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Two-dimensional scalar field theories with spontaneous symmetry breaking subject to the action of
Jackiw-Teitelboim gravity are studied. Solutions for the ϕ4 and sine-Gordon self-gravitating kinks are
presented, both for general gravitational coupling and in the perturbative regime. The analysis is extended
to deal with a hierarchy of kinks related to transparent Pöschl-Teller potentials.
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I. INTRODUCTION

At the crossroad of general relativity, elementary particle
theory, phase transitions in the early Universe and cosmol-
ogy, emerged in the early eighties of the past century many
interesting developments where topological defects were
studied in connection with gravitational fields, see, e.g.,
Kibble and Vilenkin, [1–3]. At first, the attention was
mainly devoted to consider the topological defects as
sources of gravitational fields, and later the backreaction
of the gravitational field on the source was also inves-
tigated, although this is a much more difficult problem. As
an attempt to address both issues in the clearest possible
terms, we choose here to work in low dimensional uni-
verses with low dimensional kinks. Observational con-
straints on the evolution of the cosmic microwave
background (CMB) seems to give importance mainly to
strings, either primordial or solitonic. For example, con-
volutional neural network are used in recent references, see
[4], to study the cosmic string formation pattern in the
CMB. Large-scale simulations of an expanding-universe
string network are analyzed in [5]. On the theoretical side,
different types of theories containing strings can be
considered and, in particular, the sigma model versions
of the Abelian Higgs model studied in [6] offer a rich
phenomenology. We postpone for a later investigation the
analysis of self-gravitating cosmic strings of this type in
(2þ 1)-pseudo-Riemannian Universes. In the meantime,
we address this issue in linear gravity coupled to a real
scalar field on a line.

As it is well known, general relativity in lower dimen-
sions is quite peculiar [7,8]. In three dimensions, Einstein
equations give a viable theory, albeit spacetime turns out
to be flat around the sources and these do not create
a gravitational field, only conical singularities [9]. The
situation is worse in 1þ 1 dimensions, where the Einstein-
Hilbert action, being a topological invariant, the Euler
class, has identically vanishing variations with respect to
the metric. Hence, two-dimensional Einstein equations
only make sense if the energy-momentum tensor of matter
is zero everywhere. A sensible theory of gravity in 1þ 1
dimensions requires thus a different dynamics. Given that
in two dimensions the only independent component of the
Riemann curvature tensor is directly determined by the
curvature scalar R, the simplest vacuum gravitational
equation in sight is

R ¼ Λ ð1Þ

where Λ is a cosmological constant. Despite its simplicity,
this equation can be derived from a variational principle
only at the price of putting aside some of the tenets of
Einstein general relativity. Thus, Jackiw [10] found an
action for (1) which, although generally covariant, sacri-
fices the equivalence principle by depending not only on
the metric but also on an auxiliary Lagrange multiplier
field. Alternatively, Teitelboim [11] was able to find an
action leading to (1) which depends only on the metric, but
this time giving up general covariance. In any case, Jackiw-
Teitelboim gravity is a very remarkable theory with many
interesting properties, see [7] for review. It is, for instance,
directly related to bosonic string theory. This comes about
because, although the classical Einstein-Hilbert action
is trivial in two dimensions, when the path integral is
performed in conformal gauge gμν ¼ ημνeϕ there is a
contribution from the conformal anomaly. This generates
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a quantum field theory for ϕ with Liouville action [12], but
it turns out that, in this gauge, the Liouville equation is
exactly (1) [10]. Other noteworthy aspect of JT gravity is
that it is equivalent to a gauge field theory with gauge group
SOð2; 1Þ: if P0, P1 and J are the generators of the Lie
algebra soð2; 1Þ, one defines this theory by introducing
a gauge field Aμ ¼ eaμPa þ ωμJ, with eaμ the zweibein
and ωμ the spin connection, and using a gauge invariant
Lagrangian L ¼ ηaFa where ηa are auxiliary fields in the
coadjoint representation. Once the Euler-Lagrange equa-
tions for these field are taken into account, the action of the
gauge theory coincides with the action for (1) proposed by
Jackiw, see[13,14].
On the other hand, (1) can be generalized to take care of

the presence of matter. This leads to the equation

R − Λ ¼ 8πGT; ð2Þ

where T is the trace of the energy-momentum tensor, this
new theory being also susceptible of being derived from a
local action [15,16]. It is to be noted that (2) is the trace of
Einstein equations in four dimensions (although with the
wrong sign for the coupling) and, in fact, it can be argued in
various ways that JT with matter is the closest relative to
Einstein theory in 1þ 1 dimensions. For instance, conven-
tional general relativity in higher dimensions can be
thought of as a limit version of Brans-Dicke theory in
which the kinetic term of the scalar field is multiplied by a
constant which approaches infinity. As it has been shown in
[17], performing the same limit in 1þ 1 dimensions leads
to JT theory with sources. Another argument is that the
action for (2) can be recovered from the Einstein-Hilbert
action in D dimensions by taking the limit D → 2 if, at the
same time, the gravitational coupling GD is made to
decrease at the same pace than the Einstein tensor does,
see [18]. Apart of its relation to general relativity, JT gravity
is also interesting because it is one of the simplest examples
of the so-called dilaton gravity theories in two dimensions,
see [19] for a comprehensive review, and furthermore it is
singular among these in that, as we have said, it admits a
Lie algebra valued gauge version, while the gauge reali-
zation of more general dilatonic theories requires the use of
central extensions of Lie algebras or W-algebras [19,20]. At
any rate, the gravity theory of Jackiw and Teitelboim has
attracted considerable attention and its phenomenology has
been widely studied over the years, especially from the
point of view of black hole physics, but also in other
contexts such as stellar structure, gravitational waves,
cosmology, etc.; some references are [16,21–25] and other
listed in [19].
Scalar field theories display also some special features

when they are formulated in two dimensions. If the
potential has degenerate minima, these theories can harbor
topological kinks, stable static solutions of the Euler-
Lagrange equations whose energy is localized and finite,

and which interpolate between different classical vacua.
Due to Derrick’s theorem [26], for a relativistic theory with
the canonical form of the Lagrangian, this is not possible in
higher dimensions, where the existence of regular solitons
requires the presence of gauge fields (exceptions occur,
however, if the potential is allowed to include Lorentz
invariant terms depending on the coordinates [27]). Thus,
as it was the case for JT gravity, topological kink solutions
are another characteristic two-dimensional paradigm, one
that has been intensely studied both by taking the kinks as
classical field configurations as well as treating them as
quantum particles, see [28] for a pedagogical exposition, or
[29,30] and references therein for more recent results on the
quantum aspect of kinks. Also, kink solutions have been
found useful for a variety of physical applications in fields
like cosmology, supersymmetric gauge theory or solid state
physics, see for instance [31], which includes a collection
of references about these topics.
It is thus interesting to merge these two facets of two-

dimensional physics and investigate the coupling of JT
gravity to scalar fields theories allowing for the presence of
kinks. In principle, a phenomenon to be considered is the
formation of a black hole due to gravitational collapse of a
lump of scalar matter which is subject to topologically
nontrivial boundary conditions at infinity. Nevertheless, it
seems that a kind of no-hair theorem operates here: once the
black hole forms, the scalar field is forced by gravitational
attraction to settle to a classical vacua out of the horizon,
and we finish with a profile in which the field takes two
different constant values, corresponding to minima of the
potential, at each side of the black hole. However, it is clear
that for field configurations sitting asymptotically onto two
different vacua, the gravitational pull toward the center of
the lump produces also an increase of the gradient potential
energy of the scalar matter. This suggests that there should
be some static solutions in which the gravitational attrac-
tion and the repulsive gradient energy are in equilibrium
and a self-gravitating kink with a nontrivial profile forms.
The purpose of this paper is to study several static
configurations of this type. This is in contrast with former
research in a similar scenario, see Refs. [32] and [33],
where the general structure of two-dimensional dilatonic
gravity coupled to the sine-Gordon scalar field model is
discussed.
The organization of the paper is as follows. In Sec. II we

describe the general setting and examine the interaction
between JT gravity and the most prototypical system
allowing for topological kinks, the ϕ4 theory with broken
discrete Z2-symmetry, both for general gravitational cou-
pling and in the weak coupling regime. Then, we present in
Sec. III the analysis of another important case, this time
with a nonpolynomial potential, the sine-Gordon theory.
The treatment given for the ϕ4 and sine-Gordon kinks
reveals that the underlying supersymmetry present in both
models has an important role in the procedure to find the
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gravitating solutions. Thus, in Sec. IV we extend the
approach to deal with general kinks related to unbroken
supersymmetry and apply it to a hierarchy of scalar field
theories of this type, which includes the ϕ4 and sine-
Gordon ones as the two first members. Finally, we offer in
Sec. V some concluding remarks.

