726 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

DeepNEM: Deep Network Energy-Minimization for
Agricultural Field Segmentation

Margarita Torre *”, Beatriz Remeseiro

Abstract—One of the main characteristics of agricultural fields is
that the appearance of different crops and their growth status, in an
aerial image, is varied, and has a wide range of radiometric values
and high level of variability. The extraction of these fields and their
monitoring are activities that require a high level of human inter-
vention. In this article, we propose a novel automatic algorithm,
named deep network energy-minimization (DeepNEM), to extract
agricultural fields in aerial images. The model-guided process se-
lects the most relevant image clues extracted by a deep network,
completes them and finally generates regions that represent the
agricultural fields under a minimization scheme. DeepNEM has
been tested over a broad range of fields in terms of size, shape, and
content. Different measures were used to compare the DeepNEM
with other methods, and to prove that it represents an improved ap-
proach to achieve a high-quality segmentation of agricultural fields.
Furthermore, this article also presents a new public dataset com-
posed of 1200 images with their parcels boundaries annotations.

Index Terms—Agricultural fields, image edge analysis, image
segmentation, region extraction.

I. INTRODUCTION

ONTINUOUS development of digital aerial images has
C provided constant improvement of spatial resolution. The
availability of very high-resolution satellite images and un-
manned aerial vehicles provide a cheaper and faster way to
obtain detailed information for large areas. Attempting to locate
and identify relevant elements as automatically as possible has
been a research field in constant development. Agricultural field
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analysis has been handled from the very beginning as one of
the first applications in image processing, due to agricultural
analysis policies and taxes applied to agricultural land uses.
Manual digitization is the most common way to acquire de-
tailed information, making it a very time-consuming process
whose results depend on the operator’s interpretation. In order
to overcome these challenges, there is a strong need for accurate,
low cost, innovative methods for information extraction.

Most automatic remote sensing approaches today are based
on clustering techniques [1], [2]. Despite hundreds of algorithms
having been proposed for segmentation, only a few of them have
been implemented and are available as a production tool [3].
Among them, eCognition' is the most popular and widely used
segmentation software, converted into a productive software
gold standard tool [1]. Itis based on fuzzy segmentation allowing
better retention of the radiometric variation of the agricultural
regions. eCognition provides region contours by aggregation,
which sometimes leads to oversegmentation, and thus, leaves
room for improvement, mainly in postprocessing editing tasks.
Other fuzzy c-means clustering approaches are found in [2],
used together with spatial constraints. However, unsupervised
clustering methods have several limitations—the number of
clusters are often unknown and the predefined parameters often
deliver over/undersegmented results, requiring further split and
merge procedures in combination with an interpretation of the
segmented images.

Edges have been another approach used in automatic and
semiautomatic techniques for region boundary delineation [4].
However, these methods suffer the problems of detecting false
edges, locating poor edges, and missing edges, which limit its
applicability. A more recent agricultural boundary detection
technique used by Alemu [5] is the line segment detection
algorithm, aimed at detecting straight contours in images [6].
These types of methods perform reasonably well in regularly
shaped agricultural fields, but fail when dealing with hetero-
geneous datasets. Additionally, they are generally sensitive to
intraclass variability, thus leading to oversegmentation. When
working with methods directed by models, the better the model
represents the knowledge of scene interpretation, the more useful
the extracted information will be. Energy-minimization (EM)
theory delivers a common framework to unify different model-
based approaches, such as graph-cuts [7], random walker [8],
and shortest path [9]. One limitation of these approaches is that,
in practice, the edge-stopping in the minimizing function is never
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exactly zero in the edges, and so the curve may eventually pass
through object boundaries.

