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Abstract  22 

Modelling the spatial distribution of multi-habitat species is challenging since they 23 

show multi-dimensional environmental responses that may vary sharply through 24 

habitats. Hence, for these species, the achievement of realistic models useful in 25 

conservation planning may depend on the appropriate consideration of habitat 26 

information in model calibration. We aimed to evaluate the role of different types of 27 

habitat predictors, along with habitat-partitioning, to improve model inference, detect 28 

non-stationary responses across habitats and simulate the impact of sampling bias on 29 

spatial predictions. As a case study, we modelled the occurrence of the multi-habitat 30 

plant species bilberry (Vaccinium myrtillus) in the Cantabrian Mountains (NW Spain), 31 

where it represents a basic trophic resource for threatened brown bear and capercaillie. 32 

We used MaxEnt to compare a baseline model approach calibrated with topo-climatic 33 

variables against three alternative approaches using explicit habitat information based 34 

on vegetation maps and remote sensing data. For each approach, we ran non-partitioned 35 

(all habitats together) and habitat-partitioned models (one per habitat) and evaluated 36 

model performance, overfitting and extrapolation. The highest performance was for 37 

habitat-partitioned models including habitat predictors. The lowest overfitting was for 38 

the baseline non-partitioned model, at the cost of achieving the highest predicted 39 

fractional area. The extrapolation success of habitat-partitioned models was low, with 40 

the highest performance for the baseline approach. Our results highlight that multi-41 

habitat species responses are non-stationary across habitats, with habitat-biased data 42 

resulting in weak spatial predictions. When modelling the distribution of multi-habitat 43 

species at regional scale, we recommend using habitat-partitioned models including 44 

habitat predictors, either vegetation maps or remote sensing data, to improve the realism 45 

of spatial outputs and its applicability in regional conservation planning. 46 
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Introduction  50 

Species distribution modelling (SDM) is a correlative approach that allows mapping 51 

species distributions on the basis of environmental features (Elith and Leathwick 2009). 52 

Nowadays, SDM is a well-established method for designing conservation strategies and 53 

management actions (Morán-Ordóñez et al. 2011; Carlson et al. 2013). However, the 54 

achievement of accurate model predictions at high spatial resolution is still a challenge 55 

for practical applications. It is recognized that the reliability of SDM predictions 56 

depends significantly on the characteristics of the input data used for model calibration 57 

(Guisan et al. 2013), which includes both the dependent (i.e. occurrence data quantity, 58 

quality and distribution; Hernandez et al. 2006; Kramer‐Schadt et al. 2013; Suárez-59 

Seoane et al. 2017, 2018) and the independent (i.e. environmental predictors’ nature, 60 

source and scale; Austin 2002; Synes and Osborne 2011) variables. Other interacting 61 

factors that may influence critically the accuracy of model outputs are the ecological 62 

characteristics of the target species. In this sense, different authors have demonstrated 63 

that species with broad ecological requirements can be modelled less accurately than 64 

species with restricted requirements, independently of the SDM method (Brotons et al. 65 

2004; Chefaoui et al. 2011; Morán-Ordóñez et al. 2012).  66 

Particularly challenging is the modelling of multi-habitat species that exploit 67 

heterogeneous landscape mosaics, as thriving in different habitats may be related to 68 

ecological divergence across the species´ range (Brambilla and Saporetti 2014; Frans et 69 

al. 2017; Ikeda et al. 2017; Maiorano et al. 2019). A main concern affecting the 70 

achievement of accurate predictions for multi-habitat species is habitat-biased sampling 71 

(Tessarolo et al. 2014). Frequently, species distribution models are calibrated with 72 

occurrence data (either presence-only or presence-absence) that are available from 73 

heterogeneous sources (e.g. open access databases, distribution atlases, herbarium 74 
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collections, conservation projects). These data are collected under sampling schemes 75 

(survey design and effort level) defined for specific aims at particular spatial scales. 76 

Consequently, when used in other contexts and with other aims, they may not be 77 

adequate for achieving good model performance, introducing weaknesses related to 78 

sampling bias (Soberón and Peterson 2004; Hortal et al. 2007; Guralnick et al. 2007). If 79 

occurrence data are environmentally biased towards certain habitats, mostly due to 80 

species detectability associated with density, researcher accessibility or conservation 81 

priority (Gu and Swihart 2004; Comte and Grenouillet 2013; Lahoz-Monfort et al. 82 

2014), the accuracy of model predictions may be inadequate for conservation 83 

applications. For instance, in the case of a species living in forests and grasslands, 84 

models calibrated with habitat-biased data (e.g. data collected in forests but not in 85 

grasslands) would account for truncated environmental responses. These models would 86 

fail when extrapolated to other regions where the two habitats are present (Braunisch et 87 

al. 2008; Suárez-Seoane et al. 2014). If habitat-bias sampling is ignored, the fitted 88 

model might be closer to a model of survey effort than to a model of the true 89 

distribution of the species (Phillips et al. 2009). Avoiding this problem is, therefore, 90 

necessary to achieve accurate predictions and can only be reached through a proper 91 

sampling design (Peterson and Cohoon 1999). 92 

Another issue that may affect the applicability of distribution models in multi-93 

habitat species conservation is related to stationarity. In SDM, environmental responses 94 

are usually considered stationary or identical for the entire dataset (Foody 2004). 95 

However, the tendency for any modelled relationship or process is to vary spatially 96 

(Osborne et al. 2007). When non-stationary responses are suspected (e.g., in the case of 97 

species living in large geographic areas), prior partitioning analyses may be useful to 98 

alert the modeller about problems of model extrapolation (Osborne and Suárez-Seoane 99 
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2002; Jiménez-Alfaro et al. 2018). In the case of multi-habitat species, environmental 100 

responses may change not only geographically within one single habitat, but also among 101 

habitats according to differences in resource availability, environmental conditions and 102 

biotic interactions (Brambilla and Saporetti 2014; Frans et al. 2018; Maiorano et al. 103 

2019). Indeed, for the case of highly mobile species, environmental responses and 104 

habitat use may also vary seasonally, over life-cycle stage (Suárez-Seoane et al. 2008; 105 

Zuckerberg 2016). In such cases, habitat-partitioning can be applied to calibration data 106 

in order to identify non-stationary responses against environmental factors within the 107 

species range. Habitat-partitioning could also allow for dealing with sampling bias, 108 

particularly when species data have been collected in specific habitats only. 109 

The explicit consideration of habitat information in SDM approaches dealing with 110 

multi-habitat species appears as a potential tool to improve model inference and test 111 

non-stationary responses. Habitat is generally considered as a description of the biotic 112 

and abiotic nature of the physical place where the organisms of a particular species can 113 

live (Mitchell 2005; Kearney 2006). Despite many authors (e.g. Dennis et al. 2003) 114 

claim for applying a functional resource-based concept (i.e., a continuum of available 115 

resources), information about habitat frequently follows a patch-based definition (i.e., a 116 

set of discrete patches showing suitable conditions). At regional scale, habitat 117 

information is usually included in SDM as a categorical predictor (e.g. Thuiller et al. 118 

2004a) derived from maps representing discrete patches of vegetation or land cover. 119 

Nevertheless, remote sensing data may provide quantitative surrogates of habitat 120 

avoiding the uncertainty of patch-based approaches. For example, reflectance data 121 

derived from remote sensing techniques play an important role in describing functional 122 

attributes of vegetation as a continuum at regional scale (e.g. He et al. 2015; Alcaraz-123 

Segura et al. 2017). Morán-Ordóñez et al. (2012) found that reflectance values from 124 

https://en.wikipedia.org/wiki/Species
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Landsat TM images were better predictors of mountain plant species´ distribution than 125 

other remote sensing products, as spectral indices or vegetation classified maps. Even 126 

thought, the interpretation of spectral data in ecological applications is challenging. A 127 

promising alternative emerge from the combination of spectral data with categorical 128 

vegetation maps in Predictive Vegetation Models (PVMs; Franklin 1995; Chapman and 129 

Purse 2011; Tarkesh and Jetschke 2012; Álvarez‐Martínez et al. 2018; Jiménez‐Alfaro 130 

et al. 2018) that may allow the development of continuous, integrative and interpretable 131 

predictors of habitat in SDM.  132 

Using as a case study the bilberry (Vaccinium myrtillus), a multi-habitat plant 133 

species that occurs in three distinct habitats in the Cantabrian Mountains (north-western 134 

Spain), we evaluate the role of different types of habitat predictors, along with habitat-135 

partitioning. Our main aims are: (i) to improve SDM performance, generality and 136 

extrapolation success; (ii) to assess the stationarity of environmental responses across 137 

habitats; and, (iii) to evaluate the impact of habitat-biased calibration on regional map 138 

predictions. Our scenarios of data availability reproduce situations where modellers 139 

have access only to calibration data collected in some of the habitats where a multi-140 

habitat species can thrive. 141 

 142 

Methods 143 

Study case 144 

Bilberry Vaccinium myrtillus L. (Ericaceae) is a long-lived, deciduous and rhizomatous 145 

shrub that can be found as dominant or co-dominant in a variety of woodlands, 146 

shrublands and heathlands throughout cold and temperate regions of Eurasia. In Europe, 147 

the species is restricted to poor and moist soils (Coudun and Gégout 2007). It has been 148 

demonstrated that bilberry shows morphological and physiological divergence across 149 
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habitats, differing significantly in terms of plant productivity (Elisabetta et al. 2013), 150 

gas exchange and morphology (Woodward 1986), as well as accumulated primary and 151 

secondary metabolites in fruits (Mikulic-Petkovsek et al. 2015). However, no difference 152 

in clonal diversity and spatial structure of clones has been detected between different 153 

habitats (Albert et al. 2004).  154 

The Cantabrian Mountains (NW of Spain) are located at the westernmost 155 

distribution limit of the European mountain systems, in a transitional zone between the 156 