II. SELF-GRAVITATING KINKS
IN THE ϕ4 THEORY

A. Scalar kink configurations coupled
to Jackiw-Teitelboim gravity

The purpose in this paper is to describe some classical
static solutions which arise within the theory of a 1þ 1
dimensional real scalar field ϕðt; xÞ when the dynamics is
governed not only by the presence of a nonlinear potential
allowing for topologically nontrivial boundary conditions,
but also by the existence of gravitational forces of the
Jackiw-Teitelboim type. It turns out that, in order to define
the action of such a system, one needs to introduce, apart of
the ϕðt; xÞ field itself and the metric tensor gμνðt; xÞ,
another auxiliary scalar field [16]. This extra field can
take the form of a mere Lagrange multiplier Nðt; xÞ or,
alternatively, of a field Ψðt; xÞ which couples to the
curvature scalar in a way which closely resembles the
analogous coupling of the dilatonic field in string theory.
Here, we will choose this second possibility. Thus, the
action is

S ¼ 1

16πG

Z
d2x

ffiffiffiffiffiffi
−g

p �
ΨRþ 1

2
gμν∂μΨ∂νΨþ Λ

�
þ SM

where Ψ ¼ e−2Φ with Φ the dilaton field, and the matter
action is

SM ¼ −
Z

d2x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕþ VðϕÞ

�
:

Upon variation of S, one arrives to two field equations

∇μ∇μϕ ¼ dV
dϕ

ð3Þ

R − Λ ¼ 8πGT ð4Þ

in which Ψ decouples. Here ∇μ is the standard covariant
derivative and T is the trace of the energy-momentum
tensor for the scalar field

Tμν ¼ ∂μϕ∂νϕ − gμν

�
1

2
∂σϕ∂σϕþ VðϕÞ

�
:

With suitable boundary conditions, these equations are
enough to completely determine the field ϕ and the metric.
Once these are known, the auxiliary field is obtained from
the remaining Euler-Lagrange equation

∇μ∇μΨ ¼ R:

In 1þ 1 dimensions the metric has three independent
components, which are subject to arbitrary reparametriza-
tions of the two coordinates. Thus, the metric can be put
locally in a form which depends only on a single function
of the coordinates. We will choose a gauge which is
commonly used in problems related to black holes, see
for instance [16,22], although in our case the metric will be
regular

ds2 ¼ −αðt; xÞdt2 þ 1

αðt; xÞ dx
2:

In this gauge, the Christoffel symbols are

Γ0
00 ¼ −Γ1

01 ¼
1

2α

∂α
∂t ; Γ0

01 ¼ −Γ1
11 ¼

1

2α

∂α
∂x ;

Γ0
11 ¼ −

1

2α3
∂α
∂t ; Γ1

00 ¼
1

2
α
∂α
∂x ;

the only independent component of the Riemann tensor and
the curvature scalar are

2αR0
101 ¼ R ¼ ∂

∂t2
�
1

α

�
−

∂α
∂x2

and the diagonal elements of the energy-momentum tensor
of matter are

T00 ¼
1

2

�∂ϕ
∂t

�
2

þ 1

2
α2
�∂ϕ
∂x

�
2

þ αVðϕÞ ð5Þ

T11 ¼
1

2α2

�∂ϕ
∂t

�
2

þ 1

2

�∂ϕ
∂x

�
2

−
1

α
VðϕÞ: ð6Þ

Thus the field equations (3)–(4) take the form

−
∂
∂t

�
1

α

∂ϕ
∂t

�
þ ∂
∂x

�
α
∂ϕ
∂x

�
¼ dV

dϕ
ð7Þ

∂2

∂t2
�
1

α

�
−
∂2α

∂x2 − Λ ¼ −16πGVðϕÞ: ð8Þ

Henceforth, we will concentrate on static configurations
where both α and ϕ depend only on the spacelike
coordinate x. Also, for simplicity, we will be concerned
only with the attractive JT gravitational force and will set
the cosmological constant to zero. The reason is that our
main interest is to explore the behavior, once gravitation is
put on, of some standard kink solutions that are usually
studied on a 1þ 1 dimensional Minkowski setting, instead
of its de Sitter or anti–de Sitter counterparts, which are by
themselves nonstatic geometric backgrounds. Also, for
concreteness, in the rest of this section we will focus
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on the simplest and most paradigmatic model exhibiting
spontaneous symmetry breaking, the ϕ4 theory with
potential

VðϕÞ ¼ λ

4
ðϕ2 − v2Þ2: ð9Þ

Let us mention that in the static case it is also useful another
gauge for the metric, namely ds2 ¼ −γðzÞdt2 þ dz2, a
gauge that has been used, for instance, to study stellar
structure in two dimensions in [23]. Of course, we can
recover this gauge from our present conventions by
defining a spatial coordinate z by dz ¼ dxffiffiffiffiffiffiffi

αðxÞ
p and then

γðzÞ ¼ αðxðzÞÞ.
The theory with potential (9) has been much inves-

tigated, both from the point of view of elementary particle
physics, where renormalizability in four dimensions makes
it especially interesting, and from a condensed matter
perspective, where it is the typical interaction appearing
in Ginzburg-Landau functionals. At the level of perturba-
tion theory, the model encodes the interaction of real scalar
quanta of mass M ¼ ffiffiffiffiffi

2λ
p

v through third and fourth order
vertices, but the dynamics has also room for interesting
nonperturbative phenomena. In fact, as it is well known, the
space of finite-energy configurations splits in four sectors,
which are classified by the topological charge Q ¼
1
2v

R∞
−∞ ∂xϕ and are both classically and quantum mechan-

ically disconnected. There are two vacuum sectors in which
the asymptotic values of the field are the same for positive
and negative x, i.e., ϕðt;�∞Þ ¼ v or ϕðt;�∞Þ ¼ −v,
along with other two nontrivial topological sectors with
mixed asymptotics given by ϕðt;�∞Þ ¼ �v or
ϕðt;�∞Þ ¼∓ v. The decay of a configuration with non-
vanishing topological charge to one of the two constant
classical vacua ϕ ¼ −v or ϕ ¼ v is forbidden by the
presence of infinite potential barriers among the sectors.
Thus, in the topological sectors the energy is minimized by
a kink or antikink, a static solution of the Euler Lagrange
equations which continuously interpolates between differ-
ent vacua. Indeed, we see from (5) that in Minkowski
spacetime the energy of a static configuration can be
written in the form

E½ϕ� ¼ 1

2

Z
∞

−∞

�
dϕ
dx

�
ffiffiffi
λ

2

r
ðϕ2 − v2Þ

�2

∓
ffiffiffi
λ

2

r Z
ϕð∞Þ

ϕð−∞Þ
dϕðϕ2 − v2Þ

and this expression attains its minimum when the
Bogomol’nyi equation is satisfied

dϕ
dx

¼ �
ffiffiffi
λ

2

r
ðv2 − ϕ2Þ:

The solutions corresponding to the topologically nontrivial
asymptotic conditions are

ϕðxÞ ¼ �v tanh

�
v

ffiffiffi
λ

2

r
ðx − x0Þ

�
;

where the plus and minus signs correspond, respectively, to
the kink ϕKðxÞ and antikink ϕAKðxÞ configurations. Notice
that the Bogomol’nyi equation implies the Euler-Lagrange
equation

d2ϕ
dx2

¼∓ ffiffiffiffiffi
2λ

p
ϕ
dϕ
dx

¼ λϕðϕ2 − v2Þ

and the kink and antikink are thus true solutions of the
theory. Their energy is

E½ϕK� ¼ E½ϕAK� ¼
2

3

ffiffiffiffiffi
2λ

p
v3:

For definiteness, to study the effect of Jackiw-Teitelboim
gravity on configurations of this type we will focus on
kinks rather than on antikinks, which are analogous. Thus,
we have to solve the field equations (7)–(8) in the static
limit, with Λ set to zero and boundary conditions
ϕð−∞Þ ¼ −v, ϕðþ∞Þ ¼ v. In two dimensions, the scalar
field ϕ and the constants v and G are nondimensional
quantities, while the coupling λ has mass dimension two. It
is convenient to shift to a set of nondimensional variables
by redefining

ϕ ¼ vψ ; x ¼
ffiffiffi
2

λ

r
y
v
; 8πGv2 ¼ g;

so that the equations become

d
dy

�
α
dψ
dy

�
¼ 2ψðψ2 − 1Þ ð10Þ

d2α
dy2

¼ gðψ2 − 1Þ2: ð11Þ

By translational invariance we can take the center of the
kink, i.e., the point at which ψ is zero, at the origin of the y
coordinate. Of course, in this case, given the Z2 symmetry
of the potential and the form of the kink boundary
conditions, the kink profile has to be an odd function
of y. Then the equations imply that the metric coefficient
α is even and, in order to completely fix the set up, we can
define the timelike variable t in such a way that it measures
the proper time at the core of the kink. It thus follows that it
is enough to solve (10)–(11) for y ≥ 0 and with boundary
conditions at y ¼ 0 given by
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αð0Þ ¼ 1;
dα
dy

����
y¼0

¼ 0; ð12Þ

ψð0Þ ¼ 0;
dψ
dy

����
y¼0

¼ p; ð13Þ

where the slope p of the kink profile ψ at the origin has to
be chosen in such a way that the boundary condition at
infinity

ψðþ∞Þ ¼ 1 ð14Þ

is satisfied.
Once the equations are solved, the solution can be used

to compute several physical quantities characterizing the
kink. Among these, the most relevant ones are the total rest
energy, the energy density, and the pressure distribution
inside the kink. The total energy is

