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Abstract  

We use a stochastic frontier approach to estimate the technology and the technical 

efficiency of a sample of small-scale fishing boats in the Spanish island of Gran Canaria. 

Using a model that allows for the determinants of inefficiency, we find that boat efficiency 

increases with boat size while it is inversely related to the age of the vessel. We pay 

special attention to the specialization of the fishing boats. For this purpose, we include 

two variables: one that measures the specialization in few species and another one that 

reflects technological specialization, which is measured as number of gears used. We 

find that both variables reduce the efficiency of fishing boats.  

 
JEL Classification: C23, D24, Q22  

Keywords: Small-scale fisheries, boat efficiency, specialization, stochastic frontier, panel 
data. 
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DOES SPECIALIZATION AFFECT THE EFFICIENCY OF SMALL-SCALE 
FISHING BOATS? 

 
 

Introduction 

While the main problem of the fishing sector is the exhaustion of the stocks, the 

decreasing profitability of fishing activity has been receiving increasing attention 

(Commission of the European Communities, 2006). Low profits lead to a decrease in the 

number of fishers and to a reduction in the income of fishing villages. These are well 

known problems and have been a source of concern to the public authorities for several 

decades.  

 

While many solutions have been proposed to alleviate the problem of declining 

stocks (quotas, input controls…), the problem of fishers’ income is more complex. On 

the one hand, gross revenue is the product of catches times the price of fish. Since 

catches are regulated in order to prevent the exhaustion of the stocks, an increase in 

income appears to depend solely on prices. According to the FAO (FAO, 2018), there is 

a positive trend in world fish prices, although probably not large enough to compensate 

the decrease in catches. Therefore, revenues seem to be difficult to increase.1 

 

On the other hand, most of the costs in fishing are fixed. However, an important 

variable that affects fishermen’ income is the efficiency with which they operate the 

technology. Identifying inefficient boats and understanding the causes of inefficiency can 

allow policymakers to establish programs oriented towards reducing inefficiency.  

 

                                                           
1 This is true for the sector as a whole. One way to increase revenue per boat is to allow for a further 

reduction in the number of fishers. 
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For these reasons, in recent years there has been an increasing interest in the 

measurement of technical efficiency in the fishing sector (e.g., Tingley et al., 2005; 

Pascoe et al., 2011; Solis et al., 2014). The study of technical efficiency has relied on 

the estimation of production frontiers, defined as the maximum amount of output 

achievable from a given set of productive inputs. The difference between this theoretical 

maximum and actual data is interpreted as technical inefficiency. In this study, we use a 

stochastic production frontier model to estimate not only the technical efficiency of the 

boats but also the characteristics of the technology. 

 

This paper uses a panel data set of fishing boats of the artisanal fleet on the 

Spanish island of Gran Canaria. Since we are interested in identifying variables that 

explain the differences in technical efficiency across boats, we estimate a model that 

allows technical inefficiency to be a function of some explanatory variables (see 

Kumbhakar and Lovell, pp. 261-279). While some papers have recently applied this 

approach to fisheries (especially the well-known model by Battese and Coelli, 1995), we 

use a model developed by Hadri (1999) that allows the variances of both the random 

noise and the inefficiency term to be a function of exogenous variables. To the best of 

our knowledge, this is the first attempt to apply this model to fisheries data. 

 

We are interested in studying the role of specialization in fishing efficiency. Since 

Adam Smith, specialization has been considered a driver of productivity and several 

papers have therefore included different measures of productive specialization when 

trying to study the determinants of technical efficiency (e.g., Latruffe et al., 2005). 

Specialization is usually associated with the division of labor, i.e., productivity gains come 

from the fact that workers specialize in a narrow set of tasks. However, our hypothesis 

is that in multi-species fisheries this need not be the case. In multi-species fisheries, 

some species are more abundant than others at some points in time, so that 

concentration in a few species may result in lower total catch. On the other hand, 
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technological specialization in the form of, for example, using just one gear may result in 

missing opportunities to catch more abundant species that require the use of a different 

gear. For these reasons, we believe that specialization in fisheries may result in lower 

technical efficiency. 

