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1 Motivation and summary

Electromagnetic duality rotates the electric and magnetic fields of electromagnetism with

an arbitrary angle ω [1]. In the presence of charged matter, like electric charges or magnetic

monopoles, this transformation is not a symmetry of Maxwell’s equations and produces

inequivalent physics. An analogue situation occurs in the context of maximal (N = 8)

supergravity in four dimensions when a gauging of (a subgroup of) the E7(7) duality group

is performed. At the bosonic level, the theory includes electric and magnetic non-Abelian

gauge fields as well as charged scalar fields as matter. Electromagnetic duality again

generates inequivalent physics [2].

The prototypical example is the SO(8)-gauged supergravity that arises from the re-

duction of eleven-dimensional supergravity on a seven-sphere S7 [3] and describes the

near-horizon region of M2-branes. The action of electromagnetic duality leads to a one-

parameter family of inequivalent theories depending on a continuous deformation param-

eter ω = arg(1 + ic) with c ∈ [0,
√
2 − 1] [4]. The undeformed theory at c = 0 possesses

a maximally supersymmetric AdS4 solution that preserves the full SO(8) gauge group.

This solution has an uplift to the Freund-Rubin solution of 11D supergravity [5] and is

AdS4/CFT3 dual [6] to the three-dimensional ABJM theory [7] at low (k = 1, 2) Chern-

Simons levels k and −k. In addition, other AdS4 solutions of the undeformed theory with
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11D supergravity ? (massive) Type IIA Type IIB

SO(8) ISO(7) [SO(1, 1)× SO(6)]⋉R
12

c = 0 c 6= 0 c 6= 0 c 6= 0

N = 8 / SO(8) [3] N = 8 / SO(8) [4]

N = 4 / SO(4) [12]

N = 3 / SO(4) [12] N = 3 / SO(4) [12]

N = 2 / U(3) [8] N = 2 / U(3) [11] N = 2 / U(3) [13]

N = 1 / G2 [8] N = 1 / G2 [4] N = 1 / G2 [14]

N = 1 / SU(3) [11] N = 1 / SU(3) [15] N = 1 / SU(3) [here]

N = 1 / SU(2) [9]

N = 1 / U(1)2 [16]

Table 1. Supersymmetric AdS4 solutions known up to date for the maximal supergravities with

SO(8), ISO(7) and [SO(1, 1)× SO(6)]⋉R
12 gauge groups. An entry of the form N /G0 [ref] in the

table corresponds to an AdS4 solution preserving N supersymmetries, G0 residual gauge symmetry

after Higgsing of the gauge group, and the reference where the solution was originally presented.

It turns out that all the solutions with a given label N /G0 feature the same normalised mass

spectra, which can be found in the corresponding reference, despite being solutions of different

gauged supergravities and therefore having different uplifts to eleven-dimensional, (massive) type

IIA or type IIB supergravity.

N = 1 [8, 9], 2 [8] supersymmetry have been found which preserve less supersymmetry and

partially break the SO(8) gauge group via the Higgs mechanism. Some of these less super-

symmetric solutions have been shown to be dual to various mass deformations of ABJM

theory [10]. However, when turning on c 6= 0, new AdS4 solutions preserving N = 1 [11],

3 [12] supersymmetry appear. Therefore the question arises: does the electromagnetic

deformation parameter c possess a higher-dimensional origin and a holographic interpre-

tation? This question has been investigated during the last years without a satisfactory

answer, thus singling out electromagnetic duality as a well-defined and controllable path

to enter the (swamp)land of non-geometric supergravities in an M-theory context.

However more recent work has uncovered an unexpected connection with string the-

ory. By studying the ISO(7)-gauged supergravity that arises from the reduction of type

IIA ten-dimensional supergravity on a six-sphere S6 and describes the near-horizon re-

gion of D2-branes, the electromagnetic deformation parameter c was successfully identified

with the Romans mass parameter of ten-dimensional type IIA supergravity and given a

holographic interpretation as a Chern-Simons level in the dual CFT3 [13]. Unlike for the

M-theory story, in this case the electromagnetic deformation turns out to be a discrete

(on/off) deformation, i.e. c = 0 or 1 [17]. Moreover there is no maximally supersymmetric

AdS4 solution in the massive IIA context. Still various examples of AdS4 solutions with

N = 1 [15], 2 [13], 3 [12] supersymmetry have been found in the ISO(7)-gauged super-

gravity when the electromagnetic deformation is activated. These findings have led to the

discovery of a new gauge/gravity correspondence between AdS4 backgrounds of massive

– 2 –



J
H
E
P
1
2
(
2
0
1
9
)
1
1
3

IIA supergravity and super-Chern-Simons-matter theories with simple gauge group SU(N)

and level k given by the Romans mass parameter [18].

It is then natural to ask the same questions about the higher-dimensional origin and the

dual field theory interpretation of electromagnetic duality now in the context of type IIB

supergravity. This issue has been much less investigated in comparison with the M-theory

and type IIA counterparts. Nonetheless the [SO(1, 1)× SO(6)]⋉R
12-gauged supergravity

has recenly been connected to a reduction of ten-dimensional type IIB supergravity on

R × S5 [19]. In this case the electromagnetic deformation c is again a discrete (on/off)

parameter, and an AdS4 solution preserving N = 4 supersymmetry and SO(3) × SO(3)

gauge symmetry was found in [12]. This solution uplifts to S-fold backgrounds of type

IIB supergravity of the form AdS4 × Σ × S2 × S2 [19], which were shown to fall into

the class of N = 4 Janus solutions presented in [20] (as certain limits of the type IIB

solutions in [21, 22]). These are the gravity duals of N = 4 interface super-Yang-Mills

theories [23, 24].

The set of supersymmetric AdS4 solutions discussed above1 is summarised in table 1,

together with a new one (highlighted in red) to be presented in this work and uplifted

along the lines of [19] to S-fold backgrounds of type IIB supergravity. A quick inspection

of table 1 reveals that certain supersymmetric AdS4 solutions, labelled by N /G0 in there,

turn out to occur in different four-dimensional supergravities despite their rather distinct

higher-dimensional origin.2 This motivates us to search for a simple solution occurring in

the three different dyonically-gauged supergravities displayed in table 1. In other words,

a supersymmetric AdS4 solution that enjoys an uplift to both type IIA/IIB supergravity

and might also offer some new insight into a possible connection with eleven-dimensional

supergravity.

To this end we will perform an exhaustive search for AdS4 solutions preserving at least

a U(1)2 residual gauge symmetry in the [SO(1, 1)×SO(6)]⋉R
12 dyonically-gauged maximal

supergravity. This is the smallest residual symmetry preserved by a known supersymmetric

solution of the undeformed SO(8)-gauged supergravity (see table 1). Note also that, at the

simple supersymmetric AdS4 solution we are searching for, the U(1)2 symmetry might

be enhanced up to SU(4) ∼ SO(6) which is the largest compact subgroup that the SO(8),

ISO(7) and [SO(1, 1)×SO(6)]⋉R
12 gauge groups have in common. The result of our study

is that such a simple supersymmetric AdS4 solution exists with N = 1 supersymmetry and

SU(3) residual gauge symmetry (see table 1). As a by-product we also discard the existence

of an N = 2 / U(3) solution in the [SO(1, 1) × SO(6)] ⋉ R
12-gauged supergravity. Such a

solution is nevertheless present in the SO(8) and ISO(7) theories and has been the subject

of various holographic studies [13, 25].

In the second part of the paper we uplift the new N = 1 / SU(3) AdS4 solution of the

[SO(1, 1)×SO(6)]⋉R
12-gauged supergravity, as well as a companionN = 0 / SO(6) unstable

solution first reported in [26], to non-compact Janus-type solutions of type IIB supergravity

1An exhaustive classification of AdS4 solutions in maximal gauged supergravity preserving N ≥ 3 was

performed in [12].
2No higher-dimensional embedding is known for any of the AdS4 solutions of the maximal SO(8)-gauged

supergravity whenever c 6= 0.
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of the form AdS4 × R× M5. These solutions feature a varying axion-dilaton along a non-

compact spatial direction we denote by η (see [27, 28]). The internal space M5 is either the

round S5 preserving SO(6) ∼ SU(4) or a squashed version of it, M5 = CP2⋊S1, preserving

SU(3) ⊂ SU(4). To do the uplift we fetch techniques from the E7(7) Exceptional Field

Theory (E7(7)-EFT) [29] and perform a generalised Scherk-Schwarz reduction along the

lines of [19, 30]. In this way we make the most of symmetries and geometry so that there is

no need for guessing during the uplift process. The dependence of the type IIB fields on the

coordinate η turns out to be fully encoded into an SL(2)IIB twist matrix A(η). This matrix

is specified by the generalised Scherk-Schwarz ansatz, and can be used to compactify the

η direction and construct (compact) S-fold solutions for which the monodromy undergone

by the axion-dilaton when going around η is of hyperbolic type. These S-fold solutions

are therefore natural candidates for the holographic duals of three-dimensional N =1 and

N =0 interface super-Yang-Mills theories with SU(3) and SU(4) internal symmetry [23, 31].

Our approach relies on, first, finding an AdS4 solution with the appropriate (super)

symmetries and, then, uplifting it directly to ten dimensions using the E7(7)-EFT. This

approach bypasses most of the difficulties that arise when one tries to, first, obtain a five-

dimensional BPS domain-wall solution with AdS4 slices in a five-dimensional supergravity

and, then, uplift it to ten dimensions. This second approach makes analytic solutions

difficult to obtain since, for example, in the case of supersymmetric domain-walls, one has

to solve a complex system of first-order differential equations following from the vanishing of

fermionic supersymmetry variations which usually can only be tackled numerically [32, 33].