Atlantic and Mediterranean biogeographic regions. They cover approximately 31,494 157 

km2, with an altitude ranging from the sea level to 2648 m a.s.l. The climate varies from 158 

Temperate-Oceanic (northern slope) to Mediterranean (southern slope). These climatic 159 

features, together with the uneven topography and the historical land management, have 160 

resulted in a highly heterogeneous landscape that host a wide variety of ecosystems, 161 

habitats and endemic species. In these mountains, that have been recognized as a 162 

hotspot of biodiversity (Worboys et al. 2010; García-Llamas et al. 2016, 2018, 2019), 163 

bilberry has a regional interest as a trophic resource for endangered species, such as the 164 

Cantabrian Capercaille (Blanco-Fontao et al. 2009) and the Cantabrian Brown Bear 165 

(Rodríguez et al. 2007; Penteriani et al. 2019). The species mainly occurs in acidic 166 

vegetation related to northern exposures and can be found across three habitats: acidic 167 

woodlands, Atlantic heathlands and alpine dwarf-shrublands (Table 1 and Annex 1 of 168 

the Supplementary material). 169 

 170 

Species occurrence data 171 

We collected two independent datasets on species occurrence (presence-only data): one 172 

for model calibration (“calibration dataset”) and the other one for model evaluation 173 

(“evaluation dataset”). The calibration dataset consisted of 318 GPS locations (average 174 
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positional error of 10 meters) that were gathered across the three habitat types where the 175 

species occurs in the study area. To build this database we compiled information 176 

recorded by different research groups in the context of specific research projects carried 177 

out in the study area during the period 2005-2010. These projects were focused on the 178 

assessment of: (i) capercaillie leks in acidic woodlands (Segura et al. 2014), (ii) 179 

physiological traits of Vaccinium myrtillus in alpine dwarf-shrublands (Pato and Obeso 180 

2012) and (iii) distribution patterns of Calluna vulgaris in Atlantic heathlands (authors, 181 

unpublished data). This heterogeneous calibration dataset was chosen deliberately to 182 

show the limitations of using data from other authors that have not been collected 183 

specifically for the target research. The evaluation dataset was collected through new 184 

fieldwork carried out in 2011-2012 using a model-based sampling (Guisan et al. 2006), 185 

by which records were regularly gathered across transects located in areas where a set of 186 

preliminary models consistently predicted the highest suitability for the species (see 187 

Model calibration section). To achieve the spatial independence of this dataset, 188 

sampling was done in areas not surveyed in the calibration step. This dataset comprised 189 

122 GPS locations (average error of 5 meters) where the presence and cover (in 190 

percentage) of bilberry was recorded in plots of 30 m x 30 m meters (the spatial 191 

resolution of the SDM analyses).  192 

To reduce geographic bias and spatial autocorrelation in both datasets, we carried 193 

out spatial filtering, which improves model reliability and inference (Boria et al. 2014; 194 

Radosavljevic and Anderson 2014). We used Moran´s I statistic (Moran 1950; 195 

Gittleman and Kot 1990; Martins 1996) to test spatial autocorrelation for each 196 

environmental predictor (Table 2) in grid sizes of 60, 120, 240 and 480 meters (2, 4, 8 197 

and 16 times the basic spatial resolution of the analysis). We retained the 60 m-rule 198 

since the autocorrelation significantly decreased beyond this threshold. After filtering, 199 

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1472-4642.2007.00448.x#b31
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1472-4642.2007.00448.x#b29
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1472-4642.2007.00448.x#b25
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we kept 148 and 89 records for calibration and evaluation, respectively (Table 1, Figure 200 

1). Data were handled in ArcGIS 10.6 (ESRI 2018). 201 

 202 

Topo-climatic and habitat predictors  203 

We prepared a pool of 12 environmental variables to be used in different combination 204 

according to the modelling approach (Table 2): five accounting for climate, topography 205 

and lithology (“topo-climatic predictors”) and seven informing on habitat (“habitat-206 

predictors”). These variables were chosen according to expert knowledge (e.g. Coudun 207 

and Gégout 2007) indicating that Vaccinium myrtillus is strictly acidic and prefers moist 208 

soils in relatively cool locations not subjected to summer drought. In areas of 209 

Mediterranean influence, the species is mainly found at relatively high elevation or 210 

shady environments. Data were collected at the best spatial resolution available in the 211 

study area, considering the characteristics of the species dataset. Predictors were 212 

processed in ArcGIS 10.6 (ESRI 2018). 213 

Climate variables (temperature and moisture) were extracted from the Climatic 214 

Atlas of the Iberian Peninsula (Ninyerola et al. 2005), where monthly averaged ground-215 

data collected from available meteorological stations (period 1950–1999) were 216 

interpolated (multiple regression in combination with a residual correction method) at 217 

200 m resolution across the Iberian Peninsula. Topography was assessed by means of 218 

slope and insolation that were calculated from a digital terrain model at 30 m resolution. 219 

The role of lithology was evaluated through a soil pH map at 1 km resolution from 220 

ISRIC World Soil Information (www.isric.org), which is the only soil data available for 221 

the whole region. Although this spatial resolution is broad, it is important to 222 

differentiate between large areas dominated by acid and calcareous soils, given that the 223 

species is strictly restricted to acid bedrocks.  224 

http://www.isric.org/
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Regarding habitat information, we considered three datasets: (i) A categorical 225 

habitat map at 1:50.000 scale based on vegetation types (Atlas of Natural and 226 

Seminatural Habitats of Spain, year 2005). (ii) Reflectance values of channels 3 and 4 227 

from Landsat TM at 30 m resolution corresponding to June of 2005 (see Morán-228 

Ordóñez et al. 2012 for technical details). Each of these channels provides different 229 

information on physical properties of the land surface (red channel 3 discriminates 230 

vegetation slopes and near infrared channel 4 emphasizes biomass content) based on the 231 

special absorbance behaviour of each terrestrial feature, which is recorded at the 232 

different wavelengths of the spectra (0.63-0.69 and 0.76-0.90 micrometres, 233 

respectively). (iii) Predicted values (ranging from 0 to 1) computed from predictive 234 

vegetation models developed with MaxEnt 3.3.3 (Phillips et al. 2006; Phillips and 235 

Dudik 2008) for each target habitat and for all habitats together. PVMs were calibrated 236 

using a stratified dataset of 700 points informing on vegetation types (400 for acidic 237 

woodlands, 200 for Atlantic heathlands and 100 for alpine dwarf-shrublands, numbers 238 

according to the geographic extent of each habitat and the threshold for minimizing 239 

autocorrelation). These points were randomly extracted from the Vegetation Map of 240 

Asturias at scale 1:25000 (Marquínez et al. 2002). Since sampling effort was constant 241 

across the whole habitat map, we created a single background dataset for all PVMs, 242 

consisting of 10,000 points randomly distributed within the extent of the vegetation 243 

map. As predictors, we used topo-climatic variables and Landsat channels. See Annex 2 244 

of the Supplementary material for further information. 245 

All predictors were rescaled to 30 m, the resolution of the analysis that was 246 

constrained by both Landsat satellite imagery and topographic data. To prevent 247 

multicollinearity effects, we ran Spearman pairwise correlations in SPSS v.21 (2012) 248 
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among all predictors over 5000 randomly-selected points, verifying that all were <0.8 249 

(Tabachnick and Fidell 1996).  250 

 251 

Model calibration 252 

We used MaxEnt 3.3.3 to model the distribution of Vaccinium myrtillus, a method that 253 

can provide robust predictions of species occurrence when only-presence data are 254 

available at low and moderate sampling size. MaxEnt model specifications for response 255 

shapes and regularization choices were chosen by default. We developed four modelling 256 

approaches (Table 3). Approach 1 (“Topo-climate”) was a baseline approach where 257 

climate, topography and lithology were used as predictors of species distribution. 258 

Approach 2 (“Additive habitat-map”) was an additive approach where, on the top of the 259 

topo-climatic variables, we included the categorical habitat map as a habitat predictor. 260 

Approach 3 (“Additive Landsat”) was similar but, in this case, habitat predictors were 261 

the continuous values of reflectance derived from Landsat imagery (channels 3 and 4). 262 

Approach 4 (“Integrative PVM”) was an integrative approach where habitat predictors 263 

were made of PVM predictions (see previous section). In this approach, only one 264 

explanatory variable was entered in each model, according to the habitat being 265 

modelled. 266 

For each approach, we ran four models: three “habitat-partitioned models” (each 267 

calibrated using the species locations collected in each habitat separately) and one “non-268 

partitioned model” (calibrated with all the occurrence data altogether). All models built 269 

for each partitioning option were calibrated with the same species calibration dataset. 270 