 

We consider two measures of specialization. The first one is the concentration of 

catches in a few species, which tries to reflect specialization in the output side. The 

second one is the specialization in gear use, which proxies technological specialization 

from the input side. Pascoe and Coglan, (2002) also used a variable to measure the 

degree of specialization in a particular gear type.  

 

The paper is organized as follows. The next section reviews the modeling of 

technical efficiency using stochastic frontiers. Then we describe the data and present 

the empirical model, followed by the econometric estimation and the discussion of the 

results. Finally, an analysis of fishing efficiency is presented. 

 

 

Modeling technical efficiency 

The key to obtaining an estimate of technical efficiency is the estimation of the production 

frontier. This can be done using parametric or non-parametric techniques. Non-

parametric methods, the most popular being Data Envelopment Analysis (DEA), use 

linear programming to estimate the frontier, while parametric methods employ 

econometric techniques. In this study, we follow the parametric approach not only 

because of the inherent stochasticity involved in fisheries (Kirkley et al., 1995) but also 

because we are interested in estimating the characteristics of the technology, such as 

the output-elasticities. 
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Aigner et al. (1977) and Meeusen and Van den Broeck (1977), independently 

proposed the estimation of stochastic frontiers. These models consider that deviations 

from the production frontier can be decomposed, allowing for the separation of 

uncontrollable random effects, such as climatic events or luck, from the effect of technical 

efficiency2. 

A general stochastic production frontier model can be given by: 

yit = ’xit + vit − uit (1) 

where subscript i indexes boats and subscript t denotes time, yit represents output from 

boat i at time t, xit is a vector of inputs, β is a vector of unknown parameters to be 

estimated, vit is a symmetric random disturbance which captures the effect of statistical 

noise, whereas uit is a non-negative stochastic term that is assumed to be independent 

from v and which captures the distance from the stochastic frontier, i.e. technical 

inefficiency. When u=0, the observation lies on the technological frontier and is therefore 

efficient. When u>0, the observation is below the frontier, indicating that it is technically 

inefficient.  

 
Since we are interested in finding which variables explain differences in the 

efficiency of the boats, we use an augmented version of equation (1) by allowing the 

inefficiency term u to be a function of some exogenous variables z. The general form of 

this type of models is: 

yit = ’xit + vit − uit(zit)  (2) 

 

There are two possible alternative specifications of uit(zit), depending on the way 

that the variables z affect the distribution of u. In particular, they can affect the mean or 

the variance of u.  

                                                           
2 See Alvarez and Arias (2014) for a recent survey on stochastic frontier modelling or Kumbhakar 

and Lovell (2000) for a book-level treatment. 
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Battese and Coelli (1995) is the most popular model among practitioners when 

allowing technical inefficiency to be a function of some exogenous variables. The 

inefficiency term can be expressed in the following way: 

uit = zitδ + wit  (3) 

where z are the explanatory variables associated with technical inefficiency and Wit is 

defined by the truncation of the normal distribution with zero mean and variance σ2, such 

that the point of truncation is -zitδ.  

 

This model has been widely employed in the field of fisheries to study the 

technical efficiency of the fleets (Campbell and Hand, 1998; Kirkley et al., 1998; Sharma 

and Leung, 1999; Eggert, 2001; Pascoe et al., 2001; Pascoe and Coglan, 2002; Fousekis 

and Klonaris, 2003; Kompas et al., 2004). 

 

The other alternative is to model the variance of the pretruncated distribution of u. 

Reifschneider and Stevenson (1991) was the first paper to incorporate heteroskedasticity 

in the stochastic frontier model. Caudill et al. (1995) assumed that u exhibits multiplicative 

heteroscedasticity, a choice that we will use in this paper. In particular, they suggest an 

exponential function: 

uit ~N+(0, σit
2 ),    σit = g(zit , δ) = σu ∙ exp(δzit)

 
(4) 

where the + sign indicates truncation of the distribution at zero. 

