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Abstract—Different strategies for the discretization of the
angles of incidence and its influence on reflectarray analysis based
on surrogate models with support vector regression (SVR) are
studied. One SVR per pair of angles of incidence is considered,
and it is shown that while the copolar pattern is robust against
the discretization of the angle of incidence, the crosspolar pattern
presents a higher sensitivity with regard to the baseline scenario.

Index Terms—Machine learning, support vector regression
(SVR), surrogate model, angle of incidence, reflectarray analysis

I. INTRODUCTION

The use of surrogate models for reflectarray analysis is
very interesting for the subsequent acceleration of the design
and optimization procedures [1]. However, many works in the
literature consider the angles of incidence as input variables to
the surrogate model [2]–[5], thus increasing the dimensionality
of the model, which in turn increases the training time and
the number of samples needed for the training. An alternative
strategy is to discretize the angle of incidence and obtain one
model per pair of angle of incidence (\, i) [1]. However, there
are no studies in the literature on how this discretization affects
the accuracy in the prediction of the radiation pattern.

This work presents a study on the influence of the discretiza-
tion of the angle of incidence on the reflectarray radiation
pattern when employing surrogate models based on support
vector regression (SVR). A method of moments based on local
periodicity (MoM-LP) [6] is employed as reference to generate
the samples to train the SVR models and compute the error
for the radiation pattern.

II. DISCRETIZATION OF THE ANGLES OF INCIDENCE

Given a single-offset reflectarray configuration where the
feed is placed at coordinates ®A 5 = (G 5 , H 5 , I 5 ) with regard to
the center of the reflectarray antenna and any :-th reflectarray
element with centroid coordinates ®2: = (G: , H: , 0), each
reflectarray element will have an angle of incidence that
depends on those coordinates, i.e., \: (®A 5 , ®2: ) and i: (®A 5 , ®2: ).
In general, the response of the unit cell will depend on those
angles [7] and they need to be taken into account in the
reflectarray analysis.

Some previous works employed discretizations of \ and i
that provided a high degree of accuracy in the prediction of the

Table I
DATA REGARDING THE DISCRETIZATION OF THE ANGLES OF INCIDENCE

FOR THE 2D SVR. DISCRETIZATIONS ARE UNIFORM IN \ AND i.

# �) (°) �> (°) (), >) pairs

1 5 10 190
2 5 20 98
3 5 30 68
4 10 10 102
5 10 20 52
6 10 30 34

radiation pattern with regard to the MoM-LP tool. For instance,
in [1] a total of 152 pairs were considered, while in [8] only 52
were used. In the former case, a non-uniform discretization of
\ was employed, with a step in i of Δi = 10°. In the latter, \
was discretized uniformly with a step of Δ\ = 10° and i with
Δi = 20°. Here, a systematic study will be carried out with the
discretizations shown in Table I for a uniform discretization
of \ and i. A total of six discretizations are considered, with
steps in \ of 5° and 10°, and steps in i of 10°, 20° or 30°.

For the testing, a large contoured-beam reflectarray for
space applications will be used. It is rectangular and comprised
of 7 052 elements in a regular grid of 86 × 82 elements.
The periodicity is 12 mm × 12 mm and the feed is placed
at coordinates ®A 5 = (−358, 0, 1070)mm. The same unit cell
described in [1] is employed, and it is analysed by the MoM-
LP detailed in [6]. In addition, the SVR models are obtained
following the guidelines of [9], considering the four reflection
coefficients and ten SVR models per angle of incidence.

The radiation pattern is computed with an FFT in a grid of
512×512 points, giving a total of 185 269 points in the visible
region. Then, the relative error is obtained as:

REFF = 100 · ‖�MoM-LP − �SVM‖
‖�MoM-LP‖ (%), (1)

where � is either the copolar or crosspolar component of the
radiation pattern.

III. RESULTS

Figure 1 shows the results for the discretizations of Table I.
As it can be seen in Figure 1(a), the copolar pattern is
very robust against the discretizations, with relative errors
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Figure 1. Relative error for the discretizations of the angles of incidence for
the (a) copolar and (b) crosspolar patterns.

below 0.5%. The crosspolar pattern is more sensitive to the
discretizations as shown in Figure 1(b). The discretizations
for Δi = 30° present a relative error close to 20%, which
decreases for smaller steps at the expense of increasing the
number of pairs of angles of incidence, and thus the number of
surrogate models. A good trade-off between the total number
of angles of incidence and the achieved error is provided by
discretization #5 which correspond to Δ\ = 10° and Δi = 20°.

Finally, Figure 2 shows the crosspolar pattern of a reflec-
tarray with a European coverage zone [1] comparing the
MoM-LP simulation and the SVR-based prediction using the
discretization #5. It can be seen how the SVR accurately
predicts the XP pattern around the coverage area, but there
are larger discrepancies elsewhere.

IV. CONCLUSION

A study on the influence of the discretization of the angles
of incidence in surrogate models for reflectarray analysis
has been carried out. For the considered discretizations, the
copolar pattern presents little variation, in contrast to the
crosspolar pattern, which is very sensitive to the discretization
of the angles of incidence. Finer discretizations increase the
accuracy of the predicted radiation pattern, providing a smaller
relative error, at the expense of increasing the total number of
surrogate models. A comparison of the MoM-LP and SVR-
based simulations of the crosspolar pattern shows that good
accuracy may be achieved around the coverage area.
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Figure 2. Comparison of the MoM-LP and the SVR-based prediction for the
crosspolar pattern.
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