E½ϕ� ¼
Z

∞

−∞
dx

ffiffiffiffiffiffiffiffiffi
αðxÞ

p
T00ðxÞ ¼ v3

ffiffiffi
λ

2

r
Enorm½ψ �

where the “normalized” nondimensional rest energy
Enorm½ψ � is

Enorm½ψ � ¼
Z

∞

0

dy

� ffiffiffi
α

p �
dψ
dy

�
2

þ 1ffiffiffi
α

p ðψ2 − 1Þ2
	
: ð15Þ

Thus, the energy density of the kink, also in normalized
form, is

EnormðyÞ ¼
ffiffiffiffiffiffiffiffiffi
αðyÞ

p �
dψ
dy

�
2

þ 1ffiffiffiffiffiffiffiffiffi
αðyÞp ½ψ2ðyÞ − 1�2;

where, since we integrate only from zero to infinity, our
normalization includes in this case a factor of two with
respect to the true energy density. The pressure, on the other
hand, is given by P ¼ T11

α ¼ λv4
4
Pnorm, with the normalized

pressure distribution being

PnormðyÞ ¼ αðyÞ
�
dψ
dy

�
2

− ½ψ2ðyÞ − 1�2: ð16Þ

B. Some numerical results

If we solve the system (10)–(14) with vanishing g, the
gravitational field decouples, the background geometry is
1þ 1 dimensional Minkowski spacetime and we recover
the standard kink of ϕ4 theory, which in rescaled variables
reads

αðyÞ ¼ 1 ψðyÞ ¼ ψKðyÞ ¼ tanhðyÞ:

In particular, the slope p at the origin is unity. Also, we can
compute the normalized energy, energy density and pres-
sure to find the results

Enorm½ψK� ¼
4

3
EψK
normðyÞ¼ 2sech4ðyÞ PψK

normðyÞ¼ 0:

Now, we turn the gravitational interaction on. Since the
system (10)–(11) cannot be analytically solved for arbitrary
values g > 0, we have to resort to approximate methods.
Thus, after analyzing the behavior of the kink fields both
inside its core and at large distances, we have to carry out a
numerical integration of the field equations, seeking for a
consistent interpolation between these regions. The boun-
dary conditions (12)–(13) imply that the metric coefficient
near the origin has the form αðyÞ ≃ 1þ 1

2
gy2 and sub-

stitution in (10) gives, to dominant order, the differential
equation

d2ψ
dy2

þ gy
dψ
dy

þ 2ψ ¼ 0 y ≃ 0:

With the change of variables 2z ¼ −gy2, this is a Kummer

equation z d2ψ
dz2 þ ð1

2
− zÞ dψdz − 1

gψ ¼ 0, which, along with
(13), determines the form of ψ near the center of the kink as

ψðyÞ ¼ py1F1

�
1

2
þ 1

g
;
3

2
;−

gy2

2

�

≃ py −
1

6
pðgþ 2Þy3 þ � � � y ≃ 0

where 1F1ða; b; zÞ is the confluent hypergeometric function
of the first kind.
In the asymptotic region, on the other hand, we write

ψðyÞ ¼ 1 − ξðyÞ and work at leading order in ξ.
Equation (11) and boundary condition (14) demand that

αðyÞ ¼ qyþ r y → ∞

for some coefficients q and r. Using this expression in (10)
leads to the differential equation

qy
d2ξ
dy2

þ q
dξ
dt

− 4ξ ¼ 0 y → ∞

Therefore, the solution is

ξðyÞ ¼ aK0

�
4

ffiffiffi
y

pffiffiffi
q

p
�
þ bI0

�
4

ffiffiffi
y

pffiffiffi
q

p
�
≈

1

2
ffiffiffi
2

p
�
q
y

�1
4

×

�
a

ffiffiffi
π

p
e−

4
ffiffi
y

pffiffi
q

p þ bffiffiffi
π

p e
4
ffiffi
y

pffiffi
q

p
�

y → ∞:

Hence, there should be a solution to (10)–(11) on the half-
line ½0;þ∞Þ with this asymptotic behavior, and a critical
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value p ¼ pcrit of the slope at the origin such that the
coefficient b vanishes, thus fulfilling the proper boundary
condition (14). The task at hand is to integrate numerically
the system (10)–(11) while varying the value of p until the
critical value is attained. Hence, we use a shooting method,
starting from y ¼ 0, integrating the equations for positive
values of y and then extending the solution to negative
values by means of the known parities of ψðyÞ and αðyÞ.
We look for the value of the slope at the origin which gives
a monotonically increasing ψðyÞ that asymptotically
reaches ψ ¼ 1. For all values of the coupling, we obtain
convergence to a convincing kink profile in which ψ takes a
constant value very close to one for an ample interval, with
width of orderΔy ≃ 10 for small g up toΔy ≃ 40 for higher
g, much larger than the size of the core of the kink. We thus
expect that the b coefficient multiplying the term which
makes ψ to diverge exponentially from the correct asymp-
totic value is very small and the solutions found are
accurate. We have performed this for different values of
the coupling g and we show the results in Figure 1, where
the profiles for ψðyÞ and αðyÞ are displayed, and in Fig. 2,
which shows the normalized energy density and pressure
distributions of the kinks. Also, we list in Table I the values
of pcrit; the normalized energy; the maxima of the energy
density and pressure distributions, which, of course, are

located at the center of the kink; the width of the kink,
which we have conventionally defined as the value of the y
coordinate containing a 95% of the total energy; the slope q
and intercept r of the asymptotic α profile and, finally, a
parameter κ whose meaning is explained below.
As one can see from the figures, the rate at which the

scalar field varies behaves differently near the origin and
afar from it. In the central region, the kink profile is
steeper for higher g but, as y increases, the kinks of high
gravitational coupling approach the minimum of the
potential more slowly than those with small g. The energy
density and the pressure decrease quickly to zero from their
maxima at the core of the kink, and both the values of these
maxima and the rate of decreasing are grater as the
parameter g increases. In fact, as it can be checked from
the table, the total energy of the kink increases with g, while
the trend for its size variation goes in the opposite sense: the
more the coupling g grows, the more the energy is
concentrated around the origin, as it should be expected
under the influence of a gravitational field. Indeed, as it is
shown in the figures, the metric distortion created by the
kink at its core is very pronounced, except for very small g.
On the other hand, although as y increases and αðyÞ
approaches its linear regime the curvature tends to vanish,
there is, however, a residual gravitational force at great

FIG. 1. ψ and α profiles of the ϕ4 kink for several strengths of the gravitational interaction.

FIG. 2. The normalized energy density and pressure distribution of the ϕ4 kink for several for several strengths of the gravitational
interaction.
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distance. Mechanical energy conservation for a particle of
rescaled nondimensional massm falling from rest at y ¼ y0
under the gravity of the kink implies that velocity and
acceleration are

vðyÞ¼ αðyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

αðyÞ
αðy0Þ

s
; aðyÞ¼ αðyÞ

�
1−

3α2ðyÞ
2αðy0Þ

�
dα
dy

����
y
;

and thus the gravitational force on a particle at rest at
position y is

F≡ma ¼ −
1

2
mαðyÞdα

dy

����
y
→ −

1

2
mqy for y → ∞;

where the values of q can be read from the table.
Regarding the interpretation of last column in Table I, let

us recall that for a point particle of mass M located at the
origin, with the stipulation αð0Þ ¼ 1 that we are sticking to,
the metric coefficient, in terms of the dimensional x
coordinate, is αðxÞ ¼ 4πGMjxj þ 1 [23]. Thus, transform-
ing this formula to nondimensional variables, we can write
the relationship between the point-particle mass and the
slope of the metric coefficient at infinity as

dα
dy

����
y¼∞

¼ 4
ffiffiffi
2

p
πGM

v
ffiffiffi
λ

p :

For the kink, on the other hand, from (11) and (12), we have

dα
dy

����
y¼∞

¼ 8πGv2I½ψ � I½ψ � ¼
Z

∞

0

dyðψ2 − 1Þ2:

Thus, from the point of view of the long distance analysis,
in which the kink appears as a point particle, it makes sense
to assign to the kink a gravitational mass

MGRAV ¼ 2v3
ffiffiffi
λ

2

r
I½ψ �:

Nevertheless, looking at (15) we see that the inertial mass is
different:

MINER ¼ E½ψ � ¼ v3
ffiffiffi
λ

2

r
Enorm½ψ �:

The last column in Table I gives account of this difference
by means of the parameter κ, which is, precisely, the

quotient betweenMGRAV andMINER, i.e., κ ¼ 2
I½ψ �

Enorm½ψ �. The
discrepancy between both mass values stems from the fact
that, in contrast with the case of a true point particle, for an
extended object such as the kink the two diagonal elements
T00 and T11 of the energy-momentum tensor, i.e., not only
energy density but also pressure, source JT gravity, having
thus an effect on the long distance metric. The situation is
analogous of what happens in general relativity in 3þ 1
dimensions, where the exterior metric of a ball of perfect
fluid in equilibrium is the Schwarzschild solution with a
mass parameter m which differs from the mass m0 obtained
by integrating the energy density of the fluid in the ball, see
for instance [34], an effect which is interpreted as due to the
existence of a binding energy originated for the attractive
gravitational forces in the interior of the fluid, which are, in
fact, compensated by the pressure. For the standard kink,
dψK
dy ¼ 1 − ψ2

K and αðyÞ ¼ 1, thus Enorm½ψK� ¼ 2I½ψk� and
κ ¼ 1, consistently with the fact that for g → 0 internal
gravitational self-energy and pressure disappear. For other
values of g, the numerical computation of the integrals
gives the results collected in the table.

