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Bursting phenomena are found in a wide variety of fast-slow systems. In this article we

consider the Hindmarsh-Rose neuron model, where, as it is known in the literature, there

are homoclinic bifurcations involved in the bursting dynamics. However, the global ho-

moclinic structure is far from being fully understood. Working in a three-parameter space,

the results of our numerical analysis show a complex atlas of bifurcations, which extends

from the singular limit to regions where a fast-slow perspective no longer applies. Based

on this information we propose a global theoretical description. Surfaces of codimension-

one homoclinic bifurcations are exponentially close to each other in the fast-slow regime.

Remarkably, explained by the specific properties of these surfaces, we show how the

Hindmarsh-Rose model exhibits isolas of homoclinic bifurcations when appropriate two-

dimensional slices are considered in the three-parameter space. On the other hand, these

homoclinic bifurcation surfaces contain curves corresponding to parameter values where

additional degeneracies are exhibited. These codimension-two bifurcation curves organize

the bifurcations associated with the spike-adding process and they behave like the “spines-

of-a-book”, gathering “pages” of bifurcations of periodic orbits. Depending on how the

parameter space is explored, homoclinic phenomena may be absent or far away, but their

organizing role in the bursting dynamics is beyond doubt, since the involved bifurcations

are generated in them. This is shown in the global analysis and in the proposed theoretical

scheme.
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Homoclinic organization in the Hindmarsh-Rose model 2

As a fundamental element in the study of nervous system dynamics, the analysis of be-

haviours and changes in isolated neurons is a first step in the theoretical/experimental re-

search in mathematical/computational neuroscience. In addition, it is common to find syn-

chronization in neuronal networks showing dynamical states which include different burst-

ing regimes. From the physiological point of view, bursting is characterized by trains of

spikes alternating with quiescent periods. Studying the different changes in the bursts fired

by an isolated neuron will help provide detailed mathematical mechanisms to explain them.

This work aims to understand the hidden mechanisms behind the processes that lead neurons

to add (or subtract) spikes in a signal: the homoclinic bifurcations (in the case of fold/hom

bursters). Their relationship with the processes of creation of new spikes has been discussed

earlier in the literature, but the global picture is not yet fully understood. We work with

the Hindmarsh-Rose neuron model, one of the most popular neuronal dynamics models. To

perform the analysis, we use continuation techniques and brute-force methods to locate and

describe the changes. When exploring a three-dimensional space of parameters, we discover

a complex structure of bifurcations that allows us to propose a new global structure, which

we call, due to its geometry, homoclinic “mille-feuille” + “spines-of-the-book”. This skeleton

of homoclinic bifurcations allows an explanation of the different phenomena observed in the

literature, such as the influence of homoclinic bifurcations, even when not observed, the dis-

appearance of bursting dynamics with a large number of spikes when the small parameter

in the models grows (in fast-slow dynamics) and the spike-adding process.

I. INTRODUCTION1

Fast-slow dynamics is a quite common phenomenon in theoretical and practical models in many2

disciplines where different time scales are present. Computational/mathematical neuroscience is3

one of the fields where these models are more abundant. In neuroscience, to understand how an4

incredibly sophisticated system such as the brain per se functions dynamically, it is imperative to5

study the dynamics of its constitutive elements – neurons. Since Hodgkin and Huxley developed6

the first model of action potentials in the membrane1, the design of mathematical models for7

neurons has arisen as a trending topic in science for a few decades, and a lot of models and8

variations describing different kinds of neuron cells in numerous animals have been proposed in9

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/1.

51
38

91
9



Homoclinic organization in the Hindmarsh-Rose model 3

the literature. What all these systems have in common is the existence of fast-slow dynamics2,10

that is also quite usual in a lot of other practical applications, like in chemical reactions3 and laser11

dynamics4. In all these models, one of the key magnitudes is the time that a neuron, or other12

dynamical system, is active, and this is related to the number of oscillations (spikes) in the fast13

subregime.14

In order to help in the analysis of neuron models simulated realistically within the Hodgkin-15

Huxley framework1, a common approach is to use some simplified models. In particular, the16

3D Hindmarsh-Rose (HR) model5 reproduces fairly well the basic oscillatory activities routinely17

observed in isolated biological cells and in neural networks. It fulfills the two basic conditions18

of being computationally simple but, at the same time, able to reproduce the main behaviour (the19

rich firing patterns) exhibited by the real biological neuron. The HR model is described by three20

nonlinear ODEs:21 
ẋ = y−ax3 +bx2− z+ I,

ẏ = c−dx2− y,

ż = ε[s(x− x0)− z],

(1)

where x is the membrane potential, y the fast and z the slow gating variables for ionic current. In22

our study we will consider a typical choice of parameters: a = 1, c = 1, d = 5, s = 4, x0 =−1.6.23

Parameters b and I determine the bursting or spiking behaviour and their values are considered in24

specific ranges where such phenomena are present. Parameter ε governs the fast-slow behaviour25

and we will study dynamics for ε small, but including scenarios far from the singular limit ε = 0.26

In the sequel we consider (1) as a family of vector fields depending on parameters (b, I,ε), and27

say fast subsystem to refer to the z-family obtained after taking ε = 0.28

Roughly speaking, we can say that a fast-slow system exhibits bursting when orbits exhibit29

periods of fast spiking followed by periods of quiescence. When the jump between these two30

different regimes can be explained by a fold bifurcation of equilibria and a homoclinic bifurcation31

of periodic orbits (both bifurcations occurring in the fast subsystem) we say that the bursting is of32

fold/hom type6. In Section II (see Fig. 3), we will describe how fold/hom bursters arise in the HR33

model.34

One of the big challenges regarding bursting phenomena is to understand the mechanisms ex-35

plaining the variation in the number of spikes (Fig. 4 in Section II B provides an illustrative36

example in the HR model). These spike-adding processes have been studied for several mathe-37

matical neuron models (see for example Refs. 7–9), but also in other contexts as laser dynamics,38
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Homoclinic organization in the Hindmarsh-Rose model 4

chemical reactions or discrete maps, with the alternative name of period-adding10–14. This process39

is quite important in that it progressively modifies the spectrum of periodic orbits of the system40

and the structure of chaotic attractors15–18. As argued by Terman18, these transitions may be ei-41

ther continuous, with the period of the bursting solution increasing along the process, or they may42

involve chaotic behaviours (see also Ref. 19). Recently, these transitions have been studied in43

detail20 providing a theoretical scheme for ε fixed. The relevance of fold bifurcations of periodic44

orbits in this process was pointed out earlier in Ref. 21. Dealing with fold/hom bursting, the spike-45

adding process has also been related to the existence of canard orbits22–25 and with the existence46

of certain codimension-two homoclinic bifurcations15,26,27. Working with a fixed value ε = 0.01,47

the role of homoclinic bifurcations of codimension-one and two in the spike-adding mechanisms48

was discussed in Ref. 26 and some preliminary results were advanced. Namely, bifurcations of49

periodic orbits around flip and Belyakov bifurcations (see Section II A for background) were iden-50

tified as crucial ingredients to understand some spike-adding transitions which are present in the51

HR model. Again working with that fixed value of ε , codimension-two homoclinic bifurcations52

were again considered in Ref. 27, but providing a much more thorough study. Different homo-53

clinic curves were discussed and their sharp fold points were already detected in that reference54

and linked to the spike-adding processes. Codimension-two homoclinic bifurcations in Refs. 2655

and 27 are also organizing centers of chaotic regions in the bifurcation diagram. All these chaotic56

phenomena were discussed in Ref. 15.57

What is missing in the literature is a global study of how homoclinic bifurcations are organized,58

and to that goal we need, at least, to describe them in a three parameter space. Note that it is intrin-59

sic to the notion of bifurcation the possibility of observing its effects without the bifurcation point60

being present. In the HR model, one can explore the parameter space without detecting homoclinic61

bifurcations (see Fig. 4), although their consequences (fold and period doubling bifurcations) are62

exhibited. The organizing points (the codimension-two homoclinic bifurcations) may be placed63

far away in the space or parameters, and even, they may be outside a particular set of parameters64

that we are visualizing, but they continue being the organizing centers. Taking all of this into65

account, the goal of this article is to provide a model of the homoclinic organization that explains66

all these facts.67

As already mentioned, previous work in the literature was focused in studying, for some ε68

fixed, the curves of homoclinic bifurcation at equilibria displayed by the system15,26,27. A bifurca-69

tion diagram in a three-parameter space, including variation of ε , was first considered in Ref. 46.70
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Homoclinic organization in the Hindmarsh-Rose model 5