Inrecent years, deep learning approaches have been achieving
popularity and impressive performance in detection, segmenta-
tion, and recognition of objects and regions in images [10]. Deep
learning techniques, and more specifically convolutional neural
networks, have also been applied in an important number of re-
search works focused on edge detection. Among them, itis worth
noted the holistically-nested edge detector (HED) [11], [12],
an efficient and accurate network that performs image-to-image
training and prediction. The proposed architecture connects its
side output layers to the last convolution layer of each stage in
a VGGNet [13]. Further works found in the literature focused
their attention on HED, thus highlighting its reliability for edge
detection. Liu and Lew [14] used relaxed labels generated by
bottom-up edges to guide the training process of HED. Liu
et al. [15] proposed an edge detector that uses different image
scales and aspect ratios to learn rich hierarchical representations,
with an architecture that only adds 1x 1 convolutional layers to
HED. The term nested is due to the inherited and progressively
refined edge maps produced as side outputs, thus making suc-
cessive edge maps more concise. The term holistic, despite not
explicitly modeling the structured output, is because the network
aims at training and predicting edges in an image-to-image
fashion. More recently, [16] introduced a bidirectional cascade
structure to enforce each layer (BDCN), which aims at focusing
on a specific scale. However, deep learning techniques applied
to agricultural field segmentation is a highly underexplored field
of research.

In terms of segmenting land coverage elements, [3] showed
a complete review of segmentation methods widely used in this
context, whose application is not limited to urban coverage. To
enlighten some combined approaches, [17] presented two pro-
posals based on a multiparadigm collaborative framework—the
first one is inspired by cascading techniques in machine learning,
while the second one applies many collaborating one-vs-all class
extractors in parallel. Csillik [18] proposed to use a partition
delivered by the simple linear iterative clustering superpixel
algorithm as a starting segmentation point. Gu et al. [19] pre-
sented another approach composed of a minimum spanning
tree algorithm for the initial segmentation, and the minimum
heterogeneity rule algorithm for object merging in a fractal net
evolution approach. All these methods show that the segmenta-
tion of aerial images should be based on edges instead of regions,
since different agricultural fields often can be composed of
similar or even the same crop (see Fig. 1). For this reason, recent
and powerful generic methods for semantic image segmentation
based on neural networks [20] are unsuitable for aerial image
segmentation.

Given the problem of locating and extracting agricultural
fields in aerial images, the most relevant clues that assist users
in detecting their boundaries are their regular shape and the fact
that a field can be distinguished from its surroundings—since
it is limited by linear elements or by other fields that do not
follow its homogeneity or its texture pattern. As far as clues
are concerned, edge extraction procedures play an important
role in the problem at hand. For this reason, we propose taking

Fig. 1. (a) Two original images. (b) Edges delivered by HED (with gaps and
isolated elements highlighted in squares). (c) Regions obtained with the EM
process. (d) Our final solution after the model fitting step.

advantage of the HED network [12], based on nested multiscale
feature learning and deeply supervised networks [21]. HED is
able to automatically learn the type of rich hierarchical features
that are crucial in the process of disambiguation of natural aerial
images and field boundary detection.

Deep networks (DNs), such as HED, are good candidates
to fully extract an important portion of aerial field boundaries.
However, some of them may not be detected, while other el-
ements may be wrongly detected as boundaries. For this rea-
son, [15] proposed refining the output provided by HED, using
only the pixels with the greatest amount of annotators labeled
as positive samples, due to their high consistency and their ease
of training. When working with aerial images, gaps or isolated
elements may also appear when applying edge detectors such
as HED, as shown in Fig. 1(b). In this case, all the edge pixels
obtained with HED must be considered, and properly selected
depending on their reliability in model extent, thus making the
approach proposed by [15] not entirely adequate. Although
HED provides excellent results for image edge detection, it
cannot ensure obtaining closed boundaries of image regions.
To this aim, we propose to integrate the HED detector into an
EM framework. The main idea is that the edges obtained with
HED must be processed, categorized, and completed by the
EM process to assure straightforward extraction of agricultural
fields. Moreover, the boundaries added must be finally accepted
or not depending on whether they follow sufficiently the tracks
given by the edges delivered by HED. Fig. 1(c) and (d) shows
how the EM step followed by a model fitting process are able to
solve the problems detected when applying HED (i.e., gaps and
isolated elements).