C. The limit of small gravitational coupling:
Perturbative analysis

We have demonstrated the action of JT gravity on the
kinks of the of ϕ4 theory, allowing for the possibility that

TABLE I. Some parameters characterizing the ϕ4 kink for different values of g.

Numerical results for ϕ4 kinks

g pcrit Enorm Enormð0Þ Pnormð0Þ width q r κ

0.00 1.000 1.333 2.000 0.000 1.131 0.000 1.000 1.000
0.10 1.011 1.333 2.022 0.022 1.129 0.066 0.971 0.996
0.50 1.052 1.335 2.107 0.107 1.123 0.327 0.854 0.980
1.00 1.099 1.338 2.208 0.208 1.117 0.645 0.710 0.963
3.00 1.254 1.361 2.574 0.574 1.099 1.855 0.132 0.909
5.00 1.381 1.389 2.907 0.907 1.084 3.011 −0.472 0.867
10.00 1.634 1.460 3.670 1.670 1.050 5.780 −2.143 0.792
20.00 2.016 1.592 5.066 3.066 0.987 11.074 −6.233 0.696
30.00 2.320 1.709 6.382 4.382 0.932 16.214 −11.334 0.633
40.00 2.580 1.815 7.656 5.656 0.884 21.269 −17.425 0.586
50.00 2.811 1.912 8.903 6.903 0.842 26.267 −24.460 0.549
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the gravitational coupling can be, in principle, arbitrarily
high. Of course, this is in contrast with the usual point of
view adopted when this theory, or other quantum field
theories, are investigated which assumes that, compared
with the other interactions present in the system, gravity is
so weak that its effects can be completely disregarded. This
approach has brought out a plenty of remarkable results on
kinks or other topological defects. Thus, in the event that
one is interested in reintroducing gravity in the picture, it is
quite reasonable to limit the shifting of the gravitational
coupling from zero to a tiny value. In this subsection, we
will adopt this perspective by taking g small enough to
make a linear perturbative analysis of the kink equations
feasible. As we know, for g ¼ 0 the solution is the standard
kink and the spacetime is Minkowski. Hence, we shall
assume that

ψðyÞ ¼ ψKðyÞ þ gφðyÞ þ oðg2Þ ð17Þ

αðyÞ ¼ 1þ gβðyÞ þ oðg2Þ ð18Þ

and we will substitute these expressions in (10)–(11)
keeping only the linear terms in the coupling. Given that
αðyÞ increases monotonically for y → ∞, perturbation
theory breaks down at great distances, but we see from
Fig. 1 that if g is small enough there is a wide interval
around the core of the kink in which αðyÞ ≃ 1 and, at least
in this region, the perturbative treatment should give a good
approximation of the complete solution. Having in mind
this point and plugging the expansions (17) and (18) into
Eqs. (10) and (11), we obtain the following linear equations

Hyφ ¼ d
dy

�
β
dψK

dy

�
ð19Þ

d2β
dy2

¼ ðψ2
K − 1Þ2 ð20Þ

where Hy is the Hessian operator in the background of the
standard kink solution, whose form is

Hy ¼ −
d2

dy2
þUðyÞ UðyÞ ¼ 2ð3ψ2

KðyÞ − 1Þ:

The boundary conditions at the origin (12)–(13), on the
other hand, become in this regime

βð0Þ ¼ 0
dβ
dy

����
y¼0

¼ 0 ð21Þ

φð0Þ ¼ 0
dφ
dy

����
y¼0

¼ s ð22Þ

with the functions βðyÞ and φðyÞ being, respectively, even
and odd in y. The value of s has to be chosen in such a way

that the asymptotic behavior of φðyÞ is consistent with (14),
which implies

φð∞Þ ¼ 0: ð23Þ

Equation (20) combined with the boundary condition (21)
allows for a direct computation of the perturbation of the
metric coefficient

βðyÞ ¼
Z

y

0

dz
Z

z

0

dusech4ðuÞ

¼ 1

6
f1þ 4 log ðcoshðyÞÞ − sech2ðyÞg: ð24Þ

As it should be, this is a function interpolating between a
parabola at the core of the kink and a straight line at large
distances, in fact

βðyÞ ≃ y2

2
y ≃ 0

βðyÞ ≃ 2

3
yþ 1 − 4 log 2

6
y → ∞

Consequently, this computation provides us with exact
values, in the limit of small g, for the q and r coefficients
that we had computed numerically in the previous sub-
section. The other equation, (19), is a Schrödinger equation
of nonhomogeneous type. The potential UðyÞ of the
Schrödinger operator is a symmetric well

UðyÞ ¼ 4 − 6sech2ðyÞ

which displays a minimum at the origin Uð0Þ ¼ −2 and
attains a flat profile UðyÞ → 4 when jyj → ∞, see Fig. 3.
The source term, on the other hand, is

RðyÞ¼ d
dy

�
β
dψK

dy

�

¼1

3
f1−4logðcoshðyÞÞþ2sech2ðyÞgsech2ðyÞtanhðyÞ;

ð25Þ

an odd function whose behavior near the origin and at
infinity is of the form

RðyÞ ≃ y y ≃ 0 ð26Þ

RðyÞ ≃ −
16

3
ye−2jyj jyj → ∞ ð27Þ

and whose full profile is also shown in Fig. 3. A numerical
integration of the nonhomogeneous Schrödinger equation
gives a graphic of φðyÞ as shown in Fig. 4, and it turns out
that the value of s leading to a good convergence at infinity
is s ≃ 0.111. However, the perturbative approach allows us
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to go beyond the numerical methods and to solve exactly
(19) in addition to (20). Indeed, given the odd parity of
φðyÞ, it is enough to work out the solution for y > 0. Thus,
we can write

φðyÞ ¼
Z

∞

0

dzGðy; zÞRðzÞ ð28Þ

where Gðy; zÞ is a Green function in ½0;þ∞Þ of the
Schrödinger operator,

�
−

d2

dy2
þ UðyÞ

�
Gðy; zÞ ¼ δðy − zÞ; ð29Þ

with suitable boundary conditions to ensure that φðyÞ
behaves at the origin and infinity as required by (22)
and (23). Notice that, although the Hessian operator of the
standard nongravitational kink has a normalizable zero
mode due to translational invariance, this mode, being
proportional to dψK

dy , has no nodes. Thus, it satisfies the
boundary condition at infinity, but not (22). This fact
guarantees that the Schrödinger operator is invertible within
the space of functions we are interested in, and therefore
that the Green function we are seeking for exists. On the
other hand, it is precisely by means of zero modes that this

Green functions can be constructed, see for instance [35].
In fact, it is not difficult to check that the general solution
of (29) is

Gðy; zÞ ¼ aðzÞρðyÞ þ bðzÞχðyÞ

þ 1

W
θðy − zÞ½χðzÞρðyÞ − ρðzÞχðyÞ� ð30Þ

where ρðyÞ and χðyÞ are, respectively, the even, normal-
izable, and odd, non-normalizable, zero modes of the
Schrödinger operator, aðzÞ and bðzÞ are arbitrary functions,
θðzÞ is the Heaviside step function andW is the Wronskian
of the zero modes:

W ¼ ρ
dχ
dy

−
dρ
dy

χ:

The existence of two eigenmodes with zero eigenvalue and
with the said features of normalizability and parity can be
easily verified by taking advantage of the factorization of
the Hessian operator,

Hy ¼ D†
yDy Dy ¼

d
dy

þ 2 tanhðyÞ;

which implies that the normalizable mode comes about as
the solution of

FIG. 4. The metric perturbation βðyÞ and the response φðyÞ for the ϕ4 kink, this last one found by numerical methods.