Changes in the spike-adding structures and the underlying bifurcations were observed. Moreover,71

foldings in the curves of inclination flip bifurcation were already detected. In Ref. 20 a theoret-72

ical scheme giving a complete scenario of bifurcations involved in the spike-adding processes in73

fold/hom bursters was introduced. This theoretical scheme provides a complete description of the74

connections of the different codimension-two points and the organization of the homoclinic curves75

for ε fixed. Also in this paper, the validity of the scheme is checked for a pancreatic β -cell neuron76

model.77

In this article, we are interested in understanding the global structure of the homoclinic surfaces78

in the three parameter space. To that goal, a detailed numerical study with continuation techniques79

is required (we use the well-known software AUTO28,29) as well as the spike counting (SC in the80

sequel) technique, as introduced in Refs. 15, 26, and 30.81

Supported by numerical evidences, we conjecture that the intersection of each homoclinic sur-82

face with horizontal planes (with ε fixed) produces isolas in the plane of parameters (compare83

with results in Ref. 31 for the FitzHugh-Nagumo system), that is, simple closed curves in the cor-84

responding slice. We show how, for each ε fixed, the model exhibits a finite number (number that85

grows when the small parameter decreases) of isolas corresponding to primary homoclinic bifur-86

cations. Isolas are not only exponentially close each other, but they exhibit a pair of extremely87

sharp folds, so that the width of each isola is also exponentially small. These folds allow two sides88

of the isola to be distinguished (and also two faces of the surface of homoclinic bifurcations). On89

one of the faces the corresponding homoclinic orbits on the fold/hom regime exhibits n spikes and,90

on the other, n+ 1. It is because of this fact that, from now on, we use the notation hom(n,n+1)
91

to refer to the different homoclinic bifurcation surfaces (or isolas if working with two-parameter92

plots).93

Remark 1 Notation hom(n,n+1) was already introduced in Ref. 20. In Refs. 26 and 27 authors94

use a different option to label homoclinic bifurcation curves. Namely, they do not emphasize that95

a given homoclinic bifurcation curve can correspond to homoclinic orbits with a different number96

of spikes. For instance, in Ref. 27 authors use the notation hom(n) where we use hom(n,n+1).97

Nevertheless, one should note that when required (see Figs. 4, 5 and 7 in Ref. 27) they also98

use two different notations for a unique curve of homoclinic bifurcation, changing the label from99

hom(n) to hom(n+1 a) after a sharp fold of the curve is crossed, pointing out that the number of100

spikes changes from n to n+1.101
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Homoclinic organization in the Hindmarsh-Rose model 6

Homoclinic surfaces are the main focus of this article. We show how they are disposed in102

the parameter space, taking into account that, as numerics show, they are exponentially close to103

each other when ε → 0. Because of their tubular shape and the proximity of the surfaces, we can104

compare the whole structure with a “mille-feuille” pastry. There, we observe pencils of curves105

of fold and period-doubling (PD) bifurcations of periodic orbits generated on codimension-two106

bifurcation points. Moving ε , each of the curves in the pencil gives rise to a surface. Hence,107

we can compare the codimension-two bifurcation curves with the “spines-of-a-book” with pages108

correspondent to surfaces of bifurcations of periodic orbits. Besides, the ε-level reached by each109

surface hom(n,n+1) decreases as n increases. This allows us to explain the simplification mecha-110

nisms (bursting with a lower number of spikes) that can be observed as ε increases.111

The article is organized as follows. In Section II we provide general information about the112

HR model: fast-slow decomposition, spike-adding process linked to fold/hom bursters exhibited113

by the model and a discussion about existence of equilibria in the full system. A short survey114

about homoclinic bifurcations and an overview about the literature regarding the HR model are115

also provided in Section II. In Section III we pay attention to some particular slices (with ε fixed)116

inside the three-parameter space. Here we show how the base shape of the homoclinic curves117

evolves as ε varies, but much more significant, how the codimension-two homoclinic bifurcation118

points move on the homoclinic curves and, in fact, how they disappear when ε grows. Section IV119

presents a three-parameter study explaining some of the phenomena which are observed when ε120

is fixed and shows isolas of codimension-one homoclinic bifurcations. Section V introduces the121

global theoretical scheme creating the structure that we call “homoclinic mille-feuille”, bearing in122

mind the codimension-one bifurcation surfaces. In them, we find “spines-of-a-book”, bearing in123

mind the codimension-two bifurcation curves, holding pencils of bifurcations of periodic orbits.124

Both structures give rise to the theoretical model proposed in this article. Finally, we present some125

conclusions in Section VI.126

II. BACKGROUND127

In this section we recall some basic aspects about homoclinic bifurcations and fast-slow dy-128

namics, including a description of fold-hom bursters, one of the mechanisms exhibited by the HR129

model for the creation of bursting orbits. In addition, to facilitate further discussions, the equilib-130

rium points displayed by the full system (1) are explained. In our revision on bifurcations, only131
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Homoclinic organization in the Hindmarsh-Rose model 7

those that play a relevant role in the global organization of dynamics in the HR model are included.132

A. Homoclinic bifurcations133

First, we review some theoretical features regarding homoclinic bifurcations. For additional134

details and references see Ref. 37 or the books Refs. 38 and 39. Essential, but technical references135

are Refs. 40–43.136

Consider a smooth family of vector fields Xµ on R3 with µ ∈ Rk and suppose that there exist137

µ0 ∈ Rk and p0 ∈ R3 such that p0 is a saddle type hyperbolic equilibrium of Xµ0 . Without loss138

of generality we assume that µ0 = 0 and p0 = 0. Let W s(0) (resp. W u(0)) be the stable (resp.139

unstable) invariant manifolds of X0 at 0. Up to time reversal we can assume that dim(W s(0)) = 1.140

To state certain conditions, we will need to use the notions of strong unstable manifold and cen-141

ter stable manifold. Assume that DX0(0) has real eigenvalues λs, λu and λuu with λs < 0 < λu <142

λuu. The strong unstable manifold W uu(0) is a one-dimensional invariant manifold whose tangent143

space at 0 is given by the eigenspace corresponding to the eigenvalue λuu (the so called strong un-144

stable direction). On the other hand, the center stable manifold W cs(0) is a two-dimensional invari-145

ant manifold whose tangent space at 0 is given by the eigenspace corresponding to the eigenvalues146

λu and λs.147

Let Γ0 ⊂W s(0)∩W u(0) be a homoclinic orbit. In the sequel we assume that the family Xµ148

unfolds Γ0 generically. To understand this condition, consider a cross section Σ at a point in Γ0149

and define the distance ∆(µ) between the point W s(pµ)∩Σ and the curve W u(pµ)∩Σ, where pµ150

denotes the saddle type hyperbolic equilibrium of Xµ which exists close to 0 for µ small enough.151

We say that Γ0 is generically unfolded with respect to µ if Dµ∆(0) 6= 0. Under this generic152

assumption, there always exists a hypersurface H in the parameter space such that 0 ∈ H and Xµ153

has a homoclinic orbit asymptotic to pµ for all µ ∈ H.154

There exist four classes of codimension-one homoclinic orbits.155

Case 1: Eigenvalues of DX0(0) are λs, λu and λuu, with λs < 0 < λu < λuu and λs +λu > 0.156

Case 2: Eigenvalues of DX0(0) are λs, λu and λuu, with λs < 0 < λu < λuu and λs + λu < 0.157

Moreover,158

(H1): Γ0 6⊂W uu(0).159

(H2): W cs(0) intersects W u(0) transversally along Γ0.160
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Homoclinic organization in the Hindmarsh-Rose model 8

Case 3: Eigenvalues of DX0(0) are λs < 0 and ρu±ωui, with ρu > 0, ωu 6= 0 and λs +ρu > 0.161

Case 4: Eigenvalues of DX0(0) are λs < 0 and ρu±ωui, with ρu > 0, ωu 6= 0 and λs +ρu < 0.162

Conditions λs +λu 6= 0 and λs +ρu 6= 0 are non-resonance hypothesis. Condition (H1) implies163

that Γ0 is tangent to the weak unstable direction, that is, the direction given by the eigenspace164

associated with the weak unstable eigenvalue λu. Condition (H2) is a “non-inclination” property.165

In Case 1 and Case 3, a single unstable (repelling) periodic orbit is born from the homoclinic166

connection for parameter values on one side of the hypersurface H. In Case 2, a saddle periodic167

orbit emerges from the homoclinic orbit. Its stable manifold is orientable or not, depending on the168

orientability of W u(0). In Case 4, there exist infinitely many saddle type periodic orbits in any169

neighbourhood of the homoclinic orbit. In fact, as argued in Ref. 44, there exist infinitely many170

horseshoes in any neighbourhood of the homoclinic orbit Γ0. When the connection is destroyed,171

finitely many of the horseshoes persist and hence it follows the existence of an infinite number172

of periodic solutions. The appearance or disappearance of horseshoes is accompanied by unfold-173

ings of homoclinic tangencies of saddle-type periodic orbits and hence, strange repellers should174

emerge45. Reader can find more extended explanations about all these bifurcation results in Refs.175