To deal with sampling bias derived from non-planned surveys, background samples 271 

were spatially adjusted to the calibration area. We created four background samples 272 

(one for each habitat and altogether) of 10,000 random points each, adjusted to 5 km-273 
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grids with bilberry presence (i.e., those including at least one record of the target 274 

species). To avoid overprediction (Chefaoui and Lobo 2008), background was not 275 

sampled within areas where species is known to be absent because of dispersal 276 

limitations and biotic interactions or within areas excluded from model calibration 277 

(Anderson and Raza 2010; Barve et al. 2011; Kramer-Schadt et al. 2013; Radosavljevic 278 

and Anderson 2014).   279 

For each model output, we extracted the fractional predicted area (FPA) as the 280 

proportion of cells predicted to have suitable habitat for the target species according to 281 

different thresholds of suitability.  282 

The spatial congruence between spatial outputs was evaluated by means of 283 

bivariate correlations that were calculated in a set of 3000 random points using the 284 

library “corrplot” in R software (R Core Team 2019). 285 

 286 

Model evaluation 287 

We quantified model performance, overfitting and extrapolation ability for all 288 

modelling approaches. Model performance was measured as the discriminatory ability 289 

of the model that, in presence-background SDM techniques, is the degree to which a 290 

model scores species occurrence data higher than background sites (Phillips et al. 2009). 291 

Discriminatory ability was evaluated using two threshold-independent methods fairly 292 

insensitive to species prevalence (Franklin 2009): the AUC (area under the receiver 293 

operating characteristic curve) adapted for use with background samples and the Boyce 294 

index (Boyce et al. 2002; Hirzel et al. 2006). It should be noted that AUC values 295 

calculated in MaxEnt vary with the fractional predicted area and, therefore, they are not 296 

comparable among species or across regions. However, the models developed in this 297 

study correspond to the same species and are evaluated in the same study region, which 298 
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make AUC values suitable for comparison (Lobo et al. 2008). To allow for more 299 

reliable estimates, we always compared groups of models by using the same dataset, so 300 

that the measured performance has the same meaning (Suárez-Seoane et al. 2014). AUC 301 

values were interpreted according to Swets (1988): 0.90–1.00: excellent, 0.80–0.90: 302 

good, 0.70–0.80: fair, 0.60–0.70: poor and 0.50–0.60: fail. The Boyce index measures 303 

the Spearman rank correlation coefficient between the frequency of presence locations 304 

within ranked classes of predicted habitat suitability (adjusted by area) and the mean 305 

habitat suitability of these classes. It ranges from -1 to +1. Negative values indicate an 306 

incorrect model which predicts poor quality areas where the species is more frequent; 307 

positive values indicate a model whose predictions are consistent with species 308 

occurrence patterns in the evaluation dataset. To evaluate model performance, we 309 

followed the next procedures: (i) Simple re-substitution (Fielding and Bell 1997), where 310 

AUC values were calculated against the same data used for calibration, with no 311 

independence. This technique may yield to inflated estimates of performance, but is the 312 

easiest procedure to evaluate how well a model fits the data from which it was derived. 313 

(ii) Statistical resampling, where AUC values were calculated by performing 5-fold 314 

cross-validation. Resampling reduces the bias in the assessment of model performance. 315 

It is used to avoid overfitting by halting model growth based on predictive accuracy on 316 

withheld portions of the data (Phillips et al. 2009). (iii) Independent field validation, 317 

where AUC and Boyce values were quantified on the evaluation dataset. Using 318 

evaluation data spatially independent from calibration data allows for more accurate 319 

estimates of model performance, overfitting and extrapolation (Peterson et al. 2011; 320 

Radosavljevic and Anderson 2014). Complementarily, we used the evaluation dataset to 321 

calculate the Spearman correlations between Vaccinium myrtillus cover estimated in the 322 

field and model predictions (Jiapaer et al. 2011; Zhang et al. 2013). 323 
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Overfitting, as a proxy of model generality, was quantified using the methodology 324 

described in Radosavljevic and Anderson (2014) (see also Warren and Seifert 2011): (i) 325 

Subtracting the difference between calibration and evaluation AUCs, which is a 326 

threshold-independent measure. (ii) Comparing both observed and theoretical levels of 327 

omission for the evaluation dataset, using two thresholds: the “Minimum Training 328 

Presence Threshold” (MTPT; the lowest predicted value for an evaluation locality) and 329 

the “10 Percentile Training Presence” (10PTP; the value that excludes the 10% of the 330 

localities with the lowest predicted values). The best results are those that approach zero 331 

for MTPT and 10 for 10PTP because they reflect perfect predictions. The higher is the 332 

value with respect to zero and 10, respectively, the higher is model overfitting, thus 333 

suggesting lower model accuracy. 334 

To evaluate the extrapolation success of habitat-partitioned models outside their 335 

calibration area (i.e., in the whole study area), we calculated, for each modelling 336 

approach, the AUC values against the full evaluation dataset that includes bilberry 337 

locations in all habitats. Complementarily, we quantified, for the evaluation dataset, the 338 

observed and theoretical levels of omission of each habitat-partitioned model using both 339 

the MTPT and 10PTP thresholding rules. This extrapolation analysis also allowed for 340 

assessing the impact of using habitat-biased calibration data on model predictions for 341 

the whole area and identify non-stationary responses. If environmental responses vary 342 

among habitats, the extrapolation success is expected to be low. The stationarity of the 343 

environmental responses among habitats was further explored by means of: (i) response 344 

curves (testing both marginal and independent effects); and, (ii) relative contribution of 345 

each predictor (estimated as the permutation importance values) to the models. Analyses 346 

were carried out using MaxEnt 3.3.3 (Phillips et al. 2006) and SPSS v.21 (2012). 347 

 348 
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 349 

Results  350 

As a general trend, models had a good discriminatory ability (AUC above 0.8) and 351 

showed low levels of overfitting, either considering the habitats separately or altogether 352 

(Table 4). Regarding non-partitioned models, approaches including habitat predictors 353 

always achieved higher performance (predictions fitted the calibration and evaluation 354 

datasets at best; see values of AUC in Approach 3) and correlated better with bilberry 355 

cover (see Approach 4) than the baseline Approach 1. Overfitting was generally low in 356 

all approaches, being the lowest values for the baseline model. Looking at the habitat-357 

partitioned models, including habitat predictors increased model discrimination in 358 

respect to the baseline approach for the case of Atlantic heathlands and acidic 359 

woodlands (see Approach 3), but not for alpine dwarf-shrublands. Habitat data also 360 

allowed for achieving a better correlation between model predictions and bilberry cover 361 

(Approaches 2 and 4), as well as a reduction of the overfitting for all the habitats, 362 

particularly in the case of Approach 4.  363 

The visual inspection of the logistic outputs revealed similar spatial patterns of 364 

distribution across modelling approaches, but important differences between habitats 365 

(see Annex 3 of the Supplementary material). Figure 2 includes the spatial outputs 366 

derived from Approach 3, as an example. When both the MTPT and 10PTP 367 

thresholding rules were applied, the fractional predicted area (FPA) identified for 368 

Approaches 2 and 3 was generally the lowest (Figure 3).  369 

The success of extrapolating the habitat-partitioned models to the overall study 370 

area varied widely with habitat and modelling approach (Table 5), but it was generally 371 

low (most AUC values ranged from 0.50 to 0.78, one model performed 0.34). The 372 

highest discrimination was found for the baseline Approach 1 (AUC: 0.60-0.78) and the 373 
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alpine dwarf-shrublands. Omission was generally high, but varied among approaches 374 

and habitats.  375 

The curve shape and the relative contribution of predictors to the models soundly 376 

varied across habitats, being consistent among approaches (Table 6 and Annex 4 of the 377 

Supplementary material). In all cases, except for woodlands, temperature was the main 378 

predictor for bilberry distribution. Nevertheless, habitat map and satellite channels were, 379 

when considered, generally among the top contributing variables, ousting in some cases 380 

the effect of temperature (e.g. Approach 3 for acidic woodlands).  381 

 382 

Discussion  383 

This study highlights the implications of considering habitat predictors and habitat-384 

partitioning in the calibration of multi-habitat species distribution models. In the case of 385 

non-partitioned models, the inclusion of habitat predictors (Approaches 2, 3 and 4) 386 

produced more discriminative, but more overfitted models than the baseline Approach 1 387 

based on topo-climatic variables only. However, the low omission rate found for 388 

Approach 1 was at the cost of predicting the highest fractional area (estimated with the 389 

10PTP threshold), which might be associated to higher commission rates than 390 

approaches including habitat. In contrast, the most restricted suitable area was predicted 391 

by Approach 3 at the cost of increasing the omission rate, but reducing the commission 392 

rate. These differences in the amount of predicted area can be interpreted in terms of 393 

ecological niche. While the baseline model represents a higher proportion of the 394 

bilberry fundamental niche and, therefore, of the potential distribution of the species in 395 

the study area, the addition of habitat data informing on vegetation and, indirectly, on 396 

biotic interactions (Wisz et al. 2013) allows the discrimination of a higher fraction of 397 

the realized niche, which is a better surrogate of species real occupancy. This can be 398 
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inferred from the large differences in model outputs that were found between woodlands 399 

and heathlands, reflecting bilberry occupation of different niches in distinct habitats 400 

where competition interactions vary soundly, being part either of the woodland 401 

understory or the shrub community (Pato et al. 2016), respectively. 402 

When computing habitat-partitioned models, approaches including habitat 403 

predictors allowed for achieving more discriminative models than the baseline 404 