Summarizing, this work presents a new model called Deep-
NEM, as an automatic global segmentation approach that inte-
grates HED as a DN for edge detection with an EM procedure.
Our approach relies on boundary clues, which must follow a
predefined model and are also used to complete the boundaries
by an EM global process. Our main contributions include the
following:

1) a novel method for aerial image segmentation named
DeepNEM, which integrates a DN with an EM stage to
refine and complete the clues delivered by the network,
thus solving the lack of boundary information;
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Fig. 2. Main steps of our DeepNEM approach for region segmentation of
agricultural fields. The edge extraction step (second row) goes from the edges
delivered by HED (left) to the selection of relevant ones (center), and the main
regions formed by them (right). The edge completion (third row) is composed
of the energy minimization step applied to the edges previously selected (left)—
red lines are edges allowed to be modified—whose results are expanded under
radiometric constraints (center), and the final output with the fields that fulfill
the model (right).

2) an extensive validation of our method that includes differ-
ent performance metrics and a comparison with state-of-
the-art approaches;

3) a complete dataset composed by 1200 (500 x 500 x 3)
images and their corresponding parcel delineation anno-
tations to serve as a benchmark for future research in the
field of aerial image segmentation.

The rest of this article is organized as follows. Section II
describes the DeepNEM method with its main steps, Section 111
presents the new dataset and the experimental results. Finally,
Section IV closes with conclusions and future research.

II. METHODOLOGY

Discontinuity in terms of radiometry or texture homogeneity
is the characteristic that catches the eye when operators delineate
the field boundaries in aerial images. Since these interruptions
are the common evidence among neighboring fields, we strongly
rely on edges to drive and define the mainstream of the pro-
cess. Our method is divided into two main steps, as shown
in Fig. 2—edge extraction and edge completion. These main
steps contain side refinements to reinforce some evidence and to
complete or dismiss some clues. In particular, the edge extraction
is completed with morphological operations to deliver an edge
map, while the edge completion delivers enough cues to analyze
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Fig. 3. Illustration of the HED architecture for edge detection over an aerial

input image, highlighting the error back propagation paths. Note that side-output
layers are inserted after convolutional layers, which are shown as colored boxes,
with the side output plane size becoming smaller and the receptive field size
becoming larger.

if they are worth including in the final solution. Below, both steps
are described in depth.

A. Edge Extraction: From Image to Edges

To recover discontinuities in radiometric or texture homo-
geneity of aerial images, we rely on HED [12] in order to locate
regions of contrast changes, usually corresponding to different
fields, and to maintain their singularities, such as wooded areas,
trees, and high contrast linear elements. The HED architecture,
as shown in Fig. 3, is composed of a single-stream DN with
multiple side outputs, and uses a deep architecture to simulate the
perceptual multilevel human approach. Notice that the structure
in multiple stages with different strides is useful to capture the
inherent scales of edge maps. There is also a weighted-fusion
layer-error to help with the update of the output-layer parameters
by back-propagation and to learn the fusion weight during
training.

Fig. 3 shows the error back-propagation paths as well as the
importance of inserting the output convolutional layers. For
each side-output layer, deep supervision is imposed, guiding
the side-outputs toward edge predictions with the desirable
characteristics. Fig. 3 also shows that the outputs of HED are
both multiscale and multilevel, as well as how the side-output-
plane size becomes smaller while receptive field size becomes
larger. Note that the entire network is trained with multiple error
propagation paths (dashed lines).

Despite the high-quality edge detection by HED, it does not
assure closed regions. For this reason, we rely on an EM model
to guide the process that extracts from the edges as many clues
as possible, moreover to complete them when it is necessary.
Some linear elements detected by HED may reflect confusing
clues, because they lie inside some regions (if kept, they will
oversegment them) or near to hard edges, when undoubtedly
reliable boundaries are extracted. For this reason, we propose a
side refinement of this stage, guided by an EM model that keeps
the knowledge of what real agricultural fields are like.
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(a) (b)

Fig. 4. (a) Output edges obtained with HED, and (b) result in terms of
structuring edges.