37 and 38.176

Regarding codimension-two homoclinic bifurcations, we only pay attention to the inclination177

flip, orbit flip and Belyakov bifurcations because they are the only cases that we will discuss in the178

context of the Hindmarsh-Rose model. So, we distinguish the cases below.179

Inclination Flip (IF): Assume all conditions in Case 2 except (H2), that is, we assume that the180

intersection between W cs(0) and W u(0) is non-transversal along Γ0.181

Orbit Flip (OF): Assume all conditions in Case 2 except (H1), that is, we assume that Γ0 ⊂182

W uu(0).183

Belyakov Point: Assume that the equilibrium point is a saddle-node with eigenvalues λs and λu184

with λs < 0 < λu. The eigenvalue λu has geometric multiplicity one and algebraic multi-185

plicity two.186

To characterize the different types of inclination and orbit flip bifurcations we need to introduce187

the following ratios between eigenvalues188

α =−λuu

λs
, β =−λu

λs
− (2)
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Homoclinic organization in the Hindmarsh-Rose model 9

Note that α > β .189

Bifurcation diagrams corresponding to IF and OF bifurcation points are quite similar and they190

can be described simultaneously. First, we observe that the hypersurface H of homoclinic bifur-191

cation splits in two regions separated by a manifold of codimension-two homoclinic bifurcations.192

The orientation of the unstable invariant manifold at the equilibrium point reverses when such193

manifold is crossed.194

For either IF or OF bifurcations there are three cases (see Fig. 1):195

Inclination Flip Orbit Flip

Case A β > 1 β > 1

Case B α > 1 and 1
2 < β < 1 β < 1 and α > 1

Case C α < 1 or β < 1
2 α < 1

196

Inclination Flip

A

BC1

C2

1

1/2

1
�

�
A

BC

Orbit Flip

1

1
�

�

FIG. 1. Types of inclination and orbit flips. Values of the ratios α and β are given in (2).

We are only interested in Case C because the other two cases are not detected in our exploration197

of the HR model. Homoclinic flip bifurcations in Case C require additional generic assumptions.198

Namely, for inclination flips we assume:199

(I1) β 6= 1
2α .200

(I2) If β > 1
2α (region C1 in the left panel of Fig. 1), the homoclinic orbit does not lie in the201

unique smooth leading unstable manifold.202

(I3) If β < 1
2α (region C2 in the left panel of Fig. 1), there is a quadratic tangency between203

W cs(0) and W u(0) along the homoclinic orbit.204
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Homoclinic organization in the Hindmarsh-Rose model 10

Remark 2 Regions labelled SN1 (red) and SN2 (white) in the bottom panels shown for each ε205

in Figs. 5 and 6 correspond to saddle-node equilibria where conditions β > 1
2α and β < 1

2α ,206

respectively, are satisfied.207

On the other hand, for orbit flips in Case C we assume:208

(O1) W cs(0) intersects W u(0) transversally along Γ0.209

Hypothesis (I2) (resp. (I3)) makes sense in the region C1 (resp. C2) depicted in Fig. 1. We do not210

extend in details about these two cases because they make no difference in the unfoldings. The211

essential distinction has to do with the way in which the unstable manifold approach the origin212

when it is followed along the homoclinic orbit by the forward flow (see Figure 2 in Ref. 40).213

There are two possible bifurcation diagrams in case C. In both cases, horseshoes exist in a214

region of the parameter space. We remark that chaotic regions have been observed in the HR215

model46 connected with the infinite fans of period doubling and fold bifurcations of periodic orbits216

generated at these codimension-two points. Depending on how they are formed, cases C (in) and217

C (out) are distinguished (see Fig. 2). In both, infinitely many one-sided curves of N-homoclinic218

orbits emerge for each N ≥ 2 from the flip point on the branch of primary homoclinic orbits219

(labelled hom in Fig. 2). These are homoclinic orbits which follow N times the primary one before220

closing up. Also in both cases, the bifurcation diagram exhibits an infinite fan of bifurcation221

curves corresponding to period doublings and folds of periodic orbits. The horseshoe dynamics222

appear in between that cascade and the infinite fans of N-homoclinic orbits. In case C (in), shift223

dynamics and the homoclinic cascade are separated by the curve hom, whereas, in case C (out), the224

homoclinic cascade, the shift dynamics and the fan of bifurcations of periodic orbits are located225

on the same side of the curve hom (see Fig. 2). A complete description of the bifurcation diagrams226

can be found in Refs. 37, 40, and 41.227

Regarding Belyakov bifurcations we remark that the hypersurface H of homoclinic bifurcation228

splits in two regions separated by a manifold of codimension-two homoclinic bifurcations. Saddles229

change from saddle-node type to saddle-focus type when such manifold is crossed. Additional230

generic conditions include global assumptions on the behaviour of the invariant manifolds (see231

Refs. 37 and 43 for a complete description and particularly Figure 14 in the second reference).232

If λs+ρu < 0, a unique unstable limit cycle bifurcates from the homoclinic orbit (see Ref. 43).233

Otherwise, a two-parameter bifurcation diagram is quite similar to those in Fig. 2. Infinitely many234

one-sided curves of N-homoclinic orbits emerge for each N ≥ 2 from the Belyakov point and they235
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Homoclinic organization in the Hindmarsh-Rose model 11

fold

PD
fold

PD

hom(2)
hom

type C (out)
fold

PD
fold

PD

hom(2)

hom

type C (in)

FIG. 2. Theoretical two-parameter unfolding of the codimension-two OF and IF homoclinic bifurcations

of type C (in) and C (out) describing the fans of period doubling and fold bifurcations of periodic orbits.

Bifurcation diagrams for Belyakov bifurcations are similar, but folds and period doublings accumulate

from both sides of the primary homoclinic bifurcation (see details in Ref. 43). A fan of 2-homoclinic orbits

(labelled hom(2)) is also depicted.

are tangent at the flip point to the branch of primary homoclinic orbits corresponding to saddle-236

focus. The bifurcation diagram also exhibits infinite fans of bifurcation curves corresponding to237

period doublings and folds of periodic orbits, but, on the contrary to what is shown in Fig. 2, they238

accumulate on the branch of saddle-focus homoclinic orbits from both sides (see Figure 14 in Ref.239

43).240

Codimension-three homoclinic bifurcations have been studied in Ref. 40. Namely, transitions241

from Case A to Case B and also from Case B to Case C were discussed and conjectural bifurca-242

tion diagrams were provided. See also Ref. 42 regarding the case of the coalescence of resonances243

between eigenvalues with an orbit flip degeneracy. In both references, particular attention is de-244

voted to the existence of homoclinic doubling cascades. Our study of the homoclinic phenomena245

in the HR model focuses on codimension-one and codimension-two bifurcations, but, as expected246

in a three-parameter study, higher codimension configurations do exist. For instance, coalescence247

between IF and Belyakov bifurcations and transitions from C1 to C2 in Fig. 2 (right) are expected248

in the HR model. Nevertheless, although this codimension-three phenomenon has not been pre-249

viously considered in the literature, it is out of the scope of this paper. Despite this, any of the250

scenarios considered in Refs. 40 and 42 have been detected in model, but the bifurcation diagrams251

there proposed should inspire our future analysis of such configurations. These diagrams show252

pencils of codimension-one bifurcations connecting codimension-two bifurcation points. This is253

similar to what is shown in Figure 6 in Ref. 20.254
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Homoclinic organization in the Hindmarsh-Rose model 12

B. Slow-fast dynamics and fold-hom bursters255

Equilibrium points in the full system (1) are given, after substituting the parameter values, by256

the intersection of the plane257

z = 4(x+1.6), (3)

and the curve258  0 = 1−5x2− y,

0 = y− x3 +bx2− z+ I.
(4)

They do not depend on ε , but there can be one, two or three equilibrium points depending259

on the values of parameters b and I. Projections of the plane (3) and the curve (4) on the plane260

(z,x) are illustrated in Figure (4) for b = 2.7 and I = 2.2, see the brown colored straight line and261

the green-red colored Z-shaped curve, respectively. For these parameter values there is a unique262

equilibrium point in the full system (1).263

A detailed discussion about local bifurcations was given in Ref. 26. In particular, the descrip-264

tion provided in Ref. 26 (Figure 3) is similar to the information given at the bottom panels in our265

Figs. 5 and 6. As reference, we use the bottom panel in Fig. 6 for the value ε = 0.08. For parame-266

ters in the purple region there are three equilibrium points. Outside this region (at least in the range267

of parameters under consideration) there is only one equilibrium point that is attracting for param-268

eter values on the green region until it undergoes a Hopf bifurcation (yellow line). The pale blue269

region correspond to saddle-focus (SF) equilibria with stability index 1, that is, equilibria where270

the linear part has eigenvalues λs and ρu±ω , with λs < 0 < ρu and ω 6= 0. The transition from271

the pale blue to the red region means the change from SF to saddle-node (SN) equilibria (with272

stability index 1), that is, equilibria where the linear part has eigenvalues λs, λu and λuu such that273

