
Noname manuscript No.
(will be inserted by the editor)

Improving the ε-approximate Algorithm for
Probabilistic Classifier Chains

Miriam Fdez-Dı́az · Laura Fdez-Dı́az ·
Deiner Mena · Elena Montañés · José
Ramón Quevedo · Juan José del Coz

Received: date / Accepted: date

Abstract Probabilistic Classifier Chains are a multi-label classification method
on which has gained the attention of researchers in recent years. This is be-
cause of their ability to optimally estimate the entire joint conditional prob-
ability of a label combination through the product rule of probability. Their
main drawback is that they require performing an exhaustive search in order
to obtain Bayes-optimal predictions. This means computing this probability
for all possible label combinations before taking a label combination with
the highest value of probability. This is the reason why several works have
been published in recent years that avoid exploring all combinations, while

This research has been funded by MINECO (the Spanish Ministerio de Economı́a y Compet-
itividad) and ERDF (European Regional Development Fund) under grant TIN2015-65069-
C2-2-R (MINECO/FEDER).

Miriam Fdez-Dı́az
Artificial Intelligence Center. University of Oviedo at Gijón, 33204 Asturias, Spain
E-mail: uo231492@uniovi.es

Laura Fdez-Dı́az
Artificial Intelligence Center. University of Oviedo at Gijón, 33204 Asturias, Spain
E-mail: uo231493@uniovi.es

Deiner Mena
Dept. de Ingenieŕıa en Telecomunicaciones e Informática, Universidad Tecnológica del
Chocó, Quibdó - Chocó, Colombia
E-mail: deiner.mena@utch.edu.co

Elena Montañés
Artificial Intelligence Center. University of Oviedo at Gijón, 33204 Asturias, Spain
E-mail: montaneselena@uniovi.es

José Ramón Quevedo
Artificial Intelligence Center. University of Oviedo at Gijón, 33204 Asturias, Spain
E-mail: quevedo@uniovi.es

Juan José del Coz
Artificial Intelligence Center. University of Oviedo at Gijón, 33204 Asturias, Spain
E-mail: juanjo@uniovi.es

2 Miriam Fdez-Dı́az et al.

maintaining optimality. Approaches such as greedy search, beam search and
Monte Carlo reduce the computational cost, but at the cost of not ensuring
Bayes-optimal predictions (although, in general, they provide close to optimal
solutions). Methods based on a heuristic search provide optimal predictions,
but the computational time has not been as good as expected. In this respect,
the ε-approximate algorithm has been found to be the best inference approach
among those that provide Bayes-optimal predictions, not only for its optimal-
ity, but also for its computational time. However, this paper both theoretically
and experimentally shows that it sometimes performs some backtracking dur-
ing the search for optimal predictions which may prolong the prediction time.
The aim of this paper is thus to improve this algorithm by achieving a more
direct search. Specifically, it enhances the criterion under which the next node
to be expanded is chosen by adding heuristic information, although it is only
applicable for linear based models. The experiments carried out confirm that
the improved ε-approximate algorithm explores fewer nodes and reduces the
computational time of the original version.

Keywords Multi-label · Classifier Chains · Inference · ε-approximate
algorithm

1 Introduction

In multi-label classification [11], more than one label from a finite subset of
labels can be assigned to an instance, unlike single-label classification in which
just one class is assigned to an instance. Problems of this kind commonly
appear in daily life: for instance, in medical diagnosis, where a patient may
perhaps suffer from more than one pathology; also, in weather forecasting,
where one day can be labelled with several weather aspects (fog, rain, etc...).

An important issue within multi-label classification is that the algorithms
to cope with problems of this kind must present good scalability, since the
problem becomes complex as the number of labels increases. In addition to
scalability, algorithms need to deal with the correlations that usually exist
among labels. Unfortunately, in fact, it is well-known that a patient who suf-
fers from a certain pathology may have more probability of developing others
or that a cold and cloudy day may end up becoming a rainy day. Hence, these
relationships are actually a promising source of information that algorithms
must be able to exploit in order to improve the performance of the classifica-
tion.

Different strategies have been followed by state-of-the-art algorithms. On
the one hand, some algorithms have adapted and extended other algorithms
originating from multi-class classification. This is the case, for instance, of
the decision tree algorithm C4.5, which has been modified to determine sev-
eral functions for gene description [3]. Likewise, an instance-based learning
approach that uses statistical information gained from the label sets and the
maximum a posteriori (MAP) principle has been proposed [37]. Furthermore,
there exists a back propagation neural network that employs a novel error

Improving the ε-approximate Algorithm for Probabilistic Classifier Chains 3

function capturing the characteristics of multi-label learning [36]. Another
proposed approach is based on a large margin ranking system that shares a
lot of common properties with support vector machines [7]. The Naive Bayes
approach has also been adapted for multi-label classification [17], while con-
ditional random fields have been employed to create models that directly pa-
rameterize label co-occurrences in a multi-label context [10].

At the same time, new approaches have been developed. Some methods
of this kind make use of relations in sets of different sizes. The RAndom k-
labELsets (RAkEL) algorithm [34] considers a small random subset of labels
and learns a single-label classifier to predict of each element in the powerset
of this subset. An extension of this method, called Progressive RAndom k-
labELsets (PRAkEL) [35], inherits the efficiency of RakEL but can handle
arbitrary example-based evaluation criteria by progressively transforming a
cost-sensitive multilabel classification problem into a series of cost-sensitive
single-label classification problems. A label ranking approach [8] introduces
an artificial calibration label that, in each example, separates the relevant
from the irrelevant labels. Another approach simultaneously unifies a binary
classification for the labels and a correlation between them in a single step
[25]. The Pruned Sets (PS) method treats a set of labels as single labels, like
RAkEL, but after a pruning process, only the relevant labels are considered
[29]. Also, an algorithm that includes a boosting strategy [32] is a new approach
that takes into account relations among set of labels of different size. The
Hierarchy Of Mul-tilabel classifiERs (HOMER) [33] method is an effective and
computationally efficient multi-label classifier for domains with large label sets.
It constructs a hierarchy of multi-label classifiers, each one dealing with a much
smaller set of labels and with a more balanced example distribution. The use
of fuzzy-rule-based classifiers as base learners when the multi-label problem is
transformed into a set of single-label problemas has also been exploited [24].
The interest in building fuzzy rules lies in the interpretability they offer for
the classification and the vagueness among the labels boundaries they are able
to capture.

Other new approaches make use of label dependence [5]. What is known
as unconditional dependence is considered in some methods. For instance, a
method that merges instance-based learning and logistic regression (IBLR) [2]
falls within this kind of methods. So-called conditional dependence has been
exploited by many other methods. For instance, an approach that aggregates
both independent and dependent (AID) classifiers has also been put forward
[22]. Similarly, a stacking approach [12], which stacks independent and depen-
dent classifiers, also exploits conditional dependence. Another approach of this
kind is Dependence Binary Relevance (DBR) [23], which combines chaining
and stacking strategies; in fact, it trains both independent and fully-dependent
classifiers (the chain) and then stacks both. Also, Classifier Chains (CC) [30,
31] establish a chain of classifiers from an order of the labels, in such way that
one label depends on the labels placed before it in the chain. Related to CC,
the method Probabilistic Classifier Chains (PCC) [4] method trains a classifier
chain and performs an exhaustive search to obtain Bayes-optimal predictions.

4 Miriam Fdez-Dı́az et al.

Similarly, Classifier Trellis (CT) [28] has arisen for scalable multi-label classifi-
cation. This method uses a heuristic to build a structure of the label (trellis) in
an order that maximizes label dependence between parents and children, sub-
sequently capturing the main label dependencies and maintaining scalability.
Moreover, Viterbi Classifier Chains (VCC) [26] have recently been proposed,
which are similar to PCC. However, the chain structure differs, since, each
label in VCC only depends on the previous label and not on all the labels
placed before it in the chain. This simplification allows a polynomial order
for the search for a solution, which means considerably reducing the compu-
tational time. In general, however, VCC is not able to estimate the highest
entire joint conditional probability, as PCC does. In fact, this is the property of
PCC that has led several researchers to focus their attention on PCC in recent
years. The main drawback of the method is its computational cost, because it
performs an exhaustive search over all possible combinations of labels.

Major efforts have been made to maintain the promising property of opti-
mality of PCC, while trying to improve the computational cost of the inference
process. In fact, methods based on greedy search [30,31], beam search [14,15]
and Monte Carlo sampling [6,27] do not consume so much time when they per-
form inference, but they do not always provide optimal predictions. Heuristic-
search-based methods [18,20,21] have been found to provide optimal solutions,
but their computational cost is sometimes still high, just being competitive for
complex problems, such as those that include noise. The ε-approximate algo-
rithm [6] has proven to be the most promising method so far, as it ensures
Bayes-optimal predictions in the fastest way [19,20,21]. However, in spite of
these two promising properties, this algorithm may perform some backtrack-
ing during the search that can hinder obtaining an optimal solution in a more
direct way. This paper proposes modifying the criterion of the ε-approximate
algorithm that decides the node to be expanded each time. To this end, the
criterion includes heuristic information in order to accelerate the process of
reaching a Bayes-optimal solution, not merely in terms of computational time,
but also in the number of nodes explored. The result is a new algorithm that,
although it is limited to linear base models, maintains the property of ensuring
optimal predictions. However, it also guarantees following a more direct path;
hence, it explores fewer nodes. Furthermore, it reduces the computational time
in spite of having to compute the heuristic.

The rest of the paper is organized as follows. Section 2 formally states the
multi-label framework, the principles of PCC and the process of inference in
PCC. Section 3 describes and discusses the properties and behavior of the
ε-approximate algorithm for performing inference in PCC. Section 4 details
the contribution of this paper that modifies the ε-approximate algorithm in
order to shorten the search path to reach optimal predictions. Exhaustive
experiments are presented and discussed in Section 5. Finally, Section 6 lays
out some conclusions and includes new directions for future work.

Improving the ε-approximate Algorithm for Probabilistic Classifier Chains 5

2 Inference in Probabilistic Classifier Chains for multi-label
classification

Let us first formally define the problem of multi-label classification. The start-
ing point is a finite and non-empty set of m labels, L = {`1, `2, . . . , `m}, and a
training set, S = {(x1,y1), . . . , (xn,yn)} independently and randomly drawn
according to an unknown probability distribution, P(X,Y), on X ×Y. The in-
put space, X , is the space of the instance description whereas the output space,
Y, is the power set of L, P(L), or equivalently Y = {0, 1}m. This equivalence
means that each yi = (yi,1, yi,2, . . . , yi,m) is the observation of a corresponding
random vector Y = (Y1,Y2, . . . ,Ym), where yi,j = 1 indicates the presence
(relevance) and yi,j = 0 the absence (irrelevance) of `j in the labeling of xi.