Our approach is purely algebraic once the information about the internal geometry is

codified into the generalised Scherk-Schwarz reduction of E7(7)-EFT.

The paper is organised as follows. In section 2 we construct the U(1)2 invariant sector

of the four-dimensional dyonically-gauged [ SO(1, 1)× SO(6) ]⋉R
12 maximal supergrav-

ity and find two AdS4 solutions. The first one is a new N = 1 supersymmetric solution

preserving SU(3) gauge symmetry. The second one is non-supersymmetric and preserves

SO(6) gauge symmetry. In section 3 we uplift these AdS4 solutions to ten-dimensional

S-folds of Janus-type solutions of type IIB supergravity with a hyperbolic monodromy.

In section 4 we present our conclusions. Two appendices accompany the main text. Ap-

pendix A collects the geometrical data regarding the canonical Sasaki-Einstein structure on

S5 necessary to interpret the ten-dimensional type IIB solutions. Appendix B summarises

our conventions for type IIB supergravity and its equations of motion.

2 New vacua of [SO(1, 1) × SO(6)] ⋉ R
12 maximal supergravity

The dyonically-gauged maximal supergravity with G = [SO(1, 1)× SO(6)]⋉R
12 ⊂ SL(8)

gauge group arises as the massless sector of the reduction of ten-dimensional chiral type

IIB supergravity on R× S5 [19]. This theory corresponds to a gauging deformation of the

ungauged maximal supergravity where the subgroup G ⊂ E7(7) of the global E7(7) duality

group is promoted from global to local and therefore couples to the vector fields in the

theory [34].
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As shown in [17, 19], the group theoretical embedding

SL(8) ⊂ E7(7) ⊂ Sp(56) , (2.1)

where Sp(56) is the group of electromagnetic transformations of the theory, allows for two

inequivalent gaugings of G. These are specified by a discrete (on/off) parameter c which

specifies the choice of electromagnetic frame.3 As originally shown in [4], the choice of

electric/magnetic frame is of physical relevance once the gauging procedure is applied and,

as a result, matter fields in the theory turn to be charged under the gauge group G.

2.1 The N = 8 theory

The dynamics of the maximal N = 8 theory is carried out by the field content of the

supergravity multiplet. At the bosonic level it includes the metric field gµν , 28 electric

Aµ
AB = Aµ

[AB] and 28’ magnetic ÃµAB = Ãµ [AB] vector fields, with A = 1, . . . , 8 being

a fundamental index of SL(8), and 70 dynamical scalar fields serving as coordinates in

the coset space E7(7)/SU(8). The vector fields4 can be assembled into an E7(7) ⊂ Sp(56)

vector AM = (AAB , ÃAB) with M = 1, . . . , 56 being a fundamental E7(7) index. The scalar

fields are encoded into a scalar-dependent matrix MMN which is in turn constructed as

M = V Vt using the coset element V ∈ E7(7)/SU(8). This is the bosonic field content of

maximal supergravity. However, in the presence of magnetic charges, an additional set of

auxiliary two-form tensor fields not carrying independent dynamics must be introduced for

the consistency of the Lagrangian formulation [2].

The Lagrangian of the maximal four-dimensional supergravities was presented in [34].

It is specified in terms on an E7(7)-valued embedding tensor XMN
P ∈ 912 subject to a

set of quadratic constraints required by consistency of the gauging procedure (see also [2]).

When the gauging is of the form G ⊂ SL(8), as it is the case in the present work, the

theory is fully specified by two symmetric matrices ηAB and η̃AB. The former determines

the piece of the gauge group that is spanned by electric vector Aµ
AB whereas the latter

specifies the piece spanned by magnetic vectors ÃµAB. This translates into a covariant

derivative for the scalar fields of the form

DMMN = dMMN − 2 g AAB XAB(M
P MN)P − 2 g ÃAB XAB

(M
P MN)P , (2.2)

with g being the gauge coupling in the theory. Note that both electric and magnetic

vectors appear in the gauge connection (2.2) thus specifying a so-called dyonic gauging.5

For the gauging G = [SO(1, 1)× SO(6)]⋉R
12 of interest in the present work one finds an

embedding tensor of the form

X[AB][CD]
[EF ] = −X

[EF ]
[AB] [CD] = −8 δ

[E
[A ηB][C δ

F ]
D] ,

X
[AB] [EF ]

[CD] = −X [AB][EF ]
[CD] = −8 δ

[A
[C η̃B][E δ

F ]
D] ,

(2.3)

3Whenever non-zero, the parameter c can be set to any value, i.e. c = 1, by a field redefinition [17].
4We use differential form notation for the various antisymmetric tensor fields in the theory.
5Note that an electromagnetic frame in which the gauging is purely electric always exists by virtue of

the quadratic constraints satisfied by the embedding tensor [2].
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with matrices given by6

ηAB = diag( 0 , I6 , 0 ) and η̃AB = diag(−1 , 06 , 1 ) . (2.4)

Our goal in this section is to find new examples of anti-de Sitter (AdS4) solutions in

the four-dimensional supergravity. These correspond to maximally symmetric solutions in

which vectors, as well as auxiliary tensor fields, must be set to zero. Before setting any

field to zero, the Lagrangian is of the form

LN=8 =

(
R

2
− VN=8

)
∗ 1 + 1

96
Tr

(
DM ∧ ∗DM−1

)
+ . . . , (2.5)

where the ellipsis stand for Maxwell’s and topological terms which do not play any role

for AdS4 solutions. The scalar potential in (2.5) is determined in terms of the embedding

tensor in (2.3) and reads

VN=8 =
g2

672
XMN

R XPQ
S MMP

(
MNQMRS + 7 δQR δNS

)
. (2.6)

We will search for new examples of AdS4 solutions in the theory by direct minimisation

of the scalar potential (2.6). However, due to the large number of scalar fields in maximal

supergravity, this problem becomes quite complex and some simplifications are required.

To this end we will restrict to the subspace of the coset space E7(7)/SU(8) that is invariant

under the action of a U(1)×U(1) subgroup with group-theoretical embedding

U(1)×U(1) ⊂ SU(3) ⊂ U(1)U × SU(3) ⊂ SU(4) ∼ SO(6) ⊂ G . (2.7)

This subsector of the theory turns out to be an N = 2 supergravity coupled to various

matter fields in the form of vector multiplets and a hypermultiplet, as we will explicitly

show in the next section.

2.2 U(1)×U(1) invariant sector

The U(1)×U(1) invariant sector of maximal supergravity with group-theoretical embedding

U(1)×U(1) ⊂ SO(1, 1)×U(1)U ×U(1)×U(1) ⊂ SO(1, 1)× SO(6) , (2.8)

was investigated in [35, 36] within the context of massive IIA and M-theory reductions on

H(p,q) spaces. The scalar sector describes a coset geometry of the form

Mscalar = MSK ×MQK ⊂
E7(7)

SU(8)
, (2.9)

where

MSK =

[
SL(2)

SO(2)

]3
and MQK =

SU(2, 1)

SU(2)×U(1)
(2.10)

6We have set c = 1 in η̃AB = c diag(−1 , 06 , 1 ) without loss of generality (see footnote 3). Similarly

we will also set g = 1 which corresponds to an overall re-scaling of the embedding tensor.
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denote a special Kähler (SK) and a quaternionic Kähler (QK) geometry. The scalar ge-

ometry in (2.9) involves a set of tA
B (with tA

A = 0) and tABCD = t[ABCD] generators of

E7(7) in the SL(8) basis (see appendix in [36] for conventions). The SK factor in (2.10) has

associated generators given by

Hϕ1 = t4
4 + t5

5 + t6
6 + t7

7 − t1
1 − t8

8 − t2
2 − t3

3 ,

Hϕ2 = t2
2 + t3

3 + t6
6 + t7

7 − t1
1 − t8

8 − t4
4 − t5

5 ,

Hϕ3 = t2
2 + t3

3 + t4
4 + t5

5 − t1
1 − t8

8 − t6
6 − t7

7 ,

gχ1 = t1238 , gχ2 = t1458 , gχ3 = t1678 ,

(2.11)

whereas the QK factor in (2.10) is generated by

Hφ =
1

2
(t8

8 − t1
1) , gσ = t8

1 ,

gζ = t8357 − t8346 − t8256 − t8247 ,

gζ̃ = t8246 − t8257 − t8347 − t8356 .

(2.12)

As a result the coset representative of Mscalar in (2.9) factorises as V = VSK × VQK and is

constructed upon the exponentiations

VSK =
∏

i e
−12χi gχi e

1
4
ϕi Hϕi

VQK = eσ gσ e−6 (ζ gζ + ζ̃ g
ζ̃
) e−2φHφ .

(2.13)

Finally the scalar matrix MMN in (2.5) is obtained as M = V Vt and, as anticipated, this

sector of the theory can be recast in a canonical N = 2 form.

Canonical N = 2 formulation. Omitting again Maxwell’s and topological terms,

which are incidentally irrelevant for the discussion of AdS4 vacua, the Lagrangian of N = 2

supergravity coupled to nv vector multiplets and nh hypermultiplets takes the form

LN=2 =

(
R

2
− VN=2

)
∗ 1−Kij̄ Dzi ∧ ∗Dz̄j̄ − huv Dqu ∧ ∗Dqv + . . . , (2.14)

with i = 1, . . . , nv and u = 1, . . . , 4nh. The matter multiplets of the U(1)×U(1) invariant

sector of the maximal theory then correspond to three vector multiplets (nv = 3) and

the universal hypermultiplet [37] (nh = 1) spanning the SK and QK geometries in (2.10),

respectively.