λs < 0 < λu < λuu, with λs < 0 < λu < λuu. Note that λu = λuu for parameters on the borderline274

between the pale blue and the red regions. This transition is related to the existence of Belyakov275

bifurcations, which were described in the previous subsection. The difference between red and276

white regions – labelled SN1 and SN2, respectively – has to do with conditions on the eigenvalues277

which are used to characterize specific cases of flip bifurcations (see Remark 2). In any case, both278

regions correspond to SN equilibria with stability index 1.279

The Hindmarsh-Rose model is a prototypical example of a fast-slow system. The bifurcation280
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Homoclinic organization in the Hindmarsh-Rose model 13

diagram of the fast subsystem281  ẋ = y− x3 +bx2− z+ I,

ẏ = 1−5x2− y,
(5)

obtained when ε = 0 is crucial to explain the dynamics when ε is small2. It should be remarked282

that each time that we refer to the fast subsystem (5), z is considered as an additional parameter.283

Fixing b and I, the model analysis provides two invariant objects: a curve of equilibrium points,284

with equations given in (4), and a manifold of limit cycles. As illustration, in Fig. 3, we show285

a partial bifurcation diagram of (5) with b = 2.7 and I = 2.2. The Z-shaped curve corresponds286

to equilibrium points: solid green lines correspond to stable equilibria, whereas dashed red lines287

correspond to unstable points. Note that the displayed curve corresponds to the projection of288

the curve with equation (4) on the plane (z,x). Stability along the lower branch is lost at a fold289

bifurcation point. There is also a second fold where the equilibria recover their stability to become290

again unstable when they undergo a Hopf bifurcation. The emerging limit cycles disappear in a291

homoclinic bifurcation to emerge again for lower values of z through an additional homoclinic292

bifurcation. This second family of limit cycles disappears at a Hopf bifurcation point which is not293

displayed in the figure. We also show the maximum and minimum values of the x variable along294

the periodic orbits with solid blue lines. So, in general, we identify two invariant manifolds. On295

the one hand, the fast manifold M f ast , also named spiking manifold, given by the second family296

of attracting limit cycles of the fast subsystem (5) and, on the other side, the slow manifold Mslow,297

formed by the equilibrium points of the fast subsystem (5). It follows from the Fenichel theory that298

for values of z where these manifolds are normally hyperbolic, they perturb to invariant manifolds299

M ε
f ast and M ε

slow which exist for ε small enough in the full system.300

Bursting in the full system emerges because orbits repeatedly switch between M ε
slow and M ε

f ast .301

An example of a bursting orbit with 5 spikes for ε = 0.01 is shown in Fig. 3. Top panel shows302

the bursting orbit projected on the plane (z,x) and superimposed on the picture of the fast-slow303

decomposition. The time series of the x component of the solution is displayed in the bottom304

panel. Note that the active regime begins close to a fold bifurcation of equilibria and finishes305

at a homoclinic bifurcation of limit cycles in the limit case. Due to this reason, following the306

Izhikevich6 classification of bursting types, we say fold/hom bursting (also named square-wave307

bursting) to refer to the case illustrated in Fig. 3. The classification in Ref. 6 is based on the308

fast/slow decomposition (first developed in Ref. 32) of the model. Detailed explanations about the309

previous description of the bursting phenomena in the HR model can be found, for instance, in310
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Homoclinic organization in the Hindmarsh-Rose model 14

z
x

1.2 1.6 2 2.4 2.8 3.2

-2

-1

0

1

2

hom

Fold

Hopf

Mfast

Fold bursting
orbit

Mslow

z=0
.

hom

eq. full system

0 50 100 150 200 250 300 350
-2

0

2

x

time

FIG. 3. Illustration of a slow-fast decomposition in the HR model with b= 2.7 and I = 2.2. Top panel shows

a bifurcation diagram of the fast subsystem (5) when variable z is considered as a bifurcation parameter.

Straight line ż= 0 is also depicted to visualize the equilibrium point that exists for the full system. A periodic

orbit with 5 spikes is superimposed on the fast and slow manifolds. The time series of the x-component of

the solution is shown in the bottom panel.

Refs. 15 and 33.311

In the literature there is a large number of papers devoted to the study of the variation in the312

number of spikes that can be observed when one parameter is changed. Thus, plots similar to those313

of Fig. 4 are obtained (see also, for instance, Fig. 4 of Ref. 34), where the number of spikes in the314

neuronal response increases from two to six as a parameter is varied, and where each spike adding315

transition is characterized by a strong increase in the L2 integral norm of the orbit. By spike-adding316

process we mean any mechanism leading to the formation of extra excursions around the tubular317

invariant manifold M f ast (and therefore the addition of one spike to the bursting orbit).318

In Fig. 4 we use the HR model to exemplify a process of spike-adding. We fix ε = 0.01319

and I = 2.2 and let b vary as the continuation parameter of a periodic orbit. It is clear from the320

picture that a sequence of fold bifurcations (blue dots in the figure) is involved, giving rise to321
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Homoclinic organization in the Hindmarsh-Rose model 15

2.65 2.7 2.75 2.8 2.85 2.9 2.95 3
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L 2 n
or

m

 = 0.01, I = 2.2

fold of limit cycles

2 spikes

3 spikes

4 spikes

5 spikes

6 spikes

1.5 2 2.5
−2

−1

0

1

2

z

x

b = 2.808

1.6 1.8 2 2.2 2.4 2.6
−2

−1

0

1

2

z

x

b = 2.91646

FIG. 4. Example of a spike-adding process in the HR model. A periodic orbit is continued with b varying

when ε = 0.01 and I = 2.2. As b decreases, the change in the L2 integral norm can be seen. The increase in

the number of spikes is illustrated by showing a collection of orbits corresponding to specific positions along

the bifurcation curve. We observe how this type of spike-adding process is associated to fold bifurcations

of periodic orbits. Two coexisting stable periodic orbits are shown in the small plots for two values of b.

hysteresis phenomena and the appearance of bistability regions (in Fig. 4 we show two examples322

of coexisting stable periodic orbits). Although they are not shown, period doubling bifurcations323

may be also present. As shown in Refs. 15, 20, 26, and 27, at least in the case of the HR model,324

all these bifurcations of periodic orbits are related to homoclinic phenomena.325

III. ANALYSIS WITH ε FIXED326

In this section we begin our analysis by describing all the information provided by a selection of327

horizontal slices with the small parameter ε fixed. These selected slices will show us the different328

scenarios that we can find by changing ε , and it will help us later to develop a complete three-329
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Homoclinic organization in the Hindmarsh-Rose model 16

dimensional bifurcation diagram in the parameter space (b, I,ε) shown in next sections. Also,330

these two-parameter plots will show the connection of the spike-adding process with the “far-331

away” codimension-two homoclinic bifurcation points. Recall that the notation hom(n,n+1) was332

already introduced in Section I to refer to codimension-one homoclinic bifurcation curves.333

As a first analysis, Figs. 5 and 6 show the results we have obtained in the plane (b, I) for differ-334

ent values of ε . In total, eight different values of ε are considered and for each value two panels are335

exhibited. The selected values cover all the different possibilities found in the tests. Upper panel336

combines a two-parameter sweep done with the SC technique (that counts the number of spikes337

per burst of the stable periodic orbit) with a parameter continuation of bifurcation curves as in338

Refs. 15 and 27. The lower panel provides information about the number and type of equilibrium339

points in different regions of the parameter plane (see Subsection II B).340

All the ingredients that we need in our description of dynamical and topological changes are341

shown in Figs. 5 and 6. The displayed bifurcations are the following: black lines correspond to342

hom(1,2) bifurcation curves; red lines represent period-doubling bifurcation curves; yellow lines343

stand for Hopf bifurcation curves; red points are Belyakov bifurcation points and green and grey344

points represent, respectively, IF and OF bifurcation points. When displayed all together, the ho-345

moclinic bifurcation curves hom(n,n+1) are not distinguishable because for low values of ε they346

are exponentially close and the largest is hom(1,2), the one shown. Therefore, the IF and Belyakov347

bifurcation points corresponding to different homoclinic curves are superimposed (they are in dif-348

ferent homoclinic curves but at a very small distance). The OF bifurcation points also correspond349

to several homoclinic curves (to be studied later), but they are clearly distinguished. In Fig. 7 we350

provide an alternative schematic view. Taking four representative values of ε , we show separately351

the homoclinic curves hom(1,2), hom(2,3) and hom(11,12) and some connected bifurcations. These352

figures illustrate the changes that can be expected in our global study and that we should explain.353

In each lower panel of Figs. 5 and 6, the parameter plane is partitioned in different regions354

corresponding to different types of equilibrium points. As already explained in Subsection II B355

this classification does not depend on ε . There is either a unique equilibrium point (purple region356

labeled 1EP and only displayed for ε = 0.07 and ε = 0.08) or three equilibrium points (3EP).357

In fact, we only need to pay attention to regions where the unique equilibrium point is a saddle-358

focus (region SF in the plots) or a saddle-node (regions SN1 and SN2 in the plots). Distinction359

between regions SN1 and SN2 has to do with two different cases for IF bifurcations characterized360

in Subsection II A. Namely, if a Case C of IF bifurcation is detected for parameter values on361

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/1.

