On a class of nonlocal evolution equations with the $p[u(x, t)]$-Laplace operator

Stanislav Antontsev ${ }^{\text {a,b,c,1 }}$, Sergey Shmarev ${ }^{\text {d,*,2 }}$
${ }^{\text {a }}$ Lavrentyev Institute of Hydrodynamics of SB RAS, Novosibirsk, Russia
${ }^{\mathrm{b}}$ Novosibirsk State University, Novosibirsk, Russia
${ }^{\text {c }}$ CMAF-CIO, University of Lisbon, Portugal
${ }^{\text {d }}$ Mathematics Department, University of Oviedo, c/Fededrico García Lorca, 18, 33007 Oviedo, Spain

A R T I C L E I N F O

Article history:

Received 4 July 2019
Received in revised form 13 May 2020
Accepted 21 May 2020
Available online xxxx
Keywords:
Nonlocal equation
Singular parabolic equation
Variable nonlinearity
Strong solutions

A B S T R A C T

We study the homogeneous Dirichlet problem for a class of nonlocal singular parabolic equations

$$
u_{t}-\operatorname{div}\left(|\nabla u|^{p[u]-2} \nabla u\right)=f \quad \text { in } \Omega \times(0, T)
$$

where $\Omega \subset \mathbb{R}^{d}, d \geq 2$, is a smooth bounded domain, $p[u]=p(l(u))$ is a given function with values in the interval $\left[p^{-}, p^{+}\right] \subset(1,2)$, and $l(u)=\int_{\Omega}|u(x, t)|^{\alpha} d x$, $\alpha \in[1,2]$, is a functional of the unknown solution. We find sufficient conditions for global or local in time solvability of the problem, prove the uniqueness, and show that every solution gets extinct in a finite time.
© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In the present work, we study the homogeneous Dirichlet problem

$$
\left\{\begin{array}{l}
u_{t}-\operatorname{div}\left(|\nabla u|^{p[u]-2} \nabla u\right)=f \quad \text { in } Q_{T} \tag{1.1}\\
u=0 \text { on } \partial \Omega \times(0, T) \\
u(x, 0)=u_{0} \text { in } \Omega
\end{array}\right.
$$

where $Q_{T}=\Omega \times(0, T], \Omega \subset \mathbb{R}^{d}, d \geq 2$, is a bounded domain with the boundary $\partial \Omega$. The exponent of nonlinearity $p(s)$ is a given function, $p: \mathbb{R} \mapsto\left[p^{-}, p^{+}\right] \subset(1,2), p^{ \pm}=$const. In Eq. (1.1), the argument of

[^0]$p(\cdot)$ is the functional
\[

$$
\begin{equation*}
l(v)=\int_{\Omega}|v(x, t)|^{\alpha} d x: L^{\infty}\left(0, T ; L^{\alpha}(\Omega)\right) \mapsto \mathbb{R}, \quad \alpha \in[1,2] . \tag{1.2}
\end{equation*}
$$

\]

To indicate the nonlocal dependence of the exponent p on the function $u(x, t)$ we use notation $p[u] \equiv$ $p(l(u))$. We prove that problem (1.1) has a unique strong solution, global or local in time, and show that every strong solution vanishes in finite time.

The special form of the functional $l(u)$ in (1.2) is chosen for convenience of presentation, the results easily extend to a wider class of functionals. For example, all the results remain true if $l(u)$ is a functional over $L^{\alpha}(\Omega)$,

$$
l(u)=\int_{\Omega} g(x) u(x, t) d x, \quad \text { with some } g \in L^{\alpha^{\prime}}(\Omega), \alpha \in[1,2] .
$$

1.1. Motivation and previous work

The mathematical modelling of many real-life processes leads to systems of nonlinear equations whose structure may depend on certain components of the sought solution. For example, the stationary thermoconvective flow of a non-Newtonian fluid is described by the following system for the velocity $v(x)$, the pressure $p(x)$ and the temperature $\theta(x),[1]$,

$$
\left\{\begin{array}{l}
(v \cdot \nabla) b(\theta)-\Delta \theta=g, \quad \operatorname{div} v=0 \quad \text { in } \Omega \\
(v \cdot \nabla) v-\operatorname{div}\left(\mu(\theta)+\tau(\theta)|S(v)|^{q(\theta)-2} S(v)\right)+\nabla p=f,
\end{array}\right.
$$

endowed with the boundary conditions for v, p and θ. Here $\Omega \subset \mathbb{R}^{d}$ is a bounded domain, g, f are given functions, b, μ, τ and q are given functions of θ, and $S(v)$ is the deformation rate tensor. Another example is the model of the thermistor, $[2,3]$,

$$
\begin{equation*}
-\operatorname{div}\left(|\nabla u|^{\sigma(\theta)-2} \nabla u\right)=g, \quad-\Delta \theta=\lambda|\nabla u|^{\sigma(\theta)}, \tag{1.3}
\end{equation*}
$$

where u is the electric potential and θ in the temperature in a conductor in the presence of Joule heating, or the models of electro-rheological fluids in which the character of nonlinearity in the governing Navier-Stokes equations varies according to the applied electromagnetic field [4].

Formally, each of these models can be regarded as a nonlinear equation, or a system of equations, whose nonlinearity depends on the sought solution. For instance, if the equation for θ in (1.3) has a solution for every given u, this dependence defines the nonlocal operator, $\theta \equiv \theta(u)$, and the first equation reads

$$
\begin{equation*}
-\operatorname{div}\left(|\nabla u|^{\sigma[u]-2} \nabla u\right)=g, \quad x \in \Omega, \tag{1.4}
\end{equation*}
$$

where the exponent has the form $\sigma[u] \equiv \sigma(\theta(u))$.
Functionals with the growth condition depending on the solution or its gradient are successfully used for denoising of digital images - see, e.g., [5-7] for the models based on minimization of functionals with $p(|\nabla u|)$-growth and $[8]$ for a discussion of the model of denoising of the image f based on the minimization of the functional

$$
\lambda\|f-u\|_{L^{2}(\Omega)}^{2}+\int_{\Omega}\left(\alpha_{1}(u)|\nabla u \cdot \xi(u)|^{p_{1}(u)}+\alpha_{2}(u)\left|\nabla u \cdot \xi^{\perp}(u)\right|^{p_{2}(u)}\right) d x
$$

where $p_{1}(u), p_{2}(u) \in[1,2],\left(\xi(u), \xi^{\perp}(u)\right)$ is an orthonormal coordinate system such that $\xi(u)$ is approximately parallel to ∇u, wherever $\nabla u \neq 0$.

To the best of our knowledge, the equations involving the $p[u]$-Laplace operators were studied thus far only in papers $[9,10]$. Both papers address elliptic equations of the structure (1.4) and consider the cases of local and nonlocal dependence of σ on u, but their approach to the problem is different.

Paper [9] deals with the equation

$$
\begin{equation*}
b(u)-\operatorname{div} a(x, u, \nabla u)=f \tag{1.5}
\end{equation*}
$$

In this equation $b: \mathbb{R} \mapsto \mathbb{R}$ is a nondecreasing function, $b(0)=0$, and $a(x, z, \xi)$ is a strictly monotone operator of Leray-Lions type which satisfies the growth and coercivity conditions with the variable exponent $p(x, u)$ such that $p(x, u) \in\left[p^{-}, p^{+}\right] \subset(1, \infty), p^{ \pm}=$const. This class of equations includes (1.4) as a partial case. A challenging feature of the equations that involve $p[u]$-Laplacian is that they cannot be interpreted as a duality relation in a fixed Banach space. For this reason, the authors of [9] reduce the study to the L^{1}-setting and use the Young measures to obtain a solution of the degenerate equation of the type (1.5) as the limit of a sequence $\left\{u_{n}\right\}$ of solutions of the regularized equations with $p_{n}(x)$ and p^{+}-Laplacian operators. The authors of [10] take another direction and overcome this difficulty adapting the idea of [11] about passing to the limit in a sequence $\left\{\left|\nabla v_{k}(x)\right|^{q_{k}(x)}\right\}$. The results of [9] and [10] are obtained under the assumption $p^{-}=\min p>d$, which yields compactness of the sequence of solutions of the regularized problems in a space of Hölder-continuous functions. Besides equations (1.4), (1.5) with the exponent $p[u]=(p \circ u)(x)$ defined as a composite function on Ω, the authors of $[9,10]$ consider the case of nonlocal dependence of p on the solution u and discuss the question of uniqueness.

The nonlocal evolution equations are widely used in modelling of various processes in physics and biology and are intensively studied, see, e.g., [12-16] and references therein. Eq. (1.1) with $\alpha=1$ can be regarded as the diffusion equation for the concentration $u(x, t)$, with the diffusion flux $|\nabla u|^{p[u]-2} \nabla u$ which depends on the total mass $m(t)=\int_{\Omega} u(x, t) d x$ at the instant t, or the inverse of the specific volume $m(t) /|\Omega|$, $|\Omega|=$ meas Ω.

2. Assumption and results

2.1. The function spaces

For convenience of the reader, we collect here the basic facts on the Lebesgue and Sobolev with variable exponents. For a detailed presentation of the theory of these spaces we refer to the monograph [17], see also [18, Ch. 1].

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain with the Lipschitz-continuous boundary $\partial \Omega$. Given a measurable function $p(x): \Omega \mapsto\left[p^{-}, p^{+}\right] \subset(1, \infty), p^{ \pm}=$const, the set

$$
L^{p(\cdot)}(\Omega)=\left\{f: \Omega \mapsto \mathbb{R}: f \text { is measurable on } \Omega, \int_{\Omega}|f|^{p(x)} d x<\infty\right\}
$$

equipped with the Luxemburg norm

$$
\|f\|_{p(\cdot), \Omega}:=\inf \left\{\alpha>0: \int_{\Omega}\left|\frac{f}{\alpha}\right|^{p(x)} d x \leq 1\right\}
$$

becomes a Banach space. The relation between the modular $\int_{\Omega}|f|^{p(x)} d x$ and the norm follows from the definition:

$$
\begin{equation*}
\min \left(\|f\|_{p(\cdot)}^{p^{-}},\|f\|_{p(\cdot)}^{p^{+}}\right) \leq \int_{\Omega}|f|^{p(x)} d x \leq \max \left(\|f\|_{p(\cdot)}^{p^{-}},\|f\|_{p(\cdot)}^{p^{+}}\right) . \tag{2.1}
\end{equation*}
$$

In case of $p(\cdot)=$ const >1 these inequalities transform into equalities. For all $f \in L^{p(\cdot)}(\Omega), g \in L^{p^{\prime}(\cdot)}(\Omega)$ with

$$
p(x) \in(1, \infty), \quad p^{\prime}(x)=\frac{p(x)}{p(x)-1}
$$

the generalized Hölder inequality holds:

$$
\begin{equation*}
\int_{\Omega}|f g| d x \leq\left(\frac{1}{p^{-}}+\frac{1}{\left(p^{\prime}\right)^{-}}\right)\|f\|_{p(\cdot)}\|g\|_{p^{\prime}(\cdot)} \leq 2\|f\|_{p(\cdot)}\|g\|_{p^{\prime}(\cdot)} \tag{2.2}
\end{equation*}
$$

If $p(x)$ is measurable and $1<p^{-} \leq p(x) \leq p^{+}<\infty$ in Ω, then $L^{p(\cdot)}(\Omega)$ is a reflexive and separable Banach space, and $C_{0}^{\infty}(\Omega)$ is dense in $L^{p(\cdot)}(\Omega)$.

Let $p_{1}(x), p_{2}(x)$ be measurable on Ω functions such that $p_{i}(x) \in\left[p_{i}^{-}, p_{i}^{+}\right] \subset(1, \infty)$ a.e. in Ω. If $p_{1}(x) \geq p_{2}(x)$ a.e. in Ω, then the inclusion $L^{p_{1}(\cdot)}(\Omega) \subset L^{p_{2}(\cdot)}(\Omega)$ is continuous and

$$
\begin{equation*}
\|u\|_{p_{2}(\cdot), \Omega} \leq C\|u\|_{p_{1}(\cdot), \Omega} \quad \forall u \in L^{p_{1}(\cdot)}(\Omega) \tag{2.3}
\end{equation*}
$$

with a constant $C=C\left(|\Omega|, p_{1}^{ \pm}, p_{2}^{ \pm}\right)$.
The variable Sobolev space $W_{0}^{1, p(\cdot)}(\Omega)$ is defined as the collection of functions

$$
W_{0}^{1, p(\cdot)}(\Omega)=\left\{u \in L^{p(\cdot)}(\Omega) \cap W_{0}^{1,1}(\Omega):|\nabla u|^{p(x)} \in L^{1}(\Omega)\right\}
$$

equipped with the norm

$$
\begin{equation*}
\|u\|_{W_{0}^{1, p(\cdot)}(\Omega)}=\|\nabla u\|_{p(\cdot), \Omega}+\|u\|_{p(\cdot), \Omega} . \tag{2.4}
\end{equation*}
$$

By $C_{\log }(\bar{\Omega})$ we denote the set of functions continuous on $\bar{\Omega}$ with the logarithmic modulus of continuity:

$$
\begin{equation*}
\left|p\left(x_{2}\right)-p\left(x_{1}\right)\right| \leq \omega\left(\left|x_{2}-x_{1}\right|\right) \tag{2.5}
\end{equation*}
$$

where $\omega \geq 0$ satisfies the condition

$$
\varlimsup_{\tau \rightarrow 0^{+}} \omega(\tau) \ln \frac{1}{\tau}=C<\infty, \quad C=\text { const }
$$

It is known that for $p(x) \in C_{\log }(\bar{\Omega})$ the set $C_{0}^{\infty}(\Omega)$ is dense in $W_{0}^{1, p(\cdot)}(\Omega)$ and the space $W_{0}^{1, p(\cdot)}(\Omega)$ coincides with the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm (2.4).

We will use the notation $p(z) \in C_{\log }\left(\bar{Q}_{T}\right)$ for the functions p of the argument $z=(x, t)$ which are continuous in the closure of the cylinder $Q_{T}=\Omega \times(0, T)$ with the logarithmic modulus of continuity, that is, satisfy condition (2.5) in the cylinder Q_{T} with x_{i} substituted by z_{i}.