Approach 1 in the case of acidic woodlands and Atlantic heathlands, but not in alpine 405 

dwarf-shrublands. The relevance of considering habitat data for predicting bilberry 406 

distribution should be also interpreted in the context of species relative abundance 407 

across different habitats. Bilberry is a relatively common species in favourable habitats 408 

of the study area (Naves et al. 2018; García-Llamas et al. 2019) and, especially, in 409 

acidic woodlands. Thus, it is coherent that approaches incorporating habitat predictors 410 

achieve the best results. In the case of alpine dwarf-shrublands, bilberry is clearly 411 

restricted to the highest elevations in the study area, which can be easily predicted with 412 

topo-climatic factors only. Therefore, using habitat predictors in this case had few 413 

advantages when compared to the baseline model.  414 

Our results evidenced the low success of extrapolating habitat-partitioned models 415 

outside the calibration area. Although a few models had a fair performance (0.70-0.78), 416 

many other performed poorly (0.60-0.70) or randomly (0.51). One specific case even 417 

showed a response worse than random (0.34). This finding can be related to: (i) the 418 

environmental incompleteness of the calibration dataset; (ii) the non-stationarity of the 419 

environmental responses; and / or (iii) the heterogeneity of the calibration dataset, 420 

where each data subset may have a different quality, affecting model performance and 421 

extrapolation. Environmental completeness is the ability of occurrence data to 422 

adequately represent the environmental complexity within the species’ geographic 423 



 

19 

 

distribution (sensu Kadmon et al. 2003; Hortal et al. 2008). It is achieved when samples 424 

represent the full range of environmental factors where the species can live. Models 425 

calibrated with incomplete species occurrence data (habitat-biased data) may fail to 426 

account for the full range of environmental factors of the species and, therefore, they 427 

can lead to the estimation of truncated responses (Anderson and Raza 2010), producing 428 

inflated estimates of model performance (Veloz 2009) and high rates of overfitting. This 429 

reduces the possibility of extrapolating model predictions to other contexts (Thuiller et 430 

al. 2004b; Zurell et al. 2012; Peterson et al. 2011; Radosavljevic and Anderson 2014), 431 

decreasing their applicability (Randin et al. 2006; Menke et al. 2009; Suárez-Seoane et 432 

al. 2014).  433 

Our results also highlight a main role of non-stationary responses (Boakes et al. 434 

2010) that should be specifically addressed in the case of multi-habitat species (Annex 4 435 

of the Supplementary material). The higher is the complexity of the species distribution 436 

among habitats, the higher is the chance of having multiple responses across these 437 

habitats. Even so, in SDM approaches, species responses are commonly assumed as 438 

similar across regions. In our study, this problem was exacerbated since calibration 439 

occurrence data were collected in each habitat under different sampling schemes not 440 

specifically designed for the current purpose. These results suggest that dealing with 441 

multi-habitat SDM requires a careful prior assessment of habitat bias and quality in the 442 

occurrence dataset used for calibration. 443 

Despite the general success of our habitat-based approaches, some considerations 444 

about data sources should be taken in account. Although incorporating categorical maps 445 

as surrogates of habitat (Approach 2) enhances the reliability of SDM, some constraints 446 

remain for generalizing their use. First, their availability is limited to particular scales 447 

that may not match the requirements of the study (Franklin et al. 2000). Second, 448 
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physical boundaries of habitats commonly transcend administrative boundaries adopted 449 

for mapping purposes. Using regional maps in multi-regional projects may be 450 

problematic, since the same habitat patch could be mapped differently according to 451 

conceptual and methodological author-specific criteria. Third, companion or even co-452 

dominant species are rarely used to distinguish between habitat categories. 453 

Consequently, researchers need a good knowledge on the ecology of the target species 454 

to identify the list of habitat classes where it may be present. Fourth, categorical maps 455 

are subject to vagueness, which is a type of linguistic uncertainty that typically appears 456 

when using arbitrary sharp boundaries to define classes. This problem is inherent to any 457 

process involving qualitative reasoning and it is usually solved by using fuzzy logic 458 

approaches, where habitat types are understood as intrinsically arbitrary subdivisions of 459 

continuous patterns (Elith et al. 2002). On the other hand, the reflectance values used in 460 

Approaches 3 and 4 allowed for improving model accuracy and refining the mapped 461 

predictions. Since reflectance values provide a direct spectral signal of the vegetation, 462 

they may help in distinguishing among vegetation types and offer additional species-463 

specific information (Morán-Ordoñez et al. 2012). Regardless the advantages of using 464 

continuous spectral data against categorical information, some general constraints 465 

should be mentioned, as the ecological interpretation of these values (they do not 466 

account for vegetation or land cover directly) and the error and uncertainty associated to 467 

atmospheric influences and vegetation phenology (García-Llamas et al. 2016). Finally, 468 

we highlight the potential use of quantitative predictions derived from PVMs as unique 469 

predictors (Approach 4). This habitat surrogate provides the response of a given 470 

vegetation type that is supposed to be relevant for the species, thus indirectly reflecting 471 

its specificity to that habitat (assuming this will be a model product subject to its own 472 

assumptions and limitations). 473 
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 474 

Implications for conservation 475 

This study provides a good example of the implications of considering habitat predictors 476 

and habitat partitioning when modelling the distribution of a multi-habitat species. In 477 

the study area, bilberry is a key foraging resource for endangered vertebrate species that 478 

make a differential use of it across habitats. In fact, during the summer and autumn, 479 

bilberry becomes the essential food item for both Cantabrian brown bear (Naves et al. 480 

2006) and Cantabrian capercaille (Rodríguez and Obeso 2000). However, the relative 481 

abundance (and, therefore, the availability for consumers) of bilberry may vary between 482 

habitats across space and time, which can be critical for these species at this period of 483 

the year. Therefore, the achievement of accurate spatial products informing on spatial 484 

and temporal variation of key trophic resources is essential for developing realistic 485 

conservation strategies at regional scale. Comparing our results with a recent prediction 486 

made for the target species in the study area on the basis of forestry occurrence and 487 

climatic data (Penteriani et al. 2019), we found that using habitat predictors (including 488 

habitat maps or remote sensing data) in partitioned models allowed for achieving spatial 489 

products with higher spatial precision at regional scale. While the use of remote sensing 490 

data reflects more accurately the local area of occupancy (Álvarez-Martínez et al. 2018), 491 

the use of habitat maps and bedrock layers allows for removing limestone-dominated 492 

areas, which could have been overlooked when using only topo-climatic variables.  493 

 Our results also give insights for other case studies where the target species 494 

occurs in more than one distinct habitat. Researchers and conservation managers may be 495 

interested in the evaluation of the actual (rather than potential) occurrence of focal 496 

species in habitats which are ecologically or structurally different (e.g. heathlands vs. 497 

forests). The advantages of incorporating habitat predictors in habitat-partitioned 498 
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models are not only linked to model performance or generality, but also to the reliability 499 

of predictions in conservation planning. Maps resulting from these models can help in 500 

conservation planning about habitat-specific management practices according to 501 

temporal variation in the use of different habitats (Brambilla and Saporetti 2014; Frans 502 

et al. 2017; Zuckerberg et al. 2019). We also suggest that using remote sensing data, 503 

alone or in combination with vegetation maps, provide relevant information for linking 504 

species distributions with the habitat they actually occupy in nature. In any case, 505 

decisions about the best modelling approach will depend on the specificity of the final 506 

applications, which would require characterising the range of the species at different 507 

levels of generality, implying different trade-offs between omission and commission 508 

rates.  509 

 510 

Acknowledgements 511 

We wish to thank P. Laiolo, M. Bañuelos, J. Pato, A. Segura, J. Castaño-Santamaría, L. 512 

Calvo and E. Marcos for providing species data and J.M. Alvarez for technical and 513 

theoretical discussion on the topic. 514 

 515 

Disclosure statement  516 

No potential conflict of interest was reported by the authors. 517 

 518 

519 



 

23 

 

References  520 

Albert T, Raspé O, Jacquemart AL (2004) Clonal diversity and genetic structure in 521 

Vaccinium myrtillus populations from different habitats.  Belg J Bot 137:155−162. 522 

Alcaraz-Segura D, Lomba A, Sousa-Silva R, Nieto-Lugilde D, Alves P, Georges D, 523 

Vicente JR, Honrado JP (2017) Potential of satellite-derived ecosystem functional 524 

attributes to anticipate species range shifts. Int J Appl Earth Obs Geoin 57:86−92. 525 

