 GH 119 GH Lrg 116 GH 117

<u>LrgW1 vs LnmW</u>

Lnm	5	TFSYLTDQLRSHAALHPDRTALVIDGCPDLLYGEWDRRSEALARGLLAAGTSRGTRIGIF T +TD LR A HPDRTAL IDG L YG+W RR + A GLLAAG ++G RIG+	64
Lrg	6	TVVRVTDLLRRRAEHHPDRTALDIDGTDALNYGDWQRRVDRTAHGLLAAGVTKGRRIGLL	65
Lnm	65	FGGMDWAGYAVAYLGALKAGATVLHLPLALPADELERRALQCELAGIVHGRTAPPTTSAV +GGMDW YAVAYL L GAT +HL L E+ERR +C ++HG + P S	124
Lrg	66	YGGMDWTDYAVAYLAVLSVGATAVHLSDRLGEPEIERRLTECRATAVIHGGSLRPPASFT	125
Lnm	125	AWTGTLDELSAPGETPVDLVHSPADAAEIVYSSGTTGLARGVVVSHQNLATAGGPPSVMA W+ + EL + ETPVD+ +P D A+++Y+SGTTGLA+ H NL GP ++	184
Lrg	126	GWSAEVAELDSGDETPVDVPLAPEDIADVLYTSGTTGLAKAFTNPHGNLTFGRGPEGLLQ	185
Lnm	185	HDEPTPMVASVNLGITASATTVSMVLNATPTTLVLAPPGDADRLCALIEHHAASTVMMTP + PTP++A + LG T+SATTV+++ +P+ LVLA D +R+ LI H +VM+TP	244
Lrg	186	FENPTPLLAPMPLGTTSSATTVAIIAVTSPSALVLAAVDDVERMAELISRHRIGSVMITP	245
Lnm	245	NLAVQMTRDGALGRYDLTSVTTVATASAFLHPPLARALLAAMPRARVIGAYSASQAKPAV +A++M R+D+ V VA ASA L P L+R LL P A + AYS S+A PAV	304
Lrg	246	WIAMRMLAARIGERHDVGCVERVAIASAPLAPALSRGLLKLFPAAELNTAYSQSEAVPAV	305
Lnm	305	TIGTFDPARPMSAGRPAPGTHVLITDEHGAELPAHRVGRIWLRADGAPPRNRLDAGPEAT + TFDPARP + GR A GT V I D GAELP VG I LR+ AP R LDA +A	364
Lrg	306	VVNTFDPARPSTLGRAARGTEVRIADALGAELPLGEVGEIQLRS-AAPGRRYLDARRDAE	364
Lnm	365	GVPEGGWCDTGDLGHVDDEGELYLFDRETDAVPTPAGLVSSLRVESVLLEHEAVADAA V GW TGDLGH+D+EG L+LFDR D + VSS+ VE+ L EH A	422
Lrg	365	-VRIDGWIRTGDLGHLDEEGWLHLFDRGDDVLDGGGVRVSSVAVEAALYEHPAVREAAVV	423
Lnm	423	VVAAGPAGVAAAIVPAAGATHDPKLLAATLAAHAKDSLAPHEIPERVLVVDELPRNDLGK +GPA V PAA A L A + L PH++P V + LPR GK	482
Lrg	424	AAGSGPAAVVVLEDPAAAGELPAFLAERLEPHQLPVLVEARESLPRGITGK	474
Lnm	483	VVKRLIRDRL 492 V+KR++R L	
Lrg	475	VLKRILRQEL 484	

LrgW2 vs LnmW

Lnm	11	DQLRSHAALHPDRTALVIDGCPDLLYGEWDRRSEALARGLLAAGTSRGTRIGIFFGGMDW D LR A +HPD+ + I+G L YGEW +R+ A+ARGLL GTSRG RI + FGG+DW	70
Lrg	14	DLLRLRAEIHPDQIVVNINGERTLSYGEWYKRANAVARGLLDRGTSRGERIALLFGGLDW	73
Lnm	71	AGYAVAYLGALKAGATVLHLPLALPADELERRALQCELAGIVHGRTAPPTTSAVAWTGTL	130
Lrg	74	IDYAIAYLGIVNAGATAVHMHRDISAAEFNRRIAQCQVTGLVRGHDVVVPEGFEGWAATV	133
Lnm	131	DELSAPGETPVDLVHSPADAAEIVYSSGTTGLARGVVVSHQNLATAGGPPSVMAHDEPTP DE+ + TPV + P D A+I+Y+SGTTG A+ + H NL GP + P P	190
Lrg	134	DEVDSGDPTPVKVELRPDDLADILYTSGTTGTAKAIATPHGNLTFGRGPEGFKQLGKPKP	193
Lnm	191	MVASVNLGITASATTVSMVLNATPTTLVLAPPGDADRLCALIEHHAASTVMMTPNLAVQM	250
Lrg	194	LLAPIPLGTTSSATTMAIALT-NPATLVLCPVDDVDRMGELIEQYQIVSVMFTPWIGIQM	252
Lnm	251	TRDGALGRYDLTSVTTVATASAFLHPPLARALLAAMPRARVIGAYSASQAKPAVTIGTFD	310
Lrg	253	VAGKIHETHDLSCVETLATASAPLPPATASALMRMMPNAKVTSVYAAREAVPAVIAATFD	312
Lnm	311	PARPMSAGRPAPGTHVLITDEHGAELPAHRVGRIWLRADGAPPRNRLDAGPEATGVPEGG	370

		+RP GRP G+ +L+ D G + +G IWLR GAP R L+ G E	
Lrg	313	VSRPFCVGRPGEGSELLVADADGNPVATGEIGEIWLRC-GAPKRLFLE-GAEREEQLTDD	370
Lnm	371	WCDTGDLGHVDDEGELYLFDRETDAVPTPAGLVSSLRVESVLLEHEAVADAAVVAAGPAG W T DLG++D EGEL+LFDR DAV LVS++ E+ L E V AAV+ AG	430
Lrg	371	WTRTRDLGYLDAEGELHLFDRAADAVTVDGELVSTIHTEAALYECPGVEQAAVLGVPAAG	430
Lnm	431	VAAAIVPAAGATHDPKLLAATLAAHAKDSLAPHEIPERVLVVDELPRNDLGKVVKRLIRD + A D L A AA A + L PH+IP R +VD LPR +GKV+K +R	490
Lrg	431	TDRVELAAVLVLADDDGLPAVRAALA-ERLEPHQIPTRFQLVDALPRGVMGKVLKHQLRR	489
Lnm	491	RLTAS 495 +L S	
Lrg	490	QLAGS 494	