FIG. 3. The potential well UðyÞ and the source RðyÞ of the inhomogeneous Schrödinger equation for the ϕ4 kink.
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DyρðyÞ ¼ 0 ⇒ ρðyÞ ¼ Cρ exp

�
−2

Z
y

0

du tanhðuÞ
�
;

while the non-normalizable one follows from

D†
yðDyχÞ ¼ 0 ⇒ Dyχ ¼ Cχ exp

�
2

Z
y

0

du tanhðuÞ
�

with Cρ and Cχ arbitrary constants. Thus, the results are

ρðyÞ ¼ sech2ðyÞ ð31Þ

χðyÞ ¼ 3ysech2ðyÞ þ ð3þ 2cosh2ðyÞÞ tanhðyÞ; ð32Þ

where we have picked out a normalization such thatW ¼ 8.
Now, since ρð0Þ ≠ 0 and χð0Þ ¼ 0, we choose aðzÞ ¼ 0 in
(30) in order that Gð0; zÞ ¼ 0 for positive z, thus ensuring
that φð0Þ ¼ 0 in accordance with (22). As one can see,
the remaining condition, (23), is satisfied by choosing
bðzÞ ¼ 1

W ρðzÞ. This leaves us with the integral formula

φðyÞ¼ 1

W
ρðyÞ

Z
y

0

dzχðzÞRðzÞþ 1

W
χðyÞ

Z
∞

y
dzρðzÞRðzÞ:

ð33Þ

In this expression, although χðyÞ is non-normalizable, the
second term vanishes by construction when y approaches
infinity, whereas by virtue of the asymptotic behavior of the
two zero modes of the kink

ρðyÞ ≃ 4e−2y; χðyÞ ≃ 1

2
e2y for y → ∞;

and of RðyÞ, written in (27) above, the first one goes as
y2e−2y in the same limit. Thus φðyÞ vanishes for y → ∞,
as it should do. It turns out that, after plugging (25) and
(31)–(32) into (33), the integrals can be done exactly, and
the result is

φðyÞ ¼ 1

6

�
2

3
tanhðyÞ − Li2ð−e−2yÞ − yðy − 2 log 2Þ − π2

12

�
× sech2ðyÞ:

Here LinðyÞ is the polylogarithm function, which can be
written as LinðyÞ ¼ yΦðy; n; 1Þ where Φðy; n; vÞ is the
Lerch transcendent function, see [36] for more details about
these functions. It is possible to check that the solution
given coincides with the function drawn in Fig. 4 and, in
particular, the derivative at y ¼ 0 gives exactly s ¼ 1

9
as we

had found numerically. Apart from that, other traits of the
solution are that, as we can see in the figure, for y → þ∞
the function reaches zero from below after an oscillatory
regime near the origin, with a maximum value φ ¼ 0.0351
at y ¼ 0.5176 and a subsequent minimum at y ¼ 1.976 at

which φ ¼ −0.0164. The zero between these two extrema
lies at y ¼ 1.244.
We have thus developed a successful perturbative

approach for g → 0. Let us now briefly comment on the
opposite regime g → ∞. In principle, one can proceed in
the same way, defining g ¼ 1

g0, obtaining the solution
ψ̃KðyÞ; α̃KðyÞ valid for g0 ¼ 0, and then perturbing this
solution for small g0, i.e., large g, as

ψðyÞ¼ ψ̃KðyÞþg0φðyÞþ���; αðyÞ¼ α̃KðyÞþg0βðyÞþ���:

Now, in order that the left-hand side of Eq. (11) remains
finite, the kink solution for g0 ¼ 0 has to be singular,
ψ̃KðyÞ ¼ sgnðyÞ, and, given that the kink core is now
concentrated at y ¼ 0, the metric should be that of a point
particle, α̃KðyÞ ¼ 1þDjyj, where D is a constant which
reflects the gravitational effect of the singular kink.
Substituting this in (10)–(11) and working at leading order
in g0, we obtain a system of equations similar to (19)–(20)

−
d
dy

�
α̃K

dφ
dy

�
þ 3ð2ψ̃2

K − 1Þφ ¼ d
dy

�
β
dψ̃K

dy

�
d2β
dy2

¼ 4ψ̃2
Kφ

2;

but now involving Dirac delta singularities due to the
nonsmooth character of both the unperturbed kink and
the background metric. Also, from the Fig. 1, one should
expect that the D constant is divergent, and some regu-
larization procedure, possibly involving a certain degree of
arbitrariness, should accompany the present approach. We
see thus that the case g → ∞ is not so neatly defined as the
situation for g → 0 and its detailed investigation is the
subject of a different work.

III. SELF-GRAVITATING
SINE-GORDON SOLITONS

Besides the ϕ4 kink, the other most prominent example
of a localized solution in a scalar relativistic field theory in
1þ 1 dimensions is the sine-Gordon soliton, which
deserves this name, instead of the simple denomination
of kink, due of its absolute stability after collisions; the ϕ4

kink is not a soliton in this sense, but only a solitary wave
[28]. Like the ϕ4 theory, the sine-Gordon model has been
intensely studied and applications for it have been found in
a variety of fields ranging from the mechanics of coupled
torsion pendula to the study of dislocations in crystals,
Josephson junctions, DNA molecules or black holes, see
for instance [37,38]. In what follows, we shall proceed
along the lines developed in the previous section to trans-
form the standard flat space sine-Gordon soliton into a self-
gravitating object by coupling the field theory to JT gravity.
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The potential of the sine-Gordon Lagrangian is

VðϕÞ ¼ λ

γ2
ðcosðγϕÞ þ 1Þ

and an important difference in the space of classical vacua
with respect to the ϕ4 theory arises: now the degenerate
vacua form an infinite set, VðϕÞ ¼ 0 for ϕ ¼ ð2nþ 1Þ πγ,
n ∈ Z, and the discrete symmetry is thus Zn instead of Z2.
Notwithstanding this, since finite energy static solutions of
a real scalar field theory can interpolate only between
consecutive vacua, for our purposes we can limit ourselves
to consider configurations which approach asymptotically
one of the two vacua ϕ ¼ � π

γ. In this way, we come back

to a situation analogous to that of ϕ4 theory. When gravity
is neglected, we have a Bogomol’nyi splitting, with
Bogomol’nyi equation

dϕ
dx

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ

γ2
ðcosðγϕÞ þ 1Þ

s
;

and kink-like and antikinklike solutions interpolating
between that two vacua appear. The kink is the sine-
Gordon soliton, with profile

ϕSðxÞ ¼
4

γ
arctan

�
tanh

� ffiffiffi
λ

p
x

2

��

such that ϕSð�∞Þ ¼ � π
γ. To study its generalization in the

presence of the JT gravitational field, we rescale to non
dimensional variables

ϕ ¼ ψ

γ
; x ¼ yffiffiffi

λ
p ; 16π

G
γ2

¼ g

and, proceeding as we did in the ϕ4 theory, obtain field
equations of the form

d
dy

�
α
dψ
dy

�
¼ − sinψ ð34Þ

d2α
dx2

¼ gðcosψ þ 1Þ: ð35Þ

Due to the well definite parities in the variable y of both ψ
and α, the equations can be solved in ½0;þ∞Þ with the
same boundary conditions (12) and (13) used before, whilst
the asymptotic condition at infinity changes now to

ψðþ∞Þ ¼ π: ð36Þ

The energy and pressure of the static solutions are E½ϕ� ¼ffiffi
λ

p
γ2
Enorm½ψ � and P ¼ λ

2γ2
Pnorm, where the normalized

quantities are those written in (15) and (16) with
ðψ2 − 1Þ2 replaced by 2ðcosψ þ 1Þ. In particular, the
standard flat-space sine-Gordon soliton is

ψSðyÞ ¼ 4 arctanðeyÞ − π

and we find

Enorm½ψS� ¼ 8 EψS
normðyÞ ¼ 8sech2ðyÞ PψS

normðyÞ ¼ 0:

As in Sec. II, in order to look for numerical solutions of
(34)–(35) with the conditions (12), (13), (36), we first solve
the system near the origin, to obtain

αðyÞ ¼ 1þ gy2

ψðyÞ ¼ py1F1

�
1

2
þ 1

4g
;
3

2
;−gy2

�

≃ py −
1

6
pð2gþ 1Þy3 þ � � � y ≃ 0

and also near infinity, where ψðyÞ ¼ π − ξðyÞ and the α
profile is linear, αðyÞ ¼ qyþ r. The behavior of ξ turns out
to be

ξðyÞ ¼ aK0

�
2

ffiffiffi
y

pffiffiffi
q

p
�
þ bI0

�
2

ffiffiffi
y

pffiffiffi
q

p
�
≈
1

2

�
q
y

�1
4

×

�
a

ffiffiffi
π

p
e−

2
ffiffi
y

pffiffi
q

p þ bffiffiffi
π

p e
2
ffiffi
y

pffiffi
q

p
�

y → ∞

and we have to integrate the ODEs numerically to figure
out the critical value of p yielding b ¼ 0. Through this
approach, we have found the results shown in the Figs. 5
and 6 and in Table II. The parameter κ appearing in the table
relates the gravitational and inertial masses of the soliton as
in the previous section, and is now given by

κ ¼ 4
I½ψ �

Enorm½ψ �
I½ψ � ¼

Z
∞

0

dy½cosðψÞ þ 1�:

As the figures and table reflect, the qualitative features of
the sine-Gordon solitons are similar to those already
commented for the ϕ4 kinks. The most notorious difference
is the that the values of energy, pressure and gravitational
distortion are, with the natural normalization and non-
dimensional variables that we are using, much greater for
the former than for the latter.
The perturbative approach for the case of small g can also

be worked out like we did the case of ϕ4 theory. At first
order in g, the equations for the perturbations β and φ of the
flat metric and standard soliton are

Hyφ ¼ d
dy

�
β
dψS

dy

�
ð37Þ
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d2β
dy2

¼ cosðψSÞ þ 1; ð38Þ

where the Hessian operator is now

Hy¼−
d2

dy2
þUðyÞ UðyÞ¼−cos ½ψSðyÞ�¼1−2sech2ðyÞ;

whereas the boundary conditions are again (21)–(23). Thus,
integration of (38) gives directly the answer for β

βðyÞ ¼ 2 log ðcoshðyÞÞ;

a function which interpolates consistently between a
parabola and a straight line

FIG. 6. The normalized energy density and pressure distribution of the sine-Gordon soliton for several for several strengths of the
gravitational interaction.