 

Modeling the variance of the one-sided error term is very important since the 

presence of heteroscedasticity in u will yield biased estimates of both the frontier 

parameters and the efficiency scores. This result differs markedly from the typical effect of 

heteroscedasticity in the two-sided error term v, which causes the variances of the 
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parameter estimates to be biased. For this reason, the heteroscedastic model will be our 

preferred model.3 

 

The empirical model estimated in this paper is a double-heteroscedastic model 

developed by Hadri (1999). This model is an extension of the Caudill et al. (1995) model, 

where both the variance of the pre-truncated distribution of u and the variance of the 

random term v are assumed to be a function of several variables. 

 

Data 

Gran Canaria is an island of the Canarian Archipelago, located off the northwest coast 

of the African continent. The artisanal fishery is managed by the Canary Islands 

Government and each vessel is associated with one of the six main fishing ports existing 

in the island: Agaete, San Cristóbal, Melenara, Castillo del Romeral, Arguineguín and 

Mogán. The fleet consists mainly of small and old vessels made of wood or fiber, and 

fishing trips are daily. Most vessels use several gears. 

 

Across the archipelago, there are no limitations on the maximum catches that can 

be harvested by professional fishermen except for tunas, whose catches are regulated 

by the International Commission for the Conservation of Atlantic Tunas (ICCAT).  

Furthermore, there are no restrictions on the number of fishing trips and the management 

policies only include some limitations on the use of fishing gears and minimum landing 

sizes. 

 

                                                           
3 Additionally, Caudill et al. (1995) state that “…the ranking of firms as to their relative inefficiency 

changes dramatically when the correction for heteroscedasticity is incorporated into the 

estimation. This is considerable evidence that inefficiency measures are sensitive to errors like 

heteroscedasticity and must be viewed with caution unless the heteroscedasticity is incorporated 

into the estimation. 
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The catches of the artisanal fishing fleet on the island are conditioned by the 

characteristics of the coast, in particular, its narrow island shelf and the seabed. The 

main target species can be grouped into three categories: benthic-demersals, coastal 

pelagics and tunas. In recent years, there has been an increase in total catches, although 

the landings of benthic-demersal species as well as some pelagic coastal communities, 

such as mackerels or sardines have shown a decrease (Couce-Montero et al., 2015). 

 

The data employed in this paper were obtained from different sources. The 

Canary Islands Government provided official landings by boat at the monthly level, as 

well as the characteristics of the vessels. To collect information about the crew and other 

aspects of the artisanal fleet, face-to-face interviews with owners, captains or fishermen 

were conducted. The data are aggregated on a monthly basis, forming an unbalanced 

panel dataset with 7279 observations from 195 vessels during the period 2005-2010. 

 

Landings of the artisanal fleet feature more than 150 species, so a single 

aggregate output was created. This is standard practice in the empirical papers that deal 

with multi-species fisheries (e.g. Sharma and Lueng, 1999)4. While most papers use the 

value of catches, we will aggregate catches both in terms of weight (kg) and value 

(euros), as in Herrero and Pascoe (2001). Since we do not have individual prices we 

aggregate the catch in value terms using average prices for the whole region, so that the 

weights are both boat- and time-invariant. The use of fixed weights still allows us to 

distinguish boats that catch highly-priced species from other boats which are more 

specialized in less profitable species. 

 

                                                           
4 Very few studies use primal models that allow for multiple outputs, such as input-distance 

functions. Some exceptions are Orea et al. (2006) and Solís et al. (2015). 
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As it is common in the fishing sector, the variability of the crew is rather limited, 

especially over time. Boats only increase the number of crew members at specific points 

in time and only if the gear employed allows for this increase, such as in pole-line fishing. 