The scalar kinetic terms in (2.14) can be read off from the scalar geometry data. The

SK manifold in (2.10) is parameterised by three complex scalars zi = −χi + ie−ϕi serving

as coordinates on the metric

ds2SK = Kij̄ dz
idz̄j̄ =

1

4

∑

i

dzi dz̄ ī

(Imzi)2
with Kij̄ = ∂zi∂z̄j̄K , (2.15)

where K = − log(i
〈
X, X̄

〉
) is the Kähler potential expressed in terms of the Sp(2nv + 2)

symplectic product

〈
X, X̄

〉
= XMΩMNX̄N = XΛX̄

Λ −XΛX̄Λ (2.16)
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of holomorphic sections XM (zi) = (XΛ, FΛ) with Λ = 0, 1, . . . , nv. These sections are

taken to satisfy FΛ = ∂F/∂XΛ for a prepotential F . We will take sections of the form

(X0, X1, X2, X3, F0, F1, F2, F3) = (−z1z2z3 ,−z1 ,−z2 ,−z3 , 1 , z2z3 , z3z1 , z1z2) , (2.17)

which are consistent with the square-root prepotential

F = −2
√
X0X1X2X3 . (2.18)

For the hypermultiplet sector, the QK metric depends on coordinates qu = (φ , σ , ζ , ζ̃ )

and takes the form

ds2QK = huv dq
u dqv = dφ dφ+

1

4
e4φ

[
dσ +

1

2
~ζ C d~ζ

] [
dσ +

1

2
~ζ C d~ζ

]
+

1

4
e2φ d~ζ d~ζ , (2.19)

with

C =

(
0 1

−1 0

)
and ~ζ = (ζ , ζ̃) . (2.20)

We have verified that the scalar kinetic terms in (2.14) exactly match the ones obtained

from the maximal theory in (2.5) when using the coset representatives in (2.13).

The dyonic gauging of the maximal theory gives rise, upon truncation to the U(1)×U(1)

invariant sector, to a gauging of two Abelian hypermultiplet isometries with Killing vectors

kuα = (ku1 , k
u
2 ). This gauging is specified by an N = 2 embedding tensor of the form

ΘM
α =




ΘΛ
α

ΘΛα


 with ΘΛ

α =




0 0

0 1

0 1

0 1


 and ΘΛα =




1 0

0 0

0 0

0 0


 , (2.21)

where the index M now runs over the vector fields of the U(1)×U(1) invariant sector:

electric AΛ and magnetic ÃΛ with Λ = 0, 1, . . . , nv. They are related with the vectors in

the maximal theory as

A0 = A18 , A1 = A23 , A2 = A45 , A3 = A67 ,

Ã0 = A18 , Ã1 = A23 , Ã2 = A45 , Ã3 = A67 .
(2.22)

The embedding tensor in (2.21) results in covariant derivatives of the form

Dzi = dzi ,

Dqu = dqu + g AM ΘM
α kuα = dqu + g Ã0 ku1 + gA ku2 ,

(2.23)

with A =
∑

iA
i. There are three isometries of the QK geometry that play a prominent

role in the reduction of type IIB supergravity on R × S5. These are associated with Killing

vectors that belong to the pair of duality-hidden symmetries [38] of the QK space

kσ = −∂σ ,

k̂σ = σ ∂φ − (σ2 − e−4φ − U) ∂σ −
[
σ~ζ − C (∂~ζU)

]T
∂~ζ ,

(2.24)
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with

U =
1

16
|~ζ|4 +

1

2
e−2φ |~ζ|2 , (2.25)

and the duality symmetry

kU = ζ̃ ∂ζ − ζ ∂ζ̃ . (2.26)

While k̂σ + kσ and kU — the latter being rotations in the (ζ, ζ̃)-plane — are compact

Abelian isometries of (2.19), the combination k̂σ − kσ is non-compact. In the case of our

type IIB model we find

k1 = k̂σ − kσ and k2 = kU , (2.27)

so that the N = 2 gauging in the U(1)×U(1) invariant sector is identified as

G = SO(1, 1)×U(1)U . (2.28)

This is the same gauge group that arises from M-theory models based on reductions on

H(7,1) and H(5,3) hyperbolic spaces, although in those cases, only electric vectors happen

to enter the gauging [36]. For the type IIB model based on the reduction on R × S5, the

SO(1, 1) factor in (2.28) is gauged by the magnetic graviphoton Ã0 as it can be seen

from (2.23). Finally note also that k1 does not vanish at any point in field space so that

SO(1, 1) is always broken at any AdS4 solution. On the contrary U(1)U is preserved if

|~ζ| = 0, namely, if k2 = 0.

2.3 Scalar potential and AdS4 solutions

In order to find AdS4 solutions we will set to zero all the vector fields (and auxiliary tensors)

in the N = 2 supergravity model and extremise the scalar potential VN=2 in (2.14). To

compute the latter, it turns convenient to introduce symplectic Killing vectors KM and

moment maps Px
M defined as

KM ≡ ΘM
α kα and Px

M ≡ ΘM
α P x

α , (2.29)

so that symplectic covariance becomes manifest [39]. The scalar potential is then expressed

as [2, 40]

VN=2 = 4VM V̄N KM
u huv KN

v + Px
M Px

N

(
Kij̄ DiVM Dj̄V̄N − 3VM V̄N

)
, (2.30)

in terms of rescaled sections VM ≡ eK/2XM and their Kähler derivatives DiVM = ∂ziVM+
1
2(∂ziK)VM . Therefore, in order to explicitly compute (2.30), the only piece of information

that is still left are the moment maps for the QK isometries in (2.24) and (2.26) entering

the gauging (2.28).

Following the general construction of [38], the Killing vectors in (2.24) are found to

have associated moment maps of the form

P x
σ =




0

0

−1
2 e

2φ


 and P̂ x

σ =




−e−φ ζ̃ + eφ
(
−σ ζ + 1

4 |~ζ|2 ζ̃
)

e−φ ζ + eφ
(
−σ ζ̃ − 1

4 |~ζ|2 ζ
)

−1
2 e

−2φ − 1
2 e

2φ σ2 − 1
32 e

2φ |~ζ|4 + 3
4 |~ζ|2


 , (2.31)
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whereas the moment maps for the Killing vector in (2.26) are given by the simpler expression

P x
U =




eφ ζ̃

−eφ ζ

1− 1
4 e

2φ |~ζ|2


 . (2.32)

We have verified that the scalar potential in (2.30) exactly matches the one in (2.6) once the

latter is restricted to the U(1)×U(1) invariant sector. Moreover, since the scalar potential

is a gauge invariant quantity, it only depends on ~ζ = (ζ , ζ̃) through the combination |~ζ|
which is invariant under the compact U(1)U. As a result, the angle γ defined as ~ζ =

(ζ , ζ̃) = |~ζ| (cos γ , sin γ) is identified with a Goldstone mode and corresponds with a flat

direction in the scalar potential.

An explicit extremisation of the scalar potential in (2.30) using singular [41] yields

two inequivalent AdS4 solutions.7 The amount of supersymmetry preserved at a given

AdS4 solution can be determined by first evaluating the gravitino mass matrix [44]

SAB =
1

2
eK/2XMPx

M (σx)AB , (2.33)

where (σx)AB are the Pauli matrices, and then checking how many (real) eigenvalues of

|S|2 = S S† take the same value as 1
4 L

−2. The number of such eigenvalues corresponds

with the number of supersymmetries preserved at the AdS4 solution.

N = 1 and SU(3) invariant solution. There is an N = 1 supersymmetric AdS4
extremum of the potential for which the scalars in the vector multiplets are located at

∑
Rezi = 0 , Imzi =

√
5

3
, (2.34)

and those of the universal hypermultiplet take the values

e2φ =
6

5

1√
1− σ2

, σ ∈ (−1, 1) , |~ζ|2 = 2

3

√
1− σ2 . (2.35)

Supersymmetry guarantees stability of this extremum as reflected by the normalised mass

spectrum

m2L2 = 0 (×4) , −2 (×2) , 4±
√
6 (×2) , (2.36)

with L2 = −3/V0 = 25
√
5

54 being the AdS4 radius. Additionally setting Rezi = 0 in (2.34)

produces a residual symmetry enhancement to SU(3) within the maximal theory despite

the fact that the gauge group in (2.28) is fully broken, in agreement with the group-

theoretical embeddings in (2.7) and (2.8). This new N = 1 / SU(3) AdS4 solution has the

same normalised scalar mass spectrum as its counterparts in the dyonically-gauged SO(8)

(see eq. (4.37) in [11]) and ISO(7) (see table 1 in [15]) supergravities.

7More concretely, we have decomposed the ideal 〈∂VN=2〉 into primary factors using the Gianni-Trager-

Zacharias (GTZ) primary decomposition algorithm, and then solved each of these (simpler) factors sepa-

rately. We refer the reader to [42, 43] for a comprehensive review of Complex Algebraic Geometry techniques

and their application to the study of string vacua. The specifics about the computer algebra system sin-

gular can be found at the official website [41].