1) Edge Map Construction: Among all the edges detected
by HED, it is necessary to select the ones that better suit an
agricultural field segmentation, since they define a preliminary
image division into the main regions. If we process all the
edges in terms of linear elements, we will find that some of
the selected segments will not deliver relevant clues (e.g., close
parallel elements that cause closed elongated areas, or small gaps
between long segments that the model tends to close). Since
we want to detect areas, instead of acting directly on the linear
evidence, we will always take into consideration the regions that
edges form. This approach will handle boundary information,
such as bushes, regardless of whether they divide regions or
appear within closed regions, as well as other important elements
(see Fig. 4).

In order to reinforce strong clues or to eliminate these po-
tentially misleading clues, a morphological process is applied,
which is composed of several serialized morphological oper-
ations to keep and merge adjacent small areas and to narrow
boundaries. These operations are a sequence of opening, closing,
and thinning morphological functions to filter profiles, without
losing relevant evidence. This process is addressed by a prede-
fined threshold, named A,;,, which represents the minimum
size of the allowed artifacts.

B. Edge Completion: From Edges to Regions

At this point, the image is divided into regions whose bound-
aries are completely closed by edges, named tiles. For each one,
the algorithm analyzes its content, when it has edges with gaps
or isolated edges. The last ones are prone to becoming part
of a boundary, while the others are analyzed to be completed.
Despite the high quality of the edges provided by HED, the
algorithm does not guarantee that edges would form closed
contours. An additional step is necessary to complete clues and
avoid undersegmentation problems.? Fig. 4 shows an example
of boundaries with gaps and others with isolated clues.

1) Energy-Minimization: In order to complete the bound-
aries, we integrate the HED output into an EM process that
obtains a complete first approximation of the boundary segmen-
tation inside each tile. This process finds the shortest sequence
of pixels between segments that have an extreme sequence. The
sequence is obtained by forcing the total energy of the edges to
be minimum. Not only does it take into consideration the nearest

2A key problem in segmentation is that of dividing a region into too few
(undersegmentation) or too many areas (oversegmentation).

Fig. 5. (a) Different elements involved in the EM step, (b) their evolution
throughout the process, and (c) the completed edges obtained at the end.

environment of each gap, but it also considers each edge within
a broad area.

The tiles obtained in the previous stage, formed by a closed
chain of long segments, will be the domain of the edge com-
pletion step. This process is driven by relevant points, namely
X -connected points (those with X edge pixels among their eight
closest neighbors) with X # 2, and divided into: extreme points,
when X = 1; and junctions, when X > 3. For each extreme
point, its associated chain of 2-connected points is considered
a segment. Note that segments are divided depending on their
length, defined by the parameter 7, into long and short
segments. The different classes of long and short elements are
shown in Fig. 5, and described below.

Long segments are classified into the following.

1) Extreme segments: Segments limited by at least one ex-

treme, while the other end can be an extreme or a junction.

2) Arcs: Segments limited by two junctions.

Short segments are considered in the minimization process,
but are forbidden from growing. They are classified as follows.

1) Isles: Segments limited by two extreme points. They will
be taken into account in the filling process to attract the
edges.

2) Spurious: Segments limited by an extreme point and a
junction. In the junction, they join a single long segment,
alongside other spurious ones that may also share the
junction.

For each extreme segment, the EM will deliver a new end
location at each step. This sequential iterative process will stop
when, in the elongation process, another segment is reached.
Depending on the type of element reached, the process will end
by elongating both segments to a common point, or by creating a
junction. Next, these elements whose length is under a threshold
(Tinin) are deleted (short segments), while the other ones are kept
(long segments).

The minimization result follows the desired model, which
is a combination of smoothness and minimum length segments,
where the relevant points are the junctions and extremes. For