From the aforementioned framework, the goal in multi-label classification
can be stated as the induction from S of a hypothesis, f : X −→ Y, that pro-
vides a combination of relevant labels y = f(x) = (f1(x), f2(x), . . . , fm(x))
for unlabelled instances, x, that minimizes the risk in terms of certain loss
function, L(·). This risk can be defined as the expected loss over the joint
distribution, P(X,Y), i.e.,

RL(h) = EX,YL(Y,f(X)), (1)

therefore, the so-called risk minimizer, f∗, can be expressed by

f∗(x) = arg min
f

∑
y∈Y

P(y |x) · L(y,f(x)), (2)

where P(y |x) is the conditional distribution Y = y given X = x.
With regard to the loss functions [11], this paper focuses only on the subset

0/1 loss, because it is the measure that PCC is able to optimize (see [6] for
details and proof of this point). This measure oversees whether the predicted
and relevant label subsets are equal or not, is defined by

LS0/1
(y,f(x)) = [[y 6= f(x)]], (3)

in which the expression [[p]] evaluates to 1 when the predicate, p, is true and to 0
otherwise. This measure simplifies the risk minimizer, since it can be obtained
by simply taking the mode of the entire joint conditional distribution, i.e.

f∗(x) = arg max
y∈Y

P(y |x). (4)

2.1 Probabilistic Classifier Chains

PCC are based on the earlier CC method [30,31]. In fact, both share the
training process, but differ in the way they carry out the testing stage.

During training, both methods define an order of the label set (`1 ≺ `2 ≺
. . . ≺ `j−1 ≺ `j ≺ `j+1 ≺ . . . ≺ `m) and, following this order, they train a prob-
abilistic binary classifier for each label `j to estimate P(yj |x, y1, . . . , yj−1).

6 Miriam Fdez-Dı́az et al.

Hence, the probabilistic model obtained for predicting label, `j , denoted by
fj , is of the form

fj : X × {0, 1}j−1 −→ [0, 1]. (5)

The training data for each classifier, fj , is the set Sj = {(x1, y1,j), . . . , (xn, yn,j)},
where xi = (xi, yi,1, . . . , yi,j−1); i.e., the features are the description of the in-
stance xi supplemented by the relevance of the labels `1, . . . , `j−1 preceding
`j in the chain and the category is the relevance of the label `j .

In the testing stage, the goal is to perform inference for each instance,
which consists in estimating the risk minimizer for a given loss function over
the estimated entire joint conditional distribution [6]. As already shown, this
means computing Equation (4) when the loss function is the subset 0/1, which
is our case. PCC estimates the entire joint conditional probability, P(y |x), of
Equation (4) using the product rule of probability; i.e., it estimates

P(y |x) =

m∏
j=1

P(yj |x, y1, . . . , yj−1). (6)

Before analyzing this issue in the following section, notice that, according
to Bayes, this expression theoretically holds for any order considered for the
labels. Although these methods are label-order dependent in practice and have
already been studied [13,15], the study of this issue falls beyond the scope of
this paper. Hence, an order is set beforehand (the original one), given that the
aim of the paper is to improve the original ε-approximate algorithm regardless
of the label order considered.

2.2 Inference in Probabilistic Classifier Chains

Several approaches have been proposed for inference in PCC to carry out the
testing stage. As already stated, this task entails obtaining a combination of
labels, y, for a given instance, x, that maximizes the probability, P(y |x).
This task may also be seen as the different ways of exploring a probability
binary tree of depth m. The root of the tree is labelled by the empty set
of labels with a joint probability of 1, whereas each leaf is labelled by one
of the possible combinations of labels (v1, v2, . . . , vm) with vi ∈ {0, 1} for
i=1, . . . ,m, together with the entire joint conditional probability of this com-
bination (notice that a binary tree of depth m has as many leaves as the
number of possible combinations of labels). The intermediate nodes are la-
belled by a partial combination of labels and by the marginal joint conditional
probability. That is, a node of level j <m is labelled by (v1, v2, . . . , vj) with
the probability P(y1 =v1, . . . , yj =vj |x). In turn, the children of this node are
respectively labelled by (v1, v2, . . . , vj , 0) and (v1, v2, . . . , vj , 1) with a respec-
tive marginal joint conditional probability P(y1 = v1, . . . , yj = vj , yj+1=0 |x)
and P(y1 = v1, . . . , yj = vj , yj+1 = 1 |x) (see Figure 1). These marginal joint
conditional probabilities are estimated through the product rule of proba-
bility from the marginal joint conditional probability of their parent and

Improving the ε-approximate Algorithm for Probabilistic Classifier Chains 7

P(yj+1=0|x,y1=v1,…,yj=vj)! P(yj+1=1|x,y1=v1,…,yj=vj)!

(v1,…,vj ,0)!
!

P(y1=v1,…,yj=vj,
yj+1=0|x)!

(v1,…,vj ,1)!
!

P(y1=v1,…,yj=vj,
yj+1=1|x)!

(v1,…,vj)!
!

P(y1=v1,…,yj=vj,
|x)!

Fig. 1 A generic node and its children in the probability binary tree. The top part of each
node contains the combination of labels and the bottom part includes the joint probability
of such a combination. The edges are labelled with the conditional probability.

(0,0,0)
0.024

(0,0,1)
0.056

(0,1,0)
0.096

(0,1,1)
0.224

(1,0,0)
0

(1,0,1)
0.24

(1,1,0)
0.144

(1,1,1)
0.216

(0,0)
0.08

0.3 0.7

(0,1)
0.32

0.3 0.7

(1,0)
0.24

0 1

(1,1)
0.36

0.4 0.6

(0)
0.4

0.2 0.8

(1)
0.6

0.4 0.6

()
1

0.4 0.6

(a) Greedy search

(0,0,0)
0.024

(0,0,1)
0.056

(0,1,0)
0.096

(0,1,1)
0.224

(1,0,0)
0

(1,0,1)
0.24

(1,1,0)
0.144

(1,1,1)
0.216

(0,0)
0.08

0.3 0.7

(0,1)
0.32

0.3 0.7

(1,0)
0.24

0 1

(1,1)
0.36

0.4 0.6

(0)
0.4

0.2 0.8

(1)
0.6

0.4 0.6

()
1

0.4 0.6

(b) Exhaustive search

Fig. 2 Example of the path followed by (a) the original CC (greedy search) and (b) the
original PCC method (exhaustive search) for three labels (m = 3). The dashed arrows
indicate the path followed by the algorithm.

from the conditional probabilities P(yj+1 = 0 |x, y1 = v1, . . . , yj = vj) and
P(yj+1 = 1 |x, y1 = v1, . . . , yj = vj) of the edges between the parent and the
children; i.e., P(y1 = v1, . . . , yj = vj , yj+1 = vj+1 |x) = P(yj+1 = vj+1 |x, y1 =
v1, . . . , yj = vj) · P(y1 = v1, . . . , yj = vj |x). The conditional probabilities of
the edges that joint a node of level j and its children are estimated using the
trained classifiers, fj+1.

Several methods are already available in the literature that address infer-
ence in PCC. The method first proposed was one based on a greedy search
(the original CC method [30,31]), which simply follows one path of the tree,
namely the path with the highest conditional probability. Its successor was the
method based on an exhaustive search (the original PCC method [4]), which
follows all possible paths and takes the one with the highest joint conditional
probability. Figure 2 shows an example for three labels (m = 3) of the path
followed by the original CC (Figure 2(a)), which provides the non-optimal
combination of labels (1, 1, 1) with a joint conditional probability equal to
0.216, and by the original PCC (Figure 2(b)), which provides the optimal

8 Miriam Fdez-Dı́az et al.

combination of labels (1, 0, 1) with a joint conditional probability equal to
0.24. The ε-approximate algorithm [6] subsequently arose as an alternative for
the poor performance of CC and the high computational cost of PCC. It is
a uniform-cost search algorithm that includes a pruning process which can
output optimal predictions in terms of subset 0/1 loss, like the method based
on exhaustive search (PCC), but significantly reducing its computational cost,
like the greedy-search-based method (CC). A more recent approach based on
a beam search [14,15] has been found to behave well both in terms of perfor-
mance and computational cost. It explores only a certain predefined number
of nodes in each level, and depending of this number, called beam width and
denoted by b, it performs an exhaustive search until a certain level of the tree.
In fact, the extreme value of b = 2m means that a complete exhaustive search
is performed. In turn, the extreme value of b = 1 makes this method follow
the same path as the original CC. Its main drawback is that it does not en-
sure optimal predictions for any value 1 < b < 2m. Monte Carlo sampling [6,
27] is an appealing and simpler alternative that randomly explores a certain
number of paths (combinations of labels) drawn using a probability distribu-
tion induced by the trained models, which are finally aggregated to provide
a definitive prediction. This strategy overcomes the high computational cost
of the exhaustive-search-based method, but has the drawback of not ensuring
an optimal combination of labels. Finally, some methods based on a heuristic
search [18,20,21] have recently been proposed. These have theoretically been
shown to provide Bayes-optimal solutions, as they employ admissible1 heuris-
tics for the A* algorithm. Their main drawback, however, is the computational
time spent on computing the heuristic, which, in general, does not compensate
the reduction achieved in the number of nodes explored. This paper focuses on
the ε-approximate algorithm, as it is able to ensure Bayes-optimal predictions
and it has been experimentally shown to obtain them in the fastest way [19,20,
21]. The next section provides details and in-depth analysis of this approach,
since it will be the starting point for the contribution of this paper. The idea
is to provide heuristic information to the ε-approximate algorithm in order to
obtain an even faster algorithm, because the search will be more direct, as it
will be subsequently shown.

3 The ε-approximate algorithm

The ε-approximate algorithm [6] is based on a uniform-cost search, which,
applied to inference in PCC, involves expanding the node with the highest
marginal joint probability. This marginal joint conditional probability for a

1 A heuristic is admissible if it never underestimates the gain of reaching the goal, i.e. the
gain it estimates to reach the goal is not lower than the highest possible gain. This property
means that the A* algorithm ensures an optimal solution.