<u>LrgC3 vs LnmA</u>

Lnm	22	HPKFAELRETDPLARVRLPYGGEGWMV-TRYDDVRAANSDPRFSRAQIGED	71
Lrg	34	YPLYHQLRDAAPALLTGDGTLVLSRHADCNAALRDRSLGKGDEWLKLQLKDVSKD	88
Lnm	72	TPRTTPLARRSDTILSLDPPEHTRLRRLLSKAFTARRMGAMQSWLEELFAGLLDGVE-RT R + IL+ +PP+HTRLRR++S AFT R + A++ + GLLD + R	130
Lrg	89	DLRGVMELMQRSMILT-NPPDHTRLRRIVSSAFTGRHVEALRDGVTRRVDGLLDRLAARP	147
Lnm	131	GHPADIVRDLAQPFTIAVICRLLGVPYEDRGRFQHWSEVIMSTTAYSKEEAVSAD G AD++ +LA P ++ I LLG+P DR H ++M + E V+A	185
Lrg	148	GADLMTELAMPLPVSTIGDLLGIPEADRAELVPVIHELGLLMEPASGPAEINRGVAAQ	205
Lnm	186	ASIRAYLADLVSARRAAPHDDLLGVLVSARDDDDRLTEDELITFGVTLLVAGHETSAHQL A + +YL L++ +R P DDLL L S D L E E+I + L AG+ +A+ +	245
Lrg	206	AHLASYLGGLIAEKRQRPQDDLLSRLASTSADALDETEVIATALLLFGAGNTPTANLI	263
Lnm	246	GNMVYALLTHEDQLSLLREQPELLPRAVEELLRFVPLGNGVGNARIALEDVELSGGTVRA GN + AL+ +Q L E P LLP AVEE+LRF + LE +G +R	305
Lrg	264	GNGLDALVRFPEQRQRLTEDPGLLPSAVEEMLRFDSPSQFDVFTVLEPHSFAGTELRP	321
Lnm	306	GEGVVAAAVNANRDPRAFDDPDRLDITREKNPHLAFGHGAHYCLGAQLARMELRVAIGGL G+GV+ AN DP FDDPD D+ R++N HL+F G H+CLGA LAR++ V G L	365
Lrg	322	GQGVMMMLGAANHDPERFDDPDAFDVGRKENGHLSFAAGIHHCLGAHLARLQAEVVFGRL	381
Lnm	366	lerfpglrlavpa 378 l rfp l a pa	
Lrg	382	LARFPKLEPAAPA 394	

Alignments of LrgS, LrgH and LrgY with proteins from syringomycin BGC

<u>LrgS vs SyrB1</u>

Syr	20	GAFLHEIFSDRARQFPERTAVSDAARTLSYAQLDALSTKLAARLRDEGVTYGTRVGMYLP G LH++F +A + P+R AVS A R L+Y +L+A + +AARLR G +G+ +	79
Lrg	4	GKTLHQLFEVQAARTPDRVAVSGADRALTYRELNAEADAVAARLRQAGAGPDRLIGLCVD	63
Syr	80	RSVDLVTSLLGILKAGGTYVPVDPQYPGKRVEHIVRDSELSLIIGDAANLPKISSLRV RS DLV LLGILKAG YVPVDP YP +RV ++ DS++S ++ + +++ V	137
Lrg	64	RSADLVVGLLGILKAGAAYVPVDPAYPAERVAFLLDDSQVSAVVSVSRVAERLADCAAPV	123
Syr	138	LALDELLSAPALQPAAQDTRIDPNNSTAYIIYTSGSTGEPKGVQVSHGNVSRLLESTQRA + LD PA A +++R + AY+IYTSGSTG PKGV V H N RL E T	197
Lrg	124	VWLDRDTEPPAAPAAVEESRESDLAYVIYTSGSTGVPKGVLVEHRNAVRLFEQTAEL	180
Syr	198	YGFNAQDVWSMFHSIGFDFSVWEIWGALAHGGQVAVVPYDISRSPAALRQWLADQRITVL G+ A DVW++FHSI FDFSVWE+WGAL HGG++ V + RSP L + LAD+ +TVL	257

Lrg	181	VGYRADDVWTLFHSISFDFSVWELWGALLHGGRLVVAGTETVRSPELLHKLLADEGVTVL	240
Syr	258	SQTPSAFRGLDEADRGNTAPL-ALRYVVLGGEALPASVLRPWVERHGDQKPALINMYGIT +OTPSAFR L A +TA L ALR VV GGE L +L PW R+GD++PAL+NMYGIT	316
Lrg	241	NQTPSAFRRLVGASTAKLPALRLVVFGGERLDVKLLEPWFARYGDERPALVNMYGIT	297
Syr	317	EATVHTTFKRVLAQDLETAAMVSLGKPLDGWRLHLLDANQAPVAAGTTGELYIEGAGVAQ E TVH T + + DL+ + +G+PL G LHLLD + PVA GT GELY+ G GVA+	376
Lrg	298	ETTVHVTARPITRADLDEPGVSPIGRPLPGVTLHLLDEDGGPVADGTPGELYVGGTGVAR	357
Syr	377	GYLNREALNVERFVELPGAVRAYRTGDLMTLESNGEYRYAGRCDEQLKISGFRIEPG GY R L ERF + AVR YR+GD ++GEY Y GR D+O+KI GFRIEPG	433
Lrg	358	GYHRRPELTAERFRTVGTGADAVRLYRSGDRAVRTADGEYLYVGRADDQIKIRGFRIEPG	417
Syr	434	EIEASLQTSPSVAAAHVGVHDYGDGDLRLVAYVVPGQGVDAWTEQARSEVAALMAEN EIEA I. P +A+A V D+G+GD+RI AY+VP G + E+ +EV+A A	490
Lrg	418	EIEALLADDPRLASAIVVPQDHGEGDIRLTAYLVPRPGAEIDDEELGRLVAEVSARAAGT	477
Syr	491	LPGYMRPSVYVPLAELPVTHHGKIDKQQLPSPAAGTALSG-AADVKGLSEQEHFVLKVWS	549
Lrg	478	LPEHMRPSAYRLITEVPTTAQGKVDRSALPALPHRQAPAGPAGGGVELTPTQRQVDAIVT	537
Syr	550	EDLGLKNIGVNDDFFDSGGTSLALIRSLSKLKTHYKINLDPGILADGATAKVLA 603	
Lrg	538	EVLARPGIGLDDDLFEHGATSLAFMRVIASVNRRWKLSLT-GAELDAATVRQLS 590	

