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function with values in the interval [p~,pT] C (1,2), and I(u) = lu(z, )| dz,

1. Introduction

In the present work, we study the homogeneous Dirichlet problem

up — div (|vu|P[“]*2vu) —f inQr,
u=0on 92 x (0,T), (L.1)
u(x,0) = up in {2,

where Q7 = 2 x (0,T], 2 C R? d > 2, is a bounded domain with the boundary 2. The exponent of
nonlinearity p(s) is a given function, p : R — [p~,pT] C (1,2), pt = const. In Eq. (1.1), the argument of
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p(+) is the functional
I(v) =/ lo(z,t)|“de : L0, T; L*(2)) = R,  ac[1,2]. (1.2)
Q

To indicate the nonlocal dependence of the exponent p on the function u(z,t) we use the notation plu] =
p(l(u)). We prove that problem (1.1) has a unique strong solution, global or local in time, and show that
every strong solution vanishes in finite time.

The special form of the functional I(u) in (1.2) is chosen for convenience of presentation, the results easily
extend to a wider class of functionals. For example, all the results remain true if [(u) is a functional over
L(2),

l(u) = / g(z)u(zx,t) dz, with some g € La/(()), a€l,2].
Q

1.1. Motivation and previous work

The mathematical modelling of many real-life processes leads to systems of nonlinear equations whose
structure may depend on certain components of the sought solution. For example, the stationary thermo-
convective flow of a non-Newtonian fluid is described by the following system for the velocity v(z), the
pressure p(x) and the temperature 0(x), [1],

{ (v-V)b(0) — A0 =g, dive =0 in {2,
(v- V) — div(u(9) + 7(0)[S ()" S (v)) + Vp = f,

endowed with the boundary conditions for v, p and . Here 2 C R? is a bounded domain, g, f are given
functions, b, u, 7 and ¢ are given functions of 8, and S(v) is the deformation rate tensor. Another example
is the model of the thermistor, [2,3],

—div(|[Vul" 2V =g, —A0 = A|[Vu|"?, (1.3)

where u is the electric potential and 6 in the temperature in a conductor in the presence of Joule heating, or
the models of electro-rheological fluids in which the character of nonlinearity in the governing Navier—Stokes
equations varies according to the applied electromagnetic field [4].

Formally, each of these models can be regarded as a nonlinear equation, or a system of equations, whose
nonlinearity depends on the sought solution. For instance, if the equation for 6 in (1.3) has a solution for
every given u, this dependence defines the nonlocal operator, § = 6(u), and the first equation reads

—div(|Vu|"™ V) =g, z e, (1.4)

where the exponent has the form ofu] = o(0(u)).

Functionals with the growth condition depending on the solution or its gradient are successfully used
for denoising of digital images — see, e.g., [5—7] for the models based on minimization of functionals with
p(|]Vu|)-growth and [8] for a discussion of the model of denoising of the image f based on the minimization
of the functional

Al = wllzzqg) + /Q (@I V- @)1 + az(w)|Vu- ¢ (w)*") da,

where py (u), p2(u) € [1,2], (£(u), £+ (u)) is an orthonormal coordinate system such that &(u) is approximately
parallel to Vu, wherever Vu # 0.

To the best of our knowledge, the equations involving the p[u]-Laplace operators were studied thus far
only in papers [9,10]. Both papers address elliptic equations of the structure (1.4) and consider the cases of
local and nonlocal dependence of o on u, but their approach to the problem is different.
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Paper [9] deals with the equation
b(u) — diva(z,u, Vu) = f. (1.5)

In this equation b : R — R is a nondecreasing function, b(0) = 0, and a(z, z, £) is a strictly monotone operator
of Leray—Lions type which satisfies the growth and coercivity conditions with the variable exponent p(z,u)
such that p(z,u) € [p~,pT] C (1,00), p*
A challenging feature of the equations that involve plu]-Laplacian is that they cannot be interpreted as a

= const. This class of equations includes (1.4) as a partial case.

duality relation in a fixed Banach space. For this reason, the authors of [9] reduce the study to the L!-setting
and use the Young measures to obtain a solution of the degenerate equation of the type (1.5) as the limit
of a sequence {u,} of solutions of the regularized equations with p,(z) and pT-Laplacian operators. The
authors of [10] take another direction and overcome this difficulty adapting the idea of [11] about passing
to the limit in a sequence {|Vvk(sc)\q’“($)}. The results of [9] and [10] are obtained under the assumption

p~ = minp > d, which yields compactness of the sequence of solutions of the regularized problems in a space
of Holder-continuous functions. Besides equations (1.4), (1.5) with the exponent p[u] = (p o w)(z) defined
as a composite function on {2, the authors of [9,10] consider the case of nonlocal dependence of p on the
solution u and discuss the question of uniqueness.

The nonlocal evolution equations are widely used in modelling of various processes in physics and biology
and are intensively studied, see, e.g., [12-16] and references therein. Eq. (1.1) with & = 1 can be regarded
as the diffusion equation for the concentration u(z,t), with the diffusion flux |Vul|” =274 which depends
on the total mass m(t) = [,u(z,t)dz at the instant ¢, or the inverse of the specific volume m(t)/|£2|,
[2| = meas (2.

2. Assumption and results
2.1. The function spaces

For convenience of the reader, we collect here the basic facts on the Lebesgue and Sobolev with variable
exponents. For a detailed presentation of the theory of these spaces we refer to the monograph [17], see also
[18, Ch. 1].

Let 2 ¢ R? be a bounded domain with the Lipschitz-continuous boundary 9f2. Given a measurable
function p(z) : 2~ [p~,p*] C (1,00), p™ = const, the set

LPO(Q) = {f : 2+ R: fis measurable on (2, / IFIP™) da < oo}
o

equipped with the Luxemburg norm

p(x)
1y =inf{a>0: / de < 1
(]

becomes a Banach space. The relation between the modular [ olf P @) gz and the norm follows from the

f

«

definition:

. - )+ x - +
min (|| £12,, 1) < /Q P de < max (1120, I (2.1)

In case of p(-) = const > 1 these inequalities transform into equalities. For all f € LP()(2), g € Lp/(')(Q)
with
p(z)

p(x) € (1,00), p'(w) = p(z) -1

Please cite this article as: S. Antontsev and S. Shmarev, On a class of nonlocal evolution equations with the p[u(z, t)]-Laplace operator, Nonlinear
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the generalized Holder inequality holds:

1 1
LUMMS<VA(MermﬂMQQSMWMQgﬂy (2:2)

If p(x) is measurable and 1 < p~ < p(x) < pt < 0o in £, then LPO) (1) is a reflexive and separable Banach
space, and C§°(£2) is dense in LP)(02).