For the elements of $W_{0}^{1, p(\cdot)}(\Omega)$ with $p(x) \in C^{0}(\bar{\Omega})$ the Poincaré inequality holds:

$$
\begin{equation*}
\|u\|_{p(\cdot), \Omega} \leq C(d, \Omega)\|\nabla u\|_{p(\cdot), \Omega} . \tag{2.6}
\end{equation*}
$$

An immediate consequence of the Poincaré inequality is that an equivalent norm of $W_{0}^{1, p(\cdot)}(\Omega)$ can be defined by

$$
\|u\|_{W_{0}^{1, p(\cdot)}(\Omega)}=\|\nabla u\|_{p(\cdot), \Omega} .
$$

Let $p(x), q(x) \in C^{0}(\bar{\Omega}), 1<p^{-} \leq p(x) \leq p^{+}<\infty, d \geq 2$. If $q(x)<\frac{d p(x)}{d-p(x)}$ in $\bar{\Omega}$, then the embedding $W_{0}^{1, p(\cdot)}(\Omega) \subset L^{q(\cdot)}(\Omega)$ is continuous, compact, and

$$
\|v\|_{q(\cdot), \Omega} \leq C\|\nabla v\|_{p(\cdot), \Omega} \quad \forall v \in W_{0}^{1, p(\cdot)}(\Omega)
$$

According to $(2.3) W_{0}^{1, p(\cdot)}(\Omega) \subset W_{0}^{1, p^{-}}(\Omega)$. If $p^{-}>\frac{2 d}{d+2}$, then the embedding $W_{0}^{1, p^{-}}(\Omega) \subset L^{2}(\Omega)$ is compact.

Let us introduce the spaces of functions defined on the cylinder Q_{T}

$$
\begin{aligned}
& \mathbf{V}_{t}(\Omega)=\left\{u: \Omega \mapsto \mathbb{R}\left|u \in L^{2}(\Omega) \cap W_{0}^{1,1}(\Omega),|\nabla u|^{p(x, t)} \in L^{1}(\Omega)\right\}, \quad t \in(0, T),\right. \\
& \mathbf{W}\left(Q_{T}\right)=\left\{u:(0, T) \mapsto \mathbf{V}_{t}(\Omega)\left|u \in L^{2}\left(Q_{T}\right),|\nabla u|^{p(x, t)} \in L^{1}\left(Q_{T}\right)\right\}\right.
\end{aligned}
$$

with the norm

$$
\|v\|_{\mathbf{W}\left(Q_{T}\right)}=\|v\|_{2, Q_{T}}+\|\nabla u\|_{p(\cdot), Q_{T}} .
$$

Given a measurable in Q_{T} function u, a function p, and a functional $l(\cdot)$ defined by (1.2), we define the set

$$
\mathbf{W}_{u}\left(Q_{T}\right)=\left\{v \in L^{2}\left(Q_{T}\right):|\nabla v|^{p[u]} \in L^{1}\left(Q_{T}\right), v=0 \text { on } \partial \Omega \times(0, T) \text { in the sense of traces }\right\} .
$$

If we denote $\widetilde{p}(x, t)=p[u(x, t)]$, then $\mathbf{W}_{u}\left(Q_{T}\right)$ coincides with the space $\mathbf{W}\left(Q_{T}\right)$ with the given variable exponent $\widetilde{p}(x, t)$. The inclusion $u \in \mathbf{W}_{u}\left(Q_{T}\right)$ means that $u \in L^{2}\left(Q_{T}\right),|\nabla u|^{\widetilde{p}(x, t)} \in L^{1}\left(Q_{T}\right)$ and $u=0$ on $\partial \Omega \times(0, T)$. The norm of $\mathbf{W}_{u}\left(Q_{T}\right)$ is defined as the norm of $\mathbf{W}\left(Q_{T}\right)$ with the exponent $\widetilde{p}(x, t)=p[u(x, t)]$.

Notation. Throughout the text we use the notation

$$
\left|v_{x x}\right|^{q}=\sum_{i, j=1}^{d}\left|D_{x_{i} x_{j}}^{2} v\right|^{q}
$$

where the exponent q may depend on t. By C we denote the constants which can be computed or estimated through the data of the problem, but whose precise values are unimportant. The value of C may differ from line to line even in the same formula.

2.2. The main result and organization of the paper

Definition 2.1. A function u is called strong solution of problem (1.1) if

1. $u \in C^{0}\left([0, T] ; L^{2}(\Omega)\right),|\nabla u|^{p[u]} \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$, $u_{t} \in L^{2}\left(Q_{T}\right)$;
2. $\left\|u(\cdot, t)-u_{0}\right\|_{2, \Omega} \rightarrow 0$ as $t \rightarrow 0+$;
3. for every test-function $\phi \in L^{2}\left(Q_{T}\right)$ with $|\nabla \phi|^{p[u]} \in L^{1}\left(Q_{T}\right)$

$$
\begin{equation*}
\int_{Q_{T}}\left(u_{t} \phi+|\nabla u|^{p[u]-2} \nabla u \cdot \nabla \phi\right) d z=\int_{Q_{T}} f \phi d z . \tag{2.7}
\end{equation*}
$$

The main result of this work is given in the following theorem.
Theorem 2.1. Let $p: \mathbb{R} \mapsto\left[p^{-}, p^{+}\right], p^{ \pm}=$const, be a given function, $l(v)$ be the functional defined by (1.2), and $p[v]=p(l(v))$. Assume that
(a) Ω is a bounded domain with the boundary $\partial \Omega \in C^{2}$,
(b) $u_{0} \in W_{0}^{1,2}(\Omega), \quad f \in L^{\left(p^{-}\right)^{\prime}}\left(Q_{T}\right)$,
(c) $p(s)$ is differentiable in $\mathbb{R}, \quad \sup _{s \in \mathbb{R}}\left|p^{\prime}(s)\right| \leq C_{*}, \quad C_{*}=$ const.,
(d) $\frac{2 d}{d+2}<p^{-} \leq p^{+}<2$.

Then problem (1.1) has a strong solution in the sense of Definition 2.1 and the following estimate holds:

$$
\begin{equation*}
\sup _{(0, T)}\|\nabla u(\cdot, t)\|_{2, \Omega}^{2}+\left\|u_{t}\right\|_{2, Q_{T}}^{2}+\int_{Q_{T}}\left|u_{x x}\right|^{p[u]} d z \leq C\left(1+\left\|\nabla u_{0}\right\|_{2, \Omega}^{2}+\int_{Q_{T}}|f|^{\left(p^{-}\right)^{\prime}}\right) d z . \tag{2.9}
\end{equation*}
$$

The paper is organized as follows. In Section 3 we consider the regularized non-singular problem (3.1). The solution of this problem is obtained as the limit of the sequence of Galerkin's approximations in the basis composed of the eigenfunctions of the Laplace operator. This section is almost entirely devoted to obtaining uniform a priori estimates for the approximate solutions.

In Section 4 we justify first the passage to the limit in the sequence of Galerkin's approximations and obtain a solution of the regularized problem. We make use of monotonicity of the function $\gamma_{\epsilon}(q, \xi) \xi=$ $\left(\epsilon^{2}+|\xi|^{2}\right)^{\frac{q-2}{2}} \xi$ in ξ with a fixed q, continuity of $\gamma_{\epsilon}(q, \xi) \xi$ with respect to q with a fixed ξ, and the fact that in the singular case, $p^{+}<2$, the solutions u_{ϵ} of the regularized problems and their approximations possess extra regularity: $\left\|\nabla u_{\epsilon}(t)\right\|_{2, \Omega}$ are uniformly bounded for all $t \in(0, T)$. It is worth mentioning here that if $p(x, t) \in C_{\log }\left(\bar{Q}_{T}\right)$ is a given function, then for every $u_{0} \in L^{2}(\Omega)$ and $f \in L^{2}\left(Q_{T}\right)$ problem (1.1) admits a weak solution $u \in C\left([0, T] ; L^{2}(\Omega)\right) \cap \mathbf{W}\left(Q_{T}\right)$, see, e.g. [18, Ch.4]. The time derivative of the weak solution is a distribution which may not belong to any Lebesgue space $L^{s}\left(Q_{T}\right)$ with $s>1$. In case of Eq. (1.1) with $p=p[u]$, such a regularity is insufficient for the convergence of the sequence of the exponents p corresponding to the approximate solutions. To overcome this difficulty, we construct strong solutions with $u_{t} \in L^{2}\left(Q_{T}\right)$.

To pass to the limit as $\epsilon \rightarrow 0$ in the sequence $\left\{u_{\epsilon}\right\}$ of solutions to (3.1) we use the a priori estimates of Section 4, which remain true for the solutions of the regularized problem (3.1). The procedure of passing to the limit in ϵ requires an additional step because now the exponent $p_{\epsilon}=p\left[u_{\epsilon}\right]$ also depends on ϵ.

Uniqueness Theorem 5.1 is proven in Section 5. We show that the strong solution is unique in the class of functions the solution constructed in Theorem 2.1 belongs to.

In Section 6 we prove the local in time existence of a strong solution if condition (2.8) (d) on the range of $p[v]$ is omitted and substituted by the claim for the initial function $p\left[u_{0}\right] \in\left(\frac{2 d}{d+2}, 2\right)$. It is shown next that every strong solution of problem (1.1) vanishes in finite time: if $f \equiv 0$ for all $t \geq t_{f}$, then there exists $t^{*} \geq t_{f}$ such that $\|u(t)\|_{2, \Omega}=0$ for all $t \geq t^{*}$.

3. Regularized problem

We will obtain a solution of the singular problem (1.1) as the limit when $\epsilon \rightarrow 0$ of the family of solutions of the regularized problems

$$
\left\{\begin{array}{l}
u_{\epsilon t}=\operatorname{div}\left(\left(\epsilon^{2}+\left|\nabla u_{\epsilon}\right|^{2}\right)^{\frac{p\left[u_{\epsilon}\right]-2}{2}} \nabla u_{\epsilon}\right)+f(z) \text { in } Q_{T}, \tag{3.1}\\
u_{\epsilon}=0 \text { on } \partial \Omega \times(0, T), \\
u_{\epsilon}(x, 0)=u_{0}(x) \text { in } \Omega, \quad \epsilon>0
\end{array}\right.
$$

3.1. Galerkin's approximations

The solution of problem (3.1) is understood in the sense of Definition 2.1. It is constructed as the limit of the sequence of finite-dimensional approximations

$$
u_{\epsilon} \equiv u(x, t)=\lim _{m \rightarrow \infty} u^{(m)}, \quad u^{(m)}=\sum_{i=1}^{\infty} u_{i, m}(t) \psi_{i}(x),
$$

where $\left\{\psi_{i}\right\}$ is the orthonormal basis of $L^{2}(\Omega)$ composed of the eigenfunctions of the Dirichlet problem for the Laplace operator

$$
\begin{equation*}
\left(\nabla \psi_{i}, \nabla \phi\right)_{2, \Omega}=\lambda_{i}\left(\psi_{i}, \phi\right)_{2, \Omega} \quad \forall \phi \in W_{0}^{1,2}(\Omega), \quad i=1,2, \ldots \tag{3.2}
\end{equation*}
$$

The system $\left\{\frac{1}{\sqrt{\lambda_{i}}} \psi_{i}\right\}$ forms an orthogonal basis of $W_{0}^{1,2}(\Omega)$. Let us accept the notation

$$
\begin{align*}
& \gamma_{\epsilon}(q, \mathbf{s})=\left(\epsilon^{2}+|\mathbf{s}|^{2}\right)^{\frac{q-2}{2}}, \quad \mathbf{s} \in \mathbb{R}^{d}, t \in(0, T), \epsilon>0, q \in(1,2], \\
& p_{m}(t)=p\left[u^{(m)}\right], \quad u^{(m)}=\sum_{i=1}^{m} u_{i, m}(t) \psi_{i}(x) \tag{3.3}
\end{align*}
$$

The coefficients $u_{i, m}(t)$ are defined as the solutions of the Cauchy problem for the system of m ordinary nonlinear differential equations

$$
\begin{align*}
& u_{i, m}^{\prime}(t)=-\int_{\Omega} \gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right) \nabla u^{(m)} \cdot \nabla \psi_{i} d x+\int_{\Omega} f(z) \psi_{i} d x \tag{3.4}\\
& u_{i, m}(0)=u_{0 i}^{(m)}, \quad i=1,2, \ldots, m
\end{align*}
$$

where the constants $v_{i}^{(m)}$ are the Fourier coefficients of u_{0} in the basis $\left\{\psi_{i}\right\}$:

$$
u_{0}^{(m)}=\sum_{i=1}^{m} u_{0 i}^{(m)} \psi_{i}(x) \rightarrow u_{0}(x) \quad \text { in } L^{2}(\Omega)
$$

By the Caratheodory theorem for every finite m system (3.4) has a continuous solution on an interval $\left(0, T_{m}\right)$. In the next subsection we derive the uniform estimates on $u^{(m)}$ and its derivatives, which show that the solutions of system (3.4) can be continued to the interval $(0, T)$.