<u>LrgH vs SyrB2</u>

Syr	1	MSKKFALTAEQRASFEKNGFIGPFDAYSPEEMKETWKRTRLRLLDRSAAAYQDLDAISGG ++ F LT E+RASF++ G+ GPF Y EEM+ W+ RLRL+DRS A YOD A SG	60
Lrg	4	VTGGFTLTPEERASFQERGYFGPFKVYEIEEMQRRWRIERLRLMDRSNAVYQDEAAQSGN	63
Syr	61	TNIANYDRHLDDDFLASHICRPEICDRVESILGPNVLCWRTEFFPKYPGDEGTDWHQADT TNI+NYDRHLD +FLA HICRPEI DRV S+LGP+VLCWR+EFFPKYPGDEGTDWHOADT	120
Lrg	64	TNISNYDRHLDSEFLADHICRPEIVDRVASVLGPDVLCWRSEFFPKYPGDEGTDWHQADT	123
Syr	121	FANASGKPQIIWP-ENEEFGGTITVWTAFTDANIANGCLQFIPGTQNSMNYDETKRMTYE	179
Lrg	124	FANASGVPQILWPDEHKDFGGTITVWTAFTEANEDNGCLQFIPGSHTRMNYDETKKMHYT	183
Syr	180	PDANNSVVKDGVRRGFFGYDYRQLQIDENWKPDEASAVPMQMKAGQFIIFWSTLMHASYP PD+ N V K GVRRGFFGYDYR+LO+D ++KPDE+ AV M M+ G+ I+FWSTLMHAS+P	239
Lrg	184	PDSINQVDKGGVRRGFFGYDYRELQVDADFKPDESQAVSMVMRPGEAIMFWSTLMHASWP	243
Syr	240	HSGESQEMRMGFASRYVPSFVHVYPDSDHIEEYGGRISLEKYGAVQVIGDETPEYNRLVT	299
Lrg	244	HSGKTDEMRLGFAGRYVPTSVRVYPDTEQIEEYGGTVSLERYGAVLVGGENRYDHNRMVT	303
Syr	300	HTTRGKKF 307	
Lrg	304	RTTLGHPF 311	

<u>LrgY vs SyrC</u>

Syr	77	${\tt DHAPLLVHASANRERPPVVLALPCGIPFDLCRDWFDALSERFFVVTWETRGLFGACEAFD}$	136
		D A L V+A+ + P V++A CG+P +LC W + L + +VTWETRGLF FD	
Lrg	121	DGARLPVYAAGDPAAPAVLIASACGMPAELCSRWLELLGGEYRIVTWETRGLFTDEPDFD	180
Syr	137	QIAVDTDAQVADMISVMNHFGLSTAHLMGICAGAVIALSAAAAHAERVNSLSLWHGDYNL	196
Τ	101	++ DT+AQ D+ +VM+H G+ TAHL+G C G+V+AL+AA ER++SLSLWHG Y L	240
ьrg	101	KLEWDTEAQAGDVFAVMDHLGIRTAHLLGFCGGSVVALAAARRSPERIDSLSLWHGAIEL	240
Syr	197	GDNDLRAAHQQNFEWLMESAAQDRDEAADLQAMFLDQATLATTPESIAHVVLYPYVNARV	256
		G + H +N + LM AA+DRD AA + A+FL L TP +AH+VLYP+ + +	
Lrg	241	GPESPKLDHHRNIQALMAMAAEDRDTAAAVHAVFL-STMLGGTPPDLAHLVLYPFATSEL	299

Syr 257 VLSLCRLNDALNKTELAPRLTRITAPTLVVAGDADSTTHIGGSAHIAASIKDATLHVERN 316 CRLN A+ ++ P L + PTLVV + D+T + GSA +A + +ATL VE Lrg 300 FYRYCRLNGAITDIDVNPLLVGVDHPTLVVTSEDDTTANPLGSAEVARRLPNATLSVEPT 359 Syr 317 GSHLAFFASSQQSKQTAFSFLEE 339 G H++ F + + A FL E Lrg 360 GDHISLFKLGGRLGELALGFLRE 382 Figure S1. Confirmation of Streptomyces argillaceus mutants. Generation of Streptomyces argillaceus mutants in *Irg* and flanking genes. Each panel includes a scheme representing construction of a mutant and its confirmation by Southern hybridization or PCR. (A) *S. argillaceus* Δ IrgG; (B) *S. argillaceus* Δ IrgR3; (C) *S. argillaceus* Δ IrgR4; (D) *S. argillaceus* Δ orf18; (E) *S. argillaceus* Δ IrgT1; (F) *S. argillaceus* Δ IrgP1; (G) *S. argillaceus* Δ IrgC1; (H) *S. argillaceus* Δ orf52; (I) *S. argillaceus* Δ IrgC3; (J) *S. argillaceus* Δ IrgO.

Figure S2. UPLC analyses of *S. argillaceus* **WT-R2 cultivated in different media.** Chromatograms (maxplot) of ethyl acetate extracts from *S. argillaceus* WT (black line) and *S. argillaceus* WT-R2 (red line) cultivated in (A) LF1 and (B) R5A media.