– 10 –



J
H
E
P
1
2
(
2
0
1
9
)
1
1
3

N = 0 and SO(6) invariant solution. There is a non-supersymmetric AdS4 extremum

of the potential for which the scalars in the vector multiplets are located at

Rezi = free , Imzi =
1√
2
, (2.37)

and those of the universal hypermultiplet take the values

e2φ =
1√

1− σ2
, σ ∈ (−1, 1) , |~ζ|2 = 0 . (2.38)

This extremum turns out to be perturbatively unstable as reflected by the normalised mass

spectrum

m2L2 = 0 (×4) , −3 (×2) , 6 (×2) , −3

4

(
1− 2

(∑
Rezi

)2
)

(×2) , (2.39)

with L2 = −3/V0 = 3
2
√
2
being the AdS4 radius. Note the presence of two normalised

modes with m2L2 = −3 defining two particular directions in the scalar subspace spanned

by Imzi, and violating the Breitenlohner-Freedman (BF) bound m2L2 ≥ −9
4 for stabil-

ity in AdS4 [45]. Setting this time Rezi = 0 in (2.37) makes the solution preserve a

larger SO(6) ∼ SU(4) symmetry within the maximal theory, in agreement with the group-

theoretical embeddings in (2.7) and (2.8). This SO(6) invariant solution, together with its

normalised scalar mass spectrum, was reported in [26] (see solution x in table 4 therein).

3 Uplift to S-folds of type IIB supergravity

In this section we will construct the explicit uplift of the AdS4 solutions in (2.34)–(2.35)

and (2.37)–(2.38) to S-fold backgrounds of ten-dimensional type IIB supergravity. In par-

ticular, we will uplift the configurations with

Rezi = 0 , (3.1)

for which we found an enhancement of symmetry from U(1) × U(1) to either SU(3) or

SO(6). This symmetry enhancement allows us to work in the simpler SU(3) invariant

setup of [15], which is related to the U(1) × U(1) invariant one upon the identification of

the three vector multiplets

z1 = z2 = z3 ≡ z with z = −χ+ i e−ϕ . (3.2)

Therefore the condition in (3.1) reduces to imposing χ = 0. It is worth emphasising that

this is only consistent at the level of the four-dimensional equation of motion ∂χVN=2 = 0

if the following relation holds

|~ζ|2
[
Y 2 − e4φ (1− σ2)

]
= 0 , (3.3)

with

Y = 1 +
1

4
e2φ |~ζ|2 , (3.4)
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which is of course the case at both AdS4 solutions. A direct evaluation shows that Y = 6
5

for the N = 1 / SU(3) solution with hypermultiplet scalars in (2.35), and Y = 1 for the

N = 0 / SO(6) solution with hypermultiplet scalars in (2.38).

In order to perform the uplift we will fetch techniques from the E7(7) Exceptional

Field Theory (E7(7)-ExFT) constructed in [29]. This is a field theory formally living

(4 + 56)-dimensional space-time which has a manifest E7(7) invariance under so-called

generalised diffeomorphisms acting on a 56-dimensional internal space with coordinates

Y M . This generalised diffeomorphisms provide a unified description of both ordinary

GL(n) diffeomorphisms and internal gauge transformations for the various p-form fields

of eleven-dimensional and type IIB supergravity. Importantly, the E7(7)-ExFT requires a

section constraint for its consistent formulation which essentially reduces it to either eleven-

dimensional supergravity in a 4+7 dimensional split where internal GL(7) diffeomorphisms

are manifest, or type IIB supergravity in a 4 + 6 dimensional split where internal GL(6)

diffeomorphisms are manifest. In this work we will be concerned with the type IIB solution

of the section constraint and will perform the uplift of the previous AdS4 solutions to type

IIB supergravity by employing a so-called generalised Scherk-Schwarz (SS) ansatz for the

various fields of E7(7)-ExFT [30].

3.1 Exceptional Field Theory and consistent truncations

We are interested in uplifting AdS4 solutions for which the four-dimensional scalars param-

eterising MKL(x) ∈ E7(7)/SU(8) take constant vacuum expectation values and vectors, as

well as tensor fields, vanish identically. The relevant fields in the E7(7)-ExFT of [29] are then

the metric gµν(x, Y ) and the generalised metric MMN (x, Y ). These fields are connected

with the four-dimensional fields in (2.5) via the generalised Scherk-Schwarz ansatz [30]

gµν(x, Y ) = ρ−2(Y )gµν(x) ,

MMN (x, Y ) = UM
K(Y )UN

L(Y )MKL(x) ,
(3.5)

which is encoded into an SL(8) twist matrix UM
N (Y ) and an R

+ scaling function ρ(Y ).

In order for this ansatz to factorise out the dependence on the internal coordinates Y M

at the level of the equations of motion and to give back the equations of motion of the

four-dimensional theory, the twist matrix UM
N (Y ) and the scaling function ρ(Y ) must

fulfil the two conditions

(U−1)M
P (U−1)N

Q ∂PUQ
K
∣∣
912

= 1
7 ρXMN

K ,

∂N (U−1)M
N − 3 ρ−1 ∂Nρ (U−1)M

N = 2 ρ ϑM ,
(3.6)

where XMN
K is the embedding tensor in the four-dimensional gauged supergravity, ϑM

is a constant (scaling) tensor, and |912 is the projection onto the 912 ∈ E7(7) irreducible

representation. For the twist matrix UM
N (Y ) and the scaling function ρ(Y ) to be describing

a background of type IIB supergravity, the dependence on the coordinates Y M of the

generalised internal space must be such that the section constraint holds.

We will make use of various group-theoretical decompositions in order to establish

a mapping between physical coordinates on the ordinary internal space and generalised
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coordinates. The first one involves the fundamental SL(8) index and its decomposition

A = (1 , m , 8) with m = 2, . . . 7 being a GL(6) fundamental index. Then the group-

theoretical decomposition of the generalised coordinates Y M that is relevant for a type IIB

interpretation of E7(7)-ExFT is [29]

E7(7) ⊃ GL(6) × SL(2)IIB × R
+

56 → (6,1)+2 + (6’,2)+1 + (20,1)0 + (6,2)−1 + (6’,1)−2

Y M → ym + ymα + ymnp + ymα + ym

(3.7)

where GL(6) accounts for ordinary six-dimensional internal diffeomorphisms and SL(2)IIB
is the global symmetry of type IIB supergravity. In (3.7) we have introduced a fundamental

SL(2)IIB index α = 1, 8 that is raised and lowered using ǫ18 = ǫ18 = 1.8 The fact that the

six coordinates of the ordinary internal space of type IIB supergravity do not transform

under SL(2)IIB suggests the choice of coordinates in (6,1)+2, or equivalently in (6’,1)−2,

to be the physical coordinates. In this work we select

ym ∈ (6,1)+2 . (3.8)

This choice solves the section constraint of E7(7)-ExFT so that a type IIB generalised

geometry in the sense of [46–48] can be consistently defined on the tangent space of the

ordinary internal space.

The background we are interested in is of the form R × S5 which further suggests a

GL(1) × GL(5) splitting of coordinates m = (i , 7) with i = 2, . . . 6 on the internal space.

The specific mapping between GL(6) coordinates in (3.7), GL(1) × GL(5) coordinates and

the generalised coordinates Y M = (Y AB , YAB) in the SL(8) basis reads [19]

ym ymα ymnp ymα ym

yi y7 yiα y7α yijk yij7 yiα y7α yi y7

Y i7 Y18 Yiα ǫαβ Y
β7 ǫijkj

′k′ Yj′k′ Y ij Y iα ǫαβ Yβ7 Yi7 Y 18

(3.9)

rendering yi = Y i7 electric and ỹ ≡ y7 = Y18 magnetic in the generalised internal space.

The twist matrix UM
N (yi, ỹ) and the scaling function ρ(yi, ỹ) will determine the generalised

SS reduction suitable to uplift the AdS4 solutions previously found in a four-dimensional

setup to backgrounds of type IIB supergravity. For the gauging G = [SO(1, 1)×SO(6)]⋉R
12

the scaling function ρ(yi, ỹ) is given by the product

ρ(yi, ỹ) = ρ̊(ỹ) ρ̂(yi) , (3.10)

where

ρ̊4 = 1 + ỹ2 and ρ̂4 = 1− |~y|2 . (3.11)

Being valued in SL(8) ∈ E7(7), the (inverse) twist matrix (U−1)M
N (yi, ỹ) takes the block-

diagonal structure

(U−1)M
N =

(
(U−1)[AB]

[CD] 0

0 (U−1)[AB]
[CD] = U[CD]

[AB]

)
, (3.12)

8We adopt conventions vα = ǫαβ vβ and vα = vβ ǫβα for raising and lowering indices of SL(2)IIB.
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with

(U−1)[AB]
[CD] = (U−1)A

C (U−1)B
D − (U−1)B

C (U−1)A
D , (3.13)

and

(U−1)A
B =

(
ρ̊

ρ̂

) 1
2




1 0 0 ρ̊−2 ỹ

0 δij + K̂ yi yj ρ̂2yi 0

0 ρ̂2yj K̂ ρ̂4 0

ρ̊−2 ỹ 0 0 ρ̊−4(1 + ỹ2)




. (3.14)

The function K̂(yi) entering the twist matrix in (3.14) reduces in this case to a hypergeo-

metric function [19]

K̂ = −2F1

(
1 , 2 ,

1

2
; 1− |~y|2

)
. (3.15)

The twist matrix UM
N and scaling function ρ introduced above give rise, upon using (3.6),

to the embedding tensor XMN
P in (2.3) and vanishing “trombone” parameter ϑM [49].