51
38

91
9



Homoclinic organization in the Hindmarsh-Rose model 17
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FIG. 5. Parametric plane (b, I) for ε = 0.01,0.015,0.018,0.02. In the upper panel, and for each ε , a

SC sweep is overlaid with several bifurcation curves and points. In the lower panel the parameter plane

is partitioned in different regions corresponding to different types of equilibrium points. See the text for

details about the curves and points displayed.
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FIG. 6. Parametric plane (b, I) for ε = 0.03,0.05,0.07,0.08. In the upper panel, and for each ε , a SC sweep

is overlaid with several bifurcation curves and points. In the lower panel the parameter plane is partitioned

in different regions corresponding to different types of equilibrium points. See the text for details about the

curves and points displayed.
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H
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1-

12

IF BelyakovOF homoclinicPD

FIG. 7. Global schemes with the different possibilities on the plane (b, I) when the small parameter ε

changes. The schemes shown correspond to the obtained results from AUTO for particular values of ε .

SN1 (resp. SN2), hence eigenvalues correspond to the region C1 (resp. C2) shown in Fig. 2362

(left). Moreover, eigenvalues at the saddle-node point for parameter values in regions SN1 and363

SN2 correspond to region C in Fig. 2 (right), where the cases for the OF bifurcations are shown.364

In short, all IF and OF bifurcations are in Case C. Lower panels also display the curve hom(1,2)
365

to understand all the different types of homoclinic bifurcations: saddle-focus homoclinic orbits366

along sections contained in region SF and saddle-node homoclinic orbits along sections contained367

in regions SN1 and SN2.368

Several changes can be observed as ε increases. First of all, as we have already noted in Ref. 46,369

there is an evolution in the shape of the homoclinic bifurcation curves. For lower values of ε , the370

homoclinic bifurcation curves have a C-shape, with just one visible fold (as we can see in the371

case ε = 0.01). For intermediate values of ε , the C-shape transforms into a Z-shape, with two372

visible folds (see ε = 0.03). Lastly, for higher values of ε , the homoclinic bifurcation curves have373
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Homoclinic organization in the Hindmarsh-Rose model 20

no visible folds (ε = 0.07). As shown in Refs. 22, 23, 46, and 47, the C-shape is typical of the374

homoclinic bifurcation curves in the fast-slow regime.375

Another apparent change is the disappearance of some codimension-two bifurcations. Regard-376

ing IF points, when ε is small enough (for instance ε = 0.00918) there is only one IF point. When377

ε increases a little (ε ≈ 0.01) there are two IF points. When ε = 0.01 (see Fig. 5) the upper-378

most IF point is superimposed to the Belyakov point. For smaller values of ε , the role of the IF379

point is taken by the Belyakov bifurcation point. Besides, for large values of the small parameter380

(ε ≥ 0.02) there are no IF points. Obviously, these facts need a more detailed analysis provided by381

the three-parameter study done in the next section as one may ask him/herself about codimension-382

three bifurcation points. Regarding OF bifurcation points, for ε = 0.015 (see Fig. 5) we show four383

OF, one for each homoclinic bifurcation curve hom(1,2), hom(2,3), hom(6,7) and hom(11,12) (there384

are more OF points on each curve but we just present one to show a scheme). For ε = 0.03 (see385

Fig. 6) only three OF remain, due to the disappearance of the one on hom(11,12). In fact, the com-386

plete homoclinic curve hom(11,12) disappears, together with the strip corresponding to 11 spikes387

per burst. For ε = 0.05 there are two OF points placed on hom(1,2) and hom(2,3) (more strips have388

disappeared). Finally, for ε = 0.07 no OF have been found (although there are some bands with389

bursting dynamics). Again, all these changes ask for a detailed three-parameter study. Recall that390

attending to the lower panels of Figs. 5 and 6 we can conclude that all OF and IF bifurcations are391

in Case C. This fact implies the birth of an infinite number of fold and period-doubling bifurcation392

curves emerging from these points, as well as infinitely many secondary homoclinic bifurcation393

curves with extra passages close to the equilibrium point (see Fig. 2).394

The bifurcation diagrams on Figs. 5 and 6 also show the disappearance of the Belyakov bi-395

furcation points. As ε increases the distance between the two Belyakov points shrinks until they396

collapse; for ε = 0.08 there are no Belyakov bifurcation points. Lower panels help to understand397

how the Belyakov bifurcation points disappear. As ε increases, the homoclinic bifurcation curve398

has a smaller portion in regions SN1 and SN2. Note that the Belyakov bifurcation points appear399

when the homoclinic bifurcation curve intersects the borderline between regions SN1 and SF.400

As it can be observed in the upper panels of ε = 0.018,0.02,0.03, qualitative changes in the401

period-doubling (PD) bifurcation curves occur for values of ε near to the value for which IF402

bifurcation points disappear (ε ≈ 0.0197). For ε = 0.015 we have plotted just one of the PD403

bifurcation curves emerging from each IF bifurcation point and for each one of the homoclinic404

bifurcation curves (in fact the theory37 regarding IF bifurcation points shows that infinitely many405
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Homoclinic organization in the Hindmarsh-Rose model 21

one-sided PD bifurcation curves emerge, see Fig. 2). A continuation of these curves in the plane406

(b,ε) shows that pairs of PD bifurcation curves are transformed into a single curve that persists for407

higher values of ε . This fact is a direct consequence of the disappearance of IF points where the408

pencils of PD and fold bifurcation curves are born. Therefore, the curves do not have a mechanism409

to finish and so they have to continue connecting both branches. Effects of this type have been410

already reported in the literature in other contexts (e.g. Refs. 48 and 49).411

In order to summarize all the previous results, we show in Fig. 7 the complete global schemes412

with the different possibilities on the parameter plane (b, I) when the parameter ε changes. The413

schemes correspond to the results obtained for particular values of ε , but each bifurcation diagram414

is persistent, that is, it is qualitatively equivalent on any close enough horizontal slice. In the415

figure, we show a table in which each row corresponds to a certain transition from n to n+ 1416

spikes, while each column corresponds to a given value of ε . For each n and for each value of417

ε , we show the corresponding homoclinic bifurcation curve(s), the codimension-two homoclinic418

bifurcation points and some PD bifurcation curves. Colour codes are those used in Figs. 5 and419

6. When two adjacent boxes share the same diagram we mean that the corresponding two cases420

are qualitatively the same. When a certain box appears crossed out, it means that there is no421

homoclinic structure for the corresponding transition in the number of spikes and for the given422

value of ε . This organization allows the reader to have a clear sight of all the different situations423

and to understand how the homoclinic structures vary as ε moves and different number of spikes424

are considered.425

The first row of the table, i.e., the cases associated with 1 spike, has been already discussed.426

As it can be easily observed, the main difference between the case n = 1 (change from 1 to 2427

spikes) and the other cases is that in the latter cases there is no longer a unique homoclinic curve428

for all values of ε , but two homoclinic curves exist for low values (this is the first time this fact429

is observed in the HR model). Secondly, it is also important to note that the number and the430

type of codimension-two bifurcation points vary significantly with n. In the case n = 2, for all431

the values of ε the codimension-two points present a similar situation to their analogues of 1−2432

spikes. However, in the case n = 11 some of the codimension-two points that appear in the former433

cases do not exist (see for example the Belyakov points for ε = 0.00918 and 0.015). Lastly, the434

case n = 11 reveals that the persistence of the homoclinic structure as ε increases depends on the435

number of spikes to which it is associated (see the fourth column, corresponding to ε = 0.08).436

This fact suggests the existence of a mechanism of disappearance of the global structures for large437
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Homoclinic organization in the Hindmarsh-Rose model 22

number of spikes when ε grows. All these numerical findings and hypothesis underlying these438

differences will be discussed in the next sections.439

Note that all the previous discussions make clear that when dealing with fast-slow systems the440

understanding of the mechanisms of creation and destruction of spikes requires studies in spaces441

of parameters which include the “small parameters”. It is essential to have a global view of the442

bifurcations and next sections will stress the relevance of this goal.443

IV. GLOBAL ANALYSIS CHANGING ε444

As shown in the previous section, a higher dimensional analysis is needed in the parameter445

space in order to explain the changes in the bifurcation diagrams observed in planes (b, I). In446

this section we will discuss the three-dimensional structures associated to the different homoclinic447

bifurcation curves we have observed.448

In Figs. 8, 9 and 10 we provide bifurcation diagrams in the three-parameter space (b, I,ε).449

Codimension-one homoclinic bifurcations are shown in black, Belyakov bifurcations in magenta,450