Improving the ε-approximate Algorithm for Probabilistic Classifier Chains 9

node in the level j for an unlabelled x is

P(y1, . . . , yj |x) =

j∏
i=1

P(yi |x, y1, . . . , yi−1), (7)

where P(yi, |x, y1, . . . , yi−1) is estimated from fi(x, y1, . . . , yi−1).

Algorithm 1 Pseudocode of the ε-approximate algorithm
1: function ε-approximate

Input: x, [W,β] a CC Linear Model, m, and ε ≥ 0
Output: Label combination with highest probability for x

2: WX ←Wx ∗ x // Computes 〈wx,x〉 for all labels
3: Q← {[], 1, 1} // {root node, level, g}
4: K ← ∅ // list of non-survived parents
5: repeat
6: Node←Max(Q) // node in Q with highest g value
7: if Node.Level = m then // Node is a leaf
8: return Node.Labels
9: level← Node.Level + 1

10: P ← 1/(1 + exp(−(WX[level] + β[level] + 〈wy [level], Node.Labels〉)))
11: e left← Node.g ∗ (1− P)
12: if e left ≥ ε then // Left child
13: Insert(Q, {[Node.Labels 0], level, e left})
14: e right← Node.g ∗ P
15: if e right ≥ ε then // Right child
16: Insert(Q, {[Node.Labels 1], level, e right})
17: if e left < ε and e right < ε then
18: Insert(K,Node)

19: until Q = ∅
20: ε← 0
21: repeat
22: Node′ ← pop first element in K
23: LeafProb← GreedySearch(Node′) // apply GS to reach a leaf
24: if LeafProb ≥ ε then
25: Best ← Node′

26: ε← LeafProb

27: until K 6= ∅
28: return Best.Labels

For this purpose, the algorithm maintains a list of candidate nodes to be
expanded, Q, that initially only contains the root node (empty combination of
labels) with a probability equal to 1 (see line 3 of Algorithm 1). The candidate
nodes are expanded in the order established by this probability (see line 6
of Algorithm 1). Once a node is chosen to be expanded, the marginal joint
conditional probability for its children is obtained (see lines 10, 11 and 14 of
Algorithm 1).

The algorithm includes a parameter, ε, which controls the candidate nodes
to be expanded: only those nodes whose marginal joint conditional probabil-
ity, P(y1, . . . , yj |x), is greater than or equal to ε. As ε grows, fewer nodes are

10 Miriam Fdez-Dı́az et al.

expanded, thereby limiting the computational cost of the algorithm. In this re-
spect, if the marginal joint conditional probability of the children exceeds the
value of ε, then these children are added to the list of nodes to be expanded.
So, it could occur that just one of the children is added to the list, both of
them are added to the list or none of them are added to the list (see lines
13 and 16 of Algorithm 1). If this last situation takes place, i.e., none of the
children are added to the list, the node is included in the list of non-survived
parents, K (see line 18). This way of taking a node to be expanded means
the algorithm does not follow a strictly downwards path (it does not just visit
nodes of single branch of the tree), otherwise it may change from one node of
a certain branch to one node of another, different branch, depending on the
marginal joint conditional probabilities. Figures 3 and 4 respectively show two
examples of paths followed by the algorithm when ε = 0 and ε = 0.25 for three
labels (m = 3). In both figures, each node is labelled with the combination of
labels (at the top) and with the marginal joint conditional probability (at the
bottom). Besides, the right arches are labelled with the conditional probability,
P(yi|x, y1, . . . , yi−1), estimated from fi(x, y1, . . . , yi−1) when yi = 1. Analo-
gously, the left arches are labelled with this conditional probability, but when
yi = 0. Notice that a value of ε = 0 means that all nodes are candidates to
be explored, as all nodes have a marginal joint conditional probability greater
than ε = 0. Nonetheless, this does not mean that all nodes are explored, given
that each time the candidate to be explored is always the one with the high-
est marginal joint conditional probability. Moreover, only the nodes with a
marginal joint conditional probability higher than or equal to an optimal leaf
are explored.

Eventually, two situations can arise: i) the expanded node is a leaf, or ii)
there are no more nodes that exceed the threshold, and hence there are no
candidate nodes to be expanded. If the former situation occurs (see Figure 3),
the prediction for the unlabelled instance, x, will be ŷ = (ŷ1, . . . , ŷm), corre-
sponding to the combination of the leaf reached (see line 8 of Algorithm 1).
Conversely, if situation ii) arises (see Figure 4), then a greedy search strategy
is applied to the non-survived nodes; i.e., to those nodes whose children do
not exceed the threshold (see lines from 19 to 25 of Algorithm 1). In this case,
the prediction ŷ = (ŷ1, . . . , ŷm) for the unlabelled instance, x, will be the one
with the highest entire joint conditional probability, P(y1, . . . , ym |x) (see line
26 of Algorithm 1). Notice that if situation ii) arises, the algorithm does not
necessarily expand all nodes, even in the case of ε = 0.

The parameter ε plays an important role in the algorithm. The particular
case of ε = 0 (or any value in the interval [0, 2−m]) is of special interest, as the
algorithm always finds an optimal solution. The fact is that an optimal leaf
has a joint conditional probability equal to or greater than 2−m; so any value
for ε below 2−m does not filter an optimal leaf. The reason that an optimal
leaf has a joint conditional probability equal to or greater than 2−m is because
the arches that joint a node and its two children have probabilities p and
1−p respectively. If one follows a path that always has the highest probability
between p and 1−p, then these highest probabilities are greater than or equal

Improving the ε-approximate Algorithm for Probabilistic Classifier Chains 11

(0,0,0)
0.048

(0,0,1)
0.072

(0,1,0)
0.056

(0,1,1)
0.224

(1,0,0)
0.096

(1,0,1)
0.144

(1,1,0)
0.108

(1,1,1)
0.252

(0,0)
0.12

0.4 0.6

(0,1)
0.28

0.2 0.8

(1,0)
0.24

0.4 0.6

(1,1)
0.36

0.3 0.7

(0)
0.4

0.3 0.7

(1)
0.6

0.4 0.6

()
1

0.4 0.6

Fig. 3 An example of paths followed by ε-approximate algorithm when ε = 0 for three
labels (m = 3). The dotted arrows show the path followed by the algorithm.

to 1/2. Said path leads to a leaf with a joint conditional probability greater
than or equal to 1/2m or, equivalently, 2−m. An optimal leaf may be a leaf with
a probability of 2−m, or at least this value. Figure 3 shows a situation of this
kind, specifically, for the case of ε = 0. In this case, all the nodes are candidates
to be explored, since all of them have a marginal joint conditional probability
greater than ε = 0. First, the right node of the first level (the (1) node) has the
highest probability (0.6); hence it is explored first. Its children (the (1,0) and
(1,1) nodes) have a marginal joint conditional probability (respectively 0.24
and 0.36) lower than their uncle (the (0) node), which has a probability of
0.4. So their uncle is explored before them and then the children of that uncle
are included as candidates to be explored. After that, the child more to the
right in the second level (the (1,1) node) is explored next because it has the
highest marginal joint conditional probability (0.36) among its brother (the
(1,0) node, with a probability of 0.24) and cousins (the (0,0) and (0,1) nodes
with respective probabilities 0.12 and 0.28). The following node to explore
is the right cousin of the (1,1) node (the (0,1) node), with a probability of
0.28, which is higher than the probabilities of its children (the (1,1,0) and the
(1,1,1) nodes with respective probabilities 0.108 and 0.252), the probability of
its brother (the (1,0) node, with probability 0.24) and the probability of its left
cousin (the (0,0) node, with probability 0.12). Finally, the right child of the
right cousin of the (0,1) node (the (1,1,1) node, with a probability of 0.252) is
expanded before the other nodes (the (0,0), (1,0), (0,1,0), (0,1,1) and (1,1,0)
nodes with respective probabilities 0.12, 0.24, 0.056, 0.224 and 0.108) due to

12 Miriam Fdez-Dı́az et al.

(0,0,0)
0.024

(0,0,1)
0.056

(0,1,0)
0.096

(0,1,1)
0.224

(1,0,0)
0

(1,0,1)
0.24

(1,1,0)
0.144

(1,1,1)
0.216

(0,0)
0.08

0.3 0.7

(0,1)
0.32

0.3 0.7

(1,0)
0.24

0 1

(1,1)
0.36

0.4 0.6

(0)
0.4

0.2 0.8

(1)
0.6

0.4 0.6

()
1

0.4 0.6

Fig. 4 An example of paths followed by the ε-approximate algorithm when ε = 0.25 for
three labels (m = 3). The dotted arrows show the path followed by the algorithm.

having the highest probability. This node is already a leaf and, as expected, a
leaf of an optimal solution (which, in this case, is the sole optimal solution).

Conversely, the algorithm tends to be the method based on greedy search
(CC) as ε grows, being the actual greedy search method (CC) in the case of ε =
0.5 (or, equivalently, ε = 2−1). This is so because two situations are possible
in this case: i) only one node has a marginal joint conditional probability
greater than ε, in which case the algorithm follows one path; or ii) no node
has a marginal joint conditional probability greater than ε, in which case a
greedy search is applied from here to the bottom of the tree (given that the
aforementioned latter situation takes place).

Let us now study the intermediate value ε = 0.25 in Figure 4, which can
be considered a value without any loss of generality. This example illustrates
the aforementioned three possible situations: i) both children of the root have
a probability greater than ε, and hence, both will be included in the list of
candidate nodes to be expanded, Q (in fact, both are expanded); ii) they only
have one child whose probability is greater than ε (the right child in both
cases) and hence, the right children of both nodes are included in the list of
candidate nodes to be expanded, Q, and the left children are discarded and
finally, iii) both children of these two right nodes (the ones labelled by (0,1)
and (1,1)) have a probability lower than ε, so they are included in the non-
survival node list, K. Eventually, as there are no more candidate nodes to be
expanded, a greedy search is applied to the last two right nodes included in
the non-survival node list, K (the ones labelled (0,1) and (1,1)). Subsequently,
the solution provided is the combination of labels of the fourth leaf, whose

Improving the ε-approximate Algorithm for Probabilistic Classifier Chains 13

probability is 0.224, as it is greater than the probability of the last leaf, 0.216.
As can be seen, this example also shows that the algorithm may not provide
the optimal solution corresponding to the probability of the sixth leaf, 0.24.