Equipped with the SL(8) twist matrix in (3.14) and the scaling function in (3.10) it

then becomes straightforward (but tedious) to uplift the AdS4 solutions of section 2.3 to

solutions of E7(7)-ExFT via the SS ansatz (3.5). Once the explicit form of the external

metric gµν(x
µ, yi, ỹ) and the generalised metric MMN (xµ, yi, ỹ) is determined, one can

make use of the dictionary between the fields of E7(7)-ExFT and the ones of type IIB

supergravity [50, 51] to obtain an explicit type IIB background. To this end one must

first perform a decomposition of the generalised metric MMN under the relevant GL(6)×
SL(2)IIB ⊂ E7(7) embedding in (3.7) so that the dictionary reads

Gmn = G
1
2 Mmn ,

Bmn
α = G

1
2 Gmp ǫ

αβ Mp
nβ ,

Cklmn − 3
2 ǫαβ Bk[l

α
Bmn]

β = −1
2 G

1
2 GkρMρ

lmn ,

mαβ = 1
6 G

(
MmnMmαnβ +Mm

kαMk
mβ

)
.

(3.16)

The expressions in (3.16) provide us with explicit formulas connecting the fields of E7(7)-

ExFT with the internal components of the fields of type IIB supergravity. These include

the (inverse) metric Gmn, the SL(2)IIB doublet of two-form potentials Bmn
α, the four-form

potential Cklmn and the axion-dilaton matrix mαβ (see appendix B).

3.2 Type IIB uplift of AdS4 solutions

In this section we perform the explicit uplift of the AdS4 solutions of section 2.3 to S-fold

backgrounds of type IIB supergravity. As discussed at the beginning of the section, the

AdS4 solutions we are uplifting are compatible with the SU(3) invariance in (3.2) together

with the further simplification of setting χ = 0. All the results we are presenting in this

section are obtained in this simplified setup.
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10D metric. Before computing the ten-dimensional metric using (3.5) and (3.16) it will

prove convenient to introduce some geometric data regarding the description of a five-

sphere. Firstly the metric on the round S5 and its inverse take the form

Ĝij = δij +
δik δjl y

kyl

1− ym δmn yn
and Ĝij = δij − yiyj . (3.17)

Secondly let us also introduce embedding coordinates Ym on R
6 of the form

Ym =
{
yi , Y7 ≡

(
1− |~y|2

) 1
2

}
so that δmn Ym Yn = 1 , (3.18)

in terms of which the Killing vectors on S5 are given by

Kmn
i ≡ Ĝij ∂j Y[m Yn] = δi[m Yn] . (3.19)

Lastly we will also introduce the vector

Ki ≡ Kmn
i Jmn = J im Ym , (3.20)

built from the real two-form J of the SU(3)-holonomy of the Kähler cone C(S5) = R
+×S5

(see appendix A).

Using the uplifting formula for the internal metric in (3.16) one finds an inverse six-

dimensional metric of the form

G11 = ∆ ρ̊4M18 18 = ∆(1 + ỹ2) e3ϕ ,

G1k = ∆ ρ̊2Kij
k M ij

18 = 0 ,

Gij = ∆Kkl
iKmn

j Mklmn = ∆ eϕ Y
[
Ĝij −

(
1− 1

Y

)
KiKj

]
,

(3.21)

where the blocks of the scalar matrix MMN that appear in (3.21) are given by

M ij kl = eϕ
[
(1− Y )

(
J ijJkl − 3 J [ijJkl]

)
+ 2Y δk[i δj]l

]
,

M ij
18 = 0 , 9

M18 18 = e3ϕ ,

(3.22)

and with

∆ = G
1
2 ρ2 =

e−ϕ

√
Y

. (3.23)

We then find an internal six-dimensional metric of the form

ds26 = ∆−1 e−3ϕ dỹ2

1 + ỹ2
+∆−1 e−ϕ Y −1

[
Ĝij + (Y − 1)KiKj

]
dyi dyj , (3.24)

where Ki ≡ Ĝij Kj . Performing a change of variable of the form

ỹ = sinh η with η ∈ (−∞ , ∞) , (3.25)

9This block of MMN is proportional to the axion χ that we are setting to zero by virtue of (3.1).
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and using embedding coordinates Ym, the metric in (3.24) takes the form

ds26 = ∆−1 e−3ϕ dη2 +∆−1 e−ϕ Y −1
[
δij + (Y − 1) Jki Jlj Yk Y l

]
dY i dYj ,

= ∆−1 e−3ϕ dη2 +∆−1 e−ϕ Y −1
[
ds2

S5
+ (Y − 1)η2

]
,

(3.26)

so that
ds26 = ∆−1 e−3ϕ dη2 +∆−1 e−ϕ Y −1

[
ds2

CP
2 + Y η2

]
,

=
√
Y e−2ϕ dη2 + 1√

Y

[
ds2

CP
2 + Y η2

]
.

(3.27)

In (3.26) and (3.27) we used the first relation in (A.1) and (A.4) in order to exhibit the

SU(2)-structure of the five-sphere S5 when viewed as a Sasaki-Einstein manifold.

Including also the four-dimensional (external) part of the geometry, we find a simple

and non-singular AdS4 × R×M5 metric of the form

ds210 =
1

2

√
Y eϕ ds2AdS4 +

√
Y e−2ϕ dη2 +

1√
Y

[
ds2

CP
2 + Y η2

]
, (3.28)

in terms of the function Y in (3.4) depending on the hypermultiplet scalars, and the

scalar Imz = e−ϕ in the vector multiplet. Our choice of undeformed frames for the met-

ric (3.28) reads

ds2AdS4
: ê0 =

L

r
dr , êi =

L

r
dxi (i = 1, 2, 3) and ηij = (−1, 1, 1)

ds2
R

: ê4 = dη

ds2
CP

2 : êa (a = 5, 6, 7, 8)

ds2
S1

: ê9 = η

(3.29)

with L being the AdS4 radius at the four-dimensional solutions of section 2.3, and where

êa and ê9 describe a round S5 as discussed in detail in appendix A. The volume form of

the ten-dimensional space-time specified by the metric (3.28) is then given by

vol10 =
1

4
∆−1 ê0 ∧ ê1 ∧ ê2 ∧ ê3 ∧ ê4 ∧ ê5 ∧ ê6 ∧ ê7 ∧ ê8 ∧ ê9 . (3.30)

Two cases are of interest for the uplift of the AdS4 solutions obtained in the previous

section:

i) For the N = 1 / SU(3) solution in (2.34)–(2.35) one has

Y =
6

5
and e−ϕ =

√
5

3
. (3.31)

This makes the internal metric in (3.27) conform CP2⋊S1 so that a U(1)β symmetry

associated with η (see appendix A) is preserved together with the SU(3) symmetry

of CP2. We will see that this additional U(1)β symmetry is broken by the three-form

fluxes, thus in agreement with the residual symmetry at the AdS4 solution.

– 16 –



J
H
E
P
1
2
(
2
0
1
9
)
1
1
3

ii) For the N = 0 / SO(6) solution in (2.37)–(2.38) one has

Y = 1 and e−ϕ =
1√
2
. (3.32)

In this case the round metric on S5 is recovered with SO(6) symmetry in agreement

with the residual symmetry at the AdS4 solution.

B2 and C2 potentials. The SL(2)IIB doublet of two-form potentials Bα = (B2 , C2) can

be obtained from the second uplift formula in (3.16). An explicit computation shows that

B1j
α = 0 ,

Bij
α = ∆Gik Kkl

k ∂jYm ǫαβ (A−1)γβ M
kl
mγ ,

(3.33)

where the matrix

(A−1)γβ ≡
(√

1 + ỹ2 −ỹ

−ỹ
√
1 + ỹ2

)
=

(
cosh η − sinh η

− sinh η cosh η

)
, (3.34)

is an SO(1, 1) ⊂ SL(2)IIB element encoding the dependence of the two-form potentials Bα

on the direction η. The blocks of the scalar matrix MMN entering (3.33) are given by

Mkl
m1 = 1

2 e
ϕ

[
j1 (Ω

I)klm − j2 (Ω
R)klm

]
,

Mkl
m8 = 1

2 e
2φ+ϕ

[
ζ̃ (ΩR)klm − ζ (ΩI)klm

]
,

(3.35)

in terms of the holomorphic three-form Ω = ΩR+ iΩI of the SU(3)-holonomy of the Kähler

cone C(S5) = R
+ × S5 (see appendix A), and the scalar-dependent combinations

j1 = ζ Z + ζ̃ Y , j2 = ζ̃ Z − ζ Y with Z = e2φ σ . (3.36)

Inserting (3.35) into (3.33) one finds

Bij
α =

1

2
eϕ∆ ǫαδ (A−1)γδ Hγβ Gik (Ω

β)kj =
1

2
Y −1 ǫαδ (A−1)γδ Hγβ Ĝik (Ω

β)kj , (3.37)

in terms of the scalar-dependent matrix

Hγβ =

(
−j2 j1
e2φ ζ̃ −e2φ ζ

)
, (3.38)

and the geometric quantities

(Ωβ)ij ≡ (ΩR,ΩI)ij = (ΩR,ΩI)klm Kkl
i ∂jYm , (3.39)

which satisfy Kk (Ω
β)kj = 0. Then, using the relation

Ĝik (Ω
β)kj dy

i ∧ dyj = −(Ωβ)ijk Yk dY i ∧ dYj , (3.40)

one arrives at the final expression

B
α =

1

2
Bij

α dyi ∧ dyj = −1

4
Y −1 ǫαδ (A−t)δ

γ Hγβ (Ω
β)kij Yk dY i ∧ dYj , (3.41)
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or, using the third relation in (A.1), the equivalent one