IF bifurcations in green and OF bifurcations in grey, as in previous pictures of this article. We have451

calculated curves of codimension-one homoclinic bifurcations with a step of 0.001 in the param-452

eter ε using AUTO software, in order to visualize surfaces. For each case, the three-dimensional453

diagram is shown, as well as projections in the planes (b, I) and (I,ε). These representations allow454

us to understand the mechanisms of appearance or disappearance of the different codimension-two455

bifurcation curves. It must be remarked that we have found difficulties for the continuation of OF456

bifurcation curves with AUTO in the HR model. For that reason, the continuation of OF curves457

is only partial in Figs. 8 and 9. In the parametric zones where we have been able to obtain the458

OF points we provide an interpolated curve in grey color. We conjecture, taking into account the459

points already calculated and the rest of bifurcation curves, that the full OF bifurcation curve in460

these two cases will be similar in shape to the IF curve. They will show a fold for large ε values,461

and for ε ↘ 0 they can continue or they can end in either a codimension-three point (such as the462

IF curve in Fig. 8) or at one turning point of the homoclinic codimension one curves when they463

have two components (such as the IF curve in Figs. 9 and 10 and the OF curve in Fig. 10). In any464

case, the numerical results show us a complete picture of the global dynamics of the system.465

Looking at the first two cases in Fig. 5, we observe how a IF bifurcation point appears close to466

the upper Belyakov point. If we observe now Fig. 8, we clearly see that it seems that the IF and467
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b

I

1-2 Homoclinic

I

I

(a)
Belyakov
OF (incomplete)
IF
homoclinics

cod-3 point

b(c)

(b)

FIG. 8. (a) Three-parameter plot (b, I,ε) for the hom(1,2) homoclinic case; (b) and (c) plane projections.

Homoclinic bifurcations of codimension-one and two are shown. The OF bifurcation curve in grey is only

part of the complete curve.

Belyakov bifurcation curves collide at the numerically obtained parameter values:468

ε ≈ 0.009189, b≈ 3.102, I ≈ 4.713.

This “collision” would give rise to a codimension-three point that it is not studied in literature,469

but it is out of the scope of this article. Besides, it is clear that, in the case hom(1,2) (Fig. 8), the470

Belyakov bifurcation points and also the IF bifurcation points disappear due to a folding of the471

bifurcation curve with respect to ε (the maxima we can observe in the 3D plots) of their corre-472

sponding bifurcation curves in the three-dimensional parameter space. Specifically, the Belyakov473

bifurcation curve has its folding point at ε ≈ 0.0748 and the IF bifurcation curve at ε ≈ 0.0197.474
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1.5 2 2.5 3 3.5

2.5

3

3.5

4

4.5

5

b

I

2-3 Homoclinic

I

I

b

)b()a(

(c)

Belyakov
OF (incomplete)
IF
homoclinics

FIG. 9. (a) Three-parameter plot (b, I,ε) for the hom(2,3) homoclinic case; (b) and (c) plane projections.

Homoclinic bifurcations of codimension-one and two are shown. The OF bifurcation curve in grey is only

part of the complete curve.

In the case of hom(2,3) (Fig. 9), the Belyakov bifurcation curve presents a similar behaviour to the475

hom(1,2) case. However, there is a very important difference in the way the IF bifurcation curve476

disappears. Note that curves forming the surface hom(2,3) have two disconnected components for477

(fixed) low values of ε . In addition, the system ceases to exhibit homoclinic connections in one478

of the regions in the parameter space where the geometry of the flow is the appropriate for the479

formation of IF bifurcations. This situation appears again in all the codimension-two curves in the480

case of hom(11,12) (Fig. 10). Therefore, we can observe a clear difference between hom(1,2) and all481

the other cases. This change in the topology of the homoclinic surfaces will be explained in more482

detail in Section V.483
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I

b

b

I

11-12 Homoclinic(a)

Belyakov
OF
IF
homoclinics

I

I

b(c)

(b)

FIG. 10. (a) Three-parameter plot (b, I,ε) for the hom(11,12) homoclinic case; (b) and (c) plane projections.

Homoclinic bifurcations of codimension-one and two are shown.

There is also another remarkable difference regarding the values of the small parameter for484

which each homoclinic surface disappears. In the cases hom(1,2) and hom(2,3) it can be seen that485

the homoclinic curves clearly persist for all the values of ε we have studied, namely up to ε = 0.08.486

Note that for larger values we cannot consider the system as a fast-slow one. However, in the487

case hom(11,12) the homoclinic surface has disappeared at ε ≈ 0.038. Using the SC technique we488

discover band structures in the parameter planes with ε fixed, as shown in Figs. 5 and 6. Each489

band is associated to a given number of spikes per burst. The spike-adding process in fold/hom490

bursters was connected recently25,50 with saddle-type canards51,52. Besides, the necessary fold491

bifurcations of periodic orbits of the spike-adding process for hold/hom bursters were also recently492

connected with codimension-two homoclinic bifurcation points, and also the homoclinic orbits493
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Homoclinic organization in the Hindmarsh-Rose model 26

experiment a canard phenomena on one turning point of the homoclinic bifurcation curves15,27.494

Our numerical findings also support this idea, as they show clearly that the disappearance of a495

band corresponding to n spikes is linked to the disappearance of the corresponding homoclinic496

curves (surfaces) hom(n,n+1) . This is a quite important consequence of the three-parameter plots,497

as they explain the simplifications that are observed in the band structure of the fold/hom regime498

as ε increases, giving rise to burst phenomena with a small number of spikes (see in Figs. 5 and 6499

how the number of color stripes decreases when ε grows).500

All the above mentioned features, together with the SC sweeps, suggest that the bigger the501

number n of spikes is, the smaller is the value of ε for which the corresponding homoclinic curve502

vanishes. Moreover, the numerical results show that the different homoclinic curves are stacked in503

a certain direction, being hom(1,2) the first one, providing an upper bound for “length and shape”.504

The other homoclinic surfaces are disposed, exponentially close each other, as slabs in increasing505

order with respect to number of spikes per burst, but decreasing their size.506

We have checked that Belyakov and IF bifurcation curves of different number of spikes overlap507

with each other in all the points in the (b, I,ε) where they coexist (they are exponentially close each508

other, like the homoclinic bifurcation surfaces). One can understand that the magenta (Belyakov)509

and green (IF) curves are placed in fixed location in all the diagrams due to the requirements for510

their existence, and the existence or not of bifurcation points for some of the ε values depends if the511

corresponding homoclinic bifurcation curves (black curves) cut them. However, OF bifurcation512

curves corresponding to different number of spikes do not coincide with each other, and in fact513

they are quite far. This behaviour is consistent with the role of OF bifurcation points in the spike-514

adding process as stated in Refs. 15, 20, and 27.515

What remains in the numerical tests is to reveal what is the aspect of the homoclinic surface in516

all cases, that is, if it is just a one leave surface or it has folds and it is a two (or more) leaves surface.517

This is in fact a relevant question as it will give the global structure of the homoclinic leaves. We518

are going to show the structure of isolas displayed by the different homoclinic bifurcation curves,519

once the parameter ε is fixed. We do not pay much attention to explain the transitions from n to520

n+ 1 spikes on a given curve or surface (for details of this process see Refs. 27 and 31) on both521

sharp folds of the isolas. Isolas are isolated closed curves of solution branches, hence the curve is522

homotopic to a circle. In literature there are several examples of isolas of equilibria53,54 or limit523

cycles55–57. Computing many isolas is tedious and requires an adequate strategy. For instance, in524

Ref. 53, the authors develop a strategy for locating families of isolas of equilibria. In this article525
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FIG. 11. Codimension-one homoclinic isolas in the parameter plane (b, I) for the surface hom(2,3). Sections

ε = 0.03 (A) and ε = 0.07 (B) are shown. On both cases several xz projections of two homoclinic orbits on

the curve for fixed values of either I or b parameter are displayed. In the case ε = 0.03 the black-and-white

portion denotes where the AUTO software is not able to connect one side of the isola. Displayed on panel

C we observe magnifications of the sharp fold located on the left side of the isola, but on a plane (b,‖ · ‖2).

we focus on the detection of isolas of homoclinic orbits (see also Ref. 58) in the parameter space.526

By performing sections on the surface hom(2,3) and using AUTO, with a large number of points527

and steps to guarantee some numerical precision in the computations, we have obtained the results528

given in Fig. 11. The pictures show codimension-one homoclinic isolas in the parameter plane529

(b, I) for ε = 0.03 (panel A) and ε = 0.07 (panel B). In the case ε = 0.03 the AUTO software is530
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Homoclinic organization in the Hindmarsh-Rose model 28

not able to connect one side of the isola and adjusting different parameters of the software just531

slight increments in the length of the bifurcation curve is obtained (the black-and-white portion of532

the homoclinic curve denotes where the AUTO software stops the computation in one side). On533

the other hand, for higher values ε , like ε = 0.07 shown on panel B, the software is able to connect534

both sides of the isola giving a close curve. On both cases several xz projections of two homoclinic535

orbits on the curve for fixed values of either I or b are displayed. The study of what happens at the536

right sharp fold of the homoclinic curve is explained in detail in Fig. 6 of Ref. 27 (this corresponds537

with the subplot –1– of the case ε = 0.03), but the complete evolution along the isola is not given538

in that article. For ε = 0.03, the passage through the milder visible folds (compared with the sharp539