The interpretation of the method for a generic value of ε = 2−k is that the
method ensures a partial optimal solution at least until the k-th level of the
tree. Moreover, the solution remains optimal in levels below the k-th level if
the highest marginal joint conditional probability remains higher than 2−k in
these levels. As a particular case, if this situation persits until reaching a leaf,
then the algorithm obtains an optimal solution. Also notice that the partial
combination of labels which is optimal at least until the k-th level or which
may be optimal until levels below the k-th level can be different from that
of the global optimal solution until such levels, as the global optimal solution
also depends on what happens subsequently. In this respect, from (k + 1)-
th level onwards, if the joint conditional probability of an optimal solution
is greater than ε, then none node is discarded and hence this global optimal
solution is reached. Conversely, if the entire joint conditional probability of
an optimal solution is lower than ε, then there exists a node in the path of
this leaf with a marginal conditional probability lower than ε. If so, this node
will be discarded so that optimal solution will not be obtained. However, if
this situation arises, a greedy search is applied starting at this discarded node.
Therefore, the aforementioned optimal solution is reached if the path followed
by the greedy search from this node coincides with the path leading to that
optimal solution.

Consequently, this algorithm estimates the risk minimizer for the subset
0/1 loss to a greater or lesser extent depending on the value of ε = 2−k.
Moreover, a theoretical analysis of this estimation [6] enables bounding its
goodness as a function of the number of iterations, which in turn depends
on ε. Particularly, and in the same direction followed for the method based
on greedy search (CC), this analysis establishes that this algorithm needs
fewer than O(m2k) iterations to find a prediction that allows upper bounding
the regret, rL(f), of the classifier f by 2−k − 2−m for the subset 0/1 loss
and k ≤ m, once again under the assumption that a perfect estimate of the
joint conditional probability, P (y |x), is obtained. Hence, if the probability
distribution for which the entire joint mode has a probability mass greater than
2−k, then the algorithm needs fewer than m2k iterations to find a prediction
that corresponds to this mode. Note that the particular case of ε = 0 (or
k = m) makes the bound becomes 0.

4 The improved ε-approximate algorithm

The methods based on uniform-cost search, such as the ε-approximate algo-
rithm, only consider already known information, disregarding other informa-
tion susceptible to being exploited. In terms of search algorithms, this means
that for a certain node, only information on the path from the root to the node
(the known path) is taken and information on the path from the node to a leaf

14 Miriam Fdez-Dı́az et al.

(the unknown path) is ignored, leading to a non-informed search strategy. Un-
like this kind of search, informed search methods, such as the well-known A*
algorithm, consider the unknown information via a heuristic. Methods of this
kind have already been studied for performing inference in PCC [18,20,21],
demonstrating their power when the inference is not highly direct. However,
the computational time spent on calculating the heuristic does not offset the
reduction in the number of nodes explored when the inference is highly direct.
This is the reason why the ε-approximate algorithm can be considered the best
alternative for inference in PCC so far. The contribution of the present paper
is to transform the ε-approximate algorithm into an informed search method
in order to find optimal solutions in a more direct way (avoiding unnecessary
backtracking). For this purpose, a heuristic able to provide information for a
certain node to a leaf is included in the original ε-approximate algorithm. At
the same time, however, the resulting method must be fast enough to avoid
the drawbacks of the heuristics designed for A* [18,20,21], whose computation
slows down the A* algorithm.

Formally, the idea is to provide an estimation of the entire joint conditional
probability of a solution closer to the actual value, which is given by the prod-
uct rule of probability theory (Equation (6)). The fact is that only some terms
in Equation (6) can be estimated, whereas the proposal for the others consists
in obtaining an upper bound as close as possible to the actual value. In this
respect, the ε-approximate algorithm computes the marginal joint conditional
probability of the labels from `1 to `j (see Equation (7)) and upper bounds
the marginal joint conditional probability of the labels from `j+1 to `m by 1,
that is

P(y |x) =

m∏
i=1

P(yi |x, y1, . . . , yi−1)

=

j∏
i=1

P(yi |x, y1, . . . , yi−1) ·
m∏

i=j+1

P(yi |x, y1, . . . , yi−1)

≤
j∏

i=1

P(yi |x, y1, . . . , yi−1) ·
m∏

i=j+1

1 =

j∏
i=1

P(yi |x, y1, . . . , yi−1). (8)

Although ε-approximate is an appealing approach, the upper bound of 1 for
the probabilities from the labels `j+1 to `m is quite clumsy, as any probability
is upper bounded by 1. The proposal of this paper is to obtain a tighter
bound; i.e. one as close as possible to the actual value. Hence, let us now
focus on obtaining a fast-to-compute bound for the conditional probability,
P(yi |x, y1, . . . , yi−1), for j + 1 ≤ i ≤ m.

Improving the ε-approximate Algorithm for Probabilistic Classifier Chains 15

4.1 The maximum as a bound

Before continuing, let us recall that the values for labels `1, . . . , `j are known.
Hence, a straightforward bound for the conditional probability P(yi |x, y1, . . . ,
yi−1) (or, equivalently, P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1), expanding the ex-
pression for j) can be the maximum value this probability reaches when the
combination of labels from `j+1 to `i−1 varies, that is

P(yi |x, y1,. . ., yj , yj+1,. . ., yi−1) ≤ max
(yj+1,...,yi−1)

∈{0,1}i−1−j

P(yi |x, y1,. . ., yj , yj+1,. . ., yi−1). (9)

Since it is quite common to employ logistic regression for the models, fi, in
PCC in order to generate probabilities, the expression of the conditional proba-
bility P(yi |x, y1,. . ., yj , yj+1,. . ., yi−1) from the model fi(x, y1,. . ., yj , yj+1,. . ., yi−1)
is

P(yi|x, y1,. . ., yj , yj+1,. . ., yi−1)=

{
1

1+e−fi(x,y1,...,yj ,yj+1,...,yi−1) if yi=1

1− 1

1+e−fi(x,y1,...,yj ,yj+1,...,yi−1) if yi=0,
(10)

where it can be seen that

– Each conditional probability P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1) is estimated
by means of the model fi(x, y1, . . . , yj , yj+1, . . . , yi−1) and a sigmoid func-
tion.

– The expression for P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1) is a piecewise func-
tion and differs depending on the value that the label `i takes. Hence, the
maximum over the labels `j+1, . . . , `i−1 must be computed under both as-
sumptions; i.e., the assumption of the label `i is present (yi = 1) and the
assumption of the label `i is absent (yi = 0).

Therefore, taking into account these two points, especially the expression of
P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1) in Equation (10), computing the maximum of
P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1) over the labels `j+1, . . . , `i−1 can be reduced
to estimating the maximum and minimum of fi(x, y1, . . . , yj , yj+1, . . . , yi−1)
over the labels `j+1, . . . , `i−1. Specifically,

i) if the label `i is present (yi = 1), then, the probability P(yi |x, y1, . . . , yj ,
yj+1, . . . , yi−1) will be maximum over the labels `j+1, . . . , `i−1 if fi(x, y1, . . . ,
yj , yj+1, . . . , yi−1) is maximum over the labels `j+1, . . . , `i−1 (see the defi-
nition of P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1), where yi = 1 in Equation (10))
and

ii) if the label `i is absent (yi = 0), then, the probability P(yi |x, y1, . . . , yj ,
yj+1, . . . , yi−1) will be maximum over the labels `j+1, . . . , `i−1 if fi(x, y1, . . . ,
yj , yj+1, . . . , yi−1) is minimum over the labels `j+1, . . . , `i−1 (see the defi-
nition of P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1), where yi = 0 in Equation (10))
.

The following subsection addresses the computation of these maximum and
minimum of fi(x, y1, . . . , yj , yj+1, . . . , yi−1), for which the assumption of each
model fi(x, y1, . . . , yj , yj+1, . . . , yi−1) being linear is stated.

16 Miriam Fdez-Dı́az et al.

4.2 Assuming linearity

Inspired by the deduction employed in the heuristic for A* [18,20] and in order
to compute the maximum and minimum of fi(x, y1, . . . , yj , yj+1, . . . , yi−1) over
the labels `j+1, . . . , `i−1, let us continue under the assumption that fi(x, y1,
. . . , yj , yj+1, . . . , yi−1) is a linear model. In this case, the expression of fi(x, y1,
. . . , yj , yj+1, . . . , yi−1) can be written (already split into the labels from `i to
`j and from `j+1 to `i−1) as

fi(x, y1, . . . , yj , yj+1, . . . , yi−1) = 〈wi
x,x〉+

j∑
k=1

wi
y,kyk +

i−1∑
k=j+1

wi
y,kyk +βi, (11)

or, equivalently,

fi(x, y1, . . . , yj , yj+1, . . . , yi−1) = Ci(x, y1, . . . , yj) + gi(yj+1, . . . , yi−1), (12)

where Ci can be considered as constant, since the maximum and the minimum
values are simply computed over the labels `j+1, . . . , `i−1; that is,

Ci(x, y1, . . . , yj) = 〈wi
x,x〉+

j∑
k=1

wi
y,kyk + βi. (13)

and gi is the function from which the maximum and minimum must be ob-
tained; that is,

gi(yj+1, . . . , yi−1) =

i−1∑
k=j+1

wi
y,kyk. (14)

Now, in order to compute the maximum and the minimum values of gi when
the aforementioned two situations occur, namely when yi = 1 and when yi = 0,
let us respectively denote by K+

i,j and K−i,j the positive and negative indexes

of the coefficients wi
y,k with j + 1 ≤ k ≤ i− 1; that is,

K+
i,j = {k | j + 1 ≤ k ≤ i− 1, wi

y,k ≥ 0}
K−i,j = {k | j + 1 ≤ k ≤ i− 1, wi

y,k < 0}. (15)

Thus, gi is maximum when yk for j + 1 ≤ k ≤ i− 1 are

yk =

{
1 if k ∈ K+

i,j

0 if k ∈ K−i,j ,
(16)

and gi is minimum when yk for j + 1 ≤ k ≤ i− 1 are

yk =

{
1 if k ∈ K−i,j
0 if k ∈ K+

i,j .
(17)

Hence,

Improving the ε-approximate Algorithm for Probabilistic Classifier Chains 17

i) Let yi,1j+1, . . . , y
i,1
i−1 ∈ {0, 1} be the values of Equation (16) that maximize gi,

i.e., the values that maximize fi(x, y1, . . . , yj , yj+1, . . . , yi−1) when yi = 1
(see the superindex 1 in these values), and hence the values which make
P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1) be maximum when yi = 1 and

ii) Let yi,0j+1, . . . , y
i,0
i−1 ∈ {0, 1} be the values of Equation (17) that minimize gi,

i.e., the values that minimize fi(x, y1, . . . , yj , yj+1, . . . , yi−1) when yi = 0
(see the superindex 0 in these values), and hence, the values which make
P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1) be maximum when yi = 0.