Let pi(z),pa(x) be measurable on {2 functions such that p;(z) € [p;,pf] C (1,00) a.e. in 0. If
p1(x) > pa(z) a.e. in 2, then the inclusion LP1C)(02) C LP2()(£2) is continuous and

[tllpyer.0 < Cllullpy e Yu€ LPO(Q) (2.3)

with a constant C' = C(|02|, pi, pt).
The variable Sobolev space WO1 P (')( {2) is defined as the collection of functions

Wi (@) {u e LPO(Q) N WEH0Q) « [Vul™@ ¢ L1<m}

equipped with the norm
||U||W3,p<~>(9) = [IVullp(),e + llullpe),0- (2.4)

By Clog({2) we denote the set of functions continuous on 2 with the logarithmic modulus of continuity:

Ip(z2) — p(x1)] < w(|w2 — 21]) (2.5)
where w > 0 satisfies the condition
N 1
lim w(r)In— = C < og, C = const.
=01 T

It is known that for p(z) € Clog(12) the set C5°(£2) is dense in Wy ") (£2) and the space Wy P (£2) coincides
with the closure of C5°({2) with respect to the norm (2.4).

We will use the notation p(z) € Clog(Qr) for the functions p of the argument z = (z,¢) which are
continuous in the closure of the cylinder Q7 = 2 x (0,T") with the logarithmic modulus of continuity, that
is, satisfy condition (2.5) in the cylinder Q¢ with x; substituted by z;.

For the elements of WO1 P (')(Q) with p(x) € C9(£2) the Poincaré inequality holds:

lullp),e < Cd, ) Vullp),e- (2.6)

An immediate consequence of the Poincaré inequality is that an equivalent norm of WO1 #0) (£2) can be defined
by

||u||W01»P()(_Q) = ||VU||p(),Q

Let p(z),q(x) € C°(02), 1 < p~ < p(x) < pt < oo, d > 2. If q(z) < dd_ngz) in (2, then the embedding
Wol’p(')(()) C L?0)(0) is continuous, compact, and

ol < ClIVollpeye Vo€ Wy ().

According to (2.3) Wol’p(')((l) C Wyt (). It p > dQ—fQ, then the embedding Wy* (2) C L?(£2) is

compact.
Let us introduce the spaces of functions defined on the cylinder Qr

Vi(2) ={u: 2~ Rlue L2(2)nWE' (2), [Vul/™" e LY(2)}, te(0,T),
W(Qr) = {u: (0,T) = V()| ue L*(Qr), |Vul"" € LY (Qr)}

Please cite this article as: S. Antontsev and S. Shmarev, On a class of nonlocal evolution equations with the p[u(z, t)]-Laplace operator, Nonlinear
Analysis: Real World Applications (2020) 103165, https://doi.org/10.1016/j.nonrwa.2020.103165.
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with the norm
lvllw@r = llvllz.er + IVullpe),r-

Given a measurable in Qr function u, a function p, and a functional I(-) defined by (1.2), we define the set
W.(Qr) = {v e L2(Qr) : [Vv["™ € LY(Qr), v =0 on 82 x (0,T) in the sense of traces}.

If we denote p(z,t) = plu(z,t)], then W, (Qr) coincides with the space W(Qr) with the given variable

exponent p(z,t). The inclusion u € W, (Qr) means that u € L*(Qr), |Vu\p(z’t) € L'(Qr) and u = 0 on
98 x (0,T). The norm of W, (Qr) is defined as the norm of W(Qr) with the exponent p(z,t) = plu(z,t)].

Notation. Throughout the text we use the notation

d
q
|vea| T = Z |D§ixj11|

i,j=1

where the exponent ¢ may depend on t. By C' we denote the constants which can be computed or estimated
through the data of the problem, but whose precise values are unimportant. The value of C' may differ from
line to line even in the same formula.

2.2. The main result and organization of the paper

Definition 2.1. A function u is called strong solution of problem (1.1) if

L ue CO0, T LX(R)), [Vul™ € L0, T:L}(2)), s € L*(Qr);
2. Jlu(-,t) —uoll2,0 — 0 as t — 0+;
3. for every test-function ¢ € L?(Qr) with |v¢|p[U] € LY(Qr)

/ <ut¢+ (V[P =2y - V¢) dz= | fode. (2.7)
Qr Qr

The main result of this work is given in the following theorem.

Theorem 2.1. Letp : R~ [p~,pT], pT = const, be a given function, l(v) be the functional defined by

(1.2), and plv] = p(l(v)). Assume that

(a) 2 is a bounded domain with the boundary 0 € C?,

(b) wo€Wg?(@2), fell ) (Qr),
)

(c) p(s) is differentiable in R, sup |p/(s)| < Ci, C, = const., (2.8)
seR

a

2d
d) — —<pt <.
@) <P =p <

Then problem (1.1) has a strong solution in the sense of Definition 2.1 and the following estimate holds:
sup [ Vu( )30 + [ull3 o, +/ g dz < C (1+ Vo3, +/ |f(P>) dz.  (2.9)
(OvT) QT QT

The paper is organized as follows. In Section 3 we consider the regularized non-singular problem (3.1).
The solution of this problem is obtained as the limit of the sequence of Galerkin’s approximations in the
basis composed of the eigenfunctions of the Laplace operator. This section is almost entirely devoted to
obtaining uniform a priori estimates for the approximate solutions.
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In Section 4 we justify first the passage to the limit in the sequence of Galerkin’s approximations and
obtain a solution of the regularized problem. We make use of monotonicity of the function v.(q,&)¢ =
(e? + |§|2)%§ in £ with a fixed ¢, continuity of (g, £)¢ with respect to ¢ with a fixed £, and the fact that
in the singular case, p™ < 2, the solutions u, of the regularized problems and their approximations possess
extra regularity: ||Vue(t)||2,» are uniformly bounded for all ¢ € (0,T). It is worth mentioning here that if
p(z,t) € Ciog(Q7) is a given function, then for every ug € L*(2) and f € L?(Qr) problem (1.1) admits a
weak solution u € C([0,7T]; L*(£2)) N W(Q7), see, e.g. [18, Ch.4]. The time derivative of the weak solution
is a distribution which may not belong to any Lebesgue space L*(Qr) with s > 1. In case of Eq. (1.1) with
p = plu], such a regularity is insufficient for the convergence of the sequence of the exponents p corresponding
to the approximate solutions. To overcome this difficulty, we construct strong solutions with u; € L?(Q7).