Figure S3. UPLC analyses of extracts from S. argillaceus mutants. A-G: Metabolite profiles of mutants (in red) in comparison with the wild type strain (in black): (A) S. argillaceus Δ orf18-R2; (B) S. argillaceus Δ IrgT1-R2; (C) S. argillaceus Δ IrgP1-R2; (D) S. argillaceus Δ IrgR3-R2; (E) S. argillaceus Δ IrgC1-R2; ; (F) S. argillaceus Δ orf52-R2; (G) S. argillaceus Δ IrgC3-R2. LRG intermediates accumulated by mutants are indicated by dots. H-J: Metabolite profiles of complemented mutants (in red) in comparison to the corresponding mutant (in black): (H) S. argillaceus Δ IrgC1-R2-C1; (I) S. argillaceus Δ IrgC3-R2-C3; and (J) S. argillaceus Δ IrgO-R2-O. Peaks corresponding to largimycin A2 (LRG A2) are indicated.

Figure S4. Spectroscopic data of LRG A1 (1): (A) UV-DAD spectrum; (B) HRMS spectrum; (C) 1H NMR spectrum in DMSO-d6, 500 MHz; (D) COSY spectrum; (E) NOESY spectrum; (F) Edited HSQC spectrum; (G) HMBC spectrum.

Figure S5. Spectroscopic data of LRG A2 (2): (A) UV-DAD spectrum; (B) HRMS spectrum; (C) 1H NMR spectrum in DMSO-d₆, 500 MHz; (D) COSY spectrum; (E) NOESY spectrum; (F) Edited HSQC spectrum; (G) HMBC spectrum.

Figure S6. Spectroscopic data of LRG A3 (3): (A) UV-DAD spectrum; (B) HRMS spectrum. **NMR spectra of LRG A1 (1) in CD**₃**OD**: (C) 1H NMR spectrum, 500 MHz; (D) COSY spectrum; (E) NOESY spectrum; (F) Edited HSQC spectrum; (G) HMBC spectrum.

Figure S7. Spectroscopic data of LRG A4 (4): (A) UV-DAD spectrum; (B) HRMS spectrum; (C) 1H NMR spectrum in CD₃OD, 500 MHz; (D) COSY spectrum; (E) NOESY spectrum; (F) Edited HSQC spectrum; (G) HMBC spectrum.

Figure S8. Spectroscopic data of LRG O1 (5): (A) UV-DAD spectrum; (B) HRMS spectrum; (C) 1H NMR spectrum in DMSO-d6, 500 MHz; (D) COSY spectrum; (E) NOESY spectrum; (F) Edited HSQC spectrum; (G) HMBC spectrum.

Figure S9. (A) Energy-minimized molecular models of LRG A1 (1), LRG A2 (2), LRG A4 (4) and LRG O1 (5). The CysNAc moieties have been omitted for the sake of clarity. The measured distances (in Å) related to the observed key NOESY correlations are indicated. **(B) Determination of the oxime double bond stereochemistry.** Comparison of the experimental ¹³C chemical shift for C-18 with the predicted one for both geometric isomers. The model compound used for validation is highlighted in the box.

Figure S10. Mechanism of formation of a CysNAc-S-conjugate after nucleophilic attack of mycothiol over an alkyl chloride. The mycothiol S-conjugates obtained after nucleophilic attack over the episulfonium intermediate ("activated largimycin", Fig. 6) follow the same amidase hydrolysis fate.

Table S1. Oligonucleotides used for PCR.

PRIMER	SEQUENCE 5'-3'	PRIMER	SEQUENCE 5'-3'					
	PRIMERS DESIGNED TO GENERATE MUTANTS							
MutAT831_A	AAA <u>GGATCC</u> GATCGCCAACGTCACC	orf22PHI rp	AAC <u>CTGCAG</u> ATGATCTCTTCGTCTCGG					
MutAT831_B	AAA <u>GAATTC</u> CCCGATCTCGAACATGTCAC	orf22PHD up	TAA <u>GGATCC</u> AAGTACGTCGGCATGCTG					
TetR21I up	TAT <u>AGATCT</u> TCAGCCAGGTCCTTCCGG	orf22PHD rp	CAT <u>GATATC</u> CGATGATCGAGACGCTGA					
TetR21I rp	ATA <u>GAATTC</u> TCACCGCCGAGTAGATGG	Cit23 I up	CCA <u>AGATCT</u> CAAGTAGGGAACGCAATCG					
TetR21D up	ATA <u>GGATCC</u> TTGGTCGCCGAACTCG	Cit23 I rp	TAT <u>AAGCTT</u> GAACGGACCCGCTCGAAG					
TetR21D rp	AAA <u>GATATC</u> ATGGGGGTCGGTCAGGTA	Cit23 D up	AAA <u>GATATC</u> CAGTCCCGATGACCGTGC					
TetR48I up	TAT <u>CTCGAG</u> TTCGTAGCGTGGGATTTC	Cit23 D rp	TAA <u>TCTAGA</u> ACCTGGTGCCACCCCGAA					
TetR48I rp	ATA <u>GAATTC</u> TCGAAGATGGCCTGCTCA	Cit52 I up	AAA <u>GAATTC</u> CCAGAAGGTCGCCGACTA					
TetR48D up	ATA <u>CATATG</u> CCGACGAACTGGTGGTCT	Cit52 I rp	TAT <u>AAGCTT</u> TCCTCCACCGGCTGCATC					
TetR48D rp	AAA <u>GATATC</u> AGCTCCAGCACCCACTTC	Cit52 D up	TAA <u>GATATC</u> TCGACAGCGTCCCGGTCA					
PH19I up	TAA <u>GAATTC</u> CTCGAGGTGCACCCCACG	Cit52 D rp	CGA <u>TCTAGA</u> CTACCTGGGCTCGATCCTG					
PH19I rp	CAT <u>CTGCAG</u> AGACGGCCATCCATCTAG	orf53PHI up	CCC <u>GAATTC</u> GCTGTACTGGTTCTTCTG					
PH19D up	TAA <u>GGATCC</u> GAGGCGCTCAAGGCCGT	orf53PHI rp	TAT <u>AAGCTT</u> ACACGGCGCGCATCAGGA					
PH19D rp	CCA <u>TCTAGA</u> GGCAGGGCGTAGTCGAGC	orf53PHD up	CAA <u>GATATC</u> ACCGTCGAGGACTGAGCC					
orf20Transpl up	CGC <u>AGATCT</u> AGAATTGAGCAGTGGCAC	orf53PHD rp	ACA <u>TCTAGA</u> ATGATGCCCAACGCCAAG					
orf20Transpl rp	ATA <u>GGTACC</u> ATGGTGGCGTCGAGGATT	Ox49I up	TAA <u>GAATTC</u> GACGACGTGGAGCGGATG					
orf20TranspD up	TAA <u>GGATCC</u> CACCGCAGGCCAAGAAC	Ox49I rp	TAA <u>CTGCAG</u> CGATCACGTCCCAATCCA					
orf20TranspD rp	ACC <u>GATATC</u> CCTTGTTGAAGTGGCTGA	Ox49D up	CCC <u>GATATC</u> TCTACACCCCCGAACTGCT					
orf22PHI up	TAA <u>GAATTC</u> CGTCACGCGTCATCGACT	Ox49D rp	ACG <u>TCTAGA</u> GCCCTCCAGGAAGAGCCG					
PRIMERS DESIGNED TO EXPRESS GENES								