The main boat characteristics, such as length, gross tonnage and engine power, are 

fixed over time and therefore can be considered as fixed inputs. Since these variables 

are highly collinear5, in the empirical model we have just included engine power as a 

fixed input.  

 

An original contribution of this paper is to control for the quality of the fishing 

grounds by means of a variable that measures the concentration of chlorophyll in the 

water. Chlorophyll-a, which is its technical name, is an indicator of plankton biomass and 

indirectly, of the biological activity of a given area. The organisms that contain 

chlorophyll-a are at the base of the food chain, and in oceanic waters the concentration 

of these organisms is related to fish abundance. This variable was obtained from the 

satellite SEAWIFS, belonging to the Global Marine Information System (GMIS, 

http://gmis.jrc.ec.europa.eu/). 

 

We also include several control variables to account for the observed 

heterogeneity in the sample. First, we include the number of fishing days for each boat 

in each month, since this variable varies substantially across boats and over time. Finally, 

the unobserved characteristics of the fishing ports are accounted for through a set of 

fixed effects  

 

With respect to the inefficiency term, we include several explanatory variables. 

The age of the boat (Boat Age) is probably the most common variable included as 

explanatory of inefficiency since it is assumed that older boats will tend to be more 

                                                           
5 Corr(GT,Length)=0.92, Corr(GT,HP)=0.71, Corr(HP,Length)=0.74. 

http://gmis.jrc.ec.europa.eu/
http://gmis.jrc.ec.europa.eu/
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inefficient (e.g., Fousekis and Klonaris, 2003). Our variable Boat Age is constructed as 

the difference between the final year of the sample (2012) and the year when the boat 

was put into service. Therefore, the variable is time invariant since it is intended to 

capture differences across older and newer boats. The vessel length (Length) accounts 

for boat size since it is customary in these models to study if there is a relationship 

between inefficiency and size. As stated before, we also consider two variables that 

intend to reflect the specialization of the fishing boats. The first one is a concentration 

index that measures the degree of concentration of the total catch on several species 

(Concentration). The second one (Flexibility) tries to reflect the degree of ‘technological 

specialization’ of the fishing boat and is measured as the inverse of the number of 

different gears used during each year. This variable is assumed to detect the flexibility 

of the skipper in switching gear when convenient due to weather conditions or, mainly, 

due to a change in the target species.6 Therefore, the higher the value of Concentration 

or Flexibility, the higher the specialization of the boat.   

 

The variable Concentration can be measured in several ways. For example, in 

the Industrial Organization literature it is customary to measure the degree of competition 

in a market using concentration variables. The most employed ones are Concentration 

Ratios, denoted by CRN, where N indicates the number of firms being considered. CRN 

measures the market share of the N largest firms. We will use this approach and compute 

several CR variables that will measure the share of the total catch by the N main species 

caught by the boat in a given month.  In particular, we computed CR1-CR3.  

 

The concentration ratios have the problem that they do not distinguish between 

the values of the catches of the boats taken into account. For example, for a given total 

                                                           
6 Pascoe and Coglan (2002) include a specialization variable which is measured as the proportion 

of total time fished using the main gear. 
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catch, the value of the CR2 is the same if the catches of the two main species are 80 

and 40 or if they are 70 and 50 (or any two values that sum to 120). Another concentration 

measure, the Hirschman-Herfindahl index (HHI) avoids this problem. The HHI is 

computed as the sum of the squares of the shares of the species. In this way, it gives 

more weight to the species with larger catches.  

 

The main variables included in the empirical model are described in Table 1. 7 

TABLE 1 HERE 

 

The summary statistics of output and input variables, as well as the variables 

included in the inefficiency model, are presented in Table 2. 

 

TABLE 2 HERE 

 

The figures in Table 2 reflect the characteristics of a typical artisanal fleet 

composed by small, and rather old boats.8 They also reveal that there exists a high 

degree of heterogeneity in the fishing boats of this sample, especially in some variables, 

such as boat age, engine power, or days at sea.  