B
α = −1

2
Y −1 ǫαδ (A−t)δ

γ Hγβ Ω
β with Ωβ ≡ (ΩR,ΩI) . (3.42)

Taking an exterior derivative on (3.42) and using the SU(2)-structure relations in (A.3),

one gets three-form fluxes Hα = (H3, F3) of the form

H
α = −3

2 Y −1 ǫαδ (A−t)δ
γ Hγβ (iΩ ∧ η)β − 1

2 Y
−1 ǫαδ ∂η(A

−t)δ
γ Hγβ dη ∧Ωβ ,

= −1
2 Y

−1 ǫαδ (A−t)δ
γ
[
3Hγβ (iΩ ∧ η)β − θγ

λHλβ dη ∧Ωβ
]
,

(3.43)

in terms of the function Y in (3.4) and Hγβ in (3.38) depending on the hypermultiplet

scalars, and the matrix A−1(η) in (3.34). In (3.43) we have also introduced the constant

matrix

θγ
λ =

(
0 1

1 0

)
. (3.44)

Two cases are again of interest for the uplift of the AdS4 solutions obtained in the

previous section:

i) For the N = 1 / SU(3) solution in (2.34)–(2.35) one has

Hαβ =
Y |~ζ|√
1− σ2

(
1 0

0 −1

)(√
1− σ2 cos γ − σ sin γ

√
1− σ2 sin γ + σ cos γ

− sin γ cos γ

)
,

(3.45)

with

Y =
6

5
and |~ζ|2 = 2

3

√
1− σ2 . (3.46)

The Hαβ matrix in (3.45) depends on σ ∈ (−1, 1) as well as on an angle γ defined

as ~ζ = (ζ , ζ̃) = |~ζ| (cos γ , sin γ) and parameterising a U(1)U transformation. As a

result there is a (σ, γ)-family of three-form fluxes (3.43). The non-zero value |~ζ| 6= 0

in (3.46) causes the Higgsing of the U(1)U symmetry previously discussed in the four-

dimensional context, where the flat direction in the scalar potential γ was identified

with a Goldstone mode. In addition, the three-form fluxes (3.43) depend on the

complex two-form Ω that is charged (see appendix A) under the U(1)β preserved

by the internal geometry (3.27). Therefore both U(1)U and U(1)β symmetries are

broken due to the background fluxes at the N = 1 solution.

ii) For the N = 0 / SO(6) solution in (2.37)–(2.38) one has Hγβ = 0 and therefore

H
α = 0 , (3.47)

as a consequence of the internal geometry being the round S5.
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C4 potential. An explicit computation using the third uplift formula in (3.16) in combi-

nation with the first equation in (3.33) shows that the purely internal four-form potential

is of the form

C1jkl = 0 ,

Cijkl − 3
2 ǫαβ Bi[j

α
Bkl]

β = −1
2

∆√
1− |~y|2

ǫjklk′l′ Gii′ Kmn
i′ Kk′l′

pq Mmnpq ,
(3.48)

where we have introduced the geometric tensor

Kk′l′
pq = δk

′l′
pq + 2 K̂ δk

′
p Yq y

l′ . (3.49)

Substituting the first scalar-dependent block in (3.22) we arrive at

Cijkl − 3
2 ǫαβ Bi[j

α
Bkl]

β = ǫj′jklk′
1√

1−|~y|2
Y −1

Y
Ĝi i′

[
J i′j′Jk′l Yl + δj

′l′ Ki′ Kl′ y
k′
]

+Ĉijkl ,

(3.50)

with

Ĉijkl = ǫijklk′
yk

′

√
1− |~y|2

(1 + K̂) . (3.51)

A careful analysis of the expression in (3.50) reveals that the contribution

− 3

2
ǫαβ Bi[j

α
Bkl]

β = −6
1− Y

Y
ǫαβ Ωi[j

αΩkl]
β , (3.52)

in the left hand side precisely cancels against the contribution coming from the first term

in the right hand side so that

Cijkl = Ĉijkl . (3.53)

The purely internal five-form flux then takes the form

dC = Ω ∧ Ω̄ ∧ η = 4Y
3
4 vol5 , (3.54)

where

vol5 = Y − 3
4 ê5 ∧ ê6 ∧ ê7 ∧ ê8 ∧ ê9 , (3.55)

is the volume form on the deformed S5 in (3.27). Finally the gauge-invariant five-form flux

is given by

F̃5 = dC +
1

2
ǫαβ B

α ∧H
β =

(
4 +

6 (1− Y )

Y

)
Y

3
4 (1 + ⋆) vol5 , (3.56)

which breaks the U(1)U symmetry whenever Y 6= 1. When particularised to the AdS4
solutions obtained in the previous section the result is:

i) For the N = 1 / SU(3) solution in (2.34)–(2.35) one has

F̃5 = 3

(
6

5

) 3
4

(1 + ⋆) vol5 . (3.57)

ii) For the N = 0 / SO(6) solution in (2.37)–(2.38) one has

F̃5 = 4 (1 + ⋆) vol5 . (3.58)
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Axion-dilaton and Janus. The SL(2)-valued axion-dilaton mαβ of type IIB supergrav-

ity can be obtained from the last uplift formula in (3.16). A straightforward computation

involving this time the blocks of the MMN scalar matrix

Mγk δl = e−ϕ Y δkl mγδ + e−ϕ (1− Y ) Jkl ǫγδ ,

Mγk δl = eϕ Y δkl mγδ + eϕ (1− Y ) Jkl ǫγδ ,
(3.59)

yields an axion-dilaton of the form

mαβ =
1

Imτ

(
|τ |2 −Reτ

−Reτ 1

)
= (A−t)α

γ
mγδ (A

−1)δβ , (3.60)

with τ = C0 + i e−Φ. Note that the full dependence on the coordinate η is again encoded

into the matrix A−1(η) in (3.34) which acts as an SO(1, 1) ⊂ SL(2)IIB twist on

mγδ =
1

Y

(
e−2φ (Y 2 + Z2) −Z

−Z e2φ

)
. (3.61)

The matrix mγδ in (3.61) only depends on the four-dimensional scalars in the universal

hypermultiplet. At both the N = 1 / SU(3) and N = 0 / SO(6) solutions one has that it

reduces to

mγδ =
1√

1− σ2

(
1 −σ

−σ 1

)
with σ ∈ (−1, 1) , (3.62)

or, using an alternative parameterisation in terms of σ = tanhµ, to the manifest SO(1, 1)

expression

mγδ =

(
coshµ − sinhµ

− sinhµ coshµ

)
with µ ∈ (−∞,∞) . (3.63)

Using (3.34) and (3.63) the axion-dilaton matrix in (3.60) takes the form

mαβ =

(
cosh(2 η + µ) − sinh(2 η + µ)

− sinh(2 η + µ) cosh(2 η + µ)

)
, (3.64)

and a direct comparison between (3.60) and (3.64) allows us to extract the profile for the

complex axion-dilaton field

Reτ = tanh(2 η + µ) , Imτ = sech(2 η + µ) . (3.65)

In order to establish a connection with type IIB solutions of Janus-type [27, 28], it will

be convenient to combine the A−1(η) twist in (3.34) with a (global) duality transformation

Λ ∈ SO(2) ⊂ SL(2)IIB of the form

Λα
γ =

1√
2

(
1 −1

1 1

)
. (3.66)
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Applying the transformation (3.66) on our type IIB solutions, new but physically equivalent

backgrounds are generated with

ds210
(new)

= ds210 ,

F̃
(new)
5 = F̃5 ,

H
α (new) = (HΛ−1)α ,

(3.67)

and

m
(new)
αβ = (ΛmΛt)αβ =

(
e2η+µ 0

0 e−(2 η+µ)

)
. (3.68)

In this way the composed action of ΛA−1(η) on (3.63) reduces to just a shift of the form

Φ(new) → Φ(new) − 2η and a Janus-like behaviour becomes manifest

eΦ
(new)

= g(new)
s = e−(2 η+µ) ⇒ Φ(new)(η) = −2 η − µ , (3.69)

with a linear dilaton Φ(new) running from −∞ to ∞ or, equivalently, taking two different

asymptotic values one of them yielding a divergent string coupling g
(new)
s . Note that the

free parameter σ = tanhµ in the ten-dimensional solution, which appears as a modulus

in four dimensions, can be used to set the dilaton to zero at an arbitrary value of η. A

natural choice is to set µ = 0 so that Φ(new)(0) = 0. Lastly, we have also verified that the

equations of motion and Bianchi identities of type IIB supergravity (see appendix B) are

satisfied at both ten-dimensional SU(3) and SO(6) symmetric solutions.