Reg24 up	TTT <u>GGATCC</u> TGCGAGGCAACAGTATG	ermECit23 rp	ATA <u>GCTAGC</u> GGTTATGCCCTGGCCTC
Reg24 rp	TAT <u>GGATCC</u> TCAGACCCTCGCCACGTA	ermECit52 up	AAA <u>ACTAGT</u> CTGACCACCCGGCACCC
Reg831_A	ATT <u>GGATCC</u> TTCTAGGCGATTCGAG	ermECit52 rp	TAA <u>GCTAGC</u> GGTGTGCGGGGTCGTCA
Reg831_B	AAA <u>GAATTC</u> CGATGAACAGCAGTACG	ermEOx49 up	AAAACTAGTGTGCTGCGTACGGTCGGA
ermECit23 up	GCC <u>ACTAGT</u> GTGAGAAAAGACGACGGG	ermEOx49 rp	ATAGCTAGCCGAACGGGACAAGGACGA

PRIMERS DESIGNED TO VERIFIED MUTANTS

TetR21c up	AAAGGATCCCTACTCTAGCAGCGGCAA	ermEorf22PH up	CCCACTAGTTCTGAACAGGTTTCGGCC
TetR21c rp	ATAGAATTCTGACCCGGCAGCGCTC	ermEorf22PH rp	CCAGCTAGCGGTCACTTGTGGATCTTC
TetR48c up	ATAGAATTCCTGGACCCTACCGTGCA	Cit23c up	ATCAGGTTGTCAGTTCCGTG
TetR48c rp	TATAAGCTTGACCGCCCACTTTTGAGC	Cit23c rp	TCACGCGTCATCGACTCC
PH19c up	GCCGTGAAACGTGCTCTG	ermEorf53PH up	CCCACTAGTACCCGCAACTGGAAGACC
PH19c rp	AAGAACCTGGAGTAGCCGC	ermEorf53PH rp	CATGCTAGCTCAGTCCTCGATCACGG
ermEorf20Transp up	CAAACTAGTCTGTTAGCACCCCCGCAG	Cit52c up	CCTGCAACGGAGAGAAAA
ermEorf20Transp rp	CCAACTAGTCTCAGCCAGGTCCTTCCG	Cit52c rp	CGTGATCGAGGACTGACC