3.2. Uniform a priori estimates

Lemma 3.1. Under conditions (2.8)

$$
\begin{gather*}
\sup _{(0, T)}\left\|u^{(m)}(t)\right\|_{2, \Omega}^{2}+\int_{Q_{T}} \gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left|\nabla u^{(m)}\right|^{2} d z \leq C\left(\left\|u_{0}\right\|_{2, \Omega}^{2}+\|f\|_{2, Q_{T}}^{2}\right) \tag{3.5}\\
\int_{Q_{T}}\left|\nabla u^{(m)}\right|^{p_{m}(t)} d z \leq C\left(1+\int_{Q_{T}} \gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left|\nabla u^{(m)}\right|^{2} d z\right) \tag{3.6}
\end{gather*}
$$

with absolute constants C.
Proof. Multiplying the i th equation of (3.4) by $u_{i}^{(m)}$ and summing the results lead to the energy relation

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(\left\|u^{(m)}(t)\right\|_{2, \Omega}^{2}\right)+\int_{\Omega} \gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left|\nabla u^{(m)}\right|^{2} d x=\int_{\Omega} u^{(m)} f d x \tag{3.7}
\end{equation*}
$$

Estimate (3.5) follows from (3.7) after integration in t. By Young's inequality, for every $\delta>0$

$$
\begin{align*}
\int_{Q_{T}}\left|\nabla u^{(m)}\right|^{p_{m}} d z & =\int_{Q_{T}} \gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)^{-\frac{p_{m}}{2}}\left(\gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left|\nabla u^{(m)}\right|^{2}\right)^{\frac{p_{m}}{2}} d z \\
& \leq \delta \int_{Q_{T}}\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right)^{\frac{p_{m}}{2}} d z+C_{\delta} \int_{Q_{T}} \gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left|\nabla u^{(m)}\right|^{2} d z \tag{18}\\
& \leq \delta \int_{Q_{T}}\left|\nabla u^{(m)}\right|^{p_{m}} d z+C_{\delta}\left(1+\int_{Q_{T}} \gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left|\nabla u^{(m)}\right|^{2} d z\right) .
\end{align*}
$$

$$
\left\|u^{(m)}(t)\right\|_{2, \Omega} \frac{d}{d t}\left(\left\|u^{(m)}(t)\right\|_{2, \Omega}\right) \leq\left\|u^{(m)}(t)\right\|_{2, \Omega}\|f(t)\|_{2, \Omega}
$$

Simplifying and integrating it in t we obtain the inequality

$$
\begin{equation*}
\left\|u^{(m)}(t)\right\|_{2, \Omega} \leq\left\|u_{0}\right\|_{2, \Omega}+\int_{0}^{t}\|f(t)\|_{2, \Omega} d t . \tag{3.8}
\end{equation*}
$$

Corollary 3.1.

$$
\int_{Q_{T}}\left(\gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left|\nabla u^{(m)}\right|\right)^{\left(p_{m}(t)\right)^{\prime}} d z \leq C
$$

uniformly with respect to m and ϵ.
Proof. The estimate follows from (3.6) because for $1<p^{-} \leq p^{+} \leq 2$

$$
\gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left|\nabla u^{(m)}\right| \leq\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right)^{\frac{p_{m}(t)-1}{2}} \leq C\left(p^{ \pm}\right)\left(1+\left|\nabla u^{(m)}\right|^{p_{m}(t)-1}\right) .
$$

Lemma 3.2. Let conditions (2.8) be fulfilled. Then the functions $u^{(m)}$ satisfy the estimate

$$
\begin{align*}
\sup _{(0, T)}\left\|\nabla u^{(m)}(\cdot, t)\right\|_{2, \Omega}^{2} & +\int_{Q_{T}}\left(\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right)^{\frac{p_{m}(t)-2}{2}}\left|u_{x x}^{(m)}\right|^{2}+\left|u_{x x}^{(m)}\right|^{p_{m}(t)}\right) d z \tag{3.9}\\
& \leq C\left(\left\|\nabla u_{0}\right\|_{2, \Omega}^{2}+\int_{Q_{T}}|f|^{\left(p^{-}\right)^{\prime}} d z+1\right)
\end{align*}
$$

with a constant C independent of m and ϵ.
Proof. Multiplying i th equation in (3.4) by $\lambda_{i} u_{i}^{(m)}$, summing up for $i=1,2, \ldots, m$ and then following the proof of [19, Lemma 2.2] we arrive at the equality

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(\left\|\nabla u^{(m)}\right\|_{2, \Omega}^{2}\right)+\int_{\Omega} \gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left|u_{x x}^{(m)}\right|^{2} d x=-I-I_{\partial \Omega}+I_{f} \tag{3.10}
\end{equation*}
$$

where

$$
\begin{gather*}
I=\int_{\Omega}(p-2)\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right)^{\frac{p_{m}(t)-2}{2}-1}\left(\sum_{k=1}^{d}\left(\nabla u^{(m)} \cdot \nabla\left(D_{k} u^{(m)}\right)\right)^{2}\right) d x, \tag{3.11}\\
I_{f}=\int_{\Omega} f(z) \Delta u^{(m)} d x \tag{3.12}\\
I_{\partial \Omega}=\int_{\partial \Omega} \gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left(\Delta u^{(m)}\left(\nabla u^{(m)} \cdot \mathbf{n}\right)-\nabla u^{(m)} \cdot \nabla\left(\nabla u^{(m)} \cdot \mathbf{n}\right)\right) d S . \tag{3.13}
\end{gather*}
$$

It is straightforward to check that

$$
|I| \leq\left(2-p^{-}\right) \int_{\Omega} \gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left|u_{x x}^{(m)}\right|^{2} d x .
$$

By Young's inequality

$$
\begin{aligned}
\left|I_{f}\right| \leq & \int_{\Omega}|f|\left|u_{x x}^{(m)}\right| d x \leq \delta \int_{\Omega}\left|u_{x x}^{(m)}\right|^{p_{m}(t)} d x+C(\delta) \int_{\Omega}|f|^{p_{m}^{\prime}(t)} d x \\
\leq \leq & \delta \int_{\Omega} \gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)^{-\frac{p_{m}(t)}{2}}\left(\gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left|u_{x x}^{(m)}\right|^{2}\right)^{\frac{p_{m}(t)}{2}} d x \\
& +C\left(\delta, p^{ \pm}\right)\left(1+\int_{\Omega}|f|^{\left(p^{-}\right)^{\prime}} d x\right) \\
\leq & \delta \int_{\Omega} \gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left|u_{x x}^{(m)}\right|^{2} d x \\
& +C^{\prime}(\delta) \int_{\Omega}\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right)^{\frac{p_{m}(t)}{2}} d x+C^{\prime \prime}(\delta)\left(1+\int_{\Omega}|f|^{\left(p^{-}\right)^{\prime}} d x\right)
\end{aligned}
$$

with an arbitrary $\delta>0$. Choosing δ appropriately small and using (3.6) we arrive at the inequality

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\left(\left\|\nabla u^{(m)}(\cdot, t)\right\|_{2, \Omega}^{2}\right) & +\int_{\Omega}\left(\gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left|u_{x x}^{(m)}\right|^{2}+\left|u_{x x}^{(m)}\right|^{p_{m}(t)}\right) d x \\
& \leq C\left(1+\left|I_{\Omega}\right|+\int_{\Omega}|f|^{\left(p^{-}\right)^{\prime}}+\int_{\Omega}\left|\nabla u^{(m)}\right|^{p_{m}} d x\right) \tag{3.14}
\end{align*}
$$

with a constant C which does not depend on m and ϵ. It is known (see [20, Ch.1,Sec.1.5] for the case $d=2$ and [19, Lemma A.1] for the general case $d \geq 3$) that if $\partial \Omega \in C^{2}$, then there exist constants K, K^{\prime}, depending on $\partial \Omega$, such that

$$
\left|I_{\partial \Omega}\right| \leq K \int_{\partial \Omega} \gamma_{\epsilon}\left(z, \nabla u^{(m)}\right)\left(\nabla u^{(m)} \cdot \mathbf{n}\right)^{2} d S \leq K^{\prime}\left(\int_{\partial \Omega}\left|\nabla u^{(m)}\right|^{p_{m}} d S+1\right)
$$

Inequality (3.14) can be written in the form

$$
\begin{align*}
\frac{d}{d t}\left(\left\|\nabla u^{(m)}\right\|_{2, \Omega}^{2}\right) & +\int_{\Omega}\left(\gamma_{\epsilon}\left(z, \nabla u^{(m)}\right)\left|u_{x x}^{(m)}\right|^{2}+\left|u_{x x}^{(m)}\right|^{p_{m}}\right) d x \\
& \leq C\left(\int_{\partial \Omega}\left|\nabla u^{(m)}\right|^{p_{m}} d S+\int_{\Omega} f^{\left(p^{-}\right)^{\prime}} d x+\int_{\Omega}\left|\nabla u^{(m)}\right|^{p_{m}} d x+1\right) \tag{3.15}
\end{align*}
$$

To estimate the integral over $\partial \Omega$ we use the following embedding inequality (see [21, Theorem 1.5.1.10]): there exists a constant $L=L(d, \Omega)$ such that for every $\delta \in(0,1)$

$$
\begin{equation*}
\int_{\partial \Omega}\left|\nabla u^{(m)}\right|^{p_{m}} d S \leq L\left(\delta^{1-\frac{1}{p_{m}}} \int_{\Omega}\left|u_{x x}^{(m)}\right|^{p_{m}} d x+\delta^{-\frac{1}{p_{m}}} \int_{\Omega}\left|\nabla u^{(m)}\right|^{p_{m}} d x\right) \tag{3.16}
\end{equation*}
$$

It follows that for all $t \in[0, T]$ and every $\delta \in(0,1)$

$$
\begin{equation*}
\int_{\partial \Omega}\left|\nabla u^{(m)}\right|^{p_{m}} d S \leq L\left(\delta^{1-\frac{1}{p^{+}}} \int_{\Omega}\left|u_{x x}^{(m)}\right|^{p_{m}} d x+\delta^{-\frac{1}{p^{-}}} \int_{\Omega}\left|\nabla u^{(m)}\right|^{p_{m}} d x\right) \tag{3.17}
\end{equation*}
$$

Combining (3.15) and (3.16) with $2 \delta^{1-\frac{1}{p^{+}}} C K^{\prime} \leq 1$, we arrive at the inequality

$$
\frac{d}{d t}\left\|\nabla u^{(m)}\right\|_{2, \Omega}^{2}+\int_{\Omega}\left(\gamma_{\epsilon}\left(z, \nabla u^{(m)}\right)\left|u_{x x}^{(m)}\right|^{2}+\left|u_{x x}^{(m)}\right|^{p_{m}}\right) d x \leq C\left(\int_{\Omega}\left|\nabla u^{(m)}\right|^{p_{m}} d x+\int_{\Omega} f^{\left(p^{-}\right)^{\prime}} d x+1\right)
$$

To complete the proof, we integrate this inequality with respect to t and plug in estimates (3.5), (3.6).
Lemma 3.3. Under conditions (2.8) the functions $u^{(m)}$ satisfy the estimates

$$
\begin{equation*}
\left\|u_{t}^{(m)}\right\|_{2, Q_{T}}^{2}+\sup _{(0, T)} \int_{\Omega}\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right)^{\frac{p_{m}(t)}{2}} d x \leq C \tag{3.18}
\end{equation*}
$$

with a constant $C=C\left(\left\|\nabla u_{0}\right\|_{2, \Omega},\|f\|_{\left(p^{-}\right)^{\prime}(\cdot), Q_{T}}, p^{ \pm}, C^{*}\right)$ independent of m and ϵ.
Proof. Estimates (3.18) follow upon multiplication the i th equation of (3.4) by $u_{i, m}^{\prime}(t)$ and summation of the results. Following the proof of [19, Lemma 2.4] we arrive at the relations

$$
\begin{align*}
& \left\|u_{t}^{(m)}(t)\right\|_{2, \Omega}^{2} d x+\frac{d}{d t}\left(\int_{\Omega}\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right)^{\frac{p_{m}(t)}{2}} d x\right) \\
& =-\int_{\Omega} \frac{d p_{m}(t)}{d t} \frac{\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right)^{\frac{p_{m}(t)}{2}}}{p_{m}^{2}(t)}\left(1-\frac{p_{m}(t)}{2} \ln \left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right)\right) d x+\int_{\Omega} f u_{t}^{(m)} d x \tag{3.19}\\
& \leq C\left|\frac{d p_{m}(t)}{d t}\right|\left(1+\int_{\Omega}\left|\nabla u^{(m)}\right|^{p_{m}(t)} d x+\int_{\Omega}\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right)^{\frac{p_{m}(t)}{2}} \ln ^{2}\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right) d x\right) \\
& \quad+\frac{1}{2}\|f(t)\|_{2, \Omega}^{2}+\frac{1}{2}\left\|u_{t}^{(m)}(t)\right\|_{2, \Omega}^{2} \quad \text { for every } t \in[0, T]
\end{align*}
$$

with $C=C\left(C^{*}, p^{-}\right)$. Using the formula

$$
\left(|u|^{\alpha}\right)_{t}=\left(\left(u^{2}\right)^{\frac{\alpha}{2}}\right)_{t}=\frac{\alpha}{2}\left(u^{2}\right)^{\frac{\alpha}{2}-1} 2 u u_{t}=\alpha u_{t}|u|^{\alpha-1} \operatorname{sign} u
$$

1 and (3.5) we estimate

$$
\begin{align*}
\left|\frac{d p_{m}(t)}{d t}\right| & =\left.\alpha\left|p^{\prime}\left(\|u(\cdot, t)\|_{\alpha, \Omega}^{\alpha}\right)\right|\left|\int_{\Omega}\right| u^{(m)}\right|^{\alpha-1} u_{t}^{(m)} \operatorname{sign} u d x \mid \\
& \leq \alpha C_{*}\left\|u_{t}^{(m)}\right\|_{2, \Omega}\left(\int_{\Omega}\left|u^{(m)}\right|^{2(\alpha-1)} d x\right)^{\frac{1}{2}} \tag{3.20}\\
& \leq \alpha C_{*}|\Omega|^{1-\frac{\alpha}{2}}\left\|u_{t}^{(m)}\right\|_{2, \Omega}\left\|u^{(m)}\right\|_{2, \Omega}^{\frac{\alpha-1}{2}} \\
& \leq C\left\|u_{t}^{(m)}\right\|_{2, \Omega}, \quad C=C\left(\alpha,|\Omega|, C_{*}, u_{0}, f\right) .
\end{align*}
$$

$$
\begin{aligned}
&\left|\frac{d p_{m}(t)}{d t}\right|\left|\int_{\Omega} \frac{\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right)^{\frac{p_{m}(t)}{2}}}{p_{m}^{2}(t)} d x\right| \leq \frac{C}{\left(p^{-}\right)^{2}}\left\|u_{t}^{(m)}\right\|_{2, \Omega}\left(1+\int_{\Omega}\left|\nabla u^{(m)}\right|^{p_{m}(t)} d x\right) \\
& \leq C^{\prime}\left(1+\sup _{(0, T)} \int_{\Omega}\left|\nabla u^{(m)}\right|^{2} d x\right)\left\|u_{t}^{(m)}\right\|_{2, \Omega}, \\
& \frac{1}{2}\left|\frac{d p_{m}(t)}{d t}\right|\left|\int_{\Omega} \frac{1}{p_{m}(t)}\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right)^{\frac{p_{m}(t)}{2}} \ln ^{2}\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right) d x\right| \\
& \leq C^{\prime \prime}\left\|u_{t}^{(m)}\right\|_{2, \Omega} \int_{\Omega}\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right)^{\frac{p_{m}(t)}{2}} \ln ^{2}\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right) d x=I .
\end{aligned}
$$