To pass to the limit as e — 0 in the sequence {u.} of solutions to (3.1) we use the a priori estimates of
Section 4, which remain true for the solutions of the regularized problem (3.1). The procedure of passing to
the limit in € requires an additional step because now the exponent p. = p[u.] also depends on e.

Uniqueness Theorem 5.1 is proven in Section 5. We show that the strong solution is unique in the class
of functions the solution constructed in Theorem 2.1 belongs to.

In Section 6 we prove the local in time existence of a strong solution if condition (2.8) (d) on the range

of p[v] is omitted and substituted by the claim for the initial function plug] € (%, 2). It is shown next

that every strong solution of problem (1.1) vanishes in finite time: if f = 0 for all ¢ > t¢, then there exists
t* >ty such that ||u(t)]|2,o = 0 for all ¢ > ¢*.

3. Regularized problem

We will obtain a solution of the singular problem (1.1) as the limit when € — 0 of the family of solutions
of the regularized problems

ue]—2

Uer = div ((62 + |Vu6\2)p[€TVue) + f(2) in Qr,
ue =0o0n 902 x (0,T), (3.1)
ue(z,0) = up(z) in 12, e>0.

3.1. Galerkin’s approximations

The solution of problem (3.1) is understood in the sense of Definition 2.1. It is constructed as the limit
of the sequence of finite-dimensional approximations

te = u(z,t) = lim u™), ul™ = Zm,m(t)wi@%
i=1

m—r oo

where {1;} is the orthonormal basis of L?({2) composed of the eigenfunctions of the Dirichlet problem for
the Laplace operator

(Vibi, Vo)a.o = (Ui, @)oo Vb € WE(2), i=1,2,.... (3.2)

e

The system { 1 1/%‘} forms an orthogonal basis of WO1 2((2) Let us accept the notation

q-2
(g5 = (E+17) T, seR’ te(0,7), e>0, g€ (1,2,
m (3.3)
Pm (t) = p[u(m)]’ u(m) = Z ui,m(t)d}z’ (93)
=1
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The coefficients wu; ,,(t) are defined as the solutions of the Cauchy problem for the system of m ordinary
nonlinear differential equations

W () = — /Q Ve(Pm (t), Vul™)Vul™ - Vo dz + /Q F(2); da,

ui,m(O) :ué’rzn)’ 7 = 1’2’_”’m’

(3.4)

(m)

where the constants v; ~ are the Fourier coefficients of ug in the basis {1, }:

m
uém) = Zu(();n)zbz(z) — up(x) in L*(R).
i=1
By the Caratheodory theorem for every finite m system (3.4) has a continuous solution on an interval (0, T, ).
In the next subsection we derive the uniform estimates on w(™ and its derivatives, which show that the

solutions of system (3.4) can be continued to the interval (0,7).

3.2. Uniform a priori estimates

Lemma 3.1. Under conditions (2.8)

m m m 2
sup ™ (O + [ 1om(® Vu)Va dr < C (JuolB o + 1B er) . 35)
(0,7) Qr
/ v g, < ¢ <1 + / e (P (£), V™) V™) dz) (3.6)
QT Qr

with absolute constants C.

Proof. Multiplying the ith equation of (3.4) by ugm) and summing the results lead to the energy relation
Ld ¢ ompy CONEVRCOTE (m)
52 (OB 2) + | elpm(®), V™) Tul™ | do = [ w0 f da. (3.7)

Estimate (3.5) follows from (3.7) after integration in ¢. By Young’s inequality, for every 6 > 0

Pm
[ 19a @z = [ 5o @96 (o), T VaR)
Qr Qr
<5 [ (@4 V™) 4z 1 Oy / (P (£), V™) T2 iz
Qr Qr

< 5/ IVu™ [P 4z Oy <1 +/ Ye(pm (t), Vul™) V0|2 dz> .
Qr Qr
Estimate (3.6) follows if we take 6 = 1/2. O

Remark 3.1. Equality (3.7) yields the inequality

d
™ @ll2.0 5 (1™ Oll2.0) < 1™ Ol Ol

dt
Simplifying and integrating it in ¢ we obtain the inequality

t
W™ Ol < uolla + [ 15Ozt (35)
0
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Corollary 3.1.
| Gl Fum) vl g < 0
Qr

uniformly with respect to m and €.

Proof. The estimate follows from (3.6) because for 1 < p* <pt<2

Yo (£), Vul™) [ Tul™] < (¢ + [Tulm)[2) ™ m

< C(p*F) (1 + |vu(m)|pm(t)—l) .

Lemma 3.2. Let conditions (2.8) be fulfilled. Then the functions u™) satisfy the estimate

m m pm(t)— m Pm(t)
sup [Vu™ (O o+ [ (€4 [Fulm )8 ) ds
(0,T) Qr

<C (||Vu0§Q +/ 1P dz + 1)
QT

with a constant C independent of m and €.

Proof. Multiplying ith equation in (3.4) by )\iugm), summing up for ¢ = 1,2,...,m and then following the
proof of [19, Lemma 2.2] we arrive at the equality

1d

57 (IVu™3 o) + /Q Yepon (8), Vul )l 2 do = —1 = Lo + 1., (3.10)

where

I= /Q(p —-2) (62 + |Vu(m)|2) i (2(1: (Vu(m) ~V(Dku(m))>2> dz, (3.11)

k=1
Iy = / f(2) Aut™ da, (3.12)
2
Ino = / (P (1), V™) (Au(m)(Vu(m) n) — Vu™ . (V™ . n)) ds. (3.13)
o0
It is straightforward to check that
112 @=97) [ 2l @), Tu™)ule) P da
2

By Young’s inequality
IIf\</ | f Il |dz<5/| (m) P g0 4o )/ P
Q

pm (t)
2

< / e Don(6), Tu™) 5 (3 (o (1), Vu ) uPP) 7

+C(8,p )(1+/Q|f|@ ' dx)

< / e (D (), Vet [l |2 iz
(93

+c’(5)/9(62+|Vu(’")| )25 g 1 O (6 <1+/ 717 )

with an arbitrary 0 > 0. Choosing ¢ appropriately small and using (3.6) we arrive at the inequality

m(®)
Vu™ (L 1)[2,) + / Ve (P (), Vu ™) [ul™ 2 4 |ulm)| dz
2dt (II ( )Hz,n) Q( (Pm (1) Mgy |° + [z | )

<C<1+|IQ|+/ |f|(p_>/+/ |Vu(m)pmdx>
2 2

Pm(f)