 

 

Empirical model 

                                                           
7 Unfortunately, we do not have information on the characteristics of the skippers that would allow 

us to control for skipper skill, which is considered an important determinant of fishing efficiency 

(e.g. Kirkley et al., 1998; Squires and Kirkley, 1999).  

8 Some minimum values indicate the presence of very small boats as well as some non-productive 

fishing trips. We deleted some atypical observations, but the estimates did not change with 

respect to using the whole sample. For this reason, we decided to leave all the observations in 

the sample. 
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The empirical model to be estimated is the following Cobb-Douglas stochastic production 

frontier: 

LnCatchit = β0 + β1LnCrewit + β2LnEnginei + γGearit + β3LnDaysit + β4LnCHt

+ θPorti + ηQuartert + φYeart + vit − uit 
(5) 

where subscript i indicates vessel and subscript t represents time. The dependent 

variable is aggregate output. We will estimate two models, one using aggregate catch 

by weight and the other using aggregate catch in terms of value. The only variable input 

is the crew, while the engine power is included as a fixed input. 

 

 On-board technology is an important factor in detecting the presence of fish and 

therefore it is expected to explain part of the variation in catches. We do not have data 

on technological gadgets (radar, sonar…), but we expect the availability of those onboard 

to be highly correlated with boat size, which is accounted for by engine power. Other 

differences in technology across boats are accounted for using gear-type dummy 

variables (Gear) that take the value 1 if a gear was used during the month. The three 

included dummies reflect whether the boat used purse seine, hand line or traps. Drums 

is the excluded category. 

  

Some control variables are also included to account for the heterogeneity in the 

data: Days is the number of days at sea in each month. The variable CH, that reflects 

the nutrients in the sea and is measured as the concentration of chlorophyll in the water, 

is an average for the whole island and therefore it only has temporal variation. We expect 

that higher CH will lead to larger catches. The Port dummies try to account for possible 

unobserved differences among the six fishing areas considered. Finally, Quarter, and 

Year are fixed time-effects. 
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The empirical specification of the inefficiency model estimated implies making 

both the variance of the pre-truncated distribution of u and the variance of the random 

term v a function of several variables. Our specification is the following: 

σu
2 = δ0 + δ1LnBoatAgei + δ2LnLengthi + δ3LnConcentrationit

+ δ4LnFlexibilityit + δ5t 

σv
2 = ϕ0 + ϕ1LnLengthi 

(6) 

 

We make σu a function of several characteristics of the vessels: the age of the 

boat (Boat Age), the boat length (Length), the degree of concentration of the total catch 

on the two species with the largest catches (Concentration), and a variable that reflects 

the degree of ‘technological specialization’ of the fishing boat (Flexibility). Additionally, 

we also include a time trend (t) in order to capture whether some unobserved variables 

are causing inefficiency to vary over time. The variance of v is assumed to depend on 

vessel size, which is proxied by the length of the vessel (Length). 

 

 

Results and discussion 

The stochastic frontier was estimated by maximum likelihood, using the program Limdep 

V10. The parameter estimates of the stochastic production frontier model and the 

technical inefficiency model are presented in Table 3.  

 

TABLE 3 HERE 

 

The results using catch (by weight) as the dependent variable show that all the 

continuous explanatory variables (Crew, Engine power, Days at sea, and Chlorophyll) 

are significant and carry a positive sign, meaning that, as expected, larger values of 

these variables have a positive effect on fish landings. The gear dummies are all positive 



15 
 

and significant, reflecting that the use of these gears allows fishermen to catch more fish 

than the gear in the excluded category (drums). 