Thus, max(yj+1,...,yi−1)

∈{0,1}i−1−j

P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1) in Equation (9) will be

max
v∈{0,1}

P(yi = v |x, y1, . . . , yj , yi,vj+1, . . . , y
i,v
i−1), (18)

and hence Equation (9) becomes

P(yi |x, y1,..., yj , yj+1,..., yi−1) ≤max
v∈{0,1}

P(yi =v |x, y1,..., yj , yi,vj+1,..., y
i,v
i−1). (19)

According to Equation (10), which that involves the sigmoid function,
P(yi |x, y1,. . ., yj , yi,vj+1,. . ., y

i,v
i−1) reaches the maximum over the labels `j+1, . . . , `i−1

when yi = 1 if

fi(x, y1,. . ., yj , y
i,1
j+1,. . ., y

i,1
i−1) ≥ 1− fi(x, y1,. . ., yj , yi,0j+1,. . ., y

i,0
i−1), (20)

and it reaches the maximum over the same labels when yi = 0, otherwise. No-
tice that the values of yj+1, · · · , yi−1 differ if P(yi |x, y1, . . ., yj , yj+1,. . ., yi−1)
reaches the maximum when yi = 1 or if P(yi |x, y1, . . ., yj , yj+1,. . ., yi−1)
reaches the maximum when yi = 0. In fact, these values are complementary
to each other; i.e. yi,1k = 1−yi,0k ∈ [0, 1] for j+1 ≤ k ≤ i−1 (see Equations (16)
and (17)). This is so thanks to the assumption of fi(x, y1, . . . , yj , yj+1, . . . , yi−1)
being linear (see Equation (14)).

Therefore, the bound in Equation (8) of the entire joint conditional prob-
ability for the improved ε-approximate algorithm will be

P(y |x) =

m∏
j=1

P(yj |x, y1, . . . , yj−1)

≤
j∏

i=1

P(yi |x, y1, . . . , yi−1) ·

m∏
i=j+1

max
v∈{0,1}

P(yi = v |x, y1, . . . , yj , yi,vj+1, . . . , y
i,v
i−1). (21)

In view of Equation (21), the computation of the unknown part (the part
that involves labels from `j+1 to `m for which the maximum must be computed
to obtain a bound) is expected to be considerably fast, since, given x, it suffices
to obtain the maximums for all levels once, at the beginning of the inference.

18 Miriam Fdez-Dı́az et al.

(0,0,0)

(0,0,1)

(0,1,0)

(0,1,1)

(1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

(0,0)

0.4 0.6

(0,1)

0.2 0.8

(1,0)

0.4 0.6

(1,1)

0.3 0.7

(0)

0.3 0.7

(1)

0.4 0.6

()

0.4 0.6
1 | .336

.6 | .336 .4 | .224

.12 | .096 .28 | .224 .24 | .192 .36 | .288

.252 | .252 .224 | .224 .108 | .108 .144 | .144 .072 | .072 .048 | .048 .056 | .056 .096 | .096

Fig. 5 An example of paths followed by the improved ε-approximate algorithm when ε = 0
for three labels (m = 3). The dotted arrows show the path followed by the algorithm.

In fact, the cost of computing the maximum values shown in Equation (21)
is of the order of m2. This is so because there are m models (one per level)
for which the respective maximum must be computed. In turn, for each model
and due to the assumption of linearity, it suffices to decide the values for the
m labels according to Equations (15), (16) and (17).

This bound for the unknown part (the part that involves labels from `j+1

to `m) presents similarities with the heuristic proposed for A* [18,20]. The
difference lies in the way it is computed. The heuristic for A* evaluates the
maximum for each node to be expanded only considering the nodes of the
subtree of this node. Here, however, the maximum is computed beforehand,
just before starting to explore the whole tree. Hence, the estimation of the
maximum in the case of A* is more accurate, which makes the heuristic more
dominant2. Hence, A* will explore fewer nodes than the proposed algorithm.
The ε-approximate algorithm goes to the other extreme, as it uses the bound
of 1; i.e., the highest possible bound dealing with probabilities. Consequently,
the proposed algorithm is situated somewhere between the A* and the ε-
approximate algorithms. Hence, it is expected to take the property of A* of
exploring few nodes and the property of the ε-approximate algorithm of being
fast.

2 A heuristic is more dominant than another heuristic if it estimates the gain of reaching
the goal closer to the actual value. A consequence of this property is that it makes the former
algorithm explore fewer nodes than the latter.

Improving the ε-approximate Algorithm for Probabilistic Classifier Chains 19

Algorithm 2 Pseudocode of the improved version of the ε-approximate algo-
rithm
1: function Imp-ε-approximate

Input: x, [W,β] a CC Linear Model, m, and ε ≥ 0
Output: Label combination with highest probability for x

2: WX ←Wx ∗ x // Computes 〈wx,x〉 for all labels
3: LevelHighProb← 1m+1 // vector of m+ 1 ones
4: for label = [m : −1 : 2] do // No label attributes in the 1st model
5: y+ ← [[wy [label] >= 0]]
6: P+ ← 1/(1 + exp(−(WX[label] + β[label] + 〈wy [label], y+〉)))
7: y− ← [[wy [label] < 0]]
8: P− ← 1/(1 + exp(−(WX[label] + β[label] + 〈wy [label], y−〉)))
9: LevelHighProb(label)← max(P+, P−) ∗ LevelHighProb(label + 1)

10: Q← {[], 1, 1, LevelHighProb(1)} // {(root node, level, g, e}
11: K ← ∅ // list of non-survived parents
12: repeat
13: Node←Max(Q) // node in Q with highest e value
14: if Node.Level = m then // Node is a leaf
15: return Node.Labels
16: level← Node.Level + 1
17: P ← 1/(1 + exp(−(WX[level] + β[level] + 〈wy [level], Node.Labels〉)))
18: e left← Node.g ∗ (1− P) ∗ LevelHighProb(level)
19: if e left ≥ ε then // Left child
20: Insert(Q, {[Node.Labels 0], level,Node.g ∗ (1− P), e left})
21: e right← Node.g ∗ P ∗ LevelHighProb(level)
22: if e right ≥ ε then // Right child
23: Insert(Q, {[Node.Labels 1], level,Node.g ∗ P, e right})
24: if e left < ε and e right < ε then
25: Insert(K,Node)

26: until Q = ∅
27: ε← 0
28: repeat
29: Node′ ← pop first element in K
30: LeafProb← GreedySearch(Node′) // apply GS to reach a leaf
31: if LeafProb ≥ ε then
32: Best ← Node′

33: ε← LeafProb

34: until K 6= ∅
35: return Best.Labels

4.3 Theoretical analysis

Let us now compare the original and the improved version of the ε-approximate
algorithm both theoretically and graphically. This means comparing the bound
in Equation (8) that the original version of the ε-approximate algorithm takes
and the bound in Equation (21), deduced above, that the improved version
of the algorithm will take. It is clear that, the bound of the improved ε-
approximate algorithm is more in line with the actual entire joint conditional
probability than that of the ε-approximate algorithm. This is so because it is
closer to it, as any probability is upper bounded by 1. For this reason, it may
be stated that the improved ε-approximate algorithm follows a more direct

20 Miriam Fdez-Dı́az et al.

path not only when it ensures a Bayes-optimal solution (ε = 0), but also for
any value of ε ≥ 0, as it is proved in the following theorem:

Theorem 1 The improved ε-approximate algorithm always expands fewer than
or an equal number of nodes to the original ε-approximate algorithm whatever
the value of ε.

Proof Let us first provide the proof for the particular case of ε = 0. In this
case, it is clear that the successive probabilities of the nodes that are chosen
to be expanded decrease from the root node (the first node expanded) to
an optimal solution of a leaf. Given that the probabilities provided by the
improved ε-approximate algorithm are always lower than those provided by
the original version of the algorithm, it is not possible for a node expanded
by the improved version not be also expanded by the original version. This is
so due to using the maximum as an heuristic, which is more informative than
the heuristic of the constant 1. Hence, the original version expands at least
the same number of nodes as the improved version and usually more.

Let us now generalize the proof for any value of ε. The difference lies
in the existence of non-survival nodes, in whose case a leaf is not reached
and it is necessary to apply a greedy search to the non-survival nodes. If the
improved version of the algorithm explores more nodes than the original one,
this is because the improved version generates more non-survival nodes than
the original version. In this case, if the improved version has to perform a
greedy search for a certain node, then the original version also has to do so
for the same node or for some of its descendants, as there will be at least one
descendant whose probability does not reach the ε value. This is true because
the marginal joint probability for a node computed by the improved version
is always greater than or equal to the actual marginal joint probability of the
descendants of such a node. Thus, it is certain that at least all the leaves of
the corresponding subtree have a joint probability less than ε. If the greedy
search applied to that node entails exploring more nodes than the greedy
search applied to any descendant, this will be offset at least by the expansion
of the nodes on the path from the node to the descendant, since all of them
will have a probability greater than ε. ut

Figure 5 shows the path followed by the improved ε-approximate algorithm
when ε = 0 for the same example in Figure 3, which shows the path followed
by the original ε-approximate algorithm. The bottom of each node is labelled
by the marginal joint conditional probability on the left (the known part of
the path, which is the information taken by the ε-approximate algorithm) and
by the estimated entire joint conditional probability (both the known and
unknown parts of the path, see Equation (21)) on the right. Notice in this
respect that the maximum conditional probabilities estimated by the models
fi for the first, second and third levels are respectively 0.6, 0.7 and 0.8. Hence,
the improved ε-approximate algorithm upper bounds the unknown part of the
root node by the product of these values; i.e., by 0.6 · 0.7 · 0.8 = 0.336, which,
multiplied by the known part (equal to 1), leads to 0.336. The known part

Improving the ε-approximate Algorithm for Probabilistic Classifier Chains 21

of the first-level nodes are 0.4 for the left node and 0.6 for the right node,
while the unknown part is upper bounded by the product of the maximum
probabilities of the second and third levels; i.e., by 0.7 · 0.8 = 0.56. Hence,
the left and right nodes of this level are respectively labelled on the bottom-
right by 0.4 · 0.56 = 0.224 and 0.6 · 0.56 = 0.336. Analogously, the unknown
part of the second-level nodes is upper bounded by 0.8, so the bottom-right
of the nodes of this level is labelled by the product of 0.8 and the respective
bottom-left value, which is the known part. Finally, all the information of the
nodes on the last level (the leaves) is known. As expected, the path followed
by the improved ε-approximate algorithm is more direct than that followed
by the original ε-approximate algorithm. The reason is that the probabilities
to decide that a node is expanded in the improved version are closer to the
actual values and so are lower than those of the probabilities taken in the
original version of the algorithm. This example for ε = 0 suggests that the
original version may find a better solution, as it may perform a greedy search
over more nodes. It is true that these nodes may not be the most promising
ones, but the possibility exists that they may lead to a leaf with a higher
joint conditional probability. Furthermore, the improved version may provide
a solution of the same quality or even better with an equivalent computational
cost, simply decreasing the value of ε.