Álvarez‐Martínez JM, Jiménez‐Alfaro B, Barquín J, Ondiviela B, Recio M, 526 

Silió‐Calzada A, Juanes JA (2018) Modelling the area of occupancy of habitat types 527 

with remote sensing. Methods Ecol Evol 9:580−593. 528 

Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models 529 

of species geographic distributions and estimates of niche evolution: preliminary 530 

tests with montane rodents in Venezuela. J Biogeogr 37:1378−1393. 531 

Anon (1992) Council Directive of 21 May 1992 on the Conservation of Natural Habitats 532 

and of Wild Fauna and Flora (92/43/EEC). European Commission, Brussels. 533 

Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, 534 

Soberon J, Villalobos F (2011) The crucial role of the accessible area in ecological 535 

niche modeling and species distribution modeling. Ecol Model 222:1810−1819. 536 

Blanco-Fontao B, Fernández-Gil A, Obeso JR, Quevedo M (2009) Diet and habitat 537 

selection in Cantabrian Capercaillie: ecological differentiation of a rear-edge 538 

population. J Ornithol 151:269−277. 539 

Boakes EH, McGowan PJ, Fuller RA, Chang-Qing D, Clark NE, O'Connor K, Mace 540 

GM (2010). Distorted views of biodiversity: spatial and temporal bias in species 541 

occurrence data. PLoS Biology 8:e1000385. 542 



 

24 

 

Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce 543 

sampling bias can improve the performance of ecological niche models. Ecol Model 544 

275:73−77. 545 

Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FK (2002) Evaluating resource 546 

selection functions. Ecol Model 157:281−300.  547 

Brambilla M, Saporetti F (2014) Modelling distribution of habitats required for different 548 

uses by the same species: implications for conservation at the regional scale. Biol 549 

Cons 174:39−46. 550 

Braunisch V, Bollmann K, Graf RF, Hirzel AH (2008) Living on the edge-modelling 551 

habitat suitability for species at the edge of their fundamental niche. Ecol Model 552 

214:153−167. 553 

Brotons L, Thuiller W, Araújo MB, Hirzel AH (2004) Presence‐absence versus 554 

presence‐only modelling methods for predicting bird habitat suitability. Ecography 555 

27:437−448. 556 

Burel F, Baudry J (1999) Écologie du paysage: concepts, méthodes et applications. 557 

Paris, Éditions Tec & Doc. 558 

Carlson BZ, Randin CF, Boulangeat I, Lavergne S, Thuiller W, Choler P (2013) 559 

Working toward integrated models of alpine plant distribution. Alpine Bot 560 

123:41−53. 561 

Chapman DS, Purse BV (2011) Community versus single‐species distribution models 562 

for British plants. J Biogeogr 38:1524−1535. 563 

Chefaoui RM, Lobo JM (2008) Assessing the effects of pseudo-absences on predictive 564 

distribution model performance. Ecol Model 210:478−486. 565 



 

25 

 

Chefaoui RM, Lobo JM, Hortal J (2011) Effects of species’ traits and data 566 

characteristics on distribution models of threatened invertebrates. Anim Biodiv 567 

Conserv 34:229-247. 568 

Comte L, Grenouillet G (2013) Species distribution modelling and imperfect detection: 569 

comparing occupancy versus consensus methods. Divers Distrib 19:996−1007. 570 

Coudun C, Gégout JC (2007) Quantitative prediction of the distribution and abundance 571 

of Vaccinium myrtillus with climatic and edaphic factors. J Veg Sci 18:517−524. 572 

Davies CH, Moss D, Hill MO (2004) EUNIS habitat classification. European Topic 573 

Centre on Nature Protection and Biodiversity, European Environment Agency. 574 

Dennis RL, Shreeve TG, Van Dyck H (2003) Towards a functional resource-based 575 

concept for habitat: a butterfly biology viewpoint. Oikos 102:417−426. 576 

Elisabetta B, Flavia G, Paolo F, Giorgio L, Attilio SG, Fiorella LS, Juri N (2013) 577 

Nutritional profile and productivity of bilberry (Vaccinium myrtillus L.) in different 578 

habitats of a protected area of the eastern Italian Alps. J Food Sci 78:673−678. 579 

Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and 580 

prediction across space and time. Annu Rev Ecol Evol 40:677−697. 581 

Elith J, Burgman MA, Regan HM (2002) Mapping epistemic uncertainties and vague 582 

concepts in predictions of species distribution. Ecol Model 157:313−329. 583 

ESRI (2018) ArcInfo desktop GIS.  584 

Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction 585 

errors in conservation presence/absence models. Environ Conserv 24:38−49. 586 

Foody GM (2004) Spatial non-stationarity and scale-dependency in the relationship 587 

between species richness and environmental determinants for the sub-Saharan 588 

endemic avifauna. Global Ecol Biogeogr 13:315−320. 589 



 

26 

 

Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial 590 

patterns in relation to environmental gradients. Prog Phys Geogr 19:474−499. 591 

Franklin J (2009) Mapping species distributions. Cambridge University Press. 592 

Franklin J, Woodcock CE, Warbington R (2000) Multi-attribute vegetation maps of 593 

forest service lands in California supporting resource management decisions. 594 

Photogramm Eng Remote Sens 66:1209−1218. 595 

Frans VF, Augé AA, Edelhoff H, Erasmi S, Balkenhol N, Engler JO (2018) Quantifying 596 

apart what belongs together: A multi‐state species distribution modelling framework 597 

for species using distinct habitats. Methods Ecol Evol 9:98−108. 598 

García-Llamas P, Calvo L, Álvarez-Martínez JM, Suárez-Seoane S (2016) Using 599 

remote sensing products to classify landscape. A multi-spatial resolution approach. 600 

Int J Appl Earth Obs Geoinf 50:95−105. 601 

García-Llamas P, Calvo L, De la Cruz M, Suárez-Seoane S (2018) Landscape 602 

heterogeneity as a surrogate of biodiversity in mountain systems: What is the most 603 

appropriate spatial analytical unit? Ecol Indic 85:285−294. 604 

García-Llamas P, Rangel TF, Calvo L, Suárez-Seoane S (2019) Linking species 605 

functional traits of terrestrial vertebrates and environmental filters: A case study in 606 

temperate mountain systems. PLoS one 14:e0211760.  607 

García-Llamas P, Geijzendorffer IR, García-Nieto AP, Calvo L, Suárez-Seoane S, 608 

Cramer W (2019) Impact of land cover change on ecosystem service supply in 609 

mountain systems: a case study in the Cantabrian Mountains (NW of Spain). Reg 610 

Envi Change 19:529−542. 611 

Gittleman JL, Kot M (1990) Adaptation: statistics and a null model for estimating 612 

pylogenetic effects. Systematic Zoology 39:227–241.  613 



 

27 

 

Guralnick RP, Hill AW, Lane M (2007) Towards a collaborative, global infrastructure 614 

for biodiversity assessment. Ecol Lett 1:663−672. 615 

Gu W, Swihart RK (2004) Absent or undetected? Effects of non-detection of species 616 

occurrence on wildlife–habitat models. Biol Cons 116:195−203. 617 

Guisan A, Broennimann O, Engler R, Vust M, Yoccoz NG, Lehmann A, Zimmermann 618 

NE (2006) Using niche-based models to improve the sampling of rare species. Cons 619 

Biol 20:501−511. 620 

Guisan A et al (2013) Predicting species distributions for conservation decisions. Ecol 621 

Lett 16:1424−1435. 622 

He KS et al (2015) Will remote sensing shape the next generation of species distribution 623 

models? Remote Sens Ecol Conserv 1: 4−18. 624 

Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sampling size 625 

and species characteristics on performance of different species distribution modeling 626 

methods. Ecography 29:773−785. 627 

Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of 628 

habitat suitability models to predict species presences. Ecol Model 199:142−152. 629 

Hortal J, Lobo JM, Jiménez‐Valverde A (2007) Limitations of biodiversity databases: 630 

case study on seed‐plant diversity in Tenerife, Canary Islands. Cons Biol 631 

21:853−863. 632 

Hortal J, Jiménez‐Valverde A, Gómez JF, Lobo JM, Baselga A (2008) Historical bias in 633 

biodiversity inventories affects the observed environmental niche of the species. 634 

Oikos 117:847−858. 635 

Ikeda DH, Max TL, Allan GJ, Lau MK, Shuster SM, Whitham TG (2017) Genetically 636 

informed ecological niche models improve climate change predictions. Global 637 

Change Biology 23:164−176. 638 



 

28 

 

Jiapaer G, Chen X, Bao A (2011) A comparison of methods for estimating fractional 639 

vegetation cover in arid regions. Agric for Meteorol 151:1698−1710. 640 

Jiménez‐Alfaro B et al (2018) Modelling the distribution and compositional variation of 641 

plant communities at the continental scale. Div Distrib 24:978−990. 642 

Kadmon R, Farber O, Danin A (2003) A systematic analysis of factors affecting the 643 

performance of climatic envelope models. Ecol Appl 13:853−867. 644 

Kearney M (2006) Habitat, environment and niche: what are we modelling? Oikos 645 

115:186−191. 646 

Kramer‐Schadt S et al (2013) The importance of correcting for sampling bias in MaxEnt 647 

species distribution models. Div Distrib 19:1366−1379. 648 

Lahoz-Monfort JJ, Guillera‐Arroita G, Wintle BA (2014) Imperfect detection impacts 649 

the performance of species distribution models. Glob Ecol Biogeogr 23:504−515. 650 

Lobo JM, Jiménez‐Valverde A, Real R (2008) AUC: a misleading measure of the 651 

performance of predictive distribution models. Glob Ecol Biogeogr 17:145−151. 652 