For every $0<\mu<\min \left\{p^{-} / 2,\left(2-p^{+}\right) / 2\right\}$,

$$
s^{\frac{p_{m}(t)}{2}} \ln ^{2} s \leq\left\{\begin{array}{ll}
s^{\frac{p_{m}(t)-\mu}{2}}\left(s^{\mu / 2} \ln ^{2} s\right) & \text { if } s \in(0,1), \tag{3.21}\\
s^{\frac{p_{m}(t)+\mu}{2}}\left(s^{-\mu / 2} \ln ^{2} s\right) & \text { if } s>1
\end{array} \leq C\left(\mu, p^{ \pm}\right)\left(1+s^{\frac{p^{+}+\mu}{2}}\right) \leq C(1+s) .\right.
$$

Gathering (3.21) with (3.9) we obtain the estimate

$$
\begin{aligned}
& \int_{\Omega}\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right)^{\frac{p_{m}(t)}{2}} \ln ^{2}\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right) d x \leq C \int_{\Omega}\left(1+\left|\nabla u^{(m)}\right|^{2}\right) d x \\
& \quad \leq C\left(\left\|\nabla u_{0}\right\|_{2, \Omega}^{2}+\int_{Q_{T}}|f|^{\left(p^{-}\right)^{\prime}} d z+1\right)
\end{aligned}
$$

for all $t \in(0, T)$. By Young's inequality

$$
\begin{align*}
I & \leq C\left\|u_{t}(t)\right\|_{2, \Omega}\left(\left\|\nabla u_{0}\right\|_{2, \Omega}^{2}+\int_{Q_{T}}|f|^{\left(p^{-}\right)^{\prime}} d z+1\right) \\
& \leq \frac{1}{4}\left\|u_{t}(t)\right\|_{2, \Omega}^{2}+C^{\prime}\left(\left\|\nabla u_{0}\right\|_{2, \Omega}^{2}+\int_{Q_{T}}|f|^{\left(p^{-}\right)^{\prime}} d z+1\right)^{2} . \tag{3.22}
\end{align*}
$$

Plugging (3.22), (3.5) and (3.6) into (3.19) we rewrite it in the form

$$
\begin{aligned}
\frac{1}{4}\left\|u_{t}^{(m)}(t)\right\|_{2, \Omega}^{2} & +\frac{d}{d t}\left(\int_{\Omega}\left(\epsilon^{2}+\left|\nabla u^{(m)}\right|^{2}\right)^{\frac{p_{m}(t)}{2}} d x\right) \\
& \leq C\left(\left(1+\|f\|_{\left(p^{-}\right)^{\prime}, Q_{T}}^{\left(p^{-}\right)^{\prime}}+\left\|\nabla u_{0}\right\|_{2, \Omega}^{2}\right)^{2}+\|f(t)\|_{2, \Omega}^{2}\right)
\end{aligned}
$$

for every $t \in[0, T]$ with a constant depending on $\alpha, p^{ \pm}, C^{*},|\Omega|$. Inequality (3.18) follows after integration in time.

Corollary 3.2. Under the conditions of Lemma $3.3 p_{m}(t) \in C^{1 / 2}([0, T])$ and

$$
\left\|p_{m}(t)\right\|_{C^{1 / 2}([0, T])} \leq C
$$

with an independent of m and ϵ constant C.

Proof. By virtue of (3.18) and (3.20), for every $0 \leq \tau \leq t \leq T$

$$
\left|p_{m}(t)-p_{m}(\tau)\right|=\left|\int_{\tau}^{t} \frac{d p_{m}(s)}{d t} d s\right| \leq C \int_{\tau}^{t}\left\|u_{t}^{(m)}\right\|_{2, \Omega} d s \leq C^{\prime}\left\|u_{t}^{(m)}\right\|_{2, Q_{T}}|t-\tau|^{\frac{1}{2}}
$$

with an independent of m and ϵ constant C.

4. Passing to the limit

4.1. Strong solution of the regularized problem

Lemma 4.1. If the data satisfy conditions (2.8), then problem (3.1) has a strong solution $u_{\epsilon}=\lim u^{(m)}$ as $m \rightarrow \infty$. The solution satisfies the estimate

$$
\begin{equation*}
\left\|u_{\epsilon t}\right\|_{2, Q_{T}}^{2}+\operatorname{ess} \sup _{(0, T)}\left\|\nabla u_{\epsilon}(\cdot, t)\right\|_{2, \Omega}^{2}+\int_{Q_{T}}\left|u_{\epsilon x x}\right|^{p\left[u_{\epsilon}\right]} d z \leq C\left(\left\|\nabla u_{0}\right\|_{2, \Omega}^{2}+\int_{Q_{T}}|f|^{\left(p^{-}\right)^{\prime}} d z+1\right) . \tag{4.1}
\end{equation*}
$$

For the sake of simplicity of notation, throughout this subsection we omit the subindex ϵ and denote by $u(z)$ the limit of the sequence $\left\{u^{(m)}\right\}$, which approximates the solution of the regularized problem (3.1). The uniform estimates (3.5), (3.6), (3.9), (3.18) allow one to extract from $\left\{u^{(m)}\right\}$ a subsequence (which we assume coinciding with the whole sequence) such that for some $u \in L^{2}\left(Q_{T}\right) \cap L^{\infty}\left(0, T ; W_{0}^{1,2}(\Omega)\right)$ and $\chi \in\left(L^{(p[u])^{\prime}}\left(Q_{T}\right)\right)^{d}$

$$
\begin{align*}
& u_{t}^{(m)} \rightharpoonup u_{t} \text { in } L^{2}\left(Q_{T}\right), \\
& \nabla u^{(m)} \rightharpoonup \nabla u \text { in }\left(L^{2}\left(Q_{T}\right)\right)^{d}, \tag{4.2}\\
& \gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right) \nabla u^{(m)} \rightharpoonup \chi \text { in }\left(L^{\left(p[u)^{\prime}\right.}\left(Q_{T}\right)\right)^{d} .
\end{align*}
$$

The first two relations follow directly from (3.9) and (3.18). Let us prove the third relation of (4.2). According to [22, Th.5], the sequence $\left\{u^{(m)}\right\}$ is relatively compact in $C\left([0, T] ; L^{2}(\Omega)\right)$:

$$
\begin{equation*}
u^{(m)} \rightarrow u \text { in } C\left([0, T] ; L^{2}(\Omega)\right) \text { and a.e. in } Q_{T} . \tag{4.3}
\end{equation*}
$$

Due to (4.3), for every $t \in[0, T]$ there exists

$$
\lim _{m \rightarrow \infty}\left\|u^{(m)}(\cdot, t)\right\|_{\alpha, \Omega}^{\alpha}=\|u(\cdot, t)\|_{\alpha, \Omega}^{\alpha}
$$

whence, by continuity of $p(l)$,

$$
p_{m}(t)=p\left(\left\|u^{(m)}(\cdot, t)\right\|_{\alpha, \Omega}^{\alpha}\right) \rightarrow p\left(\|u(\cdot, t)\|_{\alpha, \Omega}^{\alpha}\right)=p[u] \quad \forall t \in[0, T] .
$$

Fix some $\beta \in(0,1 / 2)$. By Corollary 3.2 the sequence $\left\{p_{m}(t)\right\}$ is equicontinuous in $C^{0,1 / 2}[0, T]$. It follows then that $\left\{p_{m}(t)\right\}$ is precompact in $C^{0, \beta}[0, T]$:

$$
\begin{equation*}
p_{m}(t) \rightarrow p(t) \equiv p[u] \text { in } C^{0, \beta}[0, T] \subset C_{\log }[0, T] . \tag{4.4}
\end{equation*}
$$

Notice that

$$
\left(\gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left|\nabla u^{(m)}\right|\right)^{\left(p[u)^{\prime}\right.} \leq C\left(1+\left|\nabla u^{(m)}\right|^{p_{m}(t)-1}\right)^{\frac{p[u]}{p[u]-1}} \leq C\left(1+\left|\nabla u^{(m)}\right|^{\lambda_{m}(t)}\right)
$$

with

$$
\lambda_{m}(t)=\left(p_{m}(t)-1\right) \frac{p[u]}{p[u]-1} .
$$

It is easy to see that

$$
\lambda_{m}(t)<2 \quad \Leftrightarrow \quad p_{m}(t)+\frac{2}{p[u]}<3 \quad \Leftrightarrow \quad(p[u]-1)(p[u]-2)<p[u]\left(p[u]-p_{m}(t)\right),
$$

which is true for all sufficiently big m because for $1<p^{-} \leq p^{+}<2$ and $p_{m}(t) \rightarrow p[u]$ uniformly in $[0, T]$

$$
(p[u]-1)(p[u]-2) \leq\left(p^{-}-1\right)\left(p^{+}-2\right)<0 \quad \text { while } \quad p[u]\left(p[u]-p_{m}(t)\right) \rightarrow 0 \text { as } m \rightarrow \infty .
$$

Hence,

$$
\left(\gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left|\nabla u^{(m)}\right|\right)^{(p[u])^{\prime}} \leq C\left(1+\left|\nabla u^{(m)}\right|^{2}\right)
$$

and

$$
\int_{Q_{T}}\left(\gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left|\nabla u^{(m)}\right|\right)^{(p[u])^{\prime}} d z \leq C
$$

by virtue of (3.9). These arguments prove the following assertion.
Lemma 4.2. If conditions (2.8) are fulfilled, then there exist $u \in L^{2}\left(Q_{T}\right) \cap L^{\infty}\left(0, T ; W_{0}^{1,2}(\Omega)\right)$ and $\chi \in\left(L^{(p[u])^{\prime}}\left(Q_{T}\right)\right)^{d}$ such that relations (4.2) are fulfilled and

$$
\begin{equation*}
\int_{Q_{T}}\left(\gamma_{\epsilon}(p[u], \nabla u)|\nabla u|\right)^{(p[u])^{\prime}} d z \leq C, \quad(p[u])^{\prime}=\frac{p[u]}{p[u]-1} \tag{4.5}
\end{equation*}
$$

with a constant C depending only on the data.
By the method of construction of $u^{(m)}$, for every finite m and $\phi \in \mathcal{P}_{k} \equiv \operatorname{span}\left\{\psi_{1}, \ldots, \psi_{k}\right\}, k \leq m$,

$$
\begin{equation*}
\int_{Q_{T}}\left(u_{t}^{(m)} \phi+\gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right) \nabla u^{(m)} \cdot \nabla \phi-f \phi\right) d z=0 \tag{4.6}
\end{equation*}
$$

Relations (4.2) and (4.5) allow one to pass in (4.6) to the limit as $m \rightarrow \infty$, which leads to the equality

$$
\begin{equation*}
\int_{Q_{T}}\left(u_{t} \phi+\chi \cdot \nabla \phi-f \phi\right) d z=0 \quad \forall \phi \in \mathcal{P}_{k} \tag{4.7}
\end{equation*}
$$

Lemma 4.3. For every $u \in \mathbf{W}_{u}\left(Q_{T}\right)$ there exists a sequence $\left\{\phi_{N}\right\}, \phi_{N} \in \mathcal{P}_{N} \cap \mathbf{W}_{u}\left(Q_{T}\right)$ such that $\phi_{N} \rightarrow u$ in $\mathbf{W}_{u}\left(Q_{T}\right)$.

Proof. Recall that $\mathcal{P}_{N} \subset C\left([0, T] ; C^{2}(\bar{\Omega})\right)$. Because of the inclusions $p_{m}(t), p[u] \in C^{0, \beta}[0, T]$, the space $C^{\infty}\left(\bar{Q}_{T}\right)$ in dense in $\mathbf{W}_{u}\left(Q_{T}\right)$ and $\mathbf{W}_{u^{(m)}}\left(Q_{T}\right)$ with any $m \in \mathbb{N}$. For every $\epsilon>0$ there exists $\phi_{\epsilon} \subset C^{\infty}\left(\bar{Q}_{T}\right)$ such that $\left\|\phi_{\epsilon}-u\right\|_{\mathbf{W}_{u}\left(Q_{T}\right)}<\epsilon$. Since the systems $\left\{\psi_{i}\right\}$ and $\left\{\frac{1}{\sqrt{\lambda_{i}}} \psi_{i}\right\}$ form orthonormal bases of $L^{2}(\Omega)$ and $W_{0}^{1,2}(\Omega)$, then

$$
\phi_{\epsilon}=\sum_{i=1}^{\infty} \phi_{\epsilon i}(t) \psi_{i}(x), \quad\left\|\phi_{\epsilon}(t)\right\|_{W_{0}^{1,2}(\Omega)}^{2}=\sum_{i=1}^{\infty} \lambda_{i} \phi_{\epsilon i}^{2}(t), \quad\left\|\phi_{\epsilon}\right\|_{L^{2}\left(0, T ; W_{0}^{1,2}(\Omega)\right)}^{2}=\sum_{i=1}^{\infty} \lambda_{i}\left\|\phi_{\epsilon i}\right\|_{2,(0, T)}^{2}<\infty
$$

$$
\phi_{\epsilon}^{(N)}=\sum_{i=1}^{N} \phi_{\epsilon i}(t) \psi_{i}(x) \in \mathcal{P}_{N}, \quad\left\|\phi_{\epsilon}^{(N)}-\phi_{\epsilon}\right\|_{L^{2}\left(0, T ; W_{0}^{1,2}(\Omega)\right)}^{2}=\sum_{i=N+1}^{\infty} \lambda_{i}\left\|\phi_{\epsilon i}\right\|_{2,(0, T)}^{2} \rightarrow 0 \quad \text { as } N \rightarrow \infty .
$$

There exists $N=N(\epsilon)$ such that for every $m>N(\epsilon)$

$$
\left\|\phi_{\epsilon}^{(m)}-\phi_{\epsilon}\right\|_{\mathbf{w}_{u}\left(Q_{T}\right)} \leq C\left\|\phi_{\epsilon}^{(m)}-\phi_{\epsilon}\right\|_{L^{2}\left(0, T ; W_{0}^{1,2}(\Omega)\right)}<\epsilon
$$

and

$$
\left\|u-\phi_{\epsilon}^{(m)}\right\|_{\mathbf{w}_{u}\left(Q_{T}\right)} \leq\left\|u-\phi_{\epsilon}\right\|_{\mathbf{w}_{u}\left(Q_{T}\right)}+\left\|\phi_{\epsilon}-\phi_{\epsilon}^{(m)}\right\|_{\mathbf{w}_{u}\left(Q_{T}\right)} \leq \epsilon+C\left\|\phi_{\epsilon}^{(m)}-\phi_{\epsilon}\right\|_{L^{2}\left(0, T ; W_{0}^{1,2}(\Omega)\right)}<2 \epsilon .
$$