4.4 Implementation details

Obviously, the improved ε-approximate algorithm requires more calculations
than the original ε-approximate algorithm, which only uses the unit constant
to bound the conditional probability. Fortunately, most of the computations,
especially the hardest ones, can be calculated beforehand. On the one hand,
the labels whose values of wi

y,k are positive (K+
i,j) or negative (K−i,j) are pre-

viously computed (see lines 5 and 7 of Algorithm 2). On the other hand,
the maximum conditional probabilities, P(yi |x, y1, . . . , yj , yi,vj+1, . . . , y

i,v
i−1), for

v = 1 (when yi = 1) and for v = 0 (when yi = 0) over the values of the labels
from `j+1 to `i−1 for all i = 1, . . . ,m are obtained (see lines 6 and 8 of Al-
gorithm 2). Finally, the maximum among these two probabilities is computed
and accumulated in order to compute the entire joint conditional probability
(see line 9 of Algorithm 2). The rest of the algorithm works just like the orig-
inal ε-approximate algorithm does. It only differs from it when the value of
the probability of the left and right children of the node susceptible to being
expanded is computed. In this case, the improved ε-approximate algorithm
makes use of the previously calculated probabilities (see lines 18 and 21 of
Algorithm 2) and computes and additional product. Subsequently, it will be
checked in the experiments whether the additional calculations that need to
be computed in the improved version of the algorithm offset the savings of
following a more direct path in the search for a solution.

22 Miriam Fdez-Dı́az et al.

5 Experiments

The experiments carried out have the goal of empirically confirming the the-
oretically promising properties of the improved version of the ε-approximate
algorithm versus the original version. In addition, the study includes an anal-
ysis of whether the reduction in the number of nodes explored in the improved
version offsets the time spent on computing the heuristic.

The ε-approximation algorithm is a benchmark method for inference in
PCC that has been exhaustively compared with other state-of-the-art inference
methods [19,20,21], proving to be one of the best options so far. Specifically,
it has been compared with greedy search, beam search, Monte Carlo sam-
pling and heuristic search by A*. Although this paper focuses on providing an
improved version of the ε-approximation algorithm, the results obtained for
these state-of-the-art methods are also shown. In case of A*, only the results
of the algorithm with the most dominant admissible heuristic existing so far
for inference in PCC, called h∞, is presented as benchmark [20]. The already
existing families of admissible heuristics [20,21] subsequently arose due to the
excessive time spent on computing the h∞ heuristic. These families include a
parameter that controls the trade-off between the number of nodes explored
and the computational time spent on evaluating the heuristic.

As deduced above, the improved ε-approximate algorithm has been limited
to linear base models. Hence, logistic regression with probabilistic output [16]
was used to build the binary classifiers, fi, for all the methods. Only the
regularization parameter, C, was optimized. This was done using a grid search
over the values of C ∈ {10−3, 10−2, . . . , 102, 103} using the Brier Loss score
[1] as the target function estimated via a 2-fold cross validation with five
repetitions. The Brier Loss [1] is a proper score that measures the accuracy
of probabilistic predictions, as logistic regression does. The expression is as
follows

1

n

n∑
i=1

(p̂i − ai)2, (22)

where, for an instance i, pi is the predicted probability of a certain label and
ai is the actual value of the label (0 or 1).

The experiments were performed over the same benchmark multi-label
datasets as in previous studies [19,20,21]. The main properties of all these
datasets are shown in Table 1. As can be seen, there are differences in the
number of attributes, instances and labels. The cardinality—the average num-
ber of labels per instance—varies from 1.07 to 4.27. As to the number of labels,
there are some datasets with just 5, 6 or 7 labels, whereas others have more
than 100 and one of them even has almost 400 labels.

Table 2 shows the subset 0/1 loss for the improved ε-approximate algo-
rithm (Imp-ε-A), the original ε-approximate algorithm (ε-A) with different
values of ε (0, 0.25 and 0.5), the A* algorithm with h∞ (A*(h∞)), greedy
search (GS), beam search (BS) with different values of the beam (1, 2, 3, and
10) and Monte Carlos sampling (MC) with different values of the sample (10,

Improving the ε-approximate Algorithm for Probabilistic Classifier Chains 23

Table 1 Properties of the datasets

Datasets Instances Attributes Labels Cardinality
bibtex 7395 1836 159 2.40
corel5k 5000 499 374 3.52
emotions 593 72 6 1.87
enron 1702 1001 53 3.38
flags 194 19 7 3.39
image 2000 135 5 1.24
mediamill* 5000 120 101 4.27
medical 978 1449 45 1.25
reuters 7119 243 7 1.24
scene 2407 294 6 1.07
slashdot 3782 1079 22 1.18
yeast 2417 103 14 4.24

Table 2 Subset 0/1 loss. The first column corresponds to the methods that theoretically
ensure an optimal solution. Those scores that are equal to or better than the optimal pre-
dictions obtained by Imp-ε-A, ε-A (both with ε = 0) and A*(h∞) are shown in bold.

Datasets
Imp-ε-A(.0) Imp-ε-A(.25) Imp-ε-A(.5) BS BS BS MC MC MC
ε-A(.0) ε-A(.25) ε-A(.5) (2) (3) (10) (10) (50) (100)
A*(h∞) GS/BS(1)

bibtex 81.92 81.95 82.19 81.88 81.92 81.92 84.02 82.85 82.46
corel5k 97.48 98.62 98.90 98.30 98.04 97.48 99.64 98.98 98.26
emotions 71.16 71.82 72.83 72.16 71.32 71.16 80.77 73.68 73.84
enron 83.14 84.26 85.43 83.43 83.37 83.14 92.95 85.90 84.61
flags 87.13 87.16 86.13 88.21 87.13 87.13 96.39 91.21 89.24
image 68.35 68.35 69.75 68.35 68.35 68.35 69.20 65.25 62.65
mediamill* 83.86 84.58 85.80 84.10 83.86 83.86 90.90 85.88 84.88
medical 30.37 30.37 30.67 30.37 30.37 30.37 31.19 30.16 30.67
reuters 22.73 22.70 23.60 22.69 22.73 22.73 25.37 23.18 22.83
scene 31.86 31.86 33.28 31.90 31.86 31.86 33.53 30.28 29.70
slashdot 51.80 52.22 54.49 51.77 51.80 51.80 56.45 52.96 52.70
yeast 76.95 77.62 79.77 76.83 77.08 76.95 85.52 79.93 77.62

50 and 100). The first column corresponds to the methods that theoretically
ensure Bayes-optimal solutions (Imp-ε-A and ε-A with ε = 0 and A*(h∞)),
highlighted in bold. Those scores that are equal to or better than the optimal
predictions reached by Imp-ε-A, ε-A (both with ε = 0) and A*(h∞) are like-
wise shown in bold. It is a fact that some methods do not guarantee an optimal
label combination (e.g. BS and MC). Hence, they may predict another label
combination with a lower joint conditional probability than the optimal joint
conditional probability. However, they may possible provide better subset 0/1
scores for certain testing samples. This is due to a number of reasons, mainly
a) the relatively small size of the testing sample from which it is not possible to
perfectly estimate the subset 0/1 loss because it does not perfectly represent
the population, and b) the models, fi, obtained to estimate the joint condi-
tional probability, P (y |x), do not usually return actual estimations, because
they are obtained from a training sample that may not perfectly represent the
population. Theoretically, under perfect conditions (large test sets and per-
fect models), Imp-ε-A and ε-A with ε = 0 and A* with admissible heuristics
would obtain the best scores. In general, the performance of Imp-ε-A and ε-

24 Miriam Fdez-Dı́az et al.

A decreases as the value of ε increases, the performance of the BS method
increases as the value of the beam increases, and the performance of MC im-
proves as the size of the sample grows.

Focusing now on the Imp-ε-A and ε-A algorithms, both provide an optimal
solution for ε = 0, which is the case of the greatest interest. For a value ε > 0,
the solutions may differ. This is because the improved version uses a more
informative heuristic, which ensures exploring fewer nodes than the original
version. Hence, the original version may explore more solutions, applying the
final greedy search step to a higher number of nodes and, in such cases, it could
sometimes perform better than the improved version. However, the same result
can be achieved using the improved version with a lower value of ε. Thus, it
is meaningless to compare the performance of both when ε > 0, because it is
always true that the improved version needs to explore fewer nodes than the
original one to achieve the same level of performance. Notice that this is all
simply a consequence of Theorem 1.

Table 3 Average number of explored nodes (top) and prediction time in milliseconds (bot-
tom) averaged per instance. The table was split in three groups of columns: the first one
refers to Imp-ε-A and ε-A, both with ε = 0 together with A*(h∞) (those that obtain opti-
mal solutions); the second one reports the scores for Imp-ε-A and ε-A, both with ε = 0.25,
and the last one shows the scores for Imp-ε-A and ε-A, both with ε = 0.5 (in fact, for this
value, both methods are the same algorithm). The best scores within the same group are
highlighted in bold. In addition, the rank for both the number of nodes explored and the
computational time, though only comparing Imp-ε-A and ε-A with the same value of ε is
shown in brackets. The averaged rank for all datasets is also shown in brackets.