Adenylation domain (Ser)	Clade ¹	Stachelhaus code ²	8 angstroms signature ³		
Lrgl	VII*	DLFNAA <mark>LVWK</mark>	LFCTFDLSVFDGNSALAGDIA <mark>LGGPTETTVWSNV</mark>		
Scan_P	VII	<mark>DLFNAA</mark> M <mark>VWK</mark>	LFCTFDLSVFDGNSALAGDIA <mark>MGGPTETTVWSNV</mark>		
M1013	VII*	<mark>DLFNAA</mark> MVWK	LFCTFDLSVFDGNSALAGDIA <mark>MGGPTETTVWSNV</mark>		
CB01373_T	VII	DLFNAA <mark>MVWK</mark>	LFCTFDLSVFDGNSALAGDIAMGGPTETTVWSNV		
Consensus		<mark>DLFNAA</mark> x <mark>VWK</mark>	LFCTFDLSVFDGNSALAGDIA <mark>xGGPTETTVWSNV</mark>		
Adenylation domain (Cys)					
Lnml		<mark>DLFN</mark> F <mark>SL</mark> V <mark>WK</mark>	LWCTFDLSVFDGNS <mark>FLSGD</mark> IS <mark>LGGATEAT</mark> VWSNW		
CB01635_I	I	<mark>DLFN</mark> F <mark>SL</mark> VWK	LWC <mark>TFDLSVFDGNS</mark> F <mark>LSGD</mark> IS <mark>LGGATEAT</mark> VWSNW		
CB02959_H	П	<mark>DLFN</mark> F <mark>SL</mark> VWK	LWC <mark>TFDLSVFDGNS</mark> F <mark>LSGD</mark> IS <mark>LGGATEAT</mark> VWSNW		
GnmB	IX	DLFN <mark>FSL</mark> VWK	LWCTFDLSVFDGNS <mark>FLSGD</mark> IS <mark>LGGATEAT</mark> VWSNW		
Sf56_B	IX	DLFN <mark>FSL</mark> VWK	LWCTFDLSVFDGNS <mark>FLSGD</mark> IS <mark>LGGATEAT</mark> VWSNW		
CB02891_O	III	DLFN <mark>FSL</mark> VWK	LWCTFDLSVFDGNS <mark>FLSGD</mark> VS <mark>LGGATEAT</mark> VWSNW		
Sast_F	XI	DLFN <mark>FSL</mark> VWK	LWCTFDLSVFDGNS <mark>FLSGD</mark> VS <mark>LGGATEAT</mark> VWSNW		
Snov_X	XIII	DLFN <mark>FSL</mark> VWK	<mark>LW</mark> C <mark>TFDLSVFDGNS</mark> F <mark>LSGD</mark> VS <mark>LGGATEAT</mark> V <mark>WSN</mark> C		
Saes_V	XIV	DLFN <mark>FSL</mark> VWK	LWTTFDLSVFDGNS <mark>FLSGD</mark> IS <mark>LGGATEAT</mark> VWSNW		
S110_Y	XII	DLFN <mark>FSL</mark> VWK	<mark>LW</mark> S <mark>TFDLSVFDGNS</mark> F <mark>LSGD</mark> VS <mark>LGGATEAT</mark> V <mark>WSN</mark> Y		
WsmW	XII	DLFN <mark>FSL</mark> VWK	<mark>lw</mark> a <mark>tfdlsvfdgns</mark> f <mark>lsgd</mark> vs <mark>lggateaa</mark> v <mark>wsn</mark> y		
Mtul_K	IV	DLFN <mark>FSL</mark> VWK	<mark>LW</mark> A <mark>TFDLSVFDGNS</mark> F <mark>LSGD</mark> VS <mark>LGGATEAT</mark> V <mark>WSN</mark> Y		
S109_K	V	DLFN <mark>FSL</mark> VWK	<mark>LW</mark> A <mark>TFDLSVFDGNS</mark> F <mark>LSGD</mark> VS <mark>LGGATEAT</mark> V <mark>WSN</mark> Y		
Slee_K	V	DLFN <mark>FSL</mark> VWK	<mark>LW</mark> A <mark>TFDLSVFDGNS</mark> F <mark>LSGD</mark> VS <mark>LGGATEAT</mark> V <mark>WSN</mark> Y		
TSRI0384-2_K	V	DLFN <mark>FSL</mark> VWK	<mark>LW</mark> A <mark>TFDLSVFDGNS</mark> F <mark>LSGD</mark> VS <mark>LGGATEAT</mark> V <mark>WSN</mark> Y		
Mcnb_U	XV	DLFN <mark>FSL</mark> VWK	LWA <mark>TFDLSVFDGNS</mark> F <mark>LSGD</mark> VN <mark>LGGATEAT</mark> VWSNW		
Mmar_U	XV	DLFN <mark>FSL</mark> VWK	LWA <mark>TFDLSVFDGNS</mark> F <mark>LSGD</mark> VN <mark>LGGATEAT</mark> VWSNW		
MI5_U	XV	DLFN <mark>FSL</mark> VWK	LWA <mark>TFDLSVFDGNS</mark> F <mark>LSGD</mark> VN <mark>LGGATEAT</mark> VWSNW		
Maur_U	XV	DLFN <mark>FSL</mark> VWK	LWA <mark>TFDLSVFDGNS</mark> F <mark>LSGD</mark> VN <mark>LGGATEAT</mark> VWSNW		
CB01201_B	Х	DLFN <mark>FSL</mark> VWK	LWCTFDLSVFDGNS <mark>FLSGD</mark> VN <mark>LGGATEAT</mark> VWSNW		
Caci_P	VIII	<mark>DLFN</mark> F <mark>SL</mark> I <mark>WK</mark>	<mark>LW</mark> C <mark>TFDLSAFDGNS</mark> F <mark>LSGD</mark> VS <mark>LGGATEAT</mark> I <mark>WSN</mark> Y		
Bubo_Q	XVIII	DLFN <mark>FSL</mark> VWK	<mark>LW</mark> C <mark>TFDLSVFDGNS</mark> Y <mark>LSGD</mark> VS <mark>LGGATEAT</mark> V <mark>WSN</mark> F		
Sal964_Q	XVII	DLFNY <mark>SL</mark> VWK	LWCTFDLSVFDGNSYLSGDVSLGGATEATVWSNW		
CB02613_J	XVI	DLFNY <mark>SL</mark> VWK	LWCTFDLSVFDGNSYLSGDVSLGGATEATVWSNW		
Consensus		DLFN <mark>xSL</mark> xWK	LW <mark>xTFDLSVFDGNS</mark> x <mark>LSGD</mark> xx <mark>LGGATEAT</mark> xWSNx		
Consensus "Ser"		DLFN <mark>AAxV</mark> WK	L <mark>FC</mark> TFDLSVFDGNS <mark>A</mark> L <mark>A</mark> GD <mark>IAx</mark> GG <mark>P</mark> TE <mark>T</mark> T <mark>V</mark> WSN <mark>V</mark>		
Consensus "Cys"		DLFN <mark>xSLx</mark> WK	L <mark>Wx</mark> TFDLSVFDGNS <mark>x</mark> L <mark>S</mark> GD <mark>xxL</mark> GG <mark>A</mark> TE <mark>A</mark> T <mark>x</mark> WSN <mark>x</mark>		
Consensus		DLFN <mark>xxxx</mark> WK	L <mark>xx</mark> TFDLSVFDGNS <mark>x</mark> L <mark>x</mark> GD <mark>xxx</mark> GG <mark>x</mark> TE <mark>x</mark> T <mark>x</mark> WSN <mark>x</mark>		

Table S2. Comparison of specifity-conferring codes of adenilation domains of hybrid NRPS/PKS from leinamycin (*Inm*)-type gene clusters.

¹Pan *et al.* (2017). ²Stachelhaus *et al.* (1999). ³Raush *et al.* (2005). *this work. Identical amino acids in each type of binding domain are highlighted by yellow boxes. Amino acids that differ between the "Ser" and the "Cys" binding domains are highlighted by green boxes. Accession numbers of Lrgl homologous clusters: *scan, Streptomyces canus* ATCC 12647 (WP_059300321); *M1013, Streptomyces* sp. (WP_076977086.1); *CB01373, Streptomyces* sp. (NZ_NNBK0000000.1). Accession numbers of *Inm*-type gene clusters: *Inm, S. atroolivaceus* S-140 (AF484556.1); *CB01635, Streptomyces* sp. CB01635 (NZ_NNBL00000000.1); *CB02959, Streptomyces* sp. CB02959 (NZ_NNBP00000000.1); *gnm, Streptomyces* sp. CB01883 (MF925481); *sf56, Streptomyces* sp. NRRL F-5630 (WP_037826198); *CB02891, Kitasatospora* sp. (NNBO0000000); *sast, Saccharotrix* sp. ST-888 (KJK59202.1); *snov, Streptomyces* sp. NBRC 110035 (WP_042163782); *wsm, Streptomyces* sp. CB02120-2 (MF925482); *mtu, Micromonospora tulbaghiae* DSM45142 (SCE73393); *S109, Streptomyces* sp. NBRC 109436 (WP_064455881); *slee, S. leeuwenhoekii* DSM 42122 (CQR60407); *TSRI0384-2, Streptomyces* sp. TSRI0384-2 (NZ_NOWW0000000.1); *maur, M. aurantica* ATCC 27029 (WP_013287043); *CB1201, Streptomyces* sp. CB1201 (NZ_NNBJ0000000.1); *caci, Catenulispora acidiphila* DSM 44928 (ACU715116.1); *bubo, Burkholderia ubonensis* RF25-BP1 (WP_059615564); *sal964, Salinispora arenícola* CNH964 (NZ_JAEY0000000.1); *CB02613, Streptomyces* sp. CB0210.2).