(3.14)
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with a constant C' which does not depend on m and e. It is known (see [20, Ch.1,Sec.1.5] for the case d = 2
and [19, Lemma A.1] for the general case d > 3) that if 92 € C?, then there exist constants K, K’, depending
on 0{2, such that

2
ool K | ~e(z, Va™) (vu<m> -n) s < K’ (/ IVu™ ™ 48 + 1) .
a0 o

2

Inequality (3.14) can be written in the form

d Pm
Ltz ) + / ez, V™) [l 2 4 [l P 4
g (IVe™1B) + | ( )

) (3.15)
<C (/ |Vu™|"™ 48 +/ FO DV o+ [ VU™ [T da 1) .
a0 2 2

To estimate the integral over 02 we use the following embedding inequality (see [21, Theorem 1.5.1.10]):
there exists a constant L = L(d, 2) such that for every ¢ € (0,1)

/ IVul™[""ds < L (51—pm / W™ "™ d + 5~ P / vu<m>|”’"dx> (3.16)
a0 7
It follows that for all ¢ € [0,T] and every § € (0,1)
/ Vu™[""ds < L ( oF / (SRl P / |Vu(m)|pmdx> (3.17)
o

_1
Combining (3.15) and (3.16) with 25" v OK' <1, we arrive at the inequality

d m m -y
2 vz, +/ (3l Tulm ) ) 2 4 ful) ) e < € (/ U™ ™ +/ Fo da + 1> .
dt ’ 17 0 0

To complete the proof, we integrate this inequality with respect to ¢ and plug in estimates (3.5), (3.6). O

Lemma 3.3. Under conditions (2.8) the functions u™) satisfy the estimates
m( )
[u{™ |12 o, + sup / (@ + [Vu™ )25 4z < ¢ (3.18)
’ 0,1/

with a constant C' = C( 1l o=y ().@p P55 CF) independent of m and e.

Proof. Estimates (3.18) follow upon multiplication the ith equation of (3.4) by u; ,,(t) and summation of
the results. Following the proof of [19, Lemma 2.4] we arrive at the relations

pm (t)
(m) 2 ﬂ 2 (m);2) 2
™ 11 dor + </Q (& + [vulm)?) d:c)

pm (t)

dpm (1) (€ +[Vul™]?) 2 Pm(t) (o (m)
_ 1— 1 (m)|2 d / d
I N0 5ot (4 V) o | g da
In? (62 + IVu(m)|2) dx)

sc’dp’”(t)’ <1+/ |Vt P dac—i—/ (62+|Vu<m)\2)
dt o

I

with C' = C(C*,p~). Using the formula

(3.19)

pm (t)

fH MW, for every t € [0,T]

@

(|U|a)t = ((U2)7>t = %(uz)%ﬂQuut = ozut|u|°‘_1 signu
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and (3.5) we estimate

’dpm ’—a‘p (||u aQ |’/ |u t &gnudﬂc

1
(m) (m)2e=D) 2
<
< aCllu; 2,0 (/QW | dx (3.20)

[0
=5 (m) (m) | 2+
<aC 02 2 fluy ™ ||2,0llut™ (|5

< Cllui™|lo0, € =C(a,|2],Curup, f).

Then

pm(t)

dpm(t)‘ / (62+|Vu(m)‘2)42 C (m) ( / P (1) )
dr| < ——=|lu 1+ V™ dx
L Gyt T (1 f IV
<1+ Sup/ Vu m)|2dx> ™ |2, 0,
(0,T)

1 Pm2(t)
/ 0 (62 + |Vu(m)|2) In? (62 + \Vu(m)|2) dx
2 Pm

pm (t)

< C”||u§’”)||279/ <62 + |Vu(m)|2> * n? (62 + |Vu(m)\2) dx = 1.
Q

1 |dpm(t)
2| dt

For every 0 < pu < min{p~/2,(2 —p*)/2},

Pm(t) gLl (s1/2 In? s) ifse(0,1) p++u
s 2 In®s<{7, L. ) T < C(upT)1 452 ) <C(1+s). (3.21)
s 2 (3_“/2 In s) ifs>1

Gathering (3.21) with (3.9) we obtain the estimate

/ (€ +19ut™PR) 7 0 (@ 4 [Tul™ ) da < c/ (1+ |Vu™2) dz
2 (7

C (|Vuo||§,g+/ Tk dz—i—l)
QT

for all ¢ € (0, 7). By Young’s inequality

pm ()

IscmwmﬂQWwMﬂ+/

1% dz + 1)
o or (3.22)
HWOﬁﬂ+OQWwﬁﬂ+/

QT

2
Pk dz+1) .

S

Plugging (3.22), (3.5) and (3.6) into (3.19) we rewrite it in the form

m (t)
1 d 2 (m) 2\ 2
ZH (>”2”+dt (/ (e +|Vu |) de
—\/ 2
< c((1+ AIE-) o 2a) + ||f(t)||§ﬂ>

for every t € [0,T] with a constant depending on «, p*, C*, |£2|. Inequality (3.18) follows after integration

in time. 0O
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Corollary 3.2. Under the conditions of Lemma 3.3 pp(t) € CY/2([0,T]) and

1P () ||cl/2([0,T]) <C

with an independent of m and € constant C.

Proof. By virtue of (3.18) and (3.20), for every 0 < 7 <t < T

tdpm(s) ¢ m m 1
[P () = pm ()] = / dtds'gc/ 0™ 2,0 ds < C'|Jui™ |l2.0p |t — 72

with an independent of m and € constant C. O

4. Passing to the limit
4.1. Strong solution of the regularized problem

Lemma 4.1. If the data satisfy conditions (2.8), then problem (3.1) has a strong solution u. = limu(™) as
m — 0o. The solution satisfies the estimate

B+ 55 s [V Ol 0+ / |um|““4dzsc(|wo||;g+ / 1) dz+1>. ()
0,7 QT

,T) Qr

For the sake of simplicity of notation, throughout this subsection we omit the subindex ¢ and denote by
u(z) the limit of the sequence {u(™}, which approximates the solution of the regularized problem (3.1).
The uniform estimates (3.5), (3.6), (3.9), (3.18) allow one to extract from {u(™} a subsequence (which
we assume coinciding with the whole sequence) such that for some u € L*(Qr) N L(0,T; W, *(£2)) and

X € (L@ (Qr))?

u{™ =, in L*(Qr),
vu'™ — Vu in (L*(Qr))% (4.2)
Ye (P (1), Vu(m))vu(m) — x in (L(”[“])'(QT))d.