U-turns of both extremes of the isolas) of the homoclinic curve exhibit no bifurcations as the plots540

xz along the isola show (–3– to –4–, and –5– to –6–). It is important to remark that taking the541

homoclinic orbits close to the values of the parameter where the continuation software stops for542

ε = 0.03, subplots –2– and –4–, the different orbits show exactly the same behaviour, with just543

small modifications (as it also shows the intermediate subplot –3– for one side). Therefore, it544

is perfectly logical to conjecture in this case that both sides of the curve are connected giving an545

isola, even more taking into account the results for ε = 0.07 where the isola is fully obtained. Note546

that in Ref. 27 the homoclinic isolas and the homoclinic organization were not detected as their547

main interest was the spike-adding and canard process of the homoclinic orbits on the lower-right548

sharp fold of the homoclinic bifurcation curve for ε fixed. In Panel C (Fig. 11) we show two549

magnifications of the lower sharp fold of the isola for ε = 0.07. In these zooms, instead of plotting550

on the parametric plane (b, I), we use the plane with b and the AUTO norm L2 to get a clearer551

image of the fold, showing two curves, and thus it illustrates one extreme of the isola.552

stluser laciremuNstluser laciremuN

Partial numerical results

Option 1:    Homoclinic ISOLA
Option 2:    Homoclinic ISOLA + Cod-2 bifurcations

“small’’

FIG. 12. Theoretical scheme of the codimension-one homoclinic isolas for ε fixed.
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Homoclinic organization in the Hindmarsh-Rose model 29

In any case, the numerics only can give strong evidences of the existence of the isola. This553

fact is shown in the theoretical scheme shown in Fig. 12. The black curve is our conjectured isola554

(based in our numerical results), but, as the observed phenomena is on a small distance in the555

parameter space (the isola is very “thin”, with a width about 10−8) other options can be possible,556

like the existence of foldings in both sides but also some extra homoclinic codimension-two points,557

that is, two connected isolas, that are able to give rise to the folds (one option can be the dotted558

curve in Fig. 12). In any case, all of our numerical results show that it seems that we really have559

isolas, that is, the topological structure of the black curve in Fig. 12.560

primary homoclinic curve
(homoclinic isola)

secondary homoclinic curves
(conjecture)“small’’

cod-2 bifurcation points
(type C-in)

(a)

(n+1) spikes

n spikes

(n+1) spikes

n spikes

primary homoclinic curve
(homoclinic isola)

secondary homoclinic curves
(conjecture) “small’’

(b)

(n+1) spikes

n spikes

(n+1) spikes

n spikes

FIG. 13. Conjectured theoretical scheme of the codimension-one secondary homoclinic bifurcation curves

for ε fixed for cases with an (a) even or (b) odd number of pairs of codimension-two points.

If one looks at the theoretical unfolding of the OF, IF codimension-two points shown in Fig. 2561

there is a infinite fan of secondary codimension-one homoclinic bifurcation curves. None of the562

numerical simulations on the system (our studies in this article and on Refs. 15, 20, and 46, and563

on the Refs. 26 and 27 of other authors) show any of these bifurcations and any dynamical effect564

that can be related to them. This fact allows us (as also done in Ref. 27) to conjecture that the565

secondary homoclinics are inside the very thin homoclinic isola, and therefore it is not computa-566

tionally possible to observe any of them. With these elements we propose in Fig. 13 a theoretical567

scheme of the secondary homoclinic bifurcation curves and their connections (in a similar way as568

in Ref. 40) in the cases of having an even or odd number of pairs of codimension-two points.569

As already remarked, it is apparent that there is an overlap between the different hom(n,n+1)
570

bifurcation curves (in fact they are exponentially close to each other as commented above), except571

for the higher values of ε where a slight separation can be observed. This separation of the curves572

occurs progressively as ε increases, and it can be appreciated for ε > 0.07. In Fig. 14 we show573

superimposed the three homoclinic isolas hom(1,2), hom(2,3) and hom(11,12) for ε = 0.036 and574

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/1.

51
38

91
9



Homoclinic organization in the Hindmarsh-Rose model 30

1 1.5 2 2.5
b

3.5

4

4.5

5

I

 = 0.078

2.2 2.4 2.6 2.8
b

2.5

3

3.5

4

4.5

5

I

 = 0.036

hom 1-2
hom 2-3
hom 11-12

hom 1-2
hom 2-3

2.1 2.12 2.14 2.16
5.2

5.22

5.24

5.26

� �

FIG. 14. Homoclinic isolas hom(1,2), hom(2,3) and hom(11,12) for ε = 0.036 and ε = 0.07 showing their

relative position.

ε = 0.07 to show that the isolas are outside one each other but exponentially close.575

V. THEORETICAL SCHEME: THE HOMOCLINIC “MILLE-FEUILLE”576

In Section IV we have explored the three-dimensional parameter space of the HR model con-577

sidering in detail the homoclinic structure. What it remains is to provide a complete theoretical578

scheme that connects all the basic ingredients of the spike-adding process in fold/hom bursters.579

That is, on one hand we have that in the parameter-space the system experiments the spike-adding580

process far from the homoclinic bifurcations. On the other hand, the spike-adding process requires581

of two fold bifurcations to give rise a hysteresis phenomena and canards on one side to generate582

the extra spike (see Refs. 20, 25, and 50). But where are generated these fold bifurcation points?583

These points form bifurcation curves that are born at codimension-two bifurcation points located584

on the “far-away” homoclinic bifurcation lines. All the bifurcation lines, in fact pencils of fold and585

PD bifurcation lines, are born, like the “pages-of-a-book” at the OF and IF points of the hom(n,n+1)
586

curves as shown in Figs. 5 and 6 and in Refs. 15 and 27. But there is no reference on the literature587

(up to our knowledge) where it is explained globally in the parameter-space why we have more588

spike-adding phenomena as ε → 0.589

The numerical findings shown in previous sections permit us to establish a global theoretical590

scheme to describe the whole picture (see Figs. 15, 16 and 17). First, in Fig. 15 we show the591

different homoclinic surfaces. All of them are composed of one or two tubular structures. As the592
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0

b I

1-2 hom 2-3 hom

 scheme
(0-fold)

. . .
1-2 hom

2-3 hom
n-(n+1) hom

 intermediate scheme
(2-fold, “z-shape”)

  THEORETICAL 
ORGANIZATION 
        OF THE
   HOMOCLINIC 
   BIFURCATION 
      SURFACES

     HOMOCLINIC 
   “MILLE-FEUILLE” 

...

1-2 hom
2-3 hom

n-(n+1) hom

1-2 hom
2-3 hom

n-(n+1) hom
..

 generic scheme
(1-fold, “c-shape”)

FIG. 15. Homoclinic “mille-feuille” organization in fold/hom bursters.Th
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one primary homoclinic surface + “spines-of-a-book” attached

2.4 2.6 2.8 3 3.2
2

2.5

3

3.5

 

 

2.4
2.6

2.8
3

3.2

2

2.5

3

3.5

0.01

0.02

0.03

0.04

0.05

 

 

= 0.01

= 0.03= 0.05

I
b

I

b

THEORETICAL SCHEME

PARTIAL NUMERICAL SCHEME

hom

fold
PD

OF

(B)

(A)

(C)

FIG. 16. Theoretical and numerical illustration of the “spines-of-a-book” structure on the hom(1,2) ho-

moclinic surface. Each of the curves of codimension-two homoclinic bifurcations is identified with the

“spine-of-a-book” gathering “pages” of fold bifurcations, period-doubling (PD) bifurcations and also (not

showed) secondary homoclinic bifurcations. Panel A shows this theoretical model in the case of a “spine”

of orbit flip (OF) points. Panels B and C show numerical results illustrating typical “pages” of one of these

“books”. Namely, panel B shows numerical slices of a “book” projected on the (b, I) plane. A three dimen-

sional view is given in Panel C. Attached to each “spine” we see two “pages” of fold bifurcation and one

“page” of period-doubling.

number of spikes of the homoclinic orbit grows we distinguish three types, either a tubular surface593

(hom(1,2)), or two tubular surfaces connected (hom(2,3), . . . ,hom(k,k+1)) or, finally, surfaces that594

disappear when ε grows (hom(k+1,k+2), . . .). Note that Figs. 8, 9 and 10 also illustrate numerically595

each one of these three types of surfaces. In the scheme, the different homoclinic surfaces are596

clearly separated one from each other, but in the real parameter space they are extremely close597
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Homoclinic organization in the Hindmarsh-Rose model 33

when ε is small, being organized in shape and size by the hom(1,2) surface. When ε is large the598

separation becomes evident, showing that, indeed, these homoclinic surfaces have no contact point599

when ε > 0 (see Fig. 14).600

If we take a section fixing the value of ε we find three different situations, already partially601

described in Ref. 46, depending on the value of ε . When ε is large (O(1)), the slices just show a602

few homoclinic isolas corresponding to a small number of spikes and without visible folds. For603

intermediate values of ε , the isola corresponding to hom(1,2) have Z-shape with two visible folds.604