FIG. 5. ψ and α profiles of the sine-Gordon soliton for several for several strengths of the gravitational interaction.

TABLE II. Some parameters characterizing the solitons for different values of g.

Numerical results for sine-Gordon solitons

g pcrit Enorm Enormð0Þ Pnormð0Þ width q r κ

0.00 2.000 8.000 8.000 0.000 1.832 0.000 1.000 1.000
0.10 2.094 8.008 8.386 0.386 1.823 0.197 0.862 0.982
0.50 2.401 8.119 9.766 1.766 1.800 0.940 0.307 0.926
1.00 2.702 8.309 11.300 3.302 1.777 1.817 −0.437 0.875
3.00 3.565 9.097 16.710 8.707 1.684 5.109 −4.155 0.749
5.00 4.201 9.808 21.650 13.650 1.594 8.252 −9.075 0.673
7.00 4.731 10.450 26.380 18.380 1.514 11.341 −15.507 0.620
9.00 5.196 11.040 31.000 23.000 1.442 14.377 −22.929 0.579
11.00 5.615 11.580 35.530 27.530 1.378 17.395 −31.867 0.546
15.00 6.358 12.580 44.420 36.420 1.269 23.378 −53.842 0.496
18.00 6.856 13.260 51.000 43.000 1.201 27.789 −71.581 0.466
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βðyÞ ≃ y2 y ≃ 0

βðyÞ ≃ 2y − 2 log 2 y → ∞:

The Hessian is a Schrödinger operator with the potential
drawn in Fig. 7, a symmetric well showing a dip Uð0Þ ¼
−1 in the center and reaching asymptotic values UðyÞ → 1
for jyj → ∞. This operator is sourced by the function

RðyÞ¼ d
dy

�
β
dψS

dy

�
¼ 4½1− logðcoshðyÞÞ�sechðyÞ tanhðyÞ;

which displays a linear behavior near the soliton center and
decays exponentially at infinity

RðyÞ ≃ 4y y ≃ 0

RðyÞ ≃ −8ye−jyj jyj → ∞;

as it is also shown in the figure. To compute φðyÞ we need
to know the kernel of the Hessian. Again, this is facilitated
by the factorization

Hy ¼ D†
yDy Dy ¼

d
dy

þ tanhðyÞ;

which allows for the computation the normalizable and
non-normalizable zero modes. They turn out to be

ρðyÞ ¼ sechðyÞ
χðyÞ ¼ ysechðyÞ þ sinhðyÞ;

with Wronskian W ¼ 2. Substituting all that in (33) yields
the final answer for the scalar perturbation of the soliton

φðyÞ ¼ −
�
Li2ð−e−2yÞ þ yðy − 1 − 2 log 2Þ þ π2

12

�
sechðyÞ:

The shape of this function is portrayed in Fig. 8. In
particular, taking the derivative at y ¼ 0 we learn that
the parameter s in the boundary condition (22) is exactly
one in the sine-Gordon theory. We can also obtain the upper
and lower limits of the oscillation of the function as y
varies. There is a maximum at y ¼ 0.797 in which
φ ¼ 0.478, and a minimum at y ¼ 3.463 in which
φ ¼ −0.285, with a zero in between at y ¼ 1.981. Thus,
as it happened with the numerical results, in nondimen-
sional variables the scale of the perturbative solution is
considerably greater for the sine-Gordon case than for the
ϕ4 one.

FIG. 8. The metric perturbation βðyÞ and the response φðyÞ for the sine-Gordon soliton, this last one found by numerical methods.

FIG. 7. The potential well UðyÞ and the source RðyÞ of the inhomogeneous Schrödinger equation for the sine-Gordon soliton.

SELF-GRAVITATING KINKS IN TWO-DIMENSIONAL PSEUDO- … PHYS. REV. D 101, 036020 (2020)

036020-13



IV. SELF-GRAVITATING KINKS RELATED TO
TRANSPARENT PÖSCHL-TELLER POTENTIALS

A. Kink Hessian and supersymmetry

In the two previous sections we have studied the
coupling to JT gravity of the kink solutions of the ϕ4

and sine-Gordon models, both for arbitrarily high gravita-
tional coupling and in the regime of small g. Now, we will
concentrate on the perturbative dominium only and will
extend the treatment to deal with the self-gravitating kink
solutions arising within an infinite hierarchy of field theo-
retical models, the Pöschl-Teller hierarchy, which encom-
passes as particular cases the two theories considered so far.
An important subject which shapes the hierarchy is unbroken
supersymmetry.
As we have seen, a common feature of the ϕ4 and sine-

Gordon models is that the Hessian operator of the standard,
nongravitational, kink admit a factorization

Hy ¼ D†
yDy Dy ¼

d
dy

þWðyÞ ð39Þ

which, indeed, is the key instrument to obtain the pertur-
bation of the scalar field once gravity is turned on. As it is
well known, this factorization has a supersymmetrical
origin. In fact, Witten N ¼ 2 supersymmetric quantum
mechanics, see [39] for a review, admits a realization on the
real line in which the two supersymmetric generators can
be assembled into a non-Hermitian supersymmetric charge
of the formQ ¼ 1

2
ðσ1 − iσ2ÞDy, with σk the Pauli matrices.

The Hamiltonian is then a 2 × 2 diagonal matrix H ¼
1
2
fQ;Q†g whose upper element is, apart of the factor 1

2
,

precisely the HessianHy. In the context of supersymmetric
quantum mechanics, the existence of a normalizable zero
mode of the Hessian, which was used in previous sections
to solve the gravitational equations to linear order in g, is
tantamount to the statement that supersymmetry is not
spontaneously broken, while the standard kink solutions
have the status of BPS object preserving half of the original
N ¼ 2 supersymmetry. Models of supersymmetric quan-
tum mechanics have important applications in physics [39],
and very remarkable ones in mathematics, as are the proof
given by Witten of Morse inequalities in [40] or the
physicist’s proof of the Atiyah-Singer index theorem
presented in [41,42].
All other members of the Pöschl-Teller hierarchy enjoy,

like the ϕ4 and sine-Gordon models, unbroken supersym-
metry. Thus, in order to describe them, let us begin by
formulating the perturbative approach to JT gravity for a
model with this property. In general, the static limit of the
field equations (7)–(8) can be reverted to nondimensional
variables y and ψ by means of some convenient parameters
a and b with mass dimensions one and zero through a
rescaling

x ¼ y
a

ϕ ¼ bψ VðϕÞ ¼ a2b2UðψÞ: ð40Þ

This makes UðψÞ also nondimensional, and gives to the
equations the form

d
dy

�
α
dψ
dy

�
¼ dU

dψ
ð41Þ

d2α
dy2

¼ gUðψÞ ð42Þ

where g ¼ 16πGb2. This reparametrization matches with
the changes applied in previous sections: for the sine-
Gordon model a ¼ ffiffiffi

λ
p

, b ¼ 1
γ and for the ϕ4 theory

a ¼ v
ffiffi
λ
2

q
, b ¼ v, although the coupling denoted g in

Sec. II is half the coupling g in our current notation. Let
us also assume that, as it was the case for the ϕ4 and sine-
Gordon models, the potential UðψÞ is a semidefinite
positive, even function of ψ , with at least two consecutive
symmetric vacua �ψvac such that Uð�ψvacÞ ¼ 0. In these
circumstances there is, for zero gravitational coupling, a
kink ψKðyÞ of finite energy which lives in Minkowski
spacetime, is an odd function of the coordinate y, and
satisfies the Bogomol’nyi equation

dψK

dy
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2UðψkÞ

p
ψkð�∞Þ ¼ �ψvac: ð43Þ

In fact, since

d2ψk

dy2
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2UðψkÞ
p dU

dψ

����
ψ¼ψK

dψK

dy
¼ dU

dψ

����
ψ¼ψK

the functions αðyÞ ¼ 1 and ψðyÞ ¼ ψKðyÞ solve the equa-
tions (41)–(42) for g ¼ 0. Expanding around the zero-
coupling kink as we did in (17)–(18), we find the equations
at linear order in g

Hyφ ¼ d
dy

�
β
dψK

dy

�
ð44Þ

d2β
dy2

¼ UðψKÞ; ð45Þ

where the Hessian operator is

Hy ¼ −
d2

dy2
þ d2U

dψ2

����
ψ¼ψK

:

Now, let us assume that the supersymmetric factorization
(39) is valid in this model and that supersymmetry is
unbroken, with the superpotential WðyÞ being such that
Wðþ∞Þ > 0 and Wð−∞Þ < 0, as it happens in the ϕ4 and
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sine-Gordon theories. In such a case, we can proceed
backwards, i.e., we can reconstruct the kink and, to some
extent, even the potential of the scalar field theory starting
from the Hessian [43,44]. The reason is translational
invariance, because this symmetry implies that Hy has
always a normalizable zero mode, the translational mode of
the kink, given by f0 ¼ dψK

dy which, by virtue of unbroken
supersymmetry, satisfies Dyf0 ¼ 0. Thus, for a kink
centered at the origin, the translational mode is determined
by the superpotential as

f0ðyÞ ¼ A exp

�
−
Z

y

0

dzWðzÞ
�

ð46Þ

and, once we know the zero mode, we can integrate it to
recover the kink profile

ψKðyÞ ¼
Z

y

0

f0ðzÞdz; ð47Þ

where the constant A is determined in terms of the vacuum
expectation value ψvac through the asymptotic conditionZ

∞

0

f0ðzÞdz ¼ ψvac: ð48Þ

Also, from the zero mode of the kink it is possible to work
out the potential energy of the model. The Bogomol’nyi
equation (43) is tantamount to

UðψKðyÞÞ ¼
1

2
f20ðyÞ

and this, together with (47), makes it feasible, at least in
principle, to solve for UðψÞ for field values in the interval
½−ψvac;ψvac�. Finally, the energy of the kink follows also
directly from the zero mode: the reparametrization (40)
gives E½ϕK� ¼ ab2Enorm½ψK�, with the normalized energy
and energy density given by

Enorm½ψK� ¼
Z

∞

0

��
dψK

dy

�
2

þ 2UðψKÞ
	

¼ 2

Z
∞

0

dyf20ðyÞ; EψK
normðyÞ ¼ 2f20ðyÞ: ð49Þ

The Bogomol’nyi equation, on the other hand, implies that
the pressure PψK

normðyÞ of the kink with g ¼ 0 vanishes.

B. The Pöschl-Teller hierarchy
of reflectionless potentials

The Pöschl-Teller hierarchy, reviewed for instance in
[45], provides a concrete realization of the previous
scheme. This hierarchy is built by choosing a sequence
of superpotentials of the form WlðyÞ ¼ l tanhðyÞ with l a
natural number. Thus, in particular, the superpotentials with
l ¼ 1 and l ¼ 2 are those associated to the sine-Gordon
and ϕ4 kinks. The Hessian operators are given by

ðHyÞl ¼ ðD†
yÞlðDyÞl ¼ d2

dy2
þ UlðyÞ

UlðyÞ ¼ l2 − lðlþ 1Þsech2ðyÞ ð50Þ

and exhibit potential wells which are deeper for increasing
l. Incidentally, the free Hamiltonian can be included in the
series by extending it to the case l ¼ 0. Each member in
the sequence is related to the previous one by an inter-
change of the order of the first order differential operators,
namely ðDyÞlðD†

yÞl ¼ðHyÞl−1þl2− ðl−1Þ2. This prop-
erty, called shape invariance, provides the basis of an
algebraic method for solving the spectrum of ðHyÞl which
generalizes the factorization method originally developed
by Schrödinger, Infeld and Hull and others, see [46]. Other
remarkable features of the Pöschl-Teller potentials are
reflectionless scattering, the occurrence of a half-bound state
at the threshold of continuous spectrum and the fact that the
functional determinant can be computed exactly [45].
As demanded by unbroken supersymmetry, all the

models in the hierarchy have a normalizable zero mode,
which using (46) turns out to be

ðf0ðyÞÞl ¼ AlsechlðyÞ:
In order to match the usual conventions for the sine-Gordon
and ϕ4 cases, it is convenient to choose different vacuum
expectation values ψvac for the cases of even and odd l,
according to

ψvac ¼ πðloddÞ ψvac ¼ 1ðl evenÞ;
and with this choice, the Al factor coming from (48) is
given by

Al ¼ 2π
ð−1Þlþ1

2

Γðlþ1
2
Þ

Γðl
2
Þ :

On the other hand, we can use (47) to determine the profile
of the kink leading to the Hessian ðHyÞl, and we arrive to
the result

ðψKðyÞÞl ¼ Al

Z
y

0

dzsechlðzÞ

¼ AlF

�
1

2
;
lþ 1

2
;
3

2
;−sinh2ðyÞ

�
sinhðyÞ

with F the hypergeometric function. The next step is to
figure out the scalar field theory which accommodates such
a kink configuration. While in the cases of the sine-Gordon
and ϕ4 models we have a our disposal an explicit
expression of the potential U in terms of the field ψ , for
higher l the best that we can do is to proceed as was done in
[43] (see also [47]) and to give both ψ and U parametrically.
For odd l, it is convenient to choose the parameter in the
form τ ¼ sechðyÞ. As τ goes from τ ¼ 1 to τ ¼ 0, the field
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ψK interpolates continuously between its values at the
origin, ψKð0Þ ¼ 0 and at infinity, ψKð∞Þ ¼ π. The para-
metric expressions for the field and potential for odd l are
thus

ψ ¼ AlF

�
1

2
;
lþ 1

2
;
3

2
;
τ2 − 1

τ2

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p

τ

U ¼ 1

2
A2
lτ

2l

and some particular cases are

l¼1∶ ψ¼2arccosðτÞ; U¼2τ2

l¼3∶ ψ¼2t
ffiffiffiffiffiffiffiffiffiffiffi
1−τ2

p
þ2arccosðτÞ; U¼8τ6

l¼5∶ ψ¼2t
ffiffiffiffiffiffiffiffiffiffiffi
1−τ2

p �
1þ2

3
τ2
�
þ2arccosðτÞ; U¼128

9
τ10:

For even values of l the explicit expressions are slightly
simpler by defining the parameter as τ ¼ tanhðyÞ. In this
case, as τ interpolates between τ ¼ 0 and τ ¼ 1 the kink
field varies from ψKð0Þ ¼ 0 to ψKð∞Þ ¼ 1. The parametric
expressions are

ψ ¼ AlF

�
1

2
;
lþ 1

2
;
3

2
;

τ2

τ2 − 1

�
τffiffiffiffiffiffiffiffiffiffiffiffi

1 − τ2
p

U ¼ 1

2
A2
lð1 − τ2Þl

and some low-l cases are

l ¼ 2∶ ψ ¼ τ U ¼ 1

2
ð1 − τ2Þ2

l ¼ 4∶ ψ ¼ τ

2
ð3 − τ2Þ U ¼ 9

8
ð1 − τ2Þ4

l ¼ 6∶ ψ ¼ τ

8
ð15 − 10τ2 þ 3τ4Þ U ¼ 225

128
ð1 − τ2Þ6:

We show in Figs. 9 and 10 the kink profiles and the field
theory potential for a few examples. Notice that the
existence of the kink requires only that ψvac is a minimum
of U with UðψvacÞ ¼ 0. Thus, as long as this condition is
met, the potential UðψÞ for ψ > ψvac can be chosen
arbitrarily. Since it is not needed for our current purposes,
we have made no attempt to fix this arbitrariness, and in the
figures we simply have chosen UðψÞ symmetric around
ψ ¼ π or ψ ¼ 1, at least near these points. Note, however,
that well defined procedures to extend the potential beyond
these limits, based on the single-valuedness of UðψÞ for
complex values of the parametrization, have been devel-
oped [43,47]. Another interesting point is that if vacua with
different absolute values of the vev are allowed, the
reconstruction can result in a nonunivocal answer, and
different field theories can be recovered from the same
Hessian [44].
Finally, we can use (49) to compute the normalized

energy of the kink

ðEnorm½ψK�Þl ¼ lπð−1Þlþ1 2lΓ3ðlþ1
2
Þ

Γðlþ 1
2
ÞΓðl

2
þ 1Þ

and the normalized energy density, which has in all cases a
maximum at the origin and decays with y according to the
expression

ðEψK
normðyÞÞl ¼ 2A2

lsech
2lðyÞ:

C. Self gravitating Pöschl-Teller kinks

Having reviewed the main features of the kinks of and
potentials of the Pöschl-Teller hierarchy without gravity,
we now come back to the case where g is small but different
from zero to look for solutions of the perturbative equa-
tions (44)–(45) for these theories. Equation (45), in con-
junction with the usual boundary conditions (21) at the
origin, can be integrated directly to give

FIG. 9. The kink profile for zero gravitational coupling and the scalar potential for several odd values of l.
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βlðyÞ ¼
A2
l

2

Z
y

0

dz
Z

z

0

dusech2lðuÞ

¼ A2
l

2

Z
y

0

dz
Z

z

0

d tanhðuÞð1 − tanh2ðuÞÞðl−1Þ:

Thus, the integral in t leads to a sum of odd powers of
hyperbolic tangents

Z
z

0

dusech2lðuÞ ¼
Xl−1
j¼0

ð−1Þj
�
l − 1

j

�
tanh2jþ1ðzÞ
2jþ 1

;

while the subsequent integration of these of powers gives
rise to hypergeometric functions. All in all, the result for the
perturbation of the metric is

βlðyÞ ¼
A2
l

2

Xl−1
j¼0

ð−1Þj
�
l − 1

j

�
tanh2jþ2ðyÞ

ð2jþ 1Þð2jþ 2Þ
× Fð1; 1þ j; 2þ j; tanh2ðyÞÞ:

Nevertheless, for later use of βlðyÞ into the integrals needed
to compute the perturbation of the scalar field profile, it is
more convenient to get rid of the hypergeometric functions.
This can be done by means of formula 2.424-2 in [36],
which gives an alternative expression for the integral of odd
powers of the hyperbolic tangent as sums of even powers of
hyperbolic cosines or tangents plus a logarithm. This
formula, along with the identity

Xl−1
j¼0

ð−1Þj
2jþ 1

�
l − 1

j

�
¼

ffiffiffi
π

p
ΓðlÞ

2Γðlþ 1
2
Þ

enables us to trade the previous expression for βlðyÞ for
another one in which only elementary functions appear

βlðyÞ¼
A2
l

2

� ffiffiffi
π

p
ΓðlÞ

2Γðlþ 1
2
Þ logðcoshðyÞÞ−

Xl−1
i¼1

Ci;ltanh2iðyÞ
	
;

ð51Þ

where the coefficients entering in the second term are

Ci;l ¼ 1

2i

Xl−1
j¼i

ð−1Þj
2jþ 1

�
l − 1

j

�
:

Let us now turn to the inhomogeneous Schrödinger
equation (44). The potential well in the Hessian is given in
(50), while the source

RlðyÞ ¼
d
dy

½AlβlðyÞsechlðyÞ�

can be written by means of the incomplete Euler beta
function Bzða; bÞ ¼

R
z
0 u

a−1ð1 − uÞb−1du as

RlðyÞ¼
A3
l

4

Xl−1
j¼0

ð−1Þj
�
l−1

j

�

×
2tanh2jðyÞ−lBtanh2ðyÞðjþ1;0Þ

1þ2j
sechlþ1ðyÞsinhðyÞ

or, if one makes use of the version (51) of βlðyÞ, as an
expression with only hyperbolic functions

RlðyÞ ¼
A3
l

2

� ffiffiffi
π

p
ΓðlÞ

2Γðlþ 1
2
Þ ½1 − l logðcoshðyÞÞ� tanhðyÞ

þ
Xl−1
i¼1

Di;lðyÞtanh2i−1ðyÞsech2ðyÞ
	
sechlðyÞ;

but with the occurrence of some awkward coefficients:

FIG. 10. The kink profile for zero gravitational coupling and the scalar potential for several even values of l.
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Di;lðyÞ ¼
1

2i

Xl−1
j¼i

ð−1Þj
2jþ 1

�
l − 1

j

�
ðlsinh2ðyÞ − 2iÞ:

Once the source is given in explicit form, we can solve the
nonhomogeneous Schrödinger equation by the procedure
developed in Subsection 2. 3. For the even normalizable
zero mode we can take directly the translational mode

ρlðyÞ ¼ ðf0ðyÞÞl ¼ sechlðyÞ;

while the odd non-normalizable one χlðyÞ is obtained by
solving

dχl
dy

þ l tanhðyÞχl ¼ coshlðyÞ

with the result

χlðyÞ ¼ sechlðyÞ
Z

y

0

dzcosh2lðzÞ ¼ iy
ð2lþ 1Þjyj

× coshlþ1ðyÞF
�
1

2
;
1

2
þ l;

3

2
þ l; cosh2ðyÞ

�

−
i

ffiffiffi
π

p
Γðlþ 1

2
Þ

2Γðlþ 1Þ sechlðyÞ;

which can, once again, be more conveniently given as a
sum of hyperbolic functions

χlðyÞ ¼
1

22l

��
2l

l

�
yþ

Xl−1
j¼0

�
2l

j

�
sinhð2ðl − jÞyÞ

l − j

�

× sechlðyÞ:

The normalization of zero modes has been chosen so that
the Wronskian is unity. Now, to compute φlðyÞ we have to
do the integral (33). The integrand can be decomposed as a
sum with terms made of products of powers of hyperbolic
functions which, in some cases, also include a factor
logðcoshðzÞÞ, or z, or both. Although it turns out that all
these expressions can be integrated exactly, since both
χlðyÞ and RlðyÞ involve sums with rather unhandy coef-
ficients, to obtain a general expression valid for all l
appears to be quite cumbersome. Thus, here we content
ourselves with giving the results for some low-l members
of the hierarchy, 3 ≤ l ≤ 8. In all these cases, the pertur-
bation of the scalar field can be put in the form

φlðyÞ ¼ −Ml½γðyÞ þ Nly − Plðsech2ðyÞÞ tanhðyÞ�
× sechlðyÞ;

where γðyÞ is the function

γðyÞ ¼ π2

12
þ yðy − 2 log 2Þ þ Li2ð−e−2yÞ;

the factors Ml and Nl are rational numbers, and PlðtÞ is a
polynomial of degree l − 2 with rational coefficients. The
explicit values of the factors appear in the table

Factors entering in φlðyÞ
l 3 4 5 6 7 8

Ml
64
15

27
140

65536
8505

375
1232

4194304
375375

8575
20592

Nl
17
48

13
24

5069
7680

1901
2560

172889
215040

45791
53760

and the polynomials are given in the following list:

P3ðtÞ ¼
4

5
þ 7

80
t

P4ðtÞ ¼
533

630
þ 31

252
tþ 5

168
t2

P5ðtÞ ¼
1745

2016
þ 569

4032
tþ 35

768
t2 þ 65

4608
t3

P6ðtÞ ¼
45457

51975
þ 2251

14850
tþ 34907

633600
t2 þ 641

28160
t3 þ 7

880
t4

P7ðtÞ ¼
904757

1029600
þ 325607

2059200
tþ 168307

2745600
t2 þ 93947

3294720
t3 þ 3983

299520
t4 þ 133

26624
t5

P8ðtÞ ¼
1233833

1401400
þ 4097497

25225200
tþ 2205607

33633600
t2 þ 119437

3669120
t3 þ 35831

2096640
t4 þ 307

35840
t5 þ 121

35840
t6:
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We present also some graphics in Figs. 11 and 12. As one
can see, the general features of the metric and scalar field
perturbations are the same irrespective of the value of l, the
differences being only quantitative. For each parity, the
function βlðyÞ increases with jyj at a rate which is rising as
l becomes higher. As for the function φlðyÞ, it displays a
sort of damped oscillations around the origin before
decaying for high jyj. For y > 0, it first reaches a maximum
which is higher and closer to the origin as l increases, and
then a minimum, this time shallower and also closer to the
origin for increasing l.

V. OUTLOOK

Along this paper we have been investigating the inter-
play between Jackiw-Teitelboim gravity and travelling kink
solutions in several scalar field theories. According to the
classification given by Bazeia in [48], all these theories are
of type I, models with a single scalar field supporting
structureless kinks. In fact, they all belong to a subclass in
which the energy density is symmetric around the center of
the kink, a condition which does not apply for other models
within type I such as the ϕ6 kink [49]. There is also a
second type of models which, although contain also a sole

field, are able to embrace kinks of two different species, for
instance the double sine-Gordon model introduced in [50].
Finally, type III comprises a variety of models with several
scalar fields and where the interactions among different
kink components lend them internal structure. In models of
this type, when the potential has noncollinear minima, it is
possible to engineer junction configurations of kinks, see
some examples in [48], or to consider a nonflat target
manifold to uncover the presence of kinks in nonlinear
sigma models [51,52]. It would be interesting to put JT
gravity into models of types II and III and to explore the
consequences of gravitational physics on the rich dynamics
enjoyed by these theories.
The scope of the treatment that we have given here is

limited to the presentation of the self-gravitating kink
solutions arising in the models considered, but without a
detailed analysis of their stability or possible quantization,
which can be the subject of further work. For zero
gravitational coupling, the stability of kinks is very solid
due to topological reasons. Since, in presence of gravity,
finiteness of energy imposes the same constraints on the
asymptotic behavior of the scalar field than in the non-
gravitational case, we expect the self-gravitating kinks to be

FIG. 12. The perturbations of the metric and scalar kink profile for several even values of l.

FIG. 11. The perturbations of the metric and scalar kink profile for several odd values of l.
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stable against scalar field fluctuations, at least for small g
coupling. However, fluctuations of the metric fields have
also a role, and they could give rise to instability modes
leading to gravitational collapse into a black hole with
topologically nontrivial boundary conditions. This could be
specially significant when g is higher and the kink energy
increases. A criterion for gravitational stability for pressur-
eless matter has been worked out in [23], but the situation
here is more complicated and further study is required to
elucidate this point. In any case, the computation of the
spectrum of kink fluctuations and the study of scalar and
gravitational waves in a kink background are interesting
issues which deserve a careful examination.
As we have mentioned in the Introduction, the theory of

Jackiw and Teitelboim is only a particular case, although a
fairly interesting one, within the category of two-dimen-
sional dilaton gravity theories, which can be formulated in
quite a variety of ways. The presence of black holes in these

theories and the diverse gravitational phenomenology
springing up in them has been a theme of considerable
research [19]. Thus, to deal with other dilaton theories is,
along with the consideration of the wide diversity of scalar
models alluded above, another natural direction in which
the results reported in the present work can be extended.
Finally, although taking the cosmological constant equal to
zero, as we have done, is the most natural option in the
prospect for obtaining kink solutions, taking into account
the effect of a nonvanishing Λ on field configurations like
those described in the paper could be another problem to be
addressed.
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