The first two relations follow directly from (3.9) and (3.18). Let us prove the third relation of (4.2). According
to [22, Th.5], the sequence {u(™} is relatively compact in C([0, T]; L?(2)):

u™ — u in C([0,T); L*(£2)) and a.e. in Q7. (4.3)
Due to (4.3), for every t € [0,T] there exists

lim ||u(m)(-,t)|

m—r o0

a0 = lu(-t)la o
whence, by continuity of p(l),
punt®) = p ([ ()]2,0) = p ([u(-1)%0) = plu] vt € [0.7]

Fix some 8 € (0,1/2). By Corollary 3.2 the sequence {p,,(t)} is equicontinuous in C®/2[0,T)]. It follows
then that {p,,(t)} is precompact in C*?[0, T):

pm(t) = p(t) = plu] in C%P[0, T] C Ciogl0, T (4.4)
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Notice that

(%(p"’(t)’V“(m))'vu(m”)(w 0 (14 [vulmpm ) B <0 (14 vu )

with

It is easy to see that

Int) <2 & pm<t>+ﬁ<3 & (] - 1)l - 2) < plul(plu] - pm(®)),

which is true for all sufficiently big m because for 1 < p~ < p* < 2 and p,,,(¢) — p[u] uniformly in [0, T
(plu] = ) (p[u] —2) < (p~ —1)(pT —2) <0 while p[u](plu] — pm(t)) — 0 as m — co.
Hence,
(plu])’
(e (®), Va ) Tu™]) T < 0 (14 [Tul™ )

and
/ (e (1), Tl [T )P g5 < ¢
Qr

by virtue of (3.9). These arguments prove the following assertion.

Lemma 4.2. If conditions (2.8) are fulfilled, then there exist u € L*(Qp) N L>®(0,T; Wy2(£2)) and
x € (L@ (Q7)) such that relations (4.2) are fulfilled and

/Q (eplu], V)| Vu) P dz < €, (pfu) = 2 (45)

with a constant C depending only on the data.

By the method of construction of ("™, for every finite m and ¢ € Py, = span{vy,..., U}, k < m,
[ (7049 om(0). 7™ Tu") 96— f6) dz =0, (46)
Qr
Relations (4.2) and (4.5) allow one to pass in (4.6) to the limit as m — oo, which leads to the equality

/Q (utd+x-Vo— fo) dz=0 Vo € Py. (4.7)

Lemma 4.3. For every u € W, (Qr) there exists a sequence {dn}, ¢n € PN MW, (Q1) such that oy — u

Proof. Recall that Py C C([0,T]; C%(12)). Because of the inclusions p,,(t),p[u] € C%#[0,T], the space
C*(Qy) in dense in W, (Qr) and W () (Qr) with any m € N. For every € > 0 there exists ¢ C C*(Q7)
such that ||pc — ullw,(@,) < €. Since the systems {1);} and \sz} form orthonormal bases of L?(§2) and

W, 2(£2), then

= Zd)ei(t)d)i(x)a l[¢e(t) ”2 Z/\z¢ ), H¢6”L2 01w h2(@2) — Z)‘iH(bei”g,(O,T) < 00,
i=1 i=1
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N 00
N) __ N 2 _ 2
s = Zlqbei(t)?/)i(x) €Pr, 16 = bl oy = %:H Ailldeill? o) — 0 as N — oc.
i= i=

There exists N = N(e) such that for every m > N(e)
168 = Sellwuer) < CIS™ = bell 2o w2y < €
and
lu =6 Iwaar) < lu = dellwui@r) + 16 = 6™ Iwui@r) < €+ ClS™ = bell 2 w22y < 26

O

Taking ¢ for the test-function in (4.7) and letting N — co we obtain the equality

/ ugu dz + / x - Vudz = fudz. (4.8)
Qr Qr Qr

Let us return to (4.6) and take for the test-function ¢ = u(™):

0= / uﬁm)u(m) dz + / Ve (P (t), Vu™) V™2 dz — ful™ dz
Qr Qr Qr
- / ™™ dz + / Ye(pm (8), VU™ )Vul™ V(@ —p)dz — [ fu™dz (49)
Qr Qr Qr

4 [ elon (), VuT) VU
Qr
We will use the following well-known inequality: if ¢ € (1,2], then for all ¢,¢ € R, € # ¢ and € > 0

q—2

(7e(@, )€ = e(4:0)¢) - (€ = ) 2 (a = DA+ [E* + 1<) = g~ ¢I. (4.10)
By virtue of (4.10) for every ¢ € Py, with &k <m

/ Ye(Pm (2), Vu(m))Vu(m) . V(u(m) — 1) dz
Qr

= /Q (Ye(pm (t), Vul™ ) V™ — 5 (o (1), V) V) - V(™ — 1)) dz

(4.11)
+ / Ye(Pm (1), V)V - V(u™ — o) dz
Qr
> / e (P (£), V)V - V(™ — 3p) d.
Qr
Because of (4.4)
Om (V) = Ye(pm (t), VIO)VU — v (p[u], Vip)Vip — 0 as m — oo uniformly in Qr. (4.12)

It follows from (3.9), (4.12) and (4.2) that
L om0, 9099 T ) =

= / Jm(vw) : v(um - ¢) dz + / Ve(p[uL Vi/))vw ! V(Um - ¢) dz
Qr Qr

=Ji+Jo— Ye(plu], Vi)V - V(u — ) dz  as m — o0
Qr

Please cite this article as: S. Antontsev and S. Shmarev, On a class of nonlocal evolution equations with the p[u(z, t)]-Laplace operator, Nonlinear
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because
J1 < Hlom( Vw)”oo QT”V(um - ¢)||1,QT < C||O'm(v¢)||oc,QT -0,

Jo —>/ Ye(plu], VYV - V(u — ) dz.
Using (4.11) in (4.9) and then letting m — oo we find that for ¢ € Py, with any k € N
0> / utudz—|—/ Ye(plu], V)V - V(u — ) dz — fudz+/ x - Vi dz.
Qr Qr Qr Qr

By Lemma 4.3 we may take ¢ = 1*) € P, "W, (Qr) and then let k — co. Plugging (4.8) we arrive at the
inequality

0> /Q (elplul, VBV — X) - V(u— ) dz Vi € Wal(Qr).

Take ¥ = u + A with an arbitrary ¢ € W, (Qr) and A > 0. Simplifying and then letting A | 0 we obtain
the inequality

I(u,x,¢) = /Q (e (plt], V) Vi — X) - VCd= <0 YC € Wa(Qr).