Dataset A*(h∞) Imp-ε-A(.0) ε-A(.0) Imp-ε-A(.25) ε-A(.25)
Imp-ε-A(.5)

ε-A(.5)
bibtex (159) 215.91 278.04 (1) 289.27 (2) 181.53 (1) 184.00 (2) 160
corel5k (374) 1338.62 1470.83 (1) 1474.17 (2) 437.47 (1) 517.11 (2) 375
emotions (6) 7.68 9.66 (1) 10.67 (2) 8.19 (1) 10.78 (2) 7
enron (53) 75.51 109.07 (1) 114.81 (2) 69.29 (1) 77.29 (2) 54
flags (7) 8.79 10.53 (1) 22.56 (2) 8.00 (1) 16.33 (2) 8
image (5) 6.11 6.32 (1) 7.33 (2) 6.15 (1) 7.66 (2) 6
mediamill *(101) 178.89 191.68 (1) 191.76 (2) 142.22 (1) 142.37 (2) 102
medical (45) 46.40 46.60 (1) 46.64 (2) 46.61 (1) 46.65 (2) 46
reuters (7) 8.13 8.24 (1.5) 8.24 (1.5) 8.25 (1) 8.26 (2) 8
scene (6) 7.15 7.25 (1.5) 7.25 (1.5) 7.25 (1.5) 7.25 (1.5) 7
slashdot (22) 24.84 25.28 (1) 25.29 (2) 24.87 (1) 24.89 (2) 23
yeast (14) 21.01 25.48 (1) 26.09 (2) 24.32 (1) 26.02 (2) 25
avg. rank (1.08) (1.92) (1.04) (1.96)
bibtex (159) 840.75 15.98 (1) 16.20 (2) 9.90 (1) 9.91 (2) 6.77
corel5k (374) 23834.37 135.91 (1) 136.00 (2) 15.79 (1) 16.06 (2) 16.62
emotions (6) 1.06 0.60 (1) 0.63 (2) 0.51 (1) 0.56 (2) 0.29
enron (53) 108.38 7.06 (1) 7.19 (2) 2.96 (1) 2.98 (2) 2.21
flags (7) 1.48 0.98 (1) 1.19 (2) 0.54 (1) 0.72 (2) 0.32
image (5) 0.71 0.43 (1) 0.47 (2) 0.42 (1) 0.46 (2) 0.25
mediamill* (101) 484.70 11.61 (2) 11.52 (1) 5.56 (2) 5.54 (1) 4.07
medical (45) 49.46 2.70 (1.5) 2.70 (1.5) 2.67 (2) 2.66 (1) 1.89
reuters (7) 1.31 0.51 (1.5) 0.51 (1.5) 0.51 (1.5) 0.51 (1.5) 0.33
scene (6) 0.98 0.46 (1.5) 0.46 (1.5) 0.46 (2) 0.45 (1) 0.29
slashdot (22) 12.42 1.47 (1) 1.49 (2) 1.43 (1.5) 1.43 (1.5) 0.93
yeast (14) 7.47 1.47 (1.5) 1.47 (1.5) 1.03 (1) 1.04 (2) 0.60
avg. rank (1.25) (1.75) (1.33) (1.67)

Improving the ε-approximate Algorithm for Probabilistic Classifier Chains 25

Table 4 Pairs of methods with significant differences according to Bergmann-Hommel’s
test at a level of significance of 90% or 99%

Number of nodes explored Computational time
Imp-ε-A(0) � ε-A(0) 99% 90%

Imp-ε-A(0.25) � ε-A(0.25) 99% —

Table 3 shows the number of nodes explored together with the time spent
on the inference process, measured in milliseconds averaged per instance. The
table was split into three groups of columns: the first one refers to Imp-ε-A
and ε-A both with ε = 0 together with A*(h∞) (those that reach optimal
solutions); the second one reports the scores for Imp-ε-A and ε-A, both with
ε = 0.25; and the last one shows the scores for Imp-ε-A and ε-A, both with
ε = 0.5 (in fact, for this value, both methods are the same algorithm). The
best scores within the same group are highlighted in bold. For the case of
ε = 0.5 (GS and BS(1)), both algorithms are clearly the fastest methods
and the ones which explore the least number of nodes (only exploring the
number of labels plus one nodes). However, they do so at the cost of failing
in performance, since, in fact, there is not guarantee that they will obtain
optimal solutions (see Table 2). In this respect, the number of nodes and the
inference process time for BS and MC are not given because their respective
values soar, especially for high values of their respective parameters, or at
least for values needed to achieve accurate performance [19]. Besides, as stated
before, both methods do not ensure optimal solutions. However, the number
of nodes explored and the inference process time for A*(h∞) is reported as a
benchmark of the heuristic search methods. It ensures optimal solutions, as the
heuristic h∞ is admissible, and the method clearly explores the least number
of nodes among the methods that ensure reaching optimal solutions, but it
clearly reports the worst computational time, as stated previously, because of
the time spent on computing the heuristic.

As to Imp-ε-A and ε-A, Table 3 also reports the rank concerning the number
of nodes explored and the computational time, though only for these two
methods, as they are the target methods of the paper. The averaged rank for
all datasets is also shown. All the ranks are shown in brackets. Furthermore,
Table 4 shows the Bergmann-Hommel procedure, which is one of the most
powerful among existing tests [9], once again only for Imp-ε-A and ε-A for
being the target of the paper. As was expected in theory, the Imp-ε-A always
expands fewer nodes than ε-A for the same value of ε, or at least an equal
number of nodes. The differences are not so high in general, but sufficient to
obtain a lower averaged rank and to be statistically significant even at level
of significance of 99% and for the two values of ε = 0 and ε = 0.25. Especially
worth noting is the result obtained for the flags dataset, whose number of
nodes is reduced by half. In fact, the number of nodes explored almost reaches
the depth of the tree using Imp-ε-A. This fact leads us to think that most
of the arches with the maximum probability in each level (the heuristic is

26 Miriam Fdez-Dı́az et al.

calculated from these probabilities) belong to a path that leads to an optimal
solution. Curiously, the computational time is always slightly lower for most
datasets (or even equal in some situations) for Imp-ε-A, despite the fact it
needs to compute the heuristic. Hence, the hypothesis of the heuristic of being
considerably fast to compute is also empirically verified. Only some exceptions
appear in scene and medical for ε = 0.25 and in mediamill for both values,
although the differences are barely perceptible. In any case, the averaged rank
for the computational time is lower for the improved version for both values
of ε. However, only for ε = 0 it is statistically significant and just at the 90%
of significance level.

Ti
m

e
re

du
ct

io
n

−0.10

−0.05

0

0.05

0.10

0.15

0.20

0.25

Node reduction
0 2 4 6 8 10 12

(a) ε = 0

Ti
m

e
re

du
ct

io
n

−0.05

0

0.05

0.10

0.15

0.20

0.25

0.30

Node reduction
0 20 40 60 80

(b) ε = 0.25
Fig. 6 Reduction in the number of nodes versus reduction in computational time of Imp-ε-A
with regard to ε-A.

Figure 6 presents the reduction in the number of nodes versus the reduction
in computational time of Imp-ε-A with regard to ε-A for ε = 0 (Figure 6(a))
and for ε = 0.25 (Figure 6(b)). There is clearly a direct relation between the
reduction in the number of nodes explored and computational time. It can
also be seen that as the value of ε increases, the points on the graph tend to
be concentrated at the (0, 0) point (recall that for ε = 0.5, both algorithms
are identical).

Given that the differences between Imp-ε-A and ε-A are not so high and
that the number of nodes in most cases are close to the depth of the tree, some
experiments including noise in the datasets were carried out to achieve a more
in-depth analysis of the power of the Imp-ε-A for inference in PCC. In fact,
for these datasets, both algorithms need to perform few backtracking steps
in the tree. Presumably, this is so maybe because the probabilities provided
by the models may not be so close to 0.5 or that they may even be close
to 0 or 1. Thus, by adding noise the probabilities are expected to be closer
to 0.5, making the inference problem more complex. Seeing as, the heuristic
of Imp-ε-A estimates the probabilities more accurate (see Section 4.2), the
algorithm is expected to follows a more direct path in the tree and hence will
be substancially faster than ε-A.

Improving the ε-approximate Algorithm for Probabilistic Classifier Chains 27

Certain grades of noise in terms of percentage were added to the datasets.
Noise needs only be included in the labels of the instances (the y part) rather
than in the description of the instances (the x part). For this purpose, a certain
percentage of the values of the labels was swapped from being relevant to being
irrelevant and vice versa. This means that the value of either all their labels
or only some of them or even none of them were swapped for each instance.
The total percentage of noise included ranged from 0% to 26% for datasets
with fewer than 22 labels. However, the maximum percentage considered for
medical (45 labels), enron (53 labels), mediamill (101 labels) and bibtex (159
labels) was respectively 18%, 10%, 8% and 8%. The reason for this decision
was the excessive experimental time needed to complete the experiments. The
corel5k dataset was excluded from these experiments for the same reason,
given its large number of labels (374).

Figures 7 and 8 show the computational time spent on the inference and
averaged per instance for Imp-ε-A and ε-A for ε = 0 and ε = 0.25 when the
aforementioned percentages of noise were included in the datasets. It can be
seen that the improved version of the algorithm always spent less time than
the original version. This is quite noticeable as the percentage of noise grows,
even more so when ε = 0 and for datasets with few or a medium number of
labels. However, the differences between the two methods for datasets with a
high number of labels (mediamill 101 and bibtex 159) are quite small, even
for the cases of more noise. Furthermore, the computational time spent by the
improved ε-approximate algorithm with ε = 0 is seen to be quite similar to that
of the original version with ε = 0.25. This fact reinforces the hypothesis already
mentioned in Section 4 regarding the possibility of employing the improved
version with a lower value of ε and spending a comparable computational time.

6 Conclusions and future work

This paper presents an improvement based on heuristic search on the promis-
ing and well-known ε-approximate algorithm for inference in PCC. The start-
ing hypothesis is that adding heuristic information to the criterion under a
node is expanded when the algorithm searches for a solution avoids backtrack-
ing and makes the algorithm follow a more direct path. This hypothesis was
theoretically proven and empirically confirmed in a series of experiments. Not
only does the improved ε-approximate algorithm explore fewer nodes than the
original version, but it is also faster in terms of computational time in spite
of the additional computation of the heuristic that the improved version of
the algorithm needs to compute with regard to the original version. This addi-
tional computation of the heuristic is actually extremely fast, as it is computed
beforehand for each instance and it remains constant throughout the inference
process.