Taking ϕ_{N} for the test-function in (4.7) and letting $N \rightarrow \infty$ we obtain the equality

$$
\begin{equation*}
\int_{Q_{T}} u_{t} u d z+\int_{Q_{T}} \chi \cdot \nabla u d z=\int_{Q_{T}} f u d z . \tag{4.8}
\end{equation*}
$$

Let us return to (4.6) and take for the test-function $\phi=u^{(m)}$:

$$
\begin{align*}
0= & \int_{Q_{T}} u_{t}^{(m)} u^{(m)} d z+\int_{Q_{T}} \gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right)\left|\nabla u^{(m)}\right|^{2} d z-\int_{Q_{T}} f u^{(m)} d z \\
= & \int_{Q_{T}} u_{t}^{(m)} u^{(m)} d z+\int_{Q_{T}} \gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right) \nabla u^{(m)} \cdot \nabla\left(u^{(m)}-\psi\right) d z-\int_{Q_{T}} f u^{(m)} d z \tag{4.9}\\
& \quad+\int_{Q_{T}} \gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right) \nabla u^{(m)} \cdot \nabla \psi d z .
\end{align*}
$$

We will use the following well-known inequality: if $q \in(1,2]$, then for all $\xi, \zeta \in \mathbb{R}^{d}, \xi \neq \zeta$ and $\epsilon>0$

$$
\begin{equation*}
\left(\gamma_{\epsilon}(q, \xi) \xi-\gamma_{\epsilon}(q, \zeta) \zeta\right) \cdot(\xi-\zeta) \geq(q-1)\left(1+|\xi|^{2}+|\zeta|^{2}\right)^{\frac{q-2}{2}}|\xi-\zeta|^{2} \tag{4.10}
\end{equation*}
$$

By virtue of (4.10) for every $\psi \in \mathcal{P}_{k}$ with $k \leq m$

$$
\begin{align*}
& \int_{Q_{T}} \gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right) \nabla u^{(m)} \cdot \nabla\left(u^{(m)}-\psi\right) d z \\
& = \\
& \quad \int_{Q_{T}}\left(\gamma_{\epsilon}\left(p_{m}(t), \nabla u^{(m)}\right) \nabla u^{(m)}-\gamma_{\epsilon}\left(p_{m}(t), \nabla \psi\right) \nabla \psi\right) \cdot \nabla\left(u^{(m)}-\psi\right) d z \tag{4.11}\\
& \quad \quad+\int_{Q_{T}} \gamma_{\epsilon}\left(p_{m}(t), \nabla \psi\right) \nabla \psi \cdot \nabla\left(u^{(m)}-\psi\right) d z \\
& \geq \\
& \geq \int_{Q_{T}} \gamma_{\epsilon}\left(p_{m}(t), \nabla \psi\right) \nabla \psi \cdot \nabla\left(u^{(m)}-\psi\right) d z .
\end{align*}
$$

Because of (4.4)

$$
\begin{equation*}
\sigma_{m}(\nabla \psi) \equiv \gamma_{\epsilon}\left(p_{m}(t), \nabla \psi\right) \nabla \psi-\gamma_{\epsilon}(p[u], \nabla \psi) \nabla \psi \rightarrow 0 \text { as } m \rightarrow \infty \text { uniformly in } Q_{T} . \tag{4.12}
\end{equation*}
$$

It follows from (3.9), (4.12) and (4.2) that

$$
\begin{aligned}
& \int_{Q_{T}} \gamma_{\epsilon}\left(p_{m}(t), \nabla \psi\right) \nabla \psi \cdot \nabla\left(u_{m}-\psi\right) d z \\
& \quad=\int_{Q_{T}} \sigma_{m}(\nabla \psi) \cdot \nabla\left(u_{m}-\psi\right) d z+\int_{Q_{T}} \gamma_{\epsilon}(p[u], \nabla \psi) \nabla \psi \cdot \nabla\left(u_{m}-\psi\right) d z \\
& \quad \equiv J_{1}+J_{2} \rightarrow \int_{Q_{T}} \gamma_{\epsilon}(p[u], \nabla \psi) \nabla \psi \cdot \nabla(u-\psi) d z \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

because

$$
\begin{aligned}
J_{1} & \leq\left\|\sigma_{m}(\nabla \psi)\right\|_{\infty, Q_{T}}\left\|\nabla\left(u_{m}-\psi\right)\right\|_{1, Q_{T}} \leq C\left\|\sigma_{m}(\nabla \psi)\right\|_{\infty, Q_{T}} \rightarrow 0 \\
J_{2} & \rightarrow \int_{Q_{T}} \gamma_{\epsilon}(p[u], \nabla \psi) \nabla \psi \cdot \nabla(u-\psi) d z
\end{aligned}
$$

Using (4.11) in (4.9) and then letting $m \rightarrow \infty$ we find that for $\psi \in \mathcal{P}_{k}$ with any $k \in \mathbb{N}$

$$
0 \geq \int_{Q_{T}} u_{t} u d z+\int_{Q_{T}} \gamma_{\epsilon}(p[u], \nabla \psi) \nabla \psi \cdot \nabla(u-\psi) d z-\int_{Q_{T}} f u d z+\int_{Q_{T}} \chi \cdot \nabla \psi d z
$$

By Lemma 4.3 we may take $\psi=\psi^{(k)} \in \mathcal{P}_{k} \cap \mathbf{W}_{u}\left(Q_{T}\right)$ and then let $k \rightarrow \infty$. Plugging (4.8) we arrive at the inequality

$$
0 \geq \int_{Q_{T}}\left(\gamma_{\epsilon}(p[u], \nabla \psi) \nabla \psi-\chi\right) \cdot \nabla(u-\psi) d z \quad \forall \psi \in \mathbf{W}_{u}\left(Q_{T}\right)
$$

Take $\psi=u+\lambda \zeta$ with an arbitrary $\zeta \in \mathbf{W}_{u}\left(Q_{T}\right)$ and $\lambda>0$. Simplifying and then letting $\lambda \downarrow 0$ we obtain the inequality

$$
I(u, \chi, \zeta) \equiv \int_{Q_{T}}\left(\gamma_{\epsilon}(p[u], \nabla u) \nabla u-\chi\right) \cdot \nabla \zeta d z \leq 0 \quad \forall \zeta \in \mathbf{W}_{u}\left(Q_{T}\right)
$$

Since ζ is arbitrary, it is necessary that $I(u, \chi, \zeta)=0$ for all $\zeta \in \mathbf{W}_{u}\left(Q_{T}\right)$, whence

$$
\begin{equation*}
\int_{Q_{T}}\left(u_{t} \zeta+\gamma_{\epsilon}(p[u], \nabla u) \nabla u \cdot \nabla \zeta-f \zeta\right) d z=0 \quad \forall \zeta \in \mathbf{W}_{u}\left(Q_{T}\right) \tag{4.13}
\end{equation*}
$$

Estimate (4.1) follows from the uniform in m and ϵ estimates (3.5), (3.6), (3.9), (3.18). It follows from (3.9) that $D_{i j}^{2} u^{(m)} \rightharpoonup D_{i j}^{2} u$ in $L^{p^{-}}\left(Q_{T}\right)$ (up to a subsequence). Because of (4.4) and the uniform estimates (3.9) on $\left|u_{x x}^{(m)}\right|^{p_{m}(t)}$, the estimate on $\left\|\left|u_{x x}\right|^{p[u]}\right\|_{1, Q_{T}}$ follows from [10, Lemma 3.1].

4.2. Strong solution of the singular problem

Let u_{ϵ} be the strong solution of problem (3.1) with $\epsilon>0$ obtained as the limit of the sequence of Galerkin's approximations (see Lemma 4.1). The functions u_{ϵ} satisfy the independent of ϵ estimates (4.1). Therefore, there exist functions u and χ such that, up to a subsequence,

$$
\begin{align*}
& u_{\epsilon t} \rightharpoonup u_{t} \text { in } L^{2}\left(Q_{T}\right) \\
& \nabla u_{\epsilon} \rightharpoonup \nabla u \text { in }\left(L^{2}\left(Q_{T}\right)\right)^{d} \tag{4.14}\\
& \gamma_{\epsilon}\left(p\left[u_{\epsilon}\right], \nabla u_{\epsilon}\right) \nabla u_{\epsilon} \rightharpoonup \chi \text { in }\left(L^{p^{\prime}[u]}\left(Q_{T}\right)\right)^{d} .
\end{align*}
$$

Moreover, $u \in C^{0}\left([0, T] ; L^{2}(\Omega)\right)$. For every $\epsilon>0$ the function u_{ϵ} satisfies equality (4.13):

$$
\begin{equation*}
\int_{Q_{T}}\left(u_{\epsilon t} \phi+\gamma_{\epsilon}\left(p\left[u_{\epsilon}\right], \nabla u_{\epsilon}\right) \nabla u_{\epsilon} \cdot \nabla \phi-f \phi\right) d z=0 \quad \forall \phi \in \mathbf{W}_{u_{\epsilon}}\left(Q_{T}\right) \tag{4.15}
\end{equation*}
$$

Since $u_{\epsilon} \rightarrow u$ in $C^{0}\left([0, T] ; L^{2}(\Omega)\right)$, then $\left\|u_{\epsilon}(\cdot, t)\right\|_{\alpha, \Omega}^{\alpha} \rightarrow\|u(\cdot, t)\|_{\alpha, \Omega}^{\alpha}$ for every $t \in[0, T]$ and

$$
p\left(\left\|u_{\epsilon}(\cdot, t)\right\|_{\alpha, \Omega}^{\alpha}\right) \rightarrow p\left(\|u(\cdot, t)\|_{\alpha, \Omega}^{\alpha}\right) \quad \text { as } \epsilon \rightarrow 0
$$

by continuity. As in Corollary 3.2 , one may check that the functions $p_{\epsilon}(t):=p\left[u_{\epsilon}\right]$ are equicontinuous in $C^{0,1 / 2}[0, T]$: by Lemma 4.1

$$
\begin{align*}
\left|p_{\epsilon}(t)-p_{\epsilon}(\tau)\right| & =\left|\int_{\tau}^{t} \frac{d p_{\epsilon}(s)}{d s} d s\right| \leq \alpha \sup _{\mathbb{R}}\left|p^{\prime}\right| \int_{\tau}^{t} \int_{\Omega}\left|u_{\epsilon t}\right||u|^{\alpha-1} d x d s \\
& \leq C\left(\alpha, C_{*}\right)\left\|u_{\epsilon t}\right\|_{2, Q_{T}}\left(\int_{\tau}^{t} \int_{\Omega}\left|u_{\epsilon}\right|^{2(\alpha-1)} d z\right)^{\frac{1}{2}} \tag{4.16}\\
& \leq C \sup _{(0, T)}\left\|u_{\epsilon}(t)\right\|_{2, \Omega}^{\alpha-1}|t-\tau|^{1 / 2} \leq C^{\prime}|t-\tau|^{1 / 2}
\end{align*}
$$

with an independent of ϵ constant C^{\prime}. Hence,

$$
\begin{equation*}
p\left[u_{\epsilon}\right] \rightarrow p[u] \text { in } C^{0, \beta}[0, T] \text { with some } \beta \in(0,1 / 2) . \tag{4.17}
\end{equation*}
$$

It follows that $C^{\infty}\left(\bar{Q}_{T}\right)$ is dense in $\mathbf{W}_{u}\left(Q_{T}\right)$ and $\mathbf{W}_{u_{\epsilon}}\left(Q_{T}\right)$ with every ϵ. Let $\phi_{\delta} \in C^{\infty}\left(\bar{Q}_{T}\right)$ and $\phi_{\delta} \rightarrow u$ in $\mathbf{W}_{u}\left(Q_{T}\right)$ as $\delta \rightarrow 0$. Repeating the proof of Lemma 4.2 we find that $\chi \in\left(L^{(p[u])^{\prime}}\left(Q_{T}\right)\right)^{d}$, and by (4.14)

$$
\int_{Q_{T}} \gamma_{\epsilon}\left(p\left[u_{\epsilon}\right], \nabla u_{\epsilon}\right) \nabla u_{\epsilon} \cdot \nabla \phi_{\delta} d z \rightarrow \int_{Q_{T}} \chi \cdot \nabla \phi_{\delta} d z \quad \text { as } \epsilon \rightarrow 0
$$

Taking ϕ_{δ} for the test-function in (4.15) and letting $\epsilon \rightarrow 0$ we obtain

$$
\int_{Q_{T}}\left(u_{t} \phi_{\delta}+\chi \cdot \nabla \phi_{\delta}-f \phi_{\delta}\right) d z=0
$$

Letting now $\delta \rightarrow 0$ we arrive at the equality

$$
\begin{equation*}
\int_{Q_{T}}\left(u_{t} u+\chi \cdot \nabla u-f u\right) d z=0 \tag{4.18}
\end{equation*}
$$

Choosing $u_{\epsilon} \in \mathbf{W}_{u_{\epsilon}}\left(Q_{T}\right)$ for the test-function in (4.15) we obtain

$$
\begin{equation*}
\int_{Q_{T}} u_{\epsilon t} u_{\epsilon} d z+\int_{Q_{T}}\left(\gamma_{\epsilon}\left(p\left[u_{\epsilon}\right], \nabla u_{\epsilon}\right) \nabla u_{\epsilon} \cdot \nabla u_{\epsilon}-f u_{\epsilon}\right) d z=0 . \tag{4.19}
\end{equation*}
$$