Since ( is arbitrary, it is necessary that I(u, x,¢) =0 for all { € W, (Qr), whence
| €+ bl TV V6 - O ds =0 ¥CE Wa(@Qr) (413)
Qr

Estimate (4.1) follows from the uniform in m and e estimates (3.5), (3.6), (3.9), (3.18). It follows from
(3.9) that DZ; u(m) — DZuin L? (Qr) (up to a subsequence). Because of (4.4) and the uniform estimates

(3.9) on |u (m)\ , the estimate on || [uge ["™)|;. o follows from [10, Lemma 3.1].

4.2. Strong solution of the singular problem

Let ue be the strong solution of problem (3.1) with ¢ > 0 obtained as the limit of the sequence of Galerkin’s
approximations (see Lemma 4.1). The functions u. satisfy the independent of e estimates (4.1). Therefore,
there exist functions u and x such that, up to a subsequence,

uer — ug in L*(Qr),
Vue = Vu in (L*(Qr))%, (4.14)
Ye(plud, Vae) Vue = x in (L71(Qr))"

Moreover, u € CY([0,T]; L?(£2)). For every € > 0 the function u. satisfies equality (4.13):

. (uetd + Ye(pluc], Vue)Vue - Vo — fo) dz =0 Vo € Wy (Qr). (4.15)

Since uc — u in C°([0,T]; L*(£2)), then [luc(-, t)[|% o —= u(-, 1] ¢ for every t € [0,T] and

P (w015 o) = p(luC D5 e) ase—=0

by continuity. As in Corollary 3.2, one may check that the functions p.(t) := p[u.] are equicontinuous in

C%1/2[0,T]: by Lemma 4.1
' t
dp. o
[ 2 <aswly [ [ jwaltuf dads
- ds R T J2

[pe(t) — pe(T)| =
< C(a,C) (/:/ng(a—l) dz)% (4.16)

< C sup |luc(@t)|SHHE— 7V < 't — |

s
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with an independent of € constant C’. Hence,
plue] — plu] in C%P[0,T] with some § € (0,1/2). (4.17)

It follows that C°°(Qr) is dense in W, (Qr) and W,,_(Qr) with every €. Let ¢5 € C>°(Qr) and ¢s — u in
W, (Qr) as § — 0. Repeating the proof of Lemma 4.2 we find that x € (L@E) (Qr))?, and by (4.14)

/ Ye(plue], Vue)Vue - Vs dz — x-Vosdz ase—0.
Qr Qr

Taking ¢; for the test-function in (4.15) and letting e — 0 we obtain

/ (urds +x - Vs — f¢s5) dz = 0.
Qr
Letting now § — 0 we arrive at the equality
/ (wu+ x - Vu— fu)dz = 0. (4.18)
Qr
Choosing u. € W,,_(Qr) for the test-function in (4.15) we obtain
/ Uetlle dZ +/ (Ve(plue], Vue) Vue - Vue — fue) dz = 0. (4.19)
Qr Qr
Let us take ¢ € C*([0,T]; C§°(£2)) C W, (Qr) with any € > 0. By (4.10)
/ Ye(plue], Vue ) Vue - Vue dz
Qr
— [ 2l Vu) Vu - Via = v)ds+ [ uplud, Va) Va - Vi ds
Qr Qr
= [ Qulplud, )V = (o], VT - D~ )
T

4 / el V)V - V(ute — ) dz + / ve(plud, Vo) Vu, - Vi dz
QT Q

T

> / ve(plel, V)V - V(e — ) dz + / v (plud, V)V, - Vi dz
QT Q

T

= | (ol 7) 9% = (VU V0 ) d

+ / |V¢|”[“4‘2vw -V(ue — ) dz + / Ye(plue], Vue)Vue - Vb dz = I + I + I,
Qr Qr
where
I3 — X -Vydz ase—0
Qr
by virtue of (4.14). Let us denote

plue

- el
7= vy — [V 2y,

0 = (¢ +|Vl)
For every ¢ € C*°(0,T;Cg°(12)), ¢ — 0 as € — 0 uniformly in Q. Since ||u. —¢¥|lw,, < C, it follows that

| = '/Q DV (ue — ) dz| < 2[| Pellyr ), IV (ue = V)llpe).0r
T

<2/ Pl ),0p e = Yllw,, — 0 when e — 0.
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Finally, set
v, = |y P2y — vy 2wy

and represent
I, = / VeV (u — 1)) dz + / VP2 -V (e — ) dz = Ky + Ko
Qr Qr

By (4.17), ¥, — 0 as € — 0 uniformly in Q7. Since |[Vy|""/ 2V € (CO(Qr))? C (L2(Q1))?, Vue — Vu in
(L*(Qr))?, and ||V (ue — ) ||2,0; < C with an independent of € constant C, then

(K| < [[Pell2, @7 [V (we = P)ll2.0r — 0,

Ky = / VP2 - V(e — ) dz — / (VoM ™20y . V(u— ) dz as e — 0,
Qr Qr

whence

I — / VP2 V(u— ) dz  as e — 0.
Qr

Thus,

L+L+1Is— | x-Vidz +/ Vo2 . V(u— ) dz  as e — 0.
Qr Qr

It follows that for every ¢ € C°°([0,T]; C§°(2))

lim Ve (p[ue], vue)vue “Vuedz > /
e—=0 Q Q
T T

By (4.18), (4.19) as € — 0, for every ¢ € C*°(0,T; C§°(12))

Y- Vdz + / (Vo [PM 2T W (u — 1) de.
Qr

0= / upu dz — / fudz + lim/ Ye(plue], Vue ) Vue - Vue dz
Qr QT =0Jqr
> */ X Vudz + / X Vipdz + / V"2 - V(0 — ) dz (4.20)
Qr Qr Qr
= [ (9o v - ) - V- v)a
Qr
Let us take 1) = 5 + A\( where A = const > 0,
¢, s € C([0,T);C5°(2)) and s — uin W, (Qr) asd — 0.
Inequality (4.20) takes the form
gz [ (904 AP+ X)) - V(u - vs) da
Qr
A (19 2OV ws +A0) - x) - Ve dz <0
Qr
By the generalized Holder inequality (2.2)

1] < 20w = tsllwaap IV (s + AP T (w5 +A0) - x

p'[u],QT

< 2= vallwaian (|75 + 200

+ /
on + Wlyiar

< OHU - 7//6||WM(QT) <1 + ”XH;D’[U],QT +/Q |v¢5‘P[u] dz _|_/ ‘/\vdp[u] d2’>
T

Qr
< C||u—¢5||wu(QT) —0 asd—0,
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while
Ty — —/\/ (IV(u+ 2P =2V (w4 20) ~ x) - V¢ .
Qr

Hence,

/\/ (\V(u AP (w4 A¢) — x) V¢dz > 0.