3.3 Summary of type IIB backgrounds

By uplifting two families of AdS4 vacua of the dyonically-gauged [ SO(1, 1)× SO(6) ]⋉R
12

maximal supergravity, we have obtained two classes of ten-dimensional type IIB back-

grounds. In both classes the metric is non-singular and of the form AdS4 × R ×M5 with

η ∈ (−∞ , ∞) being the coordinate along the R direction. The dependence of the back-

grounds on the coordinate η is fully encoded in an SO(1, 1) ⊂ SL(2)IIB matrix

(A−1)γβ =

(
cosh η − sinh η

− sinh η cosh η

)
, (3.70)

which acts as a twist on a constant type IIB axion-dilaton

mγδ =
1√

1− σ2

(
1 −σ

−σ 1

)
with σ ∈ (−1, 1) , (3.71)

and an SL(2)IIB doublet of η-independent three-form fluxes. From an effective N = 2

four-dimensional perspective, the free parameter σ in the type IIB solutions corresponds

to a four-dimensional axion in the universal hypermultiplet (see section 2.2).
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We find two classes of type IIB backgrounds:

i) The first class of solutions is N = 1 supersymmetric, and thus perturbatively stable,

and preserves an SU(3) symmetry arising from a CP
2 ⊂ M5 factor in the geometry.

The various ten-dimensional fields are given by

ds210 =
3
√
6

10
ds2AdS4

+
1

3

√
10
3 dη2 +

[√
5

6
ds2

CP
2 +

√
6

5
η2

]
,

F̃5 = 3

(
6

5

) 3
4

(1 + ⋆) vol5 ,

mαβ = (A−t)α
γ
mγδ (A

−1)δβ ,

H
α = − 5

12
ǫαδ (A−t)δ

γ
[
3Hγβ (iΩ ∧ η)β − θγ

λHλβ dη ∧Ωβ
]
,

(3.72)

where, in order to present Hα in a concise form, we have introduced the two constant

matrices

θγ
λ =

(
0 1

1 0

)
, (3.73)

and

Hαβ =
2
√
6

5 (1− σ2)
1
4

(√
1− σ2 cos γ − σ sin γ

√
1− σ2 sin γ + σ cos γ

sin γ − cos γ

)
. (3.74)

The latter depends on the free parameter σ ∈ (−1, 1) specifying the constant axion-

dilaton in (3.71), as well as on an arbitrary angle γ ∈ [0, 2π]. As a result there is a

(σ, γ)-family of three-form fluxes Hα. Note also that the internal geometry in (3.72)

has an additional U(1)β isometry that is broken in the background by the dependence

of the three-form fluxes Hα on the complex (2, 0)-form Ω (see appendix A).

• The second class of solutions is non-supersymmetric and preserves an SO(6) symme-

try arising from an M5 = S5 factor in the geometry. The various ten-dimensional

fields are given by

ds210 =
1√
2
ds2AdS4

+
1

2
dη2 + ds2

S5
,

F̃5 = 4 (1 + ⋆) vol5 ,

mαβ = (A−t)α
γ
mγδ (A

−1)δβ ,

H
α = 0 .

(3.75)

This class of solutions features perturbative instabilities, as already noticed in (2.39)

when looking at scalar fluctuations in the consistent truncation to a four-dimensional

effective theory.
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3.4 S-fold interpretation

Following the original reasoning in [19] we argue now that the two AdS4 solutions presented

in this work actually uplift to S-fold backgrounds of type IIB supergravity. Since the matrix

mαβ(η) in (3.64) is of hyperbolic type, it is not possible to perform a coordinate shift of

the form η → η+ T such that mαβ(η+ T ) = mαβ(η). As a result the type IIB background

cannot be viewed as a globally geometric compactification on S1 × S5.

However the η direction on the internal geometry (3.27) can still be made periodic with

period T 6= 0 at the price of introducing an SO(1, 1) ⊂ SL(2)IIB hyperbolic monodromy

MS1 on the axion-dilaton given by

MS1 = A−1(η)A(η + T ) =

(
coshT sinhT

sinhT coshT

)
. (3.76)

The monodromy in (3.76) can be brought to a generic hyperbolic (discrete) monodromy

M(k) ∈ SL(2,Z)IIB with k ∈ Z of the form

M(k) =

(
k 1

−1 0

)
, k ≥ 3 , (3.77)

by performing a transformation

M(k) = g−1
MS1 g with g(k) =




(k2 − 4)
1
4√

2
0

k√
2 (k2−4)

1
4

√
2

(k2 − 4)
1
4


 . (3.78)

In this manner one has that

M(k) = A−1
(k)(η) A(k)

(
η + T (k)

)
, (3.79)

with

A(k) = Ag(k) and T (k) = ln(k +
√
k2 − 4)− ln(2) . (3.80)

The resulting type IIB background can in this way be interpreted as a locally geomet-

ric compactification on S1 × S5 with an S-duality monodromy M(k) ∈ SL(2,Z)IIB given

by (3.77), namely, an S-fold background. To generate such a background one must replace

A−1(η) → A−1
(k)(η) in the generalised Scherk-Schwarz anstaz, equivalently, in (3.42)–(3.43)

and (3.60). This procedure must also be composed with the global transformation in (3.66)

in order to make the Janus structure of the solution manifest. Moreover, since a generalised

Scherk-Schwarz reduction satisfying the section constraint does not break supersymmetries

and the monodromy in (3.76) is of hyperbolic type, the supersymmetries preserved at the

AdS4 solutions uplift to supersymmetries of the ten-dimensional backgrounds.10

10As discussed in [19], the fact that the monodromy in (3.76) is of hyperbolic type and can be interpreted

as a dilaton shift upon applying the (global) duality transformation in (3.66), implies the existence of a

global parameterisation of the axion-dilaton coset representative in (B.10) such that no (local) compensating

SO(2) transformation is induced by the monodromy on the type IIB fermions. Therefore, a Killing spinor

at a supersymmetric AdS4 solution uplifts to a globally well-defined Killing spinor in ten dimensions.
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Finally it is to be noted that the class of monodromies in (3.77) can be expressed as a

composition of S and T transformations. More concretely one has that

M(k) = −S T k , (3.81)

with

S =

(
0 −1

1 0

)
and T =

(
1 0

1 1

)
. (3.82)

This type of monodromies has been extensively studied in the context of three-dimensional

N = 4 CFT known as T (U(N)) theories [24, 52]. It would be interesting to investigate

general S-duality quotients of Janus-type non-compact solutions dual to three-dimensional

N = 1 S-fold CFTs (see [53] for a study of N = 4 S-fold CFTs) as well as their potential

realisation in terms of brane configurations.

4 Conclusions

Fetching techniques from E7(7)-EFT and generalised Scherk-Schwarz reductions, in this

work we have uplifted two different AdS4 solutions of the four-dimensional and dyonically-

gauged maximal supergravity with [ SO(1, 1)× SO(6) ]⋉R
12 gauge group to two classes of

S-fold backgrounds of type IIB supergravity. These S-folds result from SL(2,Z)IIB quotients

of Janus-type non-compact solutions of the form AdS4 ×R×M5. The first class of S-folds

preserves N = 1 supersymmetry and an SU(3) symmetry originating from an internal

geometry of the form M5 = CP2 ⋊ S1. The additional U(1)β symmetry associated with

S1 is broken due to the presence of three-form fluxes. The second class of S-folds is non-

supersymmetric and features an SO(6) symmetry as a consequence of the internal geometry

M5 = S5 being a round five-sphere.

Both classes of S-folds are obtained from Janus-like solutions with a linear dilaton pro-

file upon quotients by hyperbolic elements of SL(2,Z)IIB. This translates into a monodromy

on the axion-dilaton of the form −S T k with k ≥ 3. While supersymmetry guarantees the

stability of the N = 1 S-folds with SU(3) symmetry, the issue of stability becomes more

subtle in the absence of supersymmetry. The non-supersymmetric Janus-like non-compact

solution with a linear dilaton and SO(6) symmetry presented in this work is of the “curi-

ous” type discussed in [54] (see also [55]). There the issue of stability was left open for this

particular type of solutions. Here, by performing an analysis of normalised scalar masses

in the effective four-dimensional gauged supergravity, we observe the presence of unstable

modes in (2.39) violating the BF bound for perturbative stability in AdS4. The consistency

of the truncation of type IIB supergravity on R×S5 down to a maximal D = 4 supergravity

then renders the non-supersymmetric type IIB background also unstable.

The N = 1 S-folds with SU(3) symmetry presented in this work pair up with the ten-

dimensional massive IIA solution featuring the same (super) symmetries presented in [56].

It would be interesting to further investigate a possible connection between the two classes

of type II solutions. On the contrary, the higher-dimensional origin (if any) of the anal-

ogous AdS4 solution in the dyonically-gauged SO(8) theory (see table 1) remains elusive,
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and a no-go theorem has been proved against its existence as a compactification that is lo-

cally described by eleven-dimensional supergravity [57]. This makes the (four-dimensional)

phenomenon of electromagnetic duality in maximal supergravity more mysterious from an

M-theory perspective.

As a final point, it would be interesting to investigate possible brane setups under-

lying the N = 1 S-folds with SU(3) symmetry, and to explore the associated dual three-

dimensional N = 1 S-fold CFTs. Since an N = 1 / SU(3) AdS4 solution occurs in the

three dyonically-gauged maximal supergravities of table 1 with exactly the same nor-

malised scalar mass spectrum, a better understanding of the holographic aspects of the

type IIA/IIB solutions could help in getting new insights into the dyonically-gauged SO(8)

theory from a novel holographic perspective. We hope to come back to these and other

related issues in the future.
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would like to acknowledge the Université Libre de Bruxelles where this work was initiated

as well as the Mainz Institute for Theoretical Physics (MITP) of the Cluster of Excellence

PRISMA+ (Project ID 39083149) where this work was completed.