 

The coefficients on the home port dummies are all positive and significant. We 

can interpret these fixed effects as estimates of time-invariant technical efficiency, since, 

for given inputs, a positive fixed effect means that boats in that port catch more fish than 

boats in the excluded port. The larger the fixed effect, the more efficient the boats in that 

port. Given that the Port of Agaete is the excluded category, the rest of the ports have 

some port-specific unobserved characteristics, which do not vary over time, and which 

make them more efficient than the boats in Agaete. This time-invariant unobserved 

characteristic could be, for example, the richness of the fish stock in the port area or 

some features that make fishing easier, such as the presence of favorable winds. In 

particular, wind is a relevant factor in fishing activity since the presence of northern winds 

is common. When this northern wind is strong, the northern ports, mainly Agaete, are 

more affected than the rest of the ports since the island produces a shelter effect that 

causes the southern ports to be less affected by these winds. This is important because 

sometimes boats go out fishing, but the sudden presence of strong winds makes them 

return to port with few catches. 

 

The quarterly dummies indicate that trips in spring and summer have significantly 

higher landings per trip, relative to winter (January through March). Spring and summer 

coincide with the months in which the tuna harvest season occurs, with a resulting 

increase in the volume of total landings. 

 

The coefficients on the year dummies between 2006 and 2010 are significant and 

positive, reflecting that, due to other factors different from those included in the model 

and common to all boats, total catch was higher in those years than in 2005. A common 

way to interpret these year effects is as proxies for the fish stock (e.g., Fousekis and 
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Klonaris, 2003). Obviously, the higher the stock, ceteris paribus other inputs, the higher 

the catch. The year effects increase over time (except for the last year of the sample), 

which could be interpreted as a sign that the state of the stock has improved during the 

sample period.  

 

We now proceed to comment the results of the estimation of the inefficiency part 

of the model. As expected, the coefficient of Boat Age was found to be positive and 

significant, indicating that older boats tend to be more inefficient. This result is consistent 

with those obtained in similar studies (Pascoe and Coglan, 2002; Fousekis and Klonaris, 

2003; Tingley et al., 2005). The artisanal fleet of Gran Canaria is characterized by its old 

and obsolete vessels in most cases; approximately 52% of vessels were built before 

1970 and only 18% of the boats were constructed from 1990 onwards. The coefficient of 

Length is negative and significant, indicating that the larger the boat the lower the 

inefficiency.  

 

Now we turn to our two specialization variables. The positive sign of 

Concentration, which was measured as the percent of catches from the two species with 

the largest catch on each month,9  indicates that the more concentrated the catch on 

fewer species the higher the inefficiency. The concentration of catch on a few species 

can be due to the use of more selective gears or simply that the skipper lacks enough 

ability or interest to target other species. The Flexibility variable, which is measured as 

the inverse of the number of gears employed by the boat, is in fact picking up the capacity 

of the boat to adjust to different seasons in terms both of weather and fish species. 

Therefore, if a boat is unable to switch from, say, purse seine to hand line in the tuna 

                                                           
9 It could be more appropriate to have a concentration variable more stable over time. For this 

reason, we built other concentration variables as the percent of the largest species catch in a 

month over total yearly catch. Therefore, this variable takes on the same value for all trips in a 

given year. However, the value of the likelihood function was larger using variables with monthly 

variability. 
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season, it will not be able to exploit the availability of the additional stock due to the 

presence of tuna. The positive sign of this variable therefore indicates that boats that use 

less gears (probably because of higher managerial ability) are more inefficient. 

 

Finally, the time trend in the inefficiency term is positive and significant, indicating 

that some factor(s), common to all boats and different from those included in the model, 

are increasing the inefficiency of the fleet. The explanation for this finding is not easy 

since the only unobserved factor (common to all boats) that comes to mind is the fish 

stock. If the stock was deteriorating over time, it would be harder to obtain catches for 

given inputs, implying that technical inefficiency should increase over time. However, 

since we have interpreted the fact that the time-effects in the frontier were positive and 

increasing over time as a possible indicator that the stock was improving, another 

explanation for the sign of this variable is needed. One possibility is that the boats that 

exit the sector are the most efficient ones. This goes contrary to basic economic analysis 

unless those boats that leave are not only the most efficient ones but also the ones run 

by the oldest captains who accumulate many years of experience but quit the activity 

due to reaching retirement age.  