Maiorano L, Chiaverini L, Falco M, Ciucci P (2019) Combining multi-state species 653 

distribution models, mortality estimates and landscape connectivity to model 654 

potential species distribution for endangered species in human dominated 655 

landscapes. Biol Cons 237:19−27. 656 

Marquínez J, Fernández Prieto JA, Álvarez MA (2002) Cartografía Temática Ambiental 657 

del Principado de Asturias. Escala 1:25.000. Gobierno del Principado de Asturias, 658 

Oviedo. 659 

Martins EP (1996) Phylogenies, spatial autoregression, and the comparative method: a 660 

computer simulation test. Evolution 50:1750–1765.  661 



 

29 

 

Menke SB, Holway DA, Fisher RN, Jetz W (2009) Characterizing and predicting 662 

species distributions across environments and scales: Argentine ant occurrences in 663 

the eye of the beholder. Glob Ecol Biogeogr 18:50−63. 664 

Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Stampar F, Veberic R (2015) A 665 

comparison of fruit quality parameters of wild bilberry (Vaccinium myrtillus L.) 666 

growing at different locations. J Sci Food Agric 95:776−785. 667 

Mitchell SC (2005) How useful is the concept of habitat? Oikos 110: 634−638. 668 

Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23. 669 

Morán-Ordóñez A, Suárez-Seoane S, Calvo L, Luis E (2011) Can predictive models be 670 

used as a spatially explicit support tool for managing cultural landscapes? Appl 671 

Geogr 31:839−848. 672 

Morán-Ordóñez A, Suárez-Seoane S, Elith J, Calvo L, Luis E (2012) Satellite surface 673 

reflectance improves habitat distribution mapping. Div Distrib 18:588−602. 674 

Naves J, Fernández-Gil A, Rodríguez C, Delibes M (2006) Brown bear food habits at 675 

the border of its range: a long-term study. J Mammal 87:899−908. 676 

Naves J, Ordiz A, Fernández-Gil A, Penteriani V, Delgado MM, López-Bao JV, Revilla 677 

E, Delibes M (2018) Patterns of brown bear damages on apiaries and management 678 

recommendations in the Cantabrian Mountains, Spain. PloS one 13:e0206733. 679 

Ninyerola M, Roure JM, Fernández XP (2005) Atlas climático digital de la Península 680 

Ibérica: metodología y aplicaciones en bioclimatología y geobotánica. 681 

Osborne PE, Suárez-Seoane S (2002) Should data be partitioned spatially before 682 

building large-scale distribution models? Ecol Model 157:249−259. 683 

Osborne PE, Foody GM, Suárez-Seoane S (2007) Non-stationarity and local approaches 684 

to modelling the distributions of wildlife. Div Distrib 13:313−323. 685 



 

30 

 

Pato J, Obeso JR (2012) Growth and reproductive performance in bilberry (Vaccinium 686 

myrtillus) along an elevation gradient. Ecoscience 19:59−68. 687 

Pato J, Obeso JR, Ploquin EF, & Jiménez-Alfaro B (2016). Experimental evidence from 688 

Cantabrian mountain heathlands suggests new recommendations for management of 689 

Vaccinium myrtillus L. Plant Ecol & Divers 9:199-206. 690 

Penteriani V, Zarzo‐Arias A, Novo‐Fernández A, Bombieri G, López‐Sánchez CA 691 

(2019) Responses of an endangered brown bear population to climate change based 692 

on predictable food resource and shelter alterations. Glob Change Biol 693 

25:1133−1151. 694 

Peterson AT, Cohoon KP (1999) Sensitivity of distributional prediction algorithms to 695 

geographic data completeness. Ecol Model 117:159−164. 696 

Peterson AT et al (2011) Ecological Niches and Geographic Distributions. Prin. Univ. 697 

Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new 698 

extensions and a comprehensive evaluation. Ecography 31:161−175. 699 

Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species 700 

geographic distributions. Ecol Model 190:231−259.  701 

Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) 702 

Sample selection bias and presence-only distribution models: implications for 703 

background and pseudo-absence data. Ecol Appl 19:181−197. 704 

R Core Team (2019). R: A language and environment for statistical   computing. R 705 

Foundation for Statistical Computing, Vienna, Austria.  URL https://www.R-706 

project.org/. 707 

Radosavljevic A, Anderson RP (2014) Making better Maxent models of species 708 

distributions: complexity, overfitting and evaluation. J Biogeogr 41:629−643. 709 

http://web.sci.ccny.cuny.edu/~anderson
http://www.cs.princeton.edu/~schapire


 

31 

 

Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are 710 

niche-based species distribution models transferable in space? J Biogeogr 711 

33:1689−1703. 712 

Rodríguez AE, Obeso JR (2000) Diet of the Cantabrian capercaillie: geographic 713 

variation and energetic content. Ardeola 47:77−83. 714 

Rodríguez C, Naves J, Fernández-Gil A, Obeso JR, Delibes M (2007) Long-term trends 715 

in food habits of a relict brown bear population in northern Spain: the influence of 716 

climate and local fact. Envi Cons 34:36−44. 717 

Rodwell JS, Schaminée JHJ, Mucina L, Pignatti S, Dring J, Moss D (2002) The 718 

diversity of European vegetation: an overview of phytosociological alliances and 719 

their relationships to EUNIS habitats. NRCANF, Wageningen.  720 

Segura A, Castaño-Santamaría J, Laiolo P, Obeso JR (2014) Divergent responses of 721 

flagship, keystone and resource-limited bio-indicators to forest structure. Ecol Res 722 

29:925−936. 723 

Soberón J, Peterson T (2004) Biodiversity informatics: managing and applying primary 724 

biodiversity data. Philos Trans R Soc Lond B Biol Sci 359:689−698. 725 

SPSS v.21 (2012) IBM SPSS statistics version 21. Int. Business Machines Corp. 726 

Suárez-Seoane S, de la Morena E LG, Prieto MBM, Osborne PE, de Juana E (2008) 727 

Maximum entropy niche-based modelling of seasonal changes in little bustard 728 

(Tetrax tetrax) distribution. Ecol Model 219:17−29. 729 

Suárez-Seoane S, Virgós E, Terroba O, Pardavila X, Barea-Azcón JM (2014) Scaling of 730 

species distribution models across spatial resolutions and extents along a 731 

biogeographic gradient. The case of Talpa occidentalis. Ecography 37:279−292. 732 



 

32 

 

Suárez‐Seoane S, Álvarez‐Martínez JM, Wintle BA, Palacín C, Alonso JC (2017) 733 

Modelling the spatial variation of vital rates: An evaluation of the strengths and 734 

weaknesses of correlative species distribution models. Divers Distrib 23:841−853. 735 

Suárez-Seoane S, Álvarez-Martínez JM, Palacín C, Alonso JC (2018) From general 736 

research questions to specific answers: Underspecificity as a source of uncertainty in 737 

biological conservation. Biol Cons 227:167−180. 738 

Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240: 1285–739 

1293. 740 

Synes NW, Osborne PE (2011) Choice of predictor variables as a source of uncertainty 741 

in continental‐scale species distribution modelling under climate change. Glob Ecol 742 

Biogeogr. 20:904−914. 743 

Tarkesh M, Jetschke G (2012) Comparison of six correlative models in predictive 744 

vegetation mapping on a local scale. Environ Ecol Stat 19:437−457. 745 

Tabachnick BG, Fidell LS (1996) Using Multivariate Statistics, 3 ed. Boston Pearson. 746 

Tessarolo G, Rangel TF, Araújo MB, Hortal J (2014) Uncertainty associated with 747 

survey design in Species Distribution Models. Div Distrib 20:1258−1269.  748 

Thuiller W, Araujo MB, Lavorel S (2004a) Do we need land-cover data to model 749 

species distributions in Europe? J Biogeogr 31:353−361. 750 

Thuiller W, Brotons L, Araújo MB, Lavorel, S (2004b) Effects of restricting 751 

environmental range of data to project current and future species distributions. 752 

Ecography 27:165−172. 753 

Veloz SD (2009) Spatially autocorrelated sampling falsely inflates measures of 754 

accuracy for presence-only niche models. J Biogeogr 36:2290−2299. 755 



 

33 

 

Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of 756 

model complexity and the performance of model selection criteria. Ecol Appl 757 

21:335−342. 758 

Wisz MS et al (2013) The role of biotic interactions in shaping distributions and realised 759 

assemblages of species: implications for species distribution modelling. Biol Rev 760 

88:15−30. 761 

Woodward FI (1986) Ecophysiological studies on the shrub Vaccinium myrtillus L. 762 

taken from a wide altitudinal range. Oecologia 70:580-586. 763 

Worboys G, Francis WL, Lockwood M (2010) Connectivity conservation management: 764 

a global guide. Earthscan. 765 

Zhang X., Liao C., Li J.m Sun, Q (2013) Fractional vegetation cover estimation in arid 766 

and semi-arid environments using HJ-1 satellite hyperspectral data. Int J Appl Earth 767 

Obs Geoinf 21:506−512. 768 

Zuckerberg B, Fink D, La Sorte FA, Hochachka WM, Kelling S (2016) Novel seasonal 769 

land cover associations for eastern North American forest birds identified through 770 

dynamic species distribution modelling. Div Distrib 22:717−730. 771 

Zurell D, Elith J, Schröder B (2012) Predicting to new environments: tools for 772 

visualizing model behaviour and impacts on mapped distributions. Div Distrib 773 

18:628−634. 774 

 775 



 

 

Table 1. Main habitat types where Vaccinium myrtillus occurs in the Cantabrian Mountains and datasets used for model calibration and evaluation 

(the number of records after spatial filtering is in bold, while the number of records before filtering is shown in parentheses). 