	LRG	GA1 (DMSO-d ₆)	LRG A1 (CD ₃ OD)		
Position	<i>δ</i> c, type	$\delta_{\rm H}$ (J in Hz)	Position	$\delta_{ m C}$, type	$\delta_{\mathbb{H}}$ (J in Hz)
1	166.6, C		1	169.6, C	
2	37.1, CH ₂	3.46, d (14.2) 3.12, d (14.2)	2	38.2, CH ₂	a. 3.58, d (14.1) b. 3.32, d (14.1)
3	49.6, C		3	51.3, C	
4	34.0, CH ₂	a. 2.46, br d (12.9) b. 1.99, t (12.9)	4	35.3, CH ₂	a. 2.73, br d (12.2) b. 2.15, m
5	35.1, CH ₂	a. 2.07, t (13.1) b. 1.60, br d (13.1)	5	36.7, CH ₂	a. 2.16, m b. 1.73, br d (13.2)
6	47.8, C		6	49.0, C	
7	43.6, CH	3.77, dd (12.5, 3.2)	7	45.5, CH	3.94, dd? (12.5, 3.5)
8	43.1, CH ₂	a. 2.75, dd (13.0, 3.2) b. 2.29, t (13.0)	8	44.0, CH ₂	a. 2.88, dd (12.9, 3.8) b. 2.42, t (12.9)
9	197.6, C		9	201.3, C	
10	134.4, CH	6.15, d (16.2)	10	135.5, CH	6.18, d (16.3)
11	136.6, CH	8.32, dd (16.2, 11.4)	11	139.1, CH	8.59, dd (16.3, 11.3)
12	128.8, CH	6.38, t (11.4)	12	130.2, CH	6.43, t (11.4)
13	122.0, CH	6.58, d (11.4)	13	123.2, CH	6.60, d (11.4)
14	139.5, C		14	141.7, C	
15	141.2, CH	8.50, s	15	141.5, CH	8.21, s
16	151.1, C		16	152.6, C	
17	152.2, C		17	153.5, C	
18	72.2, CH	4.71, t (7.1)	18	73.2, CH	4.95, dd (7.4, 6.4)
19	35.7, CH ₂	a. 3.14, m b. 3.00, dd (13.5, 7.1)	19	37.6, CH ₂	a. 3.15, m b. 3.04, dd (13.9, 6.3)
20	17.3, CH₃	1.25, s	20	17.8, CH₃	1.38, s
21	59.2, C		21	61.7, C	
22	47.8, CH ₂	a. 3.17, d (5.5) b. 2.80, d (5.5)	22	49.0, CH ₂	a. 3.31, m b. 2.86, d (5.6)
23	172.1, C		23	172.9, C	
1'	171.7, C		1'	174.1, C	
2'	52.1, CH	4.17, dd (14.0, 7.6)	2'	53.9, CH	4.40, t (6.6)
3'	29.7, CH ₂	a. 2.66, dd (12.3, 8.4) b. 2.58, dd (12.3, 5.6)	3'	31.5, CH ₂	2.83, m
4'	169.2, C		4'	172.6, C	
5'	22.3, CH₃	1.79, s	5'	22.2, CH₃	1.96, s
2'-NH		8.16, d (7.5)			
1"	172.2, C		1"	174.7, C	
2"	52.1, CH	4.39, dd (13.0, 7.8)	2"	54.3, CH	4.56, dd (7.9, 4.5)
3"	33.2, CH ₂	a. 3.04, dd (13.5, 4.4) b. 2.77, m	3"	35.3, CH ₂	a. 3.16, m b. 2.94, dd (13.9, 6.3)
4"	169.3, C		4"	172.8, C	
5" 2"-NH	22.3, CH₃	1.86, s 8.18. d (7.2)	5"	22.4, CH₃	2.00, s

Table S3. ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) data of LRG A1 in DMSO-d₆ and CD₃OD.^a

^{a 13}C chemical shifts determined from the indirect dimension of HSQC and HMBC spectra

	I				RG A4 (CD₂OD)
Position	S. tuno	S. (/ in H-)	Positi	S. tuno	S. ((in H-)
FUSILION	oc, type	OH (JIII HZ)	on	oc, type	<i>о</i> н (Ј III П2)
1	168.4, C		1	169.0, C	
2	43.4, CH ₂	a. 3.56, d (15.4) b. 3.19, d (15.4)	2	37.5, CH₂	a. 3.59, d (14.1) b. 3.40, d (14.1)
3	61.4, C		3	51.6, C	
4	41.3, CH ₂	a. 2.45, ddd (12.9, 5.5, 2.0) b. 2.34, td (12.9, 5.7)	4	37.8, CH₂	a. 2.85, br d (14.0) b. 2.04, t (14.0)
5	40.4, CH ₂	a. 1.82, td (12.8, 5.7) b. 1.73, m	5	38.8, CH2	a. 1.75, t (14.0) b. 1.59, dd (14.0, 3.2)
6	64.7, C		6	72.8, C	
7	51.3, CH	3.56, dd (6.5, 4.9)	7	47.5, CH	3.74, dd (12.5, 3.5)
8	43.8, CH ₂	a. 3.79, dd (18.5, 6.5) b. 3.07, br d (18.5)	8	42.1, CH₂	a. 2.96, dd (13.0, 3.5) b. 2.31, t (13.0)
9	199.8, C		9	201.7, C	
10	133.9, CH	6.23, d (16.2)	10	135.2, CH	6.09, d (16.3)
11	141.5, CH	8.87, dd (16.1, 11.4)	11	140.3, CH	8.61, dd (16.3, 11.3)
12	130.1, CH	6.48, t (11.4)	12	130.8, CH	6.41, t (11.4)
13	123.8, CH	6.68, d (11.4)	13	122.8, CH	6.60, d (11.4)
14	141.4, C		14	141.0, C	
15	141.6, CH	8.26, s	15	141.6, CH	8.22, s
16	152.3, C		16	152.2, C	
17	148.7, C		17	n. d., C	
18	49.9, CH	4.17, dd (4.0, 2.4)	18	50.7, CH	4.09, dd (5.0, 2.4)
19	46.9, CH ₂	a. 3.36, dd (5.5, 2.4) b. 3.12, m	19	47.1, CH ₂	a. 3.40, m b. 3.11, dd (5.5, 4.4)
20	30.9, CH ₃	1.72, s	20	18.0, CH₃	1.33, s
21	61.4, C		21	62.0, C	
22	49.3, CH ₂	a. 3.31, m b. 2.95, d (5.8)	22	49.0, CH₂	a. 3.27, br d (5.5) b. 2.87, m
23	172.7, C		23	n. d., C	
1'	173.1, C				
2'	53.7, CH	4.57, dd (7.2, 4.5)			
3'	37.1, CH ₂	a. 3.11, m b. 3.04, dd (13.7, 7.2)			
4'	172.7, C				
5'	21.9, CH₃	1.99, s			