The other isolas complete a Z-shape, or not, depending on their length. Finally, for small ε ,605

that is, in the generic situation when we are concerned with fast-slow systems, the principal isola606

for hom(1,2) has a C-shape with one visible fold. The curves corresponding to hom(n,n+1), with607

n≥ 2, split into two isolas also disposed in such a way that they are adapted to the C-shape of the608

principal isola. In this case all the homoclinic curves have two components (isolas) but the first609

one hom(1,2), and all of them have folds with branches exponentially close each other.610

Due to the fact that, from a certain point of view, homoclinic surfaces are piled up one upon611

another, we refer to this conjectured global theoretical structure as the fold/hom homoclinic “mille-612

feuille” organization. Note that for ε fixed we have a finite number of homoclinic curves, but the613

number of them grows as ε decreases25,33.614

Codimension-one homoclinic bifurcations that form each surface hom(n,n+1) must be under-615

stood as primary bifurcations. These surfaces contain curves of codimension-two homoclinic616

bifurcation: IF, OF and Belyakov points. Emerging from these curves there exist surfaces of bi-617

furcation of periodic orbits: PD or folds, some of them involved in the spike-adding process. Also618

attached to these curves there are surfaces of secondary homoclinic bifurcations arising in the in-619

ner side of the surface, that is, separated from the surfaces of bifurcation of periodic orbits by the620

surface of primary homoclinic bifurcations (see case C(in) in Fig. 2). Note that this scenario is621

covered by the classical unfolding theory of codimension-two homoclinic bifurcations37,38. We re-622

mark that these unfoldings have to be “glued” to the homoclinic surfaces given by the “homoclinic623

mille-feuille”. Fig. 16 illustrates the described scenario. Each of these curves of codimension-624

two bifurcations behaves as the “spine-of-a-book” located on the homoclinic surfaces (like the625

“bookselves” of a “bookcase”) whose “pages” consist of surfaces of bifurcations of periodic or-626

bits and secondary homoclinic bifurcations. The plot 16.A provides the theoretical scheme of a627

homoclinic surface with the curve of codimension-two bifurcation points that form the “spine-628

of-a-book” structure creating the pencils of surfaces of fold and PD bifurcations. On plots 16.B629
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fold

PD
fold

PD

hom(2)

hom

“spines-of-a book”

primary homoclinic curve

OF,IF

OF,IF

(homoclinic isola)

“mille-feuille” + “spines-of-a book” 

d    1<< ...

1-2 hom

1-2 hom
2-3 hom

n-(n+1) hom
..

 generic scheme
(1-fold, “c-shape”)

cod-2 bifurcation points

pencils of PD and 
fold bifurcation curves

(B)

)C()A(

(D)

FIG. 17. Complete “mille-feuille” and “spines-of-a-book” theoretical structure. In Panel A we recall the

unfolding of the bifurcation diagram associated to a OF bifurcation: there are pencils of PD and fold bifurca-

tion of periodic orbits and also a pencil of secondary homoclinic bifurcations. In Panel B we see how these

pencils are attached along a primary homoclinic curve. The isola has an exponentially small width d. Panel

C illustrates a collection of isolas for a small value of ε . Finally, a three dimensional scheme is provided

in Panel D. We see three “bookshelves” (homoclinic surfaces) and with some “books” (codimension-two

points and the bifurcations generated) on them.
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Homoclinic organization in the Hindmarsh-Rose model 35

and 16.C we show some numerical results illustrating such a theoretical scheme. The plot 16.B630

presents a projection of the homoclinic structure for three values of ε . And on the plot 16.C we631

see the global three-parametric view illustrating the theoretical scheme proposed in 16.A.632

Finally, Fig. 17 illustrates the complete “mille-feuille” organization together with the “books”633

of bifurcation of periodic orbits. Now we can identify each layer of the “mille-feuille” with a634

“bookshelf ” keeping as many “books” as “spines” of codimension-two homoclinic bifurcations it635

contains. So, we have a complete “bookcase” of bifurcations of periodic orbits. Moreover, we636

must notice that each surface in the “mille-feuille” has their own collection of “spines”, that is,637

their own collection of “books”. This figure gives an idea of how much entangled the bifurcations638

involved in the spike-adding process is. As illustrated in Fig. 17 (Panel B), there are “pages” of639

the “books” involved in the spike-adding process. We remark that the Fig. 17 provides a complete640

theoretical explanation of all the numerical findings obtained in this article (and in the literature).641

Our conjectured theoretical structure permits to link the global three-parametric structure (the642

homoclinic surfaces) with the spike-adding phenomena that can be observed on parameter regions643

that are quite far from the homoclinic curves. In addition, if we use another set of parameters,644

we can also observe the fold/hom spike-adding processes, even without homoclinic bifurcations in645

the entire parametric plane. This is easily explained from the Fig. 15, as if our parameters do not646

cut the homoclinic surface we cannot observe the homoclinic orbits themselves. But what remains647

are the fold and PD surfaces generated on the codimension-two points attached to the homoclinic648

surfaces, as shown in Figs. 16 and 17. Following with the “bookcase” analogy, this will be the case649

if we have “books” wider than the “bookshelves”, and we observe it without seeing the bookcase.650

Obviously, our theoretical scheme is necessary a partial one, as other bifurcations and phenom-651

ena may be present on the complete global picture, but it englobes all the current numerical and652

theoretical analysis in literature. This article provides new insights on the spike-adding process653

and the global parametric study of the Hindmarsh-Rose model. We hope that it may be applied to654

other fold/hom bursters, and this is part of our future work.655

VI. CONCLUSIONS656

In this article we have presented a three-parameter study of homoclinic bifurcations in the657

canonical Hindmarsh-Rose neuron model when it evolves in the fold/hom bursting regime. We658

have introduced a new structure, the homoclinic “mille-feuille” connected with the fold/hom spike-659
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Homoclinic organization in the Hindmarsh-Rose model 36

adding process. Fold/hom bursting is found in numerous fast-slow models, and we expect that660

most of the findings of this article will be present in many similar problems. Exploration of other661

fold/hom bursters is a goal for our future work, but a preliminary study, as well as the theoretical662

scheme of the spike-adding process was introduced in Ref. 20.663

Our numerical analysis using different techniques allows us to conjecture the global theoret-664

ical homoclinic organization. There exists a “mille-feuille” structure of tubular-like homoclinic665

surfaces. Each of them corresponds to a transition where the homoclinic orbit increases the num-666

ber of spikes by one, that is, taking the appropriate paths of parameters, one could observe in the667

phase-space how the orbits pass from n to n+1 spikes for certain n. Moreover, as ε increases, the668

disappearance of a homoclinic surface associated to the transitions from n to n+ 1 spikes means669

the “de facto” disappearance in the surroundings of the band of periodic orbits with n+1 spikes.670

This structure provides a theoretical explanation of why there is not a regular fold/hom bursting671

regime with a large number of spikes when the small parameter grows. Moreover, due to the tubu-672

lar structures, an analysis for fixed values of the small parameter gives rise to the appearance of673

isolas of homoclinic bifurcation points.674

Note that previous relevant studies in literature15,26,27 focus their attention on the spike-adding675

and canard process of the homoclinic orbits on the lower-right sharp fold of the homoclinic bifur-676

cation curve for ε fixed. The other sharp fold, the isolas and also the complete bifurcation scheme677

where not identified and studied.678

Located on each homoclinic surface we find curves of codimension-two homoclinic bifurca-679

tion. These curves act as the organizing centers for the framework of fold and period doubling680

bifurcations of periodic orbits which is behind one of the main spike-adding mechanisms. The681

discovering of the global structure of orbit-flip, inclination-flip and Belyakov bifurcations is one682

of our main motivations. Homoclinic surfaces can be compared with “bookshelves” where the683

“books” of bifurcation of periodic orbits are kept. Hence, curves of codimension-two homoclinic684

bifurcations can be compared with the “spines-of-a-book”.685

The global structure (homoclinic “mille-feuille” + “spines-of-a-book”) which is revealed in the686

three parameter space is a motivation for further study of higher codimension bifurcation points687

which appear on the homoclinic bifurcation surfaces. In fact, the global structure we have uncov-688

ered gives clues about part of the bifurcations which should be expected when dealing with such689

bifurcation points (and their connections, in a similar way as some codimension-three phenomena690

provides a global theoretical picture in Ref. 40). These relevant open problems are out of the scope691
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of this article but they are part of our current research.692
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