 

The results when the dependent variable is revenue are very similar to those 

obtained with catch by weight. Now, the dummy for quarter 3 (summer) is not significant 

since most of the tuna fishing takes place during these months, and most of the tuna 

species carry a low price. The main difference is found in the estimation of the coefficient 

of crew which is now much lower. This is probably due to the fact that, given other inputs 

that represent boat size, crew usually increases in the tuna season since tuna is mainly 

caught using pole lines and therefore, boats try to optimize deck size in terms of 

crewmen. 

 

Technical Efficiency Analysis 
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Even though the estimation of the production frontier by maximum likelihood only gives 

an estimate of the composed error term, it is possible to obtain an estimate of u, using a 

formula developed by Jondrow et al. (1982). With the estimated u, if the dependent 

variable is measured in logs, the technical efficiency of the i-th boat in the t-th period can 

be calculated as: 

TEit = e−uit (7) 

 

The estimation of the stochastic frontier yields estimates of σu and σv. It is 

customary to present this information in relative terms. For example, the parameter λ 

(λ=σu / σv) is equal to 6.61 (1.05) when the dependent variable is catch (revenue). A value 

of λ larger than 1 means that inefficiency is more important than random noise in 

explaining differences in output across boats. Alvarez and Schmidt (2006) argue that in 

fishing activity it should not be surprising that the noise component v (that 

accommodates, among other factors, differences in luck) could dominate the inefficiency 

component u. In fact, they show that the estimated values of λ vary with the temporal 

level of data aggregation. That is, the higher this level, i.e., data at the monthly level vs.  

daily, the higher the value of λ. This is logical since when data are aggregated over time, 

the time-invariant part of the inefficiency component is added while the noise component 

tends to vanish since it has a zero mean. 

 

The technical efficiency index for each boat can be computed using the formula 

in equation (7). Figure 1 shows the kernel distribution of the estimated boat-specific 

indices. The distribution of the technical efficiency index using revenue as the dependent 

variable is more skewed to the right than the distribution using catch. This was somehow 

expected since technical inefficiency reflects the inability to achieve a maximum due to 

some type of poor practice in the activities carried out by the boats. The fact that boats 

are on average further away from the frontier when the output is in value terms, simply 

reflects that obtaining catches with high value has an additional component of difficulty 
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(aiming for the highest combination of quantity and price) as compared to just trying to 

catch as much fish as possible for given inputs. 

 

FIGURE 1 HERE 

 

 

Conclusions 

This paper provides an assessment of technical efficiency for the Gran Canaria´s 

artisanal fleet. A production frontier is estimated using a double-heteroscedastic model 

that seems to provide a good representation of the technology. The mean technical 

efficiency is estimated to be 78% in the model using catch (weight) as the dependent 

variable and 64% when the dependent variable is revenue. The results indicate that there 

is room for efficiency improvement. In fact, eliminating revenue inefficiency would result 

in revenue per vessel increasing 36% on average. This is an important result that points 

towards efficiency improvement as a possible source of more income to the sector. 

 

The variables included in the inefficiency model indicate that the age of the boat 

increases inefficiency, while boat size, as measured by the length of the boat, increases 

efficiency. Our two specialization variables, the concentration of catches in few species 

and the use of few gears, carry a positive sign, indicating that both tend to increase 

inefficiency. This result points towards the need for diversification, which in turn implies 

that improving fishing skills should be an objective. Finally, the positive sign of a time 

trend suggests that some unobserved factors are causing inefficiency to increase over 

time. This is also an important result that needs further investigation since the model is 

not able to point at the explanation for this increasing trend. As pointed out in the 

document, it could happen that some of the most efficient fishermen are leaving the 

sector, due for example to reaching retirement age 
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Table 1 

Description of variables used in the empirical analysis 

 