 

 alpine dwarf-shrublands Atlantic heathlands acidic woodlands 

European Habitat Classification System- EUNIS  

(Davies et al. 2004) 

F2.2 F4.1, F4.2 G1.6, G1.8, G1.9 

European Habitats Directive 92/43/EEC (Anon 1992) 4060 4020 9120 

Vegetation type (Rodwell et al. 2002) Juniperion nanae Daboecion cantabricae Ilici-Fagion 

Dominant species Juniperus communis,  

Vaccinium uliginosum 

Calluna vulgaris Fagus sylvatica, Quercus 

petraea, Betula celtiberica 

Calibration datasets 25 (83) 19 (49) 104 (186) 

Evaluation datasets 14 (20) 45 (71) 30 (31) 
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Table 2. Environmental predictors used for modelling Vaccinium myrtillus distribution. 

 

Type Variable Description Source  

Climate 

Tempdd Temperature degree days: Daily mean temperature 

> 0ºC x number of days (in ºC.d.yr-1) 

Digital climatic Atlas of the Iberian Peninsula 

at 200 m resolution (Ninyerola et al. 2005) 
Moist Moisture index: Water balance model for 

computing the mixed effect of monthly 

precipitation and evaporation, from 0 (dry) to 1 

(saturated) 

Topography 
Slope Slope (in degrees)  

DTM at 30m  
Insolation Annual solar radiation (in wmj) 

Lithology 
pH Relative soil pH values  ISRIC World Soil Information at 1 km 

resolution (http://www.isric.org/) 

Habitat  

 

Habmap 

 

 

Channel3  

 

Categorical habitat map (119 classes) 

 

 

Reflectance values of channel 3 (red wavelength) 

Atlas of Natural and Seminatural Habitats of 

Spain, year 2005, scale 1:50000 

(www.magrama.gob.es) 

Landsat TM at 30m resolution, year 2005  

(see Morán-Ordóñez et al. 2011, 2012 for 

technical details) 
Channel4 Reflectance values of channel 4 (near infrared 

wavelength) 

PVMpred-alpine, PVMpred-atlantic, 

PVMpred-woodland, PVMpred-all 

Predictions from predictive vegetation models 

(PVMs) calculated per habitat and altogether, 

according to each case (suitability index ranging 

from 0 to 1)  

Own elaboration based on the Vegetation Map 

of Asturias,1:25,000 scale (Marquínez et al. 

2002) 

 

http://www.magrama.gob.es/
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Table 3. Modelling approaches. See Table 2 for code meaning. 

 

 

 
Approach 1 

Topo-climate 

Approach 2 

Additive habitat-map 

Approach 3 

Additive Landsat  

Approach 4 

Integrative PVM 

Calibration 
    

Species occurrence data Calibration datasets: (i) all data, (ii) alpine dwarf-shrublands, (iii) Atlantic heathlands, (iv) acidic woodlands 

Background  Adjusted to 5x5km grids with bilberry presence: One background per each species dataset (i to iv) 

Layers Tempdd, Moist, Slope, 

Insolation, pH 

Tempdd, Moist, Slope, 

Insolation, pH, Habmap 

Tempdd, Moist, Slope, Insolation, 

pH, Channel3, Channel4 

PVMpred-alpine, PVMpred-atlantic, 

PVMpred-woodland, PVMpred-all 

Output maps 
     

 Four maps (HSI) per approach: all habitats, alpine heathlands, Atlantic heathlands, acidic woodlands 

Evaluation 
     

Evaluation data Evaluation datasets: (i) all data, (ii) alpine dwarf-shrublands, (iii) Atlantic heathlands, (iv) acidic woodlands 

 



 

 

Table 4. Discrimination and overfitting achieved by non-partitioned and habitat-partitioned models within 

the calibration area under different approaches. AUC: area under the curve; CV: cross-validated models; 

MTPT: minimum training presence threshold; 10PTP: 10-percentile training presence threshold; 

SpearmanHSI-cover: Spearman correlations between model predictions (habitat suitability index, HSI) and 

Vaccinium myrtillus cover estimated in the field. Values corresponding to the highest performance and 

lowest overfitting are highlighted in bold. 

 

 
 Approach 1 

Topo-climate 

Approach 2 

Additive habitat-map 

Approach 3 

Additive Landsat  

Approach 4 

Integrative PVM 

 “Non-partitioned models” (all habitats) 

D
is

cr
im

in
at

io
n
    AUCcalibration 0.84 0.89 0.90 0.86 

   AUC-5CVcalibration 0.80±0.04 0.84±0.03 0.86±0.04 0.86±0.03 

AUCevaluation 0.82 0.85 0.81 0.80 

Boyceevaluation 0.43 0.98 1.00 0.01 

SpearmanHSI-cover 0.11 0.03 0.18 0.31 

O
v

er
fi

tt
in

g
 AUCcalibration - AUCevaluation 0.01 0.04 0.08 0.06 

Omission rateevaluation (MTPT) 0.00 0.03 0.06 0.07 

Omission rateevaluation (10PTP) 0.17 0.17 0.24 0.18 

 

 “Habitat-partitioned models” (alpine dwarf-shrublands) 

D
is

cr
im

in
at

io
n
    AUCcalibration 0.97 0.97 0.97 0.93 

   AUC-5CVcalibration 0.96±0.02 0.95±0.03 0.96±0.02 0.92±0.05 

AUCevaluation 0.95 0.93 0.92 0.88 

Boyceevaluation 0.37 0.35 0.25 0.28 

SpearmanHSI-cover -0.31 -0.47 -0.01 0.10 

O
v

er
fi

tt
in

g
 AUCcalibration - AUCevaluation 0.02 0.05 0.05 0.05 

Omission rateevaluation (MTPT) 0.07 0.07 0.14 0.00 

Omission rateevaluation (10PTP) 0.21 0.29 0.21 0.14 

 

 “Habitat-partitioned models” (Atlantic heathlands) 

D
is

cr
im

in
at

io
n
    AUCcalibration 0.95 0.95 0.97 0.91 

   AUC-5CVcalibration 0.93±0.04 0.91±0.07 0.94±0.04 0.90±0.05 

AUCevaluation 0.85 0.82 0.86 0.82 

Boyceevaluation 0.47 -0.17 0.64 -0.36 

SpearmanHSI-cover 0.13 -0.02 0.18 0.33 

O
v

er
fi

tt
in

g
 AUCcalibration - AUCevaluation 0.11 0.12 0.11 0.09 

Omission rateevaluation (MTPT) 0.19 0.13 0.27 0.27 

Omission rateevaluation (10PTP) 0.46 0.70 0.51 0.27 

 

 “Habitat-partitioned models” (acidic woodlands) 

D
is

cr
im

in
at

io
n
    AUCcalibration 0.85 0.91 0.92 0.88 

   AUC-5CVcalibration 0.79±0.04 0.87±0.06 0.88±0.03 0.87±0.02 

AUCevaluation 0.76 0.83 0.83 0.81 

Boyceevaluation 0.00 0.20 -0.04 -0.24 

SpearmanHSI-cover -0.05 0.20 0.09 0.12 

O
v

er
fi

tt

in
g
 

AUCcalibration - AUCevaluation 0.09 0.08 0.09 0.07 

Omission rateevaluation (MTPT) 0.10 0.12 0.07 0.07 

Omission rateevaluation (10PTP) 0.27 0.35 0.27 0.20 
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Table 5. Extrapolation of habitat-partitioned models across the study area (validated with the “testing dataset” containing locations from all habitats). AUC: 

area under the curve; MTPT: “minimum training presence threshold”; 10PTP: “10-percentile training presence threshold”. 

 

Habitat-partitioned models  Approach 1 

Topo-climate 

Approach 2 

Additive habitat-map 

Approach 3 

Additive Landsat  

Approach 4 

Integrative PVM 

 Alpine heathlands 

AUCtesting  

MTPT  

10PTP 

0.78 

0.38 

0.64 

0.68 

0.31 

0.76 

0.75 

0.45 

0.64 

0.75 

0.28 

0.41 

 Atlantic heathlands 

AUCtesting  

MTPT  

10PTP 

0.71 

0.41 

0.63 

0.68 

0.31 

0.76 

0.69 

0.53 

0.72 

0.66 

0.49 

0.49 

 Acidic woodlands 

AUCtesting  

MTPT  

10PTP 

0.60 

0.17 

0.41 

0.60 

0.31 

0.78 

0.51 

0.49 

0.76 

0.34 

0.69 

0.74 

 

 



 

 

Table 6. Environmental responses of the target species across habitats and approaches. The table 

shows the relative contribution of each predictor to each MaxEnt model estimated as the 

permutation importance values (i.e., the values of each predictor on the training presence and 

background datasets are randomly permuted, the model is re-evaluated on the permuted data and 

the resulting drop in training AUC is calculated and normalized to percentage values). The shape 

of the marginal curves representing how the predicted suitability changes as each environmental 

variable is varied (keeping all other environmental variables at their average sample value) is 

shown between parentheses (L =linear, E =exponential, S =sigmoidal, Q =quadratic) and sign (+ 

=Positive, - =Negative, 0 =Flat). See Table 2 for variable description. 