Let us take $\psi \in C^{\infty}\left([0, T] ; C_{0}^{\infty}(\Omega)\right) \subset \mathbf{W}_{u_{\epsilon}}\left(Q_{T}\right)$ with any $\epsilon>0$. By (4.10)

$$
\begin{aligned}
& \int_{Q_{T}} \gamma_{\epsilon}\left(p\left[u_{\epsilon}\right], \nabla u_{\epsilon}\right) \nabla u_{\epsilon} \cdot \nabla u_{\epsilon} d z \\
&= \int_{Q_{T}} \gamma_{\epsilon}\left(p\left[u_{\epsilon}\right], \nabla u_{\epsilon}\right) \nabla u_{\epsilon} \cdot \nabla\left(u_{\epsilon}-\psi\right) d z+\int_{Q_{T}} \gamma_{\epsilon}\left(p\left[u_{\epsilon}\right], \nabla u_{\epsilon}\right) \nabla u_{\epsilon} \cdot \nabla \psi d z \\
&= \int_{Q_{T}}\left(\gamma_{\epsilon}\left(p\left[u_{\epsilon}\right], \nabla u_{\epsilon}\right) \nabla u_{\epsilon}-\gamma_{\epsilon}\left(p\left[u_{\epsilon}\right], \nabla \psi\right) \nabla \psi\right) \cdot \nabla\left(u_{\epsilon}-\psi\right) d z \\
& \quad+\int_{Q_{T}} \gamma_{\epsilon}\left(p\left[u_{\epsilon}\right], \nabla \psi\right) \nabla \psi \cdot \nabla\left(u_{\epsilon}-\psi\right) d z+\int_{Q_{T}} \gamma_{\epsilon}\left(p\left[u_{\epsilon}\right], \nabla u_{\epsilon}\right) \nabla u_{\epsilon} \cdot \nabla \psi d z \\
& \geq \int_{Q_{T}} \gamma_{\epsilon}\left(p\left[u_{\epsilon}\right], \nabla \psi\right) \nabla \psi \cdot \nabla\left(u_{\epsilon}-\psi\right) d z+\int_{Q_{T}} \gamma_{\epsilon}\left(p\left[u_{\epsilon}\right], \nabla u_{\epsilon}\right) \nabla u_{\epsilon} \cdot \nabla \psi d z \\
&= \int_{Q_{T}}\left(\gamma_{\epsilon}\left(p\left[u_{\epsilon}\right], \nabla \psi\right) \nabla \psi-|\nabla \psi|^{p\left[u_{\epsilon}\right]-2} \nabla \psi\right) \cdot \nabla\left(u_{\epsilon}-\psi\right) d z \\
& \quad+\int_{Q_{T}}|\nabla \psi|^{p\left[u_{\epsilon}\right]-2} \nabla \psi \cdot \nabla\left(u_{\epsilon}-\psi\right) d z+\int_{Q_{T}} \gamma_{\epsilon}\left(p\left[u_{\epsilon}\right], \nabla u_{\epsilon}\right) \nabla u_{\epsilon} \cdot \nabla \psi d z \equiv I_{1}+I_{2}+I_{3},
\end{aligned}
$$

where

$$
I_{3} \rightarrow \int_{Q_{T}} \chi \cdot \nabla \psi d z \quad \text { as } \epsilon \rightarrow 0
$$

$$
\Phi_{\epsilon} \equiv\left(\epsilon^{2}+|\nabla \psi|^{2}\right)^{\frac{p\left[u_{\epsilon}\right]-2}{2}} \nabla \psi-|\nabla \psi|^{p\left[u_{\epsilon}\right]-2} \nabla \psi .
$$

For every $\psi \in C^{\infty}\left(0, T ; C_{0}^{\infty}(\Omega)\right), \Phi_{\epsilon} \rightarrow 0$ as $\epsilon \rightarrow 0$ uniformly in Q_{T}. Since $\left\|u_{\epsilon}-\psi\right\|_{\mathbf{W}_{u_{\epsilon}}} \leq C$, it follows that

$$
\begin{aligned}
\left|I_{1}\right| & =\left|\int_{Q_{T}} \Phi_{\epsilon} \nabla\left(u_{\epsilon}-\psi\right) d z\right| \leq 2\left\|\Phi_{\epsilon}\right\|_{p_{\epsilon}^{\prime}(\cdot), Q_{T}}\left\|\nabla\left(u_{\epsilon}-\psi\right)\right\|_{p_{\epsilon}(\cdot), Q_{T}} \\
& \leq 2\left\|\Phi_{\epsilon}\right\|_{p_{\epsilon}^{\prime}(\cdot), Q_{T}}\left\|u_{\epsilon}-\psi\right\|_{\mathbf{w}_{u_{\epsilon}}} \rightarrow 0 \quad \text { when } \epsilon \rightarrow 0 .
\end{aligned}
$$

Finally, set

$$
\Psi_{\epsilon} \equiv|\nabla \psi|^{p\left[u_{\epsilon}\right]-2} \nabla \psi-|\nabla \psi|^{p[u]-2} \nabla \psi
$$

and represent

$$
I_{2}=\int_{Q_{T}} \Psi_{\epsilon} \nabla\left(u_{\epsilon}-\psi\right) d z+\int_{Q_{T}}|\nabla \psi|^{p[u]-2} \nabla \psi \cdot \nabla\left(u_{\epsilon}-\psi\right) d z \equiv K_{1}+K_{2}
$$

By (4.17), $\Psi_{\epsilon} \rightarrow 0$ as $\epsilon \rightarrow 0$ uniformly in Q_{T}. Since $|\nabla \psi|^{p[u]-2} \nabla \psi \in\left(C^{0}\left(\overline{Q_{T}}\right)\right)^{d} \subset\left(L^{2}\left(Q_{T}\right)\right)^{d}, \nabla u_{\epsilon} \rightharpoonup \nabla u$ in $\left(L^{2}\left(Q_{T}\right)\right)^{d}$, and $\left\|\nabla\left(u_{\epsilon}-\psi\right)\right\|_{2, Q_{T}} \leq C$ with an independent of ϵ constant C, then

$$
\begin{aligned}
\left|K_{1}\right| & \leq\left\|\Psi_{\epsilon}\right\|_{2, Q_{T}}\left\|\nabla\left(u_{\epsilon}-\psi\right)\right\|_{2, Q_{T}} \rightarrow 0 \\
K_{2} & =\int_{Q_{T}}|\nabla \psi|^{p[u]-2} \nabla \psi \cdot \nabla\left(u_{\epsilon}-\psi\right) d z \rightarrow \int_{Q_{T}}|\nabla \psi|^{p[u]-2} \nabla \psi \cdot \nabla(u-\psi) d z \quad \text { as } \epsilon \rightarrow 0
\end{aligned}
$$

whence

$$
I_{2} \rightarrow \int_{Q_{T}}|\nabla \psi|^{p[u]-2} \nabla \psi \cdot \nabla(u-\psi) d z \quad \text { as } \epsilon \rightarrow 0
$$

Thus,

$$
I_{1}+I_{2}+I_{3} \rightarrow \int_{Q_{T}} \chi \cdot \nabla \psi d z+\int_{Q_{T}}|\nabla \psi|^{p[u]-2} \nabla \psi \cdot \nabla(u-\psi) d z \quad \text { as } \epsilon \rightarrow 0
$$

It follows that for every $\psi \in C^{\infty}\left([0, T] ; C_{0}^{\infty}(\Omega)\right)$

$$
\lim _{\epsilon \rightarrow 0} \int_{Q_{T}} \gamma_{\epsilon}\left(p\left[u_{\epsilon}\right], \nabla u_{\epsilon}\right) \nabla u_{\epsilon} \cdot \nabla u_{\epsilon} d z \geq \int_{Q_{T}} \chi \cdot \nabla \psi d z+\int_{Q_{T}}|\nabla \psi|^{p[u]-2} \nabla \psi \cdot \nabla(u-\psi) d z
$$

By (4.18), (4.19) as $\epsilon \rightarrow 0$, for every $\psi \in C^{\infty}\left(0, T ; C_{0}^{\infty}(\Omega)\right)$

$$
\begin{align*}
0 & =\int_{Q_{T}} u_{t} u d z-\int_{Q_{T}} f u d z+\lim _{\epsilon \rightarrow 0} \int_{Q_{T}} \gamma_{\epsilon}\left(p\left[u_{\epsilon}\right], \nabla u_{\epsilon}\right) \nabla u_{\epsilon} \cdot \nabla u_{\epsilon} d z \\
& \geq-\int_{Q_{T}} \chi \cdot \nabla u d z+\int_{Q_{T}} \chi \cdot \nabla \psi d z+\int_{Q_{T}}|\nabla \psi|^{p[u]-2} \nabla \psi \cdot \nabla(u-\psi) d z \tag{4.20}\\
& =\int_{Q_{T}}\left(|\nabla \psi|^{p[u]-2} \nabla \psi-\chi\right) \cdot \nabla(u-\psi) d z
\end{align*}
$$

Let us take $\psi \equiv \psi_{\delta}+\lambda \zeta$ where $\lambda=$ const >0,

$$
\zeta, \psi_{\delta} \in C^{\infty}\left([0, T] ; C_{0}^{\infty}(\Omega)\right) \text { and } \psi_{\delta} \rightarrow u \text { in } \mathbf{W}_{u}\left(Q_{T}\right) \text { as } \delta \rightarrow 0
$$

Inequality (4.20) takes the form

$$
\begin{aligned}
J_{1}+J_{2} & \equiv \int_{Q_{T}}\left(\left|\nabla\left(\psi_{\delta}+\lambda \zeta\right)\right|^{p[u]-2} \nabla\left(\psi_{\delta}+\lambda \zeta\right)-\chi\right) \cdot \nabla\left(u-\psi_{\delta}\right) d z \\
& -\lambda \int_{Q_{T}}\left(\left|\nabla\left(\psi_{\delta}+\lambda \zeta\right)\right|^{p[u]-2} \nabla\left(\psi_{\delta}+\lambda \zeta\right)-\chi\right) \cdot \nabla \zeta d z \leq 0
\end{aligned}
$$

By the generalized Hölder inequality (2.2)

$$
\begin{aligned}
\left|J_{1}\right| & \leq 2\left\|u-\psi_{\delta}\right\|_{\mathbf{W}_{u}\left(Q_{T}\right)}\left\|\left|\nabla\left(\psi_{\delta}+\lambda \zeta\right)\right|^{p[u]-2} \nabla\left(\psi_{\delta}+\lambda \zeta\right)-\chi\right\|_{p^{\prime}[u], Q_{T}} \\
& \leq 2\left\|u-\psi_{\delta}\right\|_{\mathbf{W}_{u}\left(Q_{T}\right)}\left(\left\|\left|\nabla\left(\psi_{\delta}+\lambda \zeta\right)\right|^{p[u]-1}\right\|_{p^{\prime}[u], Q_{T}}+\|\chi\|_{p^{\prime}[u], Q_{T}}\right) \\
& \leq C\left\|u-\psi_{\delta}\right\|_{\mathbf{w}_{u}\left(Q_{T}\right)}\left(1+\|\chi\|_{p^{\prime}[u], Q_{T}}+\int_{Q_{T}}\left|\nabla \psi_{\delta}\right|^{p[u]} d z+\int_{Q_{T}}|\lambda \nabla \zeta|^{p[u]} d z\right) \\
& \leq C\left\|u-\psi_{\delta}\right\|_{\mathbf{w}_{u}\left(Q_{T}\right)} \rightarrow 0 \quad \text { as } \delta \rightarrow 0,
\end{aligned}
$$

while

$$
J_{2} \rightarrow-\lambda \int_{Q_{T}}\left(|\nabla(u+\lambda \zeta)|^{p[u]-2} \nabla(u+\lambda \zeta)-\chi\right) \cdot \nabla \zeta d z
$$

Hence,

$$
\lambda \int_{Q_{T}}\left(|\nabla(u+\lambda \zeta)|^{p[u]-2} \nabla(u+\lambda \zeta)-\chi\right) \cdot \nabla \zeta d z \geq 0
$$

Simplifying and letting $\lambda \rightarrow 0^{+}$we obtain the inequality

$$
\int_{Q_{T}}\left(|\nabla u|^{p[u]-2} \nabla u-\chi\right) \cdot \nabla \zeta d z \geq 0 \quad \forall \zeta \in C^{\infty}\left([0, T] ; C_{0}^{\infty}(\Omega)\right)
$$

Because of the density of smooth functions in $\mathbf{W}_{u}\left(Q_{T}\right)$, this inequality is possible only if

$$
\int_{Q_{T}}\left(|\nabla u|^{p[u]-2} \nabla u-\chi\right) \cdot \nabla \phi d z=0 \quad \forall \phi \in \mathbf{W}_{u}\left(Q_{T}\right)
$$

Returning to (4.15) and passing to the limit as $\epsilon \rightarrow 0$ we find that for every test-function $\phi \in \mathbf{W}_{u}\left(Q_{T}\right)$

$$
\int_{Q_{T}}\left(u_{t} \phi+|\nabla u|^{p[u]-2} \nabla u \cdot \nabla \phi-f \phi\right) d z=0
$$

Estimate (2.9) follows from (4.17) and the uniform estimates of Lemma 4.1.

5. Uniqueness of strong solutions

Theorem 5.1. Problem (1.1) has at most one strong solution in the class of functions

$$
\mathcal{S}=\left\{v: v \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{\infty}\left(0, T ; W_{0}^{1,2}(\Omega)\right), v_{t} \in L^{2}\left(Q_{T}\right)\right\}
$$

Proof. Let $u_{i} \in \mathcal{S}$ be two different strong solutions of problem (1.1). Notice that this set in not empty: according to Theorem 2.1 for every $u_{0} \in W_{0}^{1,2}(\Omega)$ and $f \in L^{\left(p^{-}\right)^{\prime}}\left(Q_{T}\right)$ problem (1.1) has at least one strong solution $u \in \mathcal{S}$. Let us denote

$$
p_{1}=p\left[u_{1}\right], \quad p_{2}=p\left[u_{2}\right]
$$

The inclusions $u_{i} \in \mathcal{S}$ yield

$$
u_{i} \in \mathbf{W}_{u_{1}}\left(Q_{T}\right) \cap \mathbf{W}_{u_{2}}\left(Q_{T}\right)
$$

which allows one to take the function $u=u_{1}-u_{2}$ for the test-function in the integral identities (4.8) for u_{i}. Combining these identities we arrive at the equality

$$
\begin{equation*}
\frac{1}{2}\|u(t)\|_{2, \Omega}^{2}+\int_{Q_{t}}\left(\left|\nabla u_{1}\right|^{p_{1}-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p_{2}-2} \nabla u_{2}\right) \cdot \nabla u d z=0 . \tag{5.1}
\end{equation*}
$$