A Canonical Sasaki-Einstein structure on S5

The connection between the various components of the scalar matrix MMN and the SU(2)-

structure of the five-sphere S5 when viewed as a Sasaki-Einstein manifold relies on the R
6

embedding relations

η = Jmn Ym dYn , J =
1

2
Jmn dYm ∧ dYn , Ω =

1

2
Ωmnp Ym dYn ∧ dYp , (A.1)

determining the real one-form η, real two-form J and complex (2, 0)-form Ω of the SU(2)-

structure in terms of the real two-form J and the holomorphic three-form Ω of the SU(3)-

holonomy of the Kähler cone C(S5) = R
+ × S5. The latter are given by

J = e2 ∧ e3 + e4 ∧ e5 + e6 ∧ e7 ,

Ω = ΩR + iΩI = (e2 + i e3) ∧ (e4 + i e5) ∧ (e6 + i e7) .
(A.2)

The closure of J and Ω translates into the torsion conditions for the SU(2)-structure

dη = J , dJ = 0 , dΩ = 3 iη ∧Ω . (A.3)
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The metric on the round S5 can be expressed (locally) as a U(1)β fibration with coor-

dinate β over the Kähler-Einstein space CP
2 with metric

ds2
S5

= ds2
CP

2 + η2 , (A.4)

where η = dβ + A1 and A1 is the one-form potential on CP
2 such that dA1 = 2J .

Following the conventions in [28] we (locally) choose angular coordinates on S5 ∼ CP2⋊S1

such that the coordinates yi take the parametric form

y2 = sinα cos θ
2 cos

(
ψ+φ
2 + β

)
,

y3 = sinα cos θ
2 sin

(
ψ+φ
2 + β

)
,

y4 = sinα sin θ
2 cos

(
ψ−φ
2 + β

)
,

y5 = sinα sin θ
2 sin

(
ψ−φ
2 + β

)
,

y6 = − cosα sinβ ,

(A.5)

so that

ρ̂2 =
√
1− |~y|2 = cosα cosβ and ρ̊2 =

√
1 + ỹ2 = cosh η . (A.6)

The metric on CP
2 takes the form

ds2CP2
= δab ê

a êb with a = 5, 6, 7, 8 , (A.7)

when expressed in terms of the frame fields

ê5 = dα , ê6 =
1

4
sin(2α)σ3 , ê7 =

1

2
sin(α)σ1 , ê8 =

1

2
sin(α)σ2 (A.8)

with
σ1 = − sinψ dθ + cosψ sin θ dφ ,

σ2 = cosψ dθ + sinψ sin θ dφ ,

σ3 = dψ + cos θ dφ ,

(A.9)

being a set of SU(2) left-invariant forms. A direct substitution yields

ds2CP2
= dα2 +

1

4
sin2 α

(
σ2
1 + σ2

2 + cos2 ασ2
3

)
. (A.10)

Moreover the metric in (A.10) can be brought into a Fubini-Study form

ds2CP2
= gij̄ dz

i dz̄j̄ with gij̄ = ∂i∂j̄ ln
(
1 + |z1|2 + |z2|2

)
, (A.11)

by introducing two complex coordinates

z1 = tanα cos

(
θ

2

)
ei

(ψ+φ)
2 and z2 = tanα sin

(
θ

2

)
ei

(ψ−φ)
2 , (A.12)
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in terms of which the one-form potential A1 on CP
2 reads

A1 = − i

2

z̄i dzi − zi dz̄i
1 + |z1|2 + |z2|2

=
1

2
sin2 ασ3 . (A.13)

As a result the set of SU(3) invariant forms on S5 is given by

η = dβ +A1 = dβ + 1
2 sin2 ασ3 ,

J = dη = 2 (ê5 ∧ ê6 + ê7 ∧ ê8) ,

Ω = e3iβ (ê5 + i ê6) ∧ (ê7 + i ê8) ,

(A.14)

and satisfy the algebraic relations

Ω ∧ Ω̄ =
1

2
J ∧ J = 4 ê5 ∧ ê6 ∧ ê7 ∧ ê8 and J ∧Ω = 0 . (A.15)

Note that Ω in (A.14) transforms with a phase under U(1)β whereas J and η are neutral.

Lastly, using (A.7), the metric (A.4) on the round S5 can be expressed as

ds2
S5

= δab ê
a êb + ê9 ê9 with ê9 = η . (A.16)

B Type IIB supergravity

The bosonic massless spectrum of ten-dimensional (chiral) type IIB supergravity contains

— besides the universal NS-NS sector that includes the metric G, a two-form B2 with field

strength H3 = dB2, and the dilaton Φ — a set of even p-forms in the R-R sector. In

particular, a fourth-rank antisymmetric self-dual tensor C4, a two-form C2 and a scalar

C0. The bosonic part of the type IIB supergravity action in the Einstein’s frame consists

of the three terms11

Sbos = SNS-NS + SR-R + SCS . (B.1)

It contains the SNS-NS term accounting for the fields in the universal sector, namely,

SNS-NS =
1

2κ2

∫
d10x

√
−G

(
R− 1

2
∂MΦ∂MΦ− 1

2
e−Φ|H3|2

)
. (B.2)

The SR-R term in the action controlling the dynamics of the R-R fields C0, C2 and C4 is

given by

SR-R =
1

2κ2

∫
d10x

√
−G

(
−1

2
e2Φ|F1|2 −

1

2
eΦ|F̃3|2 −

1

4
|F̃5|2

)
, (B.3)

where the tilded field strengths are defined as

F̃3 = F3 − C0 ∧H3 ,

F̃5 = F5 +
1
2 (B2 ∧ F3 − C2 ∧H3) ,

(B.4)

11Our conventions are related to those of [58] by the rescaling C4
[58] = 1√

2
C4. Moreover, we define

|H3|
2 ≡ 1

3!
HMNP HMNP and similarly for the R-R field strengths.
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in terms of the standard ones Fn+1 = dCn. Additionally, the self-duality condition

F̃5 = ⋆F̃5 , (B.5)

with (⋆F̃ )MNOPQM ≡ 1

5!
√
−G

ǫMNOPQM ′N ′O′P ′Q′
F̃M ′N ′O′P ′Q′ has to be supplemented by

hand in order to have the correct number of bosonic degrees of freedom. The type IIB

theory also incorporates a topological Chern-Simons term SCS in the action given by

SCS = − 1

4κ2

∫
C4 ∧H3 ∧ F3 . (B.6)

The equations of motion that follow from the action (B.1) with the various contribu-

tions in (B.2), (B.3) and (B.6) are given by

d ⋆ F̃5 = 1
2 ǫαβ H̃

α ∧ H̃
β ,

d ⋆ (e−ΦH3 − eΦC0 F̃3) = −F̃5 ∧ (F̃3 + C0H3) ,

d ⋆ (eΦ F̃3) = F̃5 ∧H3 ,

∇M (e2Φ ∂MC0) = − 1
3! e

ΦHMNP F̃MNP ,

�Φ = e2Φ |F1|2 − 1
2 e

−Φ |H3|2 + 1
2 e

Φ |F̃3|2 ,

(B.7)

where H̃
α = (H3, F̃3) and �Φ ≡ ∇M∂MΦ, together with the Einstein equation

RMN = 1
2 ∂MΦ ∂NΦ+ 1

2 e
2Φ ∂MC0 ∂NC0

+1
4

1
4!

(
F̃MP1···P4 F̃N

P1···P4 − 1
10 F̃P1···P5 F̃

P1···P5 GMN

)

+1
4 e

−Φ
(
HMP1P2 HN

P1P2 − 1
12 HP1P2P3 H

P1P2P3 GMN

)

+1
4 e

Φ
(
F̃MP1P2 F̃N

P1P2 − 1
12 F̃P1P2P3 F̃

P1P2P3 GMN

)
.

(B.8)

In addition, the set of Bianchi identities for the various gauge potentials reads

dH3 = 0 , dF1 = 0 , dF̃3 = −F1 ∧H3 , dF̃5 = H3 ∧ F3 . (B.9)

Note the equivalence between the first equation of motion in (B.7) and the last Bianchi

identity in (B.9) for the self-dual C4 potential.

The action (B.1) has a global SL(2)IIB invariance which becomes manifest when com-

bining the axion C0 and the dilaton Φ into a coset representative V2 ∈ SL(2)IIB/SO(2)

such that the axion-dilaton matrix mαβ reads

mαβ = (V2 V2
t)αβ = eΦ

(
e−2Φ + C0

2 −C0

−C0 1

)
. (B.10)

In terms of this matrix the second and third equations of motion in (B.7) are re-expressed

in an SL(2)IIB covariant form

d ⋆ (mαβ H
β) = −ǫαβ F̃5 ∧H

β , (B.11)

where H
α = (H3, F3).
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[54] D.Z. Freedman, C. Núñez, M. Schnabl and K. Skenderis, Fake supergravity and domain wall

stability, Phys. Rev. D 69 (2004) 104027 [hep-th/0312055] [INSPIRE].

[55] T. Robb and J.G. Taylor, Anti-de Sitter ×S1 ×M5 compact solutions for N = 2 d = 10

chiral supergravity, Phys. Lett. B 155 (1985) 59 [INSPIRE].

[56] O. Varela, AdS4 solutions of massive IIA from dyonic ISO(7) supergravity,

JHEP 03 (2016) 071 [arXiv:1509.07117] [INSPIRE].

[57] K. Lee, C. Strickland-Constable and D. Waldram, New Gaugings and Non-Geometry,

Fortsch. Phys. 65 (2017) 1700049 [arXiv:1506.03457] [INSPIRE].
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