Table S4. ¹ H NMR	(500 MHz) and	d ¹³ C NMR (*	125 MHz)) data of LRG	A2 and LRG	A4 in CD ₃ OD. ^a
------------------------------	---------------	--------------------------	----------	---------------	------------	--

^{a 13}C chemical shifts determined from the indirect dimension of HSQC and HMBC spectra

	LRG O1 (DMSO-d ₆)	
Position	δc , type	$\delta_{\!$
1	170.0, C	
2	44.6, CH ₂	a. 2.93, d (14.6) b. 2.77, d (14.6)
3	50.2, C	
4	36.7, CH ₂	1.68, m
5	33.5, CH ₂	2.10, m
6	135.2, C	
7	122.0, CH	5.61, t (6.7)
8	32.8, CH ₂	2.97, m
9	145.8, C	
10	135.8, CH	6.32, d (15.6)
11	128.3, CH	7.67, dd (15.5, 9.2)
12	130.2, CH	6.21, t (11.4)
13	117.2, CH	6.18, d (11.4)
14	138.6, C	
15	138.0, CH	8.10, s
16	161.1, C	
17	52.6, CH	4.95, t (5.0)
17-NH		8.28, d (5.5)
18	64.5, CH	4.55, m
19	53.5, CH ₂	a. 3.24, m b. 2.88, m
20	118.1, CH ₂	a. 5.09, br s b. 5.03, br s
21	16.1, CH₃	1.66, s
22	46.0, CH	2.84, q (6.9)
23	13.1, CH₃	1.14, d (6.9)
24	175.3, C	
1'	171.6, C	
2'	47.4, CH	4.55, m
3'	52.9, CH ₂	a. 3.32, m b. 3.02, m
4'	169.2, C	
5'	22.3, CH ₃	1.84, s
2'-NH		8.39, d (7.9)

Table S5. ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) data of LRG O1 in DMSO-d₆.^a

^{a 13}C chemical shifts determined from the indirect dimension of HSQC and HMBC spectra

SUPPLEMENTARY REFERENCES

- Altschul, S.F., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic. Acids. Res. 25, 3389-3402.DeLano, W.L. (2002). The PyMOL Molecular Graphics System. (Palo Alto, CA, USA). DeLano Scientific. p. Available: http://www.pymol.org.
- Fernández, E., Weissbach, U., Sánchez Reillo, C., Braña, A.F., Méndez, C., Rohr, J., and Salas J.A. (1998). Identification of two genes from Streptomyces argillaceus encoding glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. J. Bacteriol. 180, 4929-4937.
- Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. Practical *Streptomyces* genetics (The John Innes Foundation, Norwich, UK. 2000).
- Lombó, F., Braña, A.F., Méndez, C., and Salas, J.A. (1999). The mithramycin gene cluster of *Streptomyces argillaceus* contains a positive regulatory gene and two repeated DNA sequences that are located at both ends of the cluster. J. Bacteriol. *181*, 642–647.
- Malmierca, M.G., González-Montes, L., Pérez-Victoria, I., Sialer, C., Braña, A.F., García Salcedo, R., Martín, J., Reyes, F., Méndez, C., Olano, C., et al. (2018). Searching for glycosylated natural products in actinomycetes and identification of novel macrolactams and angucyclines. Front. Microbiol. 9, 39.
- Martín, J., Crespo, G., González-Menéndez, V., Pérez-Moreno, G., Sánchez-Carrasco, P., Pérez-Victoria,
 I., Ruiz-Pérez, L.M., González-Pacanowska, D., Vicente, F., Genilloud, O., et al. (2014). MDN-0104, an antiplasmodial betaine lipid from Heterospora chenopodii. J. Nat. Prod. 77, 2118-2123.
- Menéndez, N., Nur-e-Alam, M., Fischer, C., Braña, A.F., Salas, J.A., Rohr, J., and Méndez, C. (2006).
 Deoxysugar transfer during chromomycin A3 biosynthesis in *Strepomyces griseus* subsp. *griseus*: new derivatives with antitumor activity. Appl. Environ. Microbiol. 72, 167–177.
- Pérez-Victoria, I., Martín, J., and Reyes, F. (2016). Combined LC/UV/MS and NMR strategies for the dereplication of marine natural products. Planta Med. 82, 857-871.
- Sambrook, J. and Russell, D.W. (2001). Molecular Cloning: A Laboratory Manual, 3rd edn. (Cold Spring Harbor Laboratory).
- Sun, Y., Zhou, X., Liu, J., Bao, K., Zhang, G., Tu, G., Kieser, T., and Deng, Z. (2002). *Streptomyces nanchangensis*, a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains multiple polyketide gene clusters. Microbiology *148*, 361–371.
- Weber, T., Blin, K., Duddela, S., Krug, D., Kim, H.U., Bruccoleri, R., Lee, S.Y., Fischbach, M.A., Müller, R., Wohlleben, W., et al. (2015). AntiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43, W237–W243.