As future work, it would be interesting to overcome the main drawback of
the improved ε-approximate algorithm, namely, it is only applicable to linear
base models in PCC. In this respect, bounding the maximum of the non-linear

28 Miriam Fdez-Dı́az et al.

models if it is not possible to compute the exact maximum may be a possible
future line of research.

References

1. Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev.
78(1), 1–3 (1950)

2. Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regression
for multi-label classification. Machine Learning 76(2-3), 211–225 (2009)

3. Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: European
Conference on Data Mining and Knowledge Discovery (2001), pp. 42–53 (2001)

4. Dembczyński, K., Cheng, W., Hüllermeier, E.: Bayes optimal multilabel classification
via probabilistic classifier chains. In: ICML, 2010, pp. 279–286 (2010)

5. Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label dependence and
loss minimization in multi-label classification. Machine Learning 88(1-2), 5–45 (2012)

6. Dembczynski, K., Waegeman, W., Hüllermeier, E.: An analysis of chaining in multi-
label classification. In: ECAI, Frontiers in Artificial Intelligence and Applications, vol.
242, pp. 294–299. IOS Press (2012)

7. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: ACM
Conf. on Research and Develop. in Information Retrieval (2005), pp. 274–281 (2005)

8. Fürnkranz, J., Hüllermeier, E., Loza Menćıa, E., Brinker, K.: Multilabel classification
via calibrated label ranking. Machine Learning 73, 133–153 (2008)

9. Garćıa, S., Herrera, F.: An extension on ”statistical comparisons of classifiers over mul-
tiple data sets” for all pairwise comparisons. Journal of Machine Learning Research
9(12), 2677 – 2694 (2008)

10. Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: ACM Int. Conf.
on Information and Knowledge Management, pp. 195–200. ACM (2005)

11. Gibaja, E., Ventura, S.: A tutorial on multilabel learning. ACM Comput. Surv. 47(3),
52:1–52:38 (2015). DOI 10.1145/2716262

12. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In:
Pacific-Asia Conference on Knowledge Discovery and Data Mining (2004), pp. 22–30
(2004)

13. Goncalves, E.C., Plastino, A., Freitas, A.A.: A genetic algorithm for optimizing the label
ordering in multi-label classifier chains. In: 2013 IEEE 25th International Conference
on Tools with Artificial Intelligence, pp. 469–476 (2013). DOI 10.1109/ICTAI.2013.76

14. Kumar, A., Vembu, S., Menon, A.K., Elkan, C.: Learning and inference in probabilistic
classifier chains with beam search. In: ECML/PKDD 2012, pp. 665–680 (2012)

15. Kumar, A., Vembu, S., Menon, A.K., Elkan, C.: Beam search algorithms for multi-label
learning. Mach. Learn. 92(1), 65–89 (2013)

16. Lin, C.J., Weng, R.C., Keerthi, S.S.: Trust region Newton method for logistic regression.
Journal of Machine Learning Research 9(Apr), 627–650 (2008)

17. McCallum, A.K.: Multi-label text classification with a mixture model trained by em.
In: AAAI 99 Workshop on Text Learning (1999)

18. Mena, D., Montañés, E., Quevedo, J.R., Del Coz, J.J.: Using A* for inference in prob-
abilistic classifier chains. In: Proceedings of the 24th International Conference on Arti-
ficial Intelligence, IJCAI’15, pp. 3707–3713. AAAI Press (2015)

19. Mena, D., Montañés, E., Quevedo, J.R., del Coz, J.J.: An overview of inference methods
in probabilistic classifier chains for multilabel classification. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 6(6), 215–230 (2016). DOI 10.1002/
widm.1185

20. Mena, D., Montañés, E., Quevedo, J.R., del Coz, J.J.: A family of admissible heuristics
for A* to perform inference in probabilistic classifier chains. Machine Learning 106(1),
143–169 (2017). DOI 10.1007/s10994-016-5593-5

21. Mena, D., Quevedo, J.R., Montañés, E., del Coz, J.J.: A heuristic in A* for inference in
nonlinear probabilistic classifier chains. Knowl.-Based Syst. 126, 78–90 (2017). DOI
10.1016/j.knosys.2017.03.015

Improving the ε-approximate Algorithm for Probabilistic Classifier Chains 29

22. Montañés, E., Quevedo, J., del Coz, J.J.: Aggregating independent and dependent mod-
els to learn multi-label classifiers. In: ECML’11, pp. 484–500 (2011)

23. Montañés, E., Senge, R., Barranquero, J., Quevedo, J., del Coz, J.J., Hüllermeier, E.:
Dependent binary relevance models for multi-label classification. Pattern Recognition
47(3), 1494 – 1508 (2014)

24. Prati, R.: Fuzzy rule classifiers for multi-label classification (2015). DOI 10.1109/
FUZZ-IEEE.2015.7337815

25. Qi, G.J., Hua, X.S., Rui, Y., Tang, J., Mei, T., Zhang, H.J.: Correlative multi-label
video annotation. In: Proceedings of the International Conference on Multimedia, pp.
17–26. ACM, NY, USA (2007)

26. Read, J., Martino, L., Hollmén, J.: Multi-label methods for prediction with sequential
data. CoRR abs/1609.08349 (2016)

27. Read, J., Martino, L., Luengo, D.: Efficient monte carlo methods for multi-dimensional
learning with classifier chains. Pattern Recognition 47(3), 1535 – 1546 (2014)

28. Read, J., Martino, L., Olmos, P.M., Luengo, D.: Scalable multi-output label prediction:
From classifier chains to classifier trellises. Pattern Recognition 48(6), 2096 – 2109
(2015). DOI https://doi.org/10.1016/j.patcog.2015.01.004

29. Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of pruned
sets. In: IEEE Int. Conf. on Data Mining, pp. 995–1000. IEEE (2008)

30. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classi-
fication. In: ECML/PKDD’09, LNCS, pp. 254–269. Springer (2009)

31. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classi-
fication. Machine Learning 85(3), 333–359 (2011)

32. Schapire, R.E., Singer, Y.: Boostexter: A boosting-based system for text categorization.
Machine Learning pp. 135–168 (2000)

33. Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classification
in domains with large number of labels (2008)

34. Tsoumakas, G., Vlahavas, I.: Random k-Labelsets: An ensemble method for multi-label
classification. In: ECML/PKDD’07, pp. 406–417. Springer (2007)

35. Wu, Y.P., Lin, H.T.: Progressive random k-labelsets for cost-sensitive multi-label clas-
sification. Machine Learning 106(5), 671–694 (2017). DOI 10.1007/s10994-016-5600-x

36. Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional
genomics and text categorization. IEEE Trans. on Knowl. and Data Eng. 18, 1338–
1351 (2006)

37. Zhang, M.L., Zhou, Z.H.: Ml-knn: A lazy learning approach to multi-label learning.
Pattern Recognition 40(7), 2038–2048 (2007)

30 Miriam Fdez-Dı́az et al.

ε-A(0)
Imp-ε-A(0)
ε-A(.25)
Imp-ε-A(.25)

Ti
m

e
(m

ilis
ec

on
ds

)

0.3

0.4

0.5

0.6

0.7

0.8

Noise (%)
0 5 10 15 20 25

(a) image (5)

ε-A(0)
Imp-ε-A(0)
ε-A(.25)
Imp-ε-A(.25)

Ti
m

e
(m

ilis
ec

on
ds

)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Noise (%)
0 5 10 15 20 25

(b) emotions (6)

ε-A(0)
Imp-ε-A(0)
ε-A(.25)
Imp-ε-A(.25)

Ti
m

e
(m

ilis
ec

on
ds

)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Noise (%)
0 5 10 15 20 25

(c) scene (6)

ε-A(0)
Imp-ε-A(0)
ε-A(.25)
Imp-ε-A(.25)

Ti
m

e
(m

ilis
ec

on
ds

)

0.5

1.0

1.5

2.0

2.5

Noise (%)
0 5 10 15 20 25

(d) flags (7)

ε-A(0)
Imp-ε-A(0)
ε-A(.25)
Imp-ε-A(.25)

Ti
m

e
(m

ilis
ec

on
ds

)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Noise (%)
0 5 10 15 20 25

(e) reuters (7)
Fig. 7 Computational time employed (ms) for both versions of ε-A with ε=0 and ε=0.25
averaged per instance. Different percentages of noise are considered. All the datasets have
few labels (from 5 to 7).

Improving the ε-approximate Algorithm for Probabilistic Classifier Chains 31

ε-A(0)
Imp-ε-A(0)
ε-A(.25)
Imp-ε-A(.25)

Ti
m

e
(m

ilis
ec

on
ds

)

0

5

10

15

20

25

30

35

40

45

50

Noise (%)
0 5 10 15 20 25

(a) yeast (14)

ε-A(0)
Imp-ε-A(0)
ε-A(.25)
Imp-ε-A(.25)

Ti
m

e
(m

ilis
ec

on
ds

)

0

100

200

300

400

500

600

700

Noise (%)
0 5 10 15 20 25

(b) slashdot (22)

ε-A(0)
Imp-ε-A(0)
ε-A(.25)
Imp-ε-A(.25)

Ti
m

e
(m

ilis
ec

on
ds

)

0

5×104

10×104

15×104

20×104

25×104

30×104

Noise (%)
0 5 10 15 20

(c) medical (45)

ε-A(0)
Imp-ε-A(0)
ε-A(.25)
Imp-ε-A(.25)

Ti
m

e
(m

ilis
ec

on
ds

)

0

10,000

20,000

30,000

40,000

50,000

Noise (%)
0 2 4 6 8 10

(d) enron (53)

ε-A(0)
Imp-ε-A(0)
ε-A(.25)
Imp-ε-A(.25)

Ti
m

e
(m

ilis
ec

on
ds

)

0

5×104

10×104

15×104

20×104

25×104

30×104

35×104

Noise (%)
0 2 4 6 8

(e) mediamill (101)

ε-A(0)
Imp-ε-A(0)
ε-A(.25)
Imp-ε-A(.25)

Ti
m

e
(m

ilis
ec

on
ds

)

0

100

200

300

400

500

600

700

800

Noise (%)
0 2 4 6 8

(f) bibtex (159)
Fig. 8 Computational time employed (ms) for both versions of ε-A with ε=0 and ε=0.25
averaged per instance. Different percentages of noise are considered. The number of labels
range from 14 to 159.

	Introduction
	Inference in Probabilistic Classifier Chains for multi-label classification
	The -approximate algorithm
	The improved -approximate algorithm
	Experiments
	Conclusions and future work