Qr
Simplifying and letting A\ — 0" we obtain the inequality
/ (|Vu|p[“]_2Vu - X) VCdz>0 V¢ e C®([0,T); Co(12)).
Qr
Because of the density of smooth functions in W, (Qr), this inequality is possible only if
/ (|Vu|”[“]*2w - x) Vodz=0 VYo Wyu(Qr).

Qr

Returning to (4.15) and passing to the limit as ¢ — 0 we find that for every test-function ¢ € W, (Qr)
/ (Wb + Va2V Ve — f¢) dz = 0.
Qr

Estimate (2.9) follows from (4.17) and the uniform estimates of Lemma 4.1.

5. Uniqueness of strong solutions

Theorem 5.1. Problem (1.1) has at most one strong solution in the class of functions

8 ={v: v e (0,7} 13(2)) 0 L0, T W (@), v € (@)}

Proof. Let u; € S be two different strong solutions of problem (1.1). Notice that this set in not empty:
according to Theorem 2.1 for every ug € W01’2(Q) and f € L(pi)l(QT) problem (1.1) has at least one strong
solution u € S. Let us denote

b1 Zp[ulL b2 :p[ug].

The inclusions u; € S yield
ui € Wy, (Qr) N Wy (Qr),

which allows one to take the function u = u; — uo for the test-function in the integral identities (4.8) for w;.
Combining these identities we arrive at the equality

1 _ _
5 @I +/Q (IVea "2 9s — Vo725 - Vuwdz = 0. (5.1)
t

We will prove first that the strong solution is unique on a time interval [0, 7*] with some T* depending
only on the data. Writing

(IVur P12 Vug — |Vua P22 Vug) - Vu = (|[Vur |22 Vg — [VuaP27 2 Vug) - Vu
+ (V[P > Vg — [Vua |27 V) - Vau

and using inequality (4.10) we transform (5.1) into the form

el + (5 — 1) /Q AVuf? dz < I(1), (5.2)
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where

p2—2
A= (1+|Vur|P? + |Vug|"?) 2
1) = / (Ve 2 ~2 Vg — [V V) - V.

Qt

By Young’s inequality

()] < 5/ AVaf? dz + C(6)J(2) (5.3)
Qt
with )
J(t) = (Vup |22 Vg — |[Vug |2 7> Vg | A4 dz
Qt
and any 0 > 0. Plugging (5.3) into (5.2) and choosing ¢ appropriately small, we rewrite (5.3) in the form

S+ =1 [ [VuP adz < C@)0). (54)
Qt

For every ¢, > 1 and & € RY, |£] # 0,

1%~ 16 %] = | (s~ o) | < et - | = et - e
By the Lagrange theorem there exists 6 € (0,1) such that
17 = 1= = 1e P = el g — 1.
It follows that at every point z € Qr either |Vu;| = 0 and
‘|Vu1\1’1*2w1 - |vu1|P2*2vu1‘ —0,
or |Vuy| # 0 and
‘|Vu1 P12y — |[Vug[P22 Vul‘ < |V [P In [V || [p1 — pol (5.5)

with p = 0p; + (1 — O)pa, 6 € (0,1). Recall that the exponents p;, pe are independent of z. By Young’s
inequality, for a.e. t € (0,7

2 2
||A—1||z;P2 b, = /Q (14 |[Vup P2 + |Vug|P?) P2 dx < C/Q(l + |Vur|* + [V} do < €’
=p3°

with a constant ¢’ depending on d, p* and the constant in (3.5). Using the classical Hélder’s inequality and
then (5.5) we obtain

J(t) < 1A=

2
’\Vul |p1—2 Vu1 — |VU1 |p2—2 Vu1

PR dt
(5.6)

P2

2
t 9 o % 35
< C/ Ip1 — p2| </ (|Vu1|p In |Vu1||) dx) dt
0 2
with a constant C' = C(C”, p*) and the exponent p = 0p; + (1 — 8)ps where 0§ = 6(t) € (0,1). Set
Alp—1)

4
k= —->=(Op1+(1-0 —1)—.
D2 (Op1 + ( )p2 )p2
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The assumption p; < pT < 2 yields the inequality

. < 4(p2 — 1)

< <2 ifpy>ps.
D2

Let us also claim that
k<2 lf D1 Z D2,

that is,
pr—p2<2—pt <2—p; ifp; >po. (5.7)

Condition (5.7) is surely fulfilled on a sufficiently small time interval (0,7*) with 7™ defined through the
data. Indeed: repeating the derivation of (4.16) we obtain the inequalities

pi(t) —pi(r)| < 't =7} Vi, €0,T]

with a constant C’ depending only on uq, f and d. It follows that

1 2—p+t\?
[p1(t) = pa(t)] < [p1(t) — pluo]| + |p2 — pluo]| < 2012 <2 —p* fort <T* = < 2013 > '
We will use inequality (3.21) in the following form: if pu € (0,1) is so small that k(1 + u) < 2, then for
every £ > 0
KQA4m) (=B In &) if e > 1
i B <ot
ex=m) (gh| Ingl)" if € € (0,1]

with a constant C' = C(u). This inequality together with (3.9) implies that for a.e. t € (0,7*)

(flnil)”:{

1 4(p—1) p72 %
(/ (\Vu1|’1n|Vu1|PTlD v dx) §C<1+/|Vu1|2dx> <0,
2 Q
whence .
IO <C [ ln-pl dt 1<T (5.8)
0

By Holder’s inequality and due to the assumption « € [1,2]

1
2
P2 = p1| < Cllug —ual2,0 (/ <|U2|2(a71) - |u1|2(a*1)) d:zc)
2

1
_ — 2
< Cllua = w20 (1+ a3 + a3

< Cllug — uil|2,0, C = C(a,uo, f).