We will prove first that the strong solution is unique on a time interval $\left[0, T^{*}\right]$ with some T^{*} depending only on the data. Writing

$$
\begin{aligned}
\left(\left|\nabla u_{1}\right|^{p_{1}-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p_{2}-2} \nabla u_{2}\right) \cdot \nabla u & =\left(\left|\nabla u_{1}\right|^{p_{2}-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p_{2}-2} \nabla u_{2}\right) \cdot \nabla u \\
& +\left(\left|\nabla u_{1}\right|^{p_{1}-2} \nabla u_{1}-\left|\nabla u_{1}\right|^{p_{2}-2} \nabla u_{1}\right) \cdot \nabla u
\end{aligned}
$$

and using inequality (4.10) we transform (5.1) into the form

$$
\begin{equation*}
\frac{1}{2}\|u(t)\|_{2, \Omega}^{2}+\left(p_{2}^{-}-1\right) \int_{Q_{t}} \Lambda|\nabla u|^{2} d z \leq I(t) \tag{5.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\Lambda & =\left(1+\left|\nabla u_{1}\right|^{p_{2}}+\left|\nabla u_{2}\right|^{p_{2}}\right)^{\frac{p_{2}-2}{p_{2}}}, \\
I(t) & =\int_{Q_{t}}\left(\left|\nabla u_{1}\right|^{p_{2}-2} \nabla u_{1}-\left|\nabla u_{1}\right|^{p_{1}-2} \nabla u_{1}\right) \cdot \nabla u d z .
\end{aligned}
$$

By Young's inequality

$$
\begin{equation*}
|I(t)| \leq \delta \int_{Q_{t}} \Lambda|\nabla u|^{2} d z+C(\delta) J(t) \tag{5.3}
\end{equation*}
$$

with

$$
J(t)=\left.\int_{Q_{t}}| | \nabla u_{1}\right|^{p_{1}-2} \nabla u_{1}-\left.\left|\nabla u_{1}\right|^{p_{2}-2} \nabla u_{1}\right|^{2} \Lambda^{-1} d z
$$

and any $\delta>0$. Plugging (5.3) into (5.2) and choosing δ appropriately small, we rewrite (5.3) in the form

$$
\begin{equation*}
\frac{1}{2}\|u(t)\|_{2, \Omega}^{2}+\left(p^{-}-1-\delta\right) \int_{Q_{t}}|\nabla u|^{2} \Lambda d z \leq C(\delta) J(t) \tag{5.4}
\end{equation*}
$$

For every $q, r>1$ and $\xi \in \mathbb{R}^{d},|\xi| \neq 0$,

$$
\left||\xi|^{q-2} \xi-|\xi|^{r-2} \xi\right|=\left|\left(|\xi|^{q-1}-|\xi|^{r-1}\right) \frac{\xi}{|\xi|}\right| \leq\left||\xi|^{q-1}-|\xi|^{r-1}\right|\left|\frac{\xi}{|\xi|}\right|=\left||\xi|^{q-1}-|\xi|^{r-1}\right| .
$$

By the Lagrange theorem there exists $\theta \in(0,1)$ such that

$$
\left||\xi|^{q-1}-|\xi|^{r-1}\right|=|\xi|^{\theta q+(1-\theta) r-1}|\ln | \xi| ||q-r| .
$$

It follows that at every point $z \in Q_{T}$ either $\left|\nabla u_{1}\right|=0$ and

$$
\left|\left|\nabla u_{1}\right|^{p_{1}-2} \nabla u_{1}-\left|\nabla u_{1}\right|^{p_{2}-2} \nabla u_{1}\right|=0,
$$

or $\left|\nabla u_{1}\right| \neq 0$ and

$$
\begin{equation*}
\left|\left|\nabla u_{1}\right|^{p_{1}-2} \nabla u_{1}-\left|\nabla u_{1}\right|^{p_{2}-2} \nabla u_{1}\right| \leq\left|\nabla u_{1}\right|^{p-1}|\ln | \nabla u_{1}| |\left|p_{1}-p_{2}\right| \tag{5.5}
\end{equation*}
$$

with $p=\theta p_{1}+(1-\theta) p_{2}, \theta \in(0,1)$. Recall that the exponents p_{1}, p_{2} are independent of x. By Young's inequality, for a.e. $t \in(0, T)$

$$
\left\|\Lambda^{-1}\right\|_{\frac{2}{2-p_{2}}, \Omega}^{\frac{2}{2-p_{2}}}=\int_{\Omega}\left(1+\left|\nabla u_{1}\right|^{p_{2}}+\left|\nabla u_{2}\right|^{p_{2}}\right)^{\frac{2}{p_{2}}} d x \leq C \int_{\Omega}\left(1+\left|\nabla u_{1}\right|^{2}+\left|\nabla u_{2}\right|^{2}\right) d x \leq C^{\prime}
$$

with a constant C^{\prime} depending on $d, p^{ \pm}$and the constant in (3.5). Using the classical Hölder's inequality and then (5.5) we obtain

$$
\begin{align*}
J(t) & \leq \int_{0}^{t}\left\|\left.| | \nabla u_{1}\right|^{p_{1}-2} \nabla u_{1}-\left.\left|\nabla u_{1}\right|^{p_{2}-2} \nabla u_{1}\right|^{2}\right\|_{\frac{2}{p_{2}(t)}, \Omega}\left\|\Lambda^{-1}\right\|_{\frac{2}{2-p_{2}(t)}, \Omega} d t \tag{5.6}\\
& \leq C \int_{0}^{t}\left|p_{1}-p_{2}\right|^{2}\left(\int_{\Omega}\left(\left|\nabla u_{1}\right|^{p-1}|\ln | \nabla u_{1}| |\right)^{\frac{4}{p_{2}}} d x\right)^{\frac{p_{2}}{2}} d t
\end{align*}
$$

with a constant $C=C\left(C^{\prime}, p^{ \pm}\right)$and the exponent $p=\theta p_{1}+(1-\theta) p_{2}$ where $\theta=\theta(t) \in(0,1)$. Set

$$
\kappa=\frac{4(p-1)}{p_{2}}=\left(\theta p_{1}+(1-\theta) p_{2}-1\right) \frac{4}{p_{2}} .
$$

The assumption $p_{i} \leq p^{+}<2$ yields the inequality

$$
\kappa \leq \frac{4\left(p_{2}-1\right)}{p_{2}}<2 \quad \text { if } p_{2} \geq p_{1} .
$$

Let us also claim that

$$
\kappa<2 \text { if } p_{1} \geq p_{2},
$$

that is,

$$
\begin{equation*}
p_{1}-p_{2}<2-p^{+} \leq 2-p_{1} \quad \text { if } p_{1} \geq p_{2} . \tag{5.7}
\end{equation*}
$$

Condition (5.7) is surely fulfilled on a sufficiently small time interval $\left(0, T^{*}\right)$ with T^{*} defined through the data. Indeed: repeating the derivation of (4.16) we obtain the inequalities

$$
\left|p_{i}(t)-p_{i}(\tau)\right| \leq C^{\prime}|t-\tau|^{\frac{1}{2}} \quad \forall t, \tau \in[0, T]
$$

with a constant C^{\prime} depending only on u_{0}, f and d. It follows that

$$
\left|p_{1}(t)-p_{2}(t)\right| \leq\left|p_{1}(t)-p\left[u_{0}\right]\right|+\left|p_{2}-p\left[u_{0}\right]\right| \leq 2 C^{\prime} t^{\frac{1}{2}}<2-p^{+} \quad \text { for } t<T^{*}=\left(\frac{2-p^{+}}{2 C^{\prime}}\right)^{2}
$$

We will use inequality (3.21) in the following form: if $\mu \in(0,1)$ is so small that $\kappa(1+\mu) \leq 2$, then for every $\xi>0$

$$
(\xi|\ln \xi|)^{\kappa}=\left\{\begin{array}{ll}
\xi^{\kappa(1+\mu)}\left(\xi^{-\mu} \ln \xi\right)^{\kappa} & \text { if } \xi>1, \\
\xi^{\kappa(1-\mu)}\left(\xi^{\mu}|\ln \xi|\right)^{\kappa} & \text { if } \xi \in(0,1]
\end{array} \leq C\left(1+\xi^{2}\right)\right.
$$

with a constant $C=C(\mu)$. This inequality together with (3.9) implies that for a.e. $t \in\left(0, T^{*}\right)$

$$
\left(\int_{\Omega}\left(\left.\left|\nabla u_{1}\right||\ln | \nabla u_{1}\right|^{\frac{1}{p-1}} \mid\right)^{\frac{4(p-1)}{p_{2}}} d x\right)^{\frac{p_{2}}{2}} \leq C\left(1+\int_{\Omega}\left|\nabla u_{1}\right|^{2} d x\right)^{\frac{p^{+}}{2}} \leq C
$$

whence

$$
\begin{equation*}
J(t) \leq C \int_{0}^{t}\left|p_{1}-p_{2}\right|^{2} d t, \quad t<T^{*} \tag{5.8}
\end{equation*}
$$

By Hölder's inequality and due to the assumption $\alpha \in[1,2]$

$$
\begin{aligned}
\left|p_{2}-p_{1}\right| & \leq C\left\|u_{2}-u_{1}\right\|_{2, \Omega}\left(\int_{\Omega}\left(\left|u_{2}\right|^{2(\alpha-1)}+\left|u_{1}\right|^{2(\alpha-1)}\right) d x\right)^{\frac{1}{2}} \\
& \leq C\left\|u_{2}-u_{1}\right\|_{2, \Omega}\left(1+\left\|u_{2}\right\|_{2, \Omega}^{2(\alpha-1)}+\left\|u_{1}\right\|_{2, \Omega}^{2(\alpha-1)}\right)^{\frac{1}{2}} \\
& \leq C\left\|u_{2}-u_{1}\right\|_{2, \Omega}, \quad C=C\left(\alpha, u_{0}, f\right) .
\end{aligned}
$$

It follows now from (5.4) and (5.8) that $u=u_{2}-u_{1}$ satisfies the inequality

$$
\begin{equation*}
\|u(t)\|_{2, \Omega}^{2} \leq C \int_{0}^{t}\left|p_{1}-p_{2}\right|^{2} d t \leq C \int_{0}^{t}\|u(\tau)\|_{2, \Omega}^{2} d \tau, \quad t \in\left(0, T^{*}\right) . \tag{5.9}
\end{equation*}
$$

By the Gronwall lemma $\|u(t)\|_{2, \Omega}^{2}=0$ for $t \in\left[0, T^{*}\right)$, which means that $u_{2}\left(x, T^{*} / 2\right)=u_{1}\left(x, T^{*} / 2\right)$ in Ω. Let us take $T^{*} / 2$ for the initial instant and consider problem (1.1) in the cylinder $\Omega \times\left(T^{*} / 2, T\right)$. As is already shown, the condition $u_{2}\left(x, T^{*} / 2\right)-u_{1}\left(x, T^{*} / 2\right)=0$ in Ω yields the equality $u_{2}=u_{1}$ in $\Omega \times\left(T^{*} / 2,3 T^{*} / 2\right)$. Repeating these arguments, in a finite number of steps of the length T^{*} we will exhaust the interval $(0, T)$. The proof of Theorem 5.1 is completed.

ARTICLE IN PRESS

6. Final remarks

6.1. Local in time existence without assumptions on the range of $p[u]$

The arguments used in the proof of Theorem 2.1 allow one to prove local in time solvability of problem (1.1) in the case when condition (2.8) (d) is removed and substituted by an assumption on $\left\|u_{0}\right\|_{2, \Omega}$. Fix a small δ and consider problem (1.1) with the exponent

$$
p_{\delta}[s]= \begin{cases}\frac{2 d}{d+2}+\delta & \text { if } p[s] \leq \frac{2 d}{d+2}+\delta, \\ p[s] & \text { if } \frac{2 d}{d+2}+2 \delta<p[s]<2-2 \delta, \\ 2-\delta & \text { if } p[s] \geq 2-\delta\end{cases}
$$

One may choose $p_{\delta} \in C^{1}(\mathbb{R})$ with $\sup _{\mathbb{R}}\left|p_{\delta}^{\prime}\right|=C\left(C_{*}, \delta\right)$ with C_{*} from condition (2.8) (c). By Theorems 2.1, 5.1 problem (1.1) with the nonlocal exponent $p_{\delta}[u]$ has a unique global in time strong solution which satisfies the analog of estimate (4.16):

$$
|p[u(t)]-p[u(\tau)]| \leq C|t-\tau|^{\frac{1}{2}}, \quad 0 \leq \tau<t \leq T .
$$

In particular,

$$
p\left[u_{0}\right]-C \sqrt{t} \leq p[u(t)] \leq p\left[u_{0}\right]+C \sqrt{t}
$$

with a constant C depending only on u_{0}, f and d. Let us assume that u_{0} satisfies the inequality

$$
\frac{2 d}{d+2}+3 \delta<p\left[u_{0}\right]<2-3 \delta
$$

Then there exists an interval $\left(0, T_{\delta}\right)$ wherein for the constructed solution

$$
\frac{2 d}{d+2}+2 \delta<p_{\delta}[u(t)]<2-2 \delta
$$

It follows that in the cylinder $\Omega \times\left(0, T_{\delta}\right)$ the function u solves problem (1.1) with the exponent $p_{\delta}[u] \equiv p[u]$. An example of such a situation is furnished by the functional $p[u]=\frac{2 d}{2+d}+\|u(t)\|_{2, \Omega}^{2}$. Assume that $p\left[u_{0}\right]<2$. On the one hand, $p[u]>\frac{2 d}{d+2}$, on the other hand, for the sufficiently small t

$$
p[u(t)]=\frac{2 d}{d+2}+\left(\left\|u_{0}\right\|_{2, \Omega}^{2}+\int_{0}^{t}\|f(\tau)\|_{2, \Omega}\right)^{2}<2
$$

due to estimate (3.8).