Variables Description 

Catch  Total monthly landings per vessel, expressed in Kg 

Revenue Total monthly revenue per vessel, expressed in € 

Crew Number of crew members on the vessel per month, including the 
skipper 

Engine Engine power expressed in horsepower  

Days-at-sea  Total days at sea per vessel and month 

CH Chlorophyll concentration of each fishing area (mg/m3 per month) 

Boat Age Age of the vessels (years) 

Length  Length of the vessel's hull (m) 

Concentration (CRN) Percent of total catch from the N species with the largest catches 

Flexibility Inverse of the number of gears employed in a month by each boat 
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Table 2 

Summary statistics for the variables included in the models 

Variables Mean S.D. Minimum Maximum 

Catch (Kg) 1329 3355.63 1 47807 

Revenue (€) 3322 4432.31 1.10 66471 

Crew 2.40 0.64 2 4 

Engine (hp) 43.31 38.66 4 200 

Days-at-sea 8.74 5.94 1 27 

CH (mg/m3 per month) 0.17 0.07 0.05 0.47 

Boat Age (years) 41.83 21.72 3 108 

Length (m) 9.10 2.65 3.57 17.63 

Concentration – CR1 (%) 56.80 24.84 10.71 100 

Concentration – CR2 (%) 75.24 19.91 20.75 100 

Concentration – CR3 (%) 84.54 15.26 28.91 100 

Concentration – HHI 45.42 27.59 6.57 100 

Flexibility (1/number of 

gears) 
0.37 0.09 0.2 0.5 
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Table 3 

Production stochastic frontier estimation 

 Catch (weight) Revenue 

 Estimate t-ratio Estimate t-ratio 

Constant 2.303 24.58 4.846 55.18 

Ln Crew 1.209 14.63 0.487 5.90 

Ln Engine 0.129 6.26 0.196 9.60 

Dummy Purse Seine 0.764 29.02 0.157 6.01 

Dummy Hand Line 0.656 18.37 0.076 2.04 

Dummy Traps 0.246 2.41 0.527 6.48 

Ln Days 1.019 94.40 1.004 94.57 

Ln Chlorophyll 0.077 2.37 0.052 1.70 

Dummy Port 2 0.550 17.11 0.563 17.16 

Dummy Port 3 0.249 5.89 0.252 5.81 

Dummy Port 4 0.241 5.15 0.277 6.42 

Dummy Port 5 0.366 11.05 0.306 9.22 

Dummy Port 6 0.238 5.26 0.374 8.27 

Dummy Spring Quarter  0.153 4.80 0.105 3.38 

Dummy Summer Quarter  0.102 2.83 -0.006 -0.19 

Dummy Autumn Quarter -0.015 -0.50 -0.054 -1.86 

Dummy Year 2006 0.082 2.13 0.081 2.27 

Dummy Year 2007 0.105 2.74 0.159 4.46 

Dummy Year 2008 0.116 2.91 0.179 4.87 

Dummy Year 2009 0.245 5.50 0.353 8.53 

Dummy Year 2010 0.124 2.51 0.234 5.03 

     

Inefficiency model     

Parameters in variance of v     

Constant -2.369 -17.89 -1.599 -10.54 

Ln Length 0.857 14.68 0.367 5.23 

     

Parameters in variance of u     

Constant -18.565 -5.73 -20.621 -12.09 

Ln Boat Age 1.807 5.68 0.339 5.82 

Ln Length -0.580 3.32 -0.227 3.26 

Ln Concentration 2.662 4.82 4.274 11.97 

Ln Flexibility -4.105 -6.03 -1.209 -6.40 

Time Trend 0.195 2.58 0.206 6.68 

     

2=v
2+u

2 0.78  0.92  

=u/v 0.50  0.98  

Mean lnL -8776 -8544 

Observations 7279 7279 
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Figure 1. Kernel density of the technical efficiency indexes 
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Figure 2. Evolution of the efficiency indexes 
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