It follows now from (5.4) and (5.8) that u = us — uy satisfies the inequality

t t
()13, SC/ P2 —lezdtSC/ lu(r)l5,0 dr, ¢ € (0,T7). (5.9)
0 0

By the Gronwall lemma Hu(t)HiQ =0 for ¢ € [0,T*), which means that uz(z, T*/2) = uy(x,T*/2) in 2. Let
us take T /2 for the initial instant and consider problem (1.1) in the cylinder 2 x (T*/2,T). As is already
shown, the condition us(x, T*/2) — uy(x, T*/2) = 0 in §2 yields the equality us = u; in 2 x (T*/2,3T*/2).
Repeating these arguments, in a finite number of steps of the length T* we will exhaust the interval (0,7).
The proof of Theorem 5.1 is completed. [
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6. Final remarks
6.1. Local in time existence without assumptions on the range of p[u]

The arguments used in the proof of Theorem 2.1 allow one to prove local in time solvability of problem
(1.1) in the case when condition (2.8) (d) is removed and substituted by an assumption on ||ugll2,e. Fix a
small 0 and consider problem (1.1) with the exponent

FE 40 ifpls] < 2546,
ps(s] = 4 pls] if d2+dz + 25 < pls] <2—26,
2—9 if p[s] > 2 —4.

One may choose ps € C'(R) with supg |p5| = C(Cy, ) with C, from condition (2.8) (c). By Theorems 2.1,
5.1 problem (1.1) with the nonlocal exponent ps[u] has a unique global in time strong solution which satisfies
the analog of estimate (4.16):

plu(t)] — plu(r)]| S Clt—7]*, 0<r<t<T.
In particular,
pluo] — CVE < plu(t)] < plug] + OV

with a constant C' depending only on ug, f and d. Let us assume that ug satisfies the inequality

2d
—_— < 2-—30.
d+2+36 < plug] < 30

Then there exists an interval (0,T5) wherein for the constructed solution

2d
— +2 2 — 20.
d+2+ § < pslu(t)] < 0

It follows that in the cylinder £2 x (0,T5s) the function u solves problem (1.1) with the exponent ps[u] = p[u].
An example of such a situation is furnished by the functional p[u] = 2+d + [|u(t)]|3,- Assume that plug] < 2.

On the one hand, p[u] > deQ’ on the other hand, for the sufficiently small ¢
2
2d
t 2
0] = 255+ (o + [ 1@l ) <

due to estimate (3.8).

6.2. Vanishing in a finite time

In this section, we study the property of extinction in finite of the strong solutions of problem (1.1). We
use the energy method developed in [23, Ch.2]. Let us assume that f € L*°(0, T} L@ (£2)) and w is a strong
solution corresponding to the initial function ug € VVO1 ’2(9). Since the strong solution can be taken for the
test-function in (2.7), the following energy equality holds: for every t,t + h € (0,T)

1 t+h 1 d t+h p 1 t+h

By the Lebesgue differentiation theorem for a.e. t € (0 T)

1d u
5% (Hu(t)H%,Q) +/Q|VU|p[ ]dx = /Qufdm (6.1)
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Let us assume first that f = 0. In this case (6.1) yields the inequality

1d

33 (@Be) + [ [Vaptds <o

2 dt ( 2.0) o
and it follows that [Ju(t)||5,, < [luoll3 - Let us introduce the function

u(t)||?
vy~ WO,
[uoll3,
Let C be the constant from the embedding inequality
~ Lo
[v]3,0 < CIVVIZ- o, vEWRT (2).
By the generalized Holder inequality (2.1), for every t € (0,T)
u(t)||3 ||Vl
SN 01 PSS
l[uoll3, 2 [uoll3, 2
~ 2 2 V|
< 4Cmax{|g| @) || } %
[uoll3,
_|[Vul|? PO
_elMe a5 a0,
||u0||279

Inequality (6.2) can be written in the form

p[u]

[uoll3,oY"(t) +at)Y = (t) <0, Y (0) =1,

with the coefficient

plu] pt p_
1 ) p) . 1 ) Pl 1 ) 2
a(t) =2 5”“0”2,0 > 2min 5||UO| 5.0 ; EHUO 5.0
Let us denote N 3
2 1 R r
=2 min (Anuon? Q) , (Anuonz Q)
[uoll2 ¢, cl ¢

Since Y < 1, from (6.4) we obtain

Y'(t) —&—,BY%(t) <0, Y(0)=1.

The straightforward integration of the previous inequality over the interval (0,¢) C (0,t*) gives

2—pt
2

27p+

Y () <1-5

t.

Since Y (t) > 0, it is necessary that
2
Yt)=0 forallt>t" = ———.
) B2—p*)

These arguments prove the following assertion.

21

(6.3)

(6.6)

Lemma 6.1. Let in the conditions of Theorem 2.1 f = 0 in Qr. Then every strong solution of problem

(1.1) vanishes at a finite moment:
2
u(z,t) =0 in QrN{t>1t"}, A ———
(1) { } B2 —p*)

with the constant 8 from (6.5).
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6.3. Vanishing at a prescribed moment

Let us assume now that f # 0 in Qr and there is € > 0 such that

+

— t\ 2-pT
fOlze <e (1 - tf> , vy = max{v,0}, (6.7)
+

where t; > t* and t* is the constant defined in (6.6). Consider the function
2

[u(®)15,o
Z(t) = Tg’v M? = H“OH%,Q + 1 fll210,1;02(2))-

By virtue of (3.8) Z(¢) < 1in [0,T] and Z(0) = 1. It follows from (6.1) that Z(¢) satisfies the inequality

Aﬂzm+mwifws2MAJ;Mfwsanawuwuﬂ

with the coefficient
plu]
2 ot

b(t) = 2 (%) 7> 2max {(6—11\42)2, (C‘1M2)p2_} — .

By Young’s inequality

+
p
’ Y pt _ i 2—pt
Z(t)+—2M222 (t)_eL(l tf>+ (6.8)
Let us consider the function
t\2-pt
ﬂ@@)
ty n
It is straightforward to check that Y (¢) solves the problem
pt p++
Y/(t) + 525V (1) = eL (1 _ i)i—p . te(0,ty),
Y(0) = Z(0) =1,
provided that
2 L L 6.9
T T e (©9)
It is easy to see that Y'(¢) is a majorant for Z(t), i.e.,
2
t\ 2=pF
=20 < (1-£)77. (6.10)
ty L

Lemma 6.2. Let us assume that f # 0 in Qr and conditions (6.7), (6.9) are fulfilled. Then every strong
solution of problem (1.1) satisfies (6.10), i.e., vanishes at the moment ty > t*.

Remark 6.1. The effect of vanishing at the prescribed moment ¢; takes place if the data satisfy condition
(6.9). This condition involves three parameters: ¢ — the “intensity” of the source f in Eq. (1.1), t; — the
moment when the source vanishes, and the L?-norm of the initial datum. The assertion of Lemma 6.2 remains
true if two of the three parameters are given, while the third one is chosen according to condition (6.9).
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