6.2. Vanishing in a finite time

In this section, we study the property of extinction in finite of the strong solutions of problem (1.1). We use the energy method developed in [23, Ch.2]. Let us assume that $f \in L^{\infty}\left(0, T ; L^{\left(p^{-}\right)^{\prime}}(\Omega)\right)$ and u is a strong solution corresponding to the initial function $u_{0} \in W_{0}^{1,2}(\Omega)$. Since the strong solution can be taken for the test-function in (2.7), the following energy equality holds: for every $t, t+h \in(0, T)$

$$
\frac{1}{h} \int_{t}^{t+h} \frac{1}{2} \frac{d}{d t}\left(\|u(s)\|_{2, \Omega}^{2}\right) d s+\frac{1}{h} \int_{t}^{t+h} \int_{\Omega}|\nabla u|^{p[u]} d z=\frac{1}{h} \int_{t}^{t+h} \int_{\Omega} u f d z
$$

By the Lebesgue differentiation theorem for a.e. $t \in(0, T)$

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(\|u(t)\|_{2, \Omega}^{2}\right)+\int_{\Omega}|\nabla u|^{p[u]} d x=\int_{\Omega} u f d x . \tag{6.1}
\end{equation*}
$$

Let us assume first that $f \equiv 0$. In this case (6.1) yields the inequality

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(\|u(t)\|_{2, \Omega}^{2}\right)+\int_{\Omega}|\nabla u|^{p[u]} d x \leq 0 \tag{6.2}
\end{equation*}
$$

and it follows that $\|u(t)\|_{2, \Omega}^{2} \leq\left\|u_{0}\right\|_{2, \Omega}^{2}$. Let us introduce the function

$$
Y(t)=\frac{\|u(t)\|_{2, \Omega}^{2}}{\left\|u_{0}\right\|_{2, \Omega}^{2}} \leq 1
$$

Let \widetilde{C} be the constant from the embedding inequality

$$
\|v\|_{2, \Omega}^{2} \leq \widetilde{C}\|\nabla v\|_{p^{-}, \Omega}^{2}, \quad v \in W_{0}^{1, p^{-}}(\Omega) .
$$

By the generalized Hölder inequality (2.1), for every $t \in(0, T)$

$$
\begin{align*}
Y(t) & =\frac{\|u(t)\|_{2, \Omega}^{2}}{\left\|u_{0}\right\|_{2, \Omega}^{2}} \leq \widetilde{C} \frac{\|\nabla u\|_{p^{-}, \Omega}^{2}}{\left\|u_{0}\right\|_{2, \Omega}^{2}} \\
& \leq 4 \widetilde{C} \max \left\{|\Omega|^{\frac{2}{\left(p^{-}\right)^{\prime}}},|\Omega|^{\frac{2}{\left(p^{+}\right)^{\prime}}}\right\} \frac{\|\nabla u\|_{p[u], \Omega}^{2}}{\left\|u_{0}\right\|_{2, \Omega}^{2}} \tag{6.3}\\
& =\widehat{C} \frac{\|\nabla u\|_{p[u], \Omega}^{2}}{\left\|u_{0}\right\|_{2, \Omega}^{2}}, \quad \widehat{C}=\widehat{C}\left(\widetilde{C},|\Omega|, p^{-}\right) .
\end{align*}
$$

Inequality (6.2) can be written in the form

$$
\begin{equation*}
\left\|u_{0}\right\|_{2, \Omega}^{2} Y^{\prime}(t)+a(t) Y^{\frac{p[u]}{2}}(t) \leq 0, \quad Y(0)=1 \tag{6.4}
\end{equation*}
$$

with the coefficient

$$
a(t)=2\left(\frac{1}{\widehat{C}}\left\|u_{0}\right\|_{2, \Omega}^{2}\right)^{\frac{p[u]}{2}} \geq 2 \min \left\{\left(\frac{1}{\widehat{C}}\left\|u_{0}\right\|_{2, \Omega}^{2}\right)^{\frac{p^{+}}{2}},\left(\frac{1}{\widehat{C}}\left\|u_{0}\right\|_{2, \Omega}^{2}\right)^{\frac{p^{-}}{2}}\right\} .
$$

Let us denote

$$
\begin{equation*}
\beta=\frac{2}{\left\|u_{0}\right\|_{2, \Omega}^{2}} \min \left\{\left(\frac{1}{\widehat{C}}\left\|u_{0}\right\|_{2, \Omega}^{2}\right)^{\frac{p^{+}}{2}},\left(\frac{1}{\widehat{C}}\left\|u_{0}\right\|_{2, \Omega}^{2}\right)^{\frac{p^{-}}{2}}\right\} . \tag{6.5}
\end{equation*}
$$

Since $Y \leq 1$, from (6.4) we obtain

$$
Y^{\prime}(t)+\beta Y^{\frac{p^{+}}{2}}(t) \leq 0, \quad Y(0)=1
$$

The straightforward integration of the previous inequality over the interval $(0, t) \subset\left(0, t^{*}\right)$ gives

$$
Y^{\frac{2-p^{+}}{2}}(t) \leq 1-\beta \frac{2-p^{+}}{2} t .
$$

Since $Y(t) \geq 0$, it is necessary that

$$
\begin{equation*}
Y(t) \equiv 0 \quad \text { for all } t \geq t^{*}=\frac{2}{\beta\left(2-p^{+}\right)} \tag{6.6}
\end{equation*}
$$

These arguments prove the following assertion.

Lemma 6.1. Let in the conditions of Theorem $2.1 f \equiv 0$ in Q_{T}. Then every strong solution of problem (1.1) vanishes at a finite moment:

$$
u(x, t)=0 \text { in } Q_{T} \cap\left\{t \geq t^{*}\right\}, \quad t^{*}=\frac{2}{\beta\left(2-p^{+}\right)}
$$

with the constant β from (6.5).

6.3. Vanishing at a prescribed moment

Let us assume now that $f \not \equiv 0$ in Q_{T} and there is $\epsilon>0$ such that

$$
\begin{equation*}
\|f(t)\|_{2, \Omega}^{\frac{p^{+}}{p^{+}-1}} \leq \epsilon\left(1-\frac{t}{t_{f}}\right)_{+}^{\frac{p^{+}}{2-p^{+}}}, \quad v_{+}=\max \{v, 0\} \tag{6.7}
\end{equation*}
$$

where $t_{f}>t^{*}$ and t^{*} is the constant defined in (6.6). Consider the function

$$
Z(t)=\frac{\|u(t)\|_{2, \Omega}^{2}}{M^{2}}, \quad M^{2}=\left\|u_{0}\right\|_{2, \Omega}^{2}+\|f\|_{L^{1}\left(0, T ; L^{2}(\Omega)\right)}
$$

By virtue of (3.8) $Z(t) \leq 1$ in $[0, T]$ and $Z(0)=1$. It follows from (6.1) that $Z(t)$ satisfies the inequality

$$
M^{2} Z^{\prime}(t)+b(t) Z^{\frac{p^{+}}{2}}(t) \leq 2 M \int_{\Omega}\left|\frac{u}{M}\right||f| d x \leq 2 M Z^{\frac{1}{2}}(t)\|f(t)\|_{2, \Omega}
$$

with the coefficient

$$
b(t)=2\left(\frac{M^{2}}{\widehat{C}}\right)^{\frac{p[u]}{2}} \geq 2 \max \left\{\left(\widehat{C}^{-1} M^{2}\right)^{\frac{p^{+}}{2}},\left(\widehat{C}^{-1} M^{2}\right)^{\frac{p^{-}}{2}}\right\}=: \gamma .
$$

By Young's inequality

$$
Z^{\prime}(t)+\frac{\gamma}{M^{2}} Z^{\frac{p^{+}}{2}}(t) \leq \frac{\gamma}{2 M^{2}} Z^{\frac{p^{+}}{2}}(t)+L\|f(t)\|_{2, \Omega}^{\frac{p^{+}}{p^{+}-1}}, \quad L=L\left(M, \gamma, p^{+}\right)
$$

and, due to assumption (6.7),

$$
\begin{equation*}
Z^{\prime}(t)+\frac{\gamma}{2 M^{2}} Z^{\frac{p^{+}}{2}}(t) \leq \epsilon L\left(1-\frac{t}{t_{f}}\right)_{+}^{\frac{p^{+}}{2-p^{+}}} \tag{6.8}
\end{equation*}
$$

Let us consider the function

$$
Y(t)=\left(1-\frac{t}{t_{f}}\right)_{+}^{\frac{2}{2-p^{+}}}
$$

It is straightforward to check that $Y(t)$ solves the problem

$$
\left\{\begin{array}{l}
Y^{\prime}(t)+\frac{\gamma}{2 M^{2}} Y^{\frac{p^{+}}{2}}(t)=\epsilon L\left(1-\frac{t}{t_{f}}\right)_{+}^{\frac{p^{+}}{2-p^{+}}}, \quad t \in\left(0, t_{f}\right) \\
Y(0)=Z(0)=1
\end{array}\right.
$$

provided that

$$
\begin{equation*}
-\frac{2}{t_{f}\left(2-p^{+}\right)}+\frac{\gamma}{2 M^{2}}=\epsilon L . \tag{6.9}
\end{equation*}
$$

It is easy to see that $Y(t)$ is a majorant for $Z(t)$, i.e.,

$$
\begin{equation*}
M^{2}\|u(t)\|_{2, \Omega}^{2} \equiv Z(t) \leq\left(1-\frac{t}{t_{f}}\right)_{+}^{\frac{2}{2-p^{+}}} \tag{6.10}
\end{equation*}
$$

Lemma 6.2. Let us assume that $f \not \equiv 0$ in Q_{T} and conditions (6.7), (6.9) are fulfilled. Then every strong solution of problem (1.1) satisfies (6.10), i.e., vanishes at the moment $t_{f}>t^{*}$.

Remark 6.1. The effect of vanishing at the prescribed moment t_{f} takes place if the data satisfy condition (6.9). This condition involves three parameters: ϵ - the "intensity" of the source f in Eq. (1.1), t_{f} - the moment when the source vanishes, and the L^{2}-norm of the initial datum. The assertion of Lemma 6.2 remains true if two of the three parameters are given, while the third one is chosen according to condition (6.9).

Acknowledgements

The authors would like to express their gratitude to the anonymous referees for valuable comments and suggestions which led to the improvement of this work.

References

[1] S.N. Antontsev, J.F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (1) (2006) 19-36, http://dx.doi.org/10.1007/s11565-006-0002-9.
[2] V.V. Zhikov, On some variational problems, Russ. J. Math. Phys. 5 (1) (1997) 105-116, (1998).
[3] V.V. Zhikov, Solvability of the three-dimensional thermistor problem, Tr. Mat. Inst. Steklova 261 (Differ. Uravn. i Din. Sist.) (2008) 101-114, http://dx.doi.org/10.1134/S0081543808020090.
[4] M. Ružička, Electrorheological fluids: modeling and mathematical theory, in: Lecture Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000, http://dx.doi.org/10.1007/BFb0104029.
[5] P. Blomgren, T.F. Chan, P. Mulet, L. Vese, W.L. Wan, Variational PDE models and methods for image processing, in: Numerical Analysis 1999 (Dundee), in: Chapman \& Hall/CRC Res. Notes Math., vol. 420, Chapman \& Hall/CRC, Boca Raton, FL, 2000, pp. 43-67.
[6] E.M. Bollt, R. Chartrand, S. Esedoḡlu, P. Schultz, K.R. Vixie, Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion, Adv. Comput. Math. 31 (1-3) (2009) 61-85, http://dx.doi.org/10.1007/ s10444-008-9082-7.
[7] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (4) (2006) 1383-1406, http://dx.doi.org/10.1137/050624522.
[8] J. Tiirola, Image denoising using directional adaptive variable exponents model, J. Math. Imaging Vision 57 (1) (2017) 56-74, http://dx.doi.org/10.1007/s10851-016-0666-4.
[9] B. Andreianov, M. Bendahmane, S. Ouaro, Structural stability for variable exponent elliptic problems. II. The $p(u)-$ Laplacian and coupled problems, Nonlinear Anal. 72 (12) (2010) 4649-4660, http://dx.doi.org/10.1016/j.na.2010.02. 044.
[10] M. Chipot, H.B. de Oliveira, Some results on the p(u)-laplacian problem, Math. Ann. (2019) http://dx.doi.org/10.1007/ s00208-019-01803-w.
[11] V.V. Zhikov, On the technique of the passage to the limit in nonlinear elliptic equations, Funktsional. Anal. i Prilozhen. 43 (2) (2009) 19-38, http://dx.doi.org/10.1007/s10688-009-0014-1.
[12] T. Caraballo, M. Herrera-Cobos, P. Marín-Rubio, Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution, Discrete Contin. Dyn. Syst. Ser. B 22 (5) (2017) 1801-1816, http://dx.doi.org/10.3934/dcdsb. 2017107.
[13] M. Chipot, B. Lovat, Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 8 (1) (2001) 35-51, advances in quenching.
[14] M. Chipot, T. Savitska, Nonlocal p-Laplace equations depending on the L^{p} norm of the gradient, Adv. Differential Equations 19 (11-12) (2014) 997-1020, URL http://projecteuclid.org/euclid.ade/1408367286.
[15] D. Hilhorst, J.-F. Rodrigues, On a nonlocal diffusion equation with discontinuous reaction, Adv. Differential Equations 5 (4-6) (2000) 657-680.
[16] J.-F. Rodrigues, J.a.L. da Silva, On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem, Commun. Pure Appl. Anal. 3 (1) (2004) 85-95, http://dx.doi.org/10.3934/cpaa.2004.3.85.
[17] L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev spaces with variable exponents, in: Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg, 2011, http://dx.doi.org/10.1007/978-3-642-18363-8.
[18] S. Antontsev, S. Shmarev, Evolution PDEs with nonstandard growth conditions, in: Atlantis Studies in Differential Equations, vol. 4, Atlantis Press, Paris, 2015, http://dx.doi.org/10.2991/978-94-6239-112-3, existence, uniqueness, localization, blow-up.
[19] S. Antontsev, I. Kuznetsov, S. Shmarev, Global higher regularity of solutions to singular $p(x, t)$-parabolic equations, J. Math. Anal. Appl. 466 (1) (2018) 238-263, http://dx.doi.org/10.1016/j.jmaa.2018.05.075.
[20] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science Publishers, New York, 1969, second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2.
[21] P. Grisvard, Elliptic problems in nonsmooth domains, in: Classics in Applied Mathematics, vol. 69, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011, http://dx.doi.org/10.1137/1.9781611972030.ch1, reprint of the 1985 original C. Brenner.
[22] J. Simon, Compact sets in the space $L^{p}(0, T ; B)$, Ann. Mat. Pura Appl. (4) 146 (1987) 65-96, http://dx.doi.org/10. 1007/BF01762360.
[23] S.N. Antontsev, J.I. Díaz, S. Shmarev, Energy methods for free boundary problems, in: Progress in Nonlinear Differential Equations and their Applications, vol. 48, Birkhäuser Boston, Inc., Boston, MA, 2002, http://dx.doi.org/10.1007/978-1-4612-0091-8, applications to nonlinear PDEs and fluid mechanics.

[^0]: * Corresponding author.

 E-mail addresses: antontsevsn@mail.ru (S. Antontsev), shmarev@uniovi.es (S. Shmarev).
 1 The first author was supported by the Research Project No. 19-11-00069 of the Russian Science Foundation, Russia and by the Project UID/MAT/ 04561/ 2019 of the Portuguese Foundation for Science and Technology (FCT), Portugal.

 2 The second author acknowledges the support of the Research Grant MTM2017-87162-P, Spain.