 

 Approach 1 

Topo-climate 

Approach 2 

Additive habitat-map 

Approach 3 

Additive Landsat  

Approach 4 

Integrative PVM 

“Non-partitioned models” (all habitats)  

Tempdd 40.3 (E-) 47.8 (E-) 46.8 (E-) - - 

Moist 21.0 (L+) 3.5 (S) 5.8 (L+) - - 

Slope 3.6 (L+) 6.6 (S) 2.4 (L+) - - 

Insolation 26.8 (Q+) 25.8  (Q+) 7.7 (Q+) - - 

pH 8.2 (L+) 1.7 (S) 5.1 (S) - - 

Habmap - - 14.6 - - - - - 

Channel3  - - - - 29.5 (E-) - - 

Channel4 - - - - 2.6 (Q+) - - 

PVMpred-all - - - - - - 100 (S) 

“Habitat-partitioned models” (Alpine heathlands)  

Tempdd 82.0 (E-) 77.5 (E-) 77.9 (E-) - - 

Moist 4.7 (S) 1.4 (S) 5.6 (S) - - 

Slope 0 (S) 0.3 (S) 0 (S) - - 

Insolation 2.9 (E-) 3.5 (E-) 2.6 (E-) - - 

pH 10.4 (S) 9.6 (S) 11.3 (S) - - 

Habmap - - 7.8 - - - - - 

Channel3  - - - - 2.5 (Q+) - - 

Channel4 - - - - 0 (E-) - - 

PVMpred-alpine  - - - - - - 100 (S) 

“Habitat-partitioned models” (Atlantic heathlands)  

Tempdd 65.0 (E-) 77.0 (E-) 54.4 (E-) - - 

Moist 5.4 (Q-) 1.2 (L-) 0.7 (S) - - 

Slope 17.3 (E-) 13.3 (E-) 14.0 (E-) - - 

Insolation 5.5 (Q+) 0 Flat 4.2 (Q+) - - 

pH 6.9 (S) 0 (S) 9.0 (S) - - 

Habmap - - 8.5 - - - - - 

Channel3  - - - - 1.7 (E-) - - 

Channel4 - - - - 16.0 (E-) - - 

PVMpred-atlantic - - - - - - 100 (S) 

“Habitat-partitioned models” (acidic woodlands)  

Tempdd 28.5 (Q+) 14.2 (Q+) 15.2 (Q+) - - 

Moist 21.9 (S) 0.3 (S) 2.9 (S) - - 

Slope 1.6 (E+) 4.3 (S) 1.5 (S) - - 

Insolation 35.9 (Q+) 41.8 (E-) 6.2 (Q+) - - 

pH 12.2 (S) 2.5 (E-) 7.7 (S) - - 

Habmap - - 36.9 - - - - - 

Channel3  - - -  56.4 (E-) - - 

Channel4 - - -  10.1 (Q+) - - 

PVMpred-woodland  - - - - - - 100 (S) 
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List of figures 

Fig. 1. Study area. 

Fig. 2. Logistic outputs (habitat suitability index) of MaxEnt for Approach 3. (a) “Non-

partitioned model”: all habitats. “Habitat-partitioned models”: (b) alpine dwarf-shrublands, 

(c) Atlantic heathlands and (d) acidic woodlands. Values range from 0 (white colour) to 1 

(black colour). 

Fig. 3. Fractional predicted area (FPA; proportion of cells predicted to have suitable habitat for 

the target species), in percentage, according to different thresholds: “Minimum Training 

Presence Threshold” of MaxEnt (MTPT) and the “10 Percentile Training Presence” 

(10PTP). Numbers 1 to 4 correspond to the approaches: (1) topo-climate, (2) additive habitat 

map, (3) additive Landsat, (4) integrative PVM.  
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(a)        (b) 

 
 

 

 



 

 

Supplementary material- Annex 1. Distribution range of Vaccinium myrtillus in the Iberian Peninsula and, particularly, in the study 

area (Cantabrian range) according to ANTHOS database (www.anthos.es, accessed October 2019). Large and small quadrats reflect species 

occurrence in 10 km x 10 km and 1km x 1 km grids, respectively. 
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Supplementary material- Annex 2. Habitat predictors used in model calibration. 

 

 



 

 

PVM modelling approach 

Predictive Vegetation Models (PVMs) were calibrated using: (i) A stratified random dataset 

of 700 occurrence points (only one observation per 30m grid cell, the spatial resolution of the 

analysis) informing on vegetation type, collected across the Vegetation Map of Asturias at 

scale 1:25000 (Marquínez et al. 2002): 400 for acidic woodlands, 200 for Atlantic heathlands 

and 100 for alpine dwarf-shrublands. (ii) A single background dataset (sampling effort was 

constant across the whole habitat map) of 10,000 points randomly distributed within the 

extent of the vegetation map that encompasses the prediction locations and informs on the 

distribution of the covariates in the landscape. (iii) A set of topo-climatic (temperature, 

moisture, slope, insolation and pH, likely influencing the occurrence of different vegetation 

types) and satellite variables (red and near infrared Landsat channels) that were included as 

vegetation predictors. To minimize further multi-collinearity problems, we checked that 

Spearman pairwise correlations between all candidate predictors were <0.8 in a sample of 

50000 points randomly distributed across the study area (Tabachnick and Fidell 1996).  

We ran a model for each type of habitat, with MaxEnt 3.3.3 (Phillips et al. 2006; 

Phillips and Dudik 2008), using the same background and set of predictors in all cases. The 

logistic outputs achieved for each habitat (shown in this annex) were used as predictors in 

Approach 4. Logistic outputs can be interpreted as a suitability index ranging from 0 to 1. A 

value near 1 represents optimal sites to hold a particular vegetation type; a value near 0 

corresponds to unsuitable sites. Model predictive performance was assessed using the area 

under the receiver-operator characteristic curve adapted for use with presence-background 

samples (Phillips et al. 2006). AUC values range from 0 to 1, where 1 indicates perfect model 

discrimination and 0.5 a model no better than random. The achieved AUC values were: 97.5% 

(Alpine heathlands), 93.1% (Atlantic heathlands) and 84.0% (acidic woodlands).  

 



 

 

Supplementary material- Annex 3. Correlation coefficients among the spatial outputs achieved for all approaches. Calculations 

were made on the basis of a random sample of 3000 points. 

 

 

 

 



 

 

Supplementary material- Annex 4. Response curves identified by Maxent showing the effect of each predictor on the logistic response. Each curve 

represents a different model created using only the corresponding variable. 

 
a) Topoclimatic variables 

 

Temperature        Moisture             Slope           Insolation             pH 

 

All habitats 

     
 
 

Alpine heathlands 

     
Atlantic heathlands 

 
Acidic woodlands 

 

file:///E:/ARANDANO/analisis%202016/approach%201-topoclimate/output_aut_all100/plots/vm_ph_only.png
file:///E:/ARANDANO/analisis%202016/approach%201-topoclimate/output_aut_atl100/plots/atl_dday_only.png
file:///E:/ARANDANO/analisis%202016/approach%201-topoclimate/output_aut_atl100/plots/atl_inso_only.png
file:///E:/ARANDANO/analisis%202016/approach%201-topoclimate/output_aut_atl100/plots/atl_ph_only.png
file:///E:/ARANDANO/analisis%202016/approach%201-topoclimate/output_aut_wood100/plots/wood_dday_only.png
file:///E:/ARANDANO/analisis%202016/approach%201-topoclimate/output_aut_wood100/plots/wood_inso_only.png
file:///E:/ARANDANO/analisis%202016/approach%201-topoclimate/output_aut_wood100/plots/wood_ph_only.png
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b) Habitat variables 

 

    Habitat map         Landsat channel 3  Lansat channel 4  

 

All habitats       

   
 

Alpine heathlands 

  
Atlantic heathlands 

  
Acidic woodlands 

  
 

file:///E:/ARANDANO/analisis%202016/approach%205-topoclima%20y%20landsat/output_aut_all100/plots/vm_lan3.png
file:///E:/ARANDANO/analisis%202016/approach%205-topoclima%20y%20landsat/output_aut_all100/plots/vm_lan4.png
file:///E:/ARANDANO/analisis%202016/approach%205-topoclima%20y%20landsat/output_aut_alp100/plots/alp_lan3_only.png
file:///E:/ARANDANO/analisis%202016/approach%205-topoclima%20y%20landsat/output_aut_alp100/plots/alp_lan4_only.png
file:///E:/ARANDANO/analisis%202016/approach%205-topoclima%20y%20landsat/output_aut_atl100/plots/atl_lan3_only.png
file:///E:/ARANDANO/analisis%202016/approach%205-topoclima%20y%20landsat/output_aut_atl100/plots/atl_lan4_only.png
file:///E:/ARANDANO/analisis%202016/approach%205-topoclima%20y%20landsat/output_aut_wood100/plots/wood_lan3_only.png
file:///E:/ARANDANO/analisis%202016/approach%205-topoclima%20y%20landsat/output_aut_wood100/plots/wood_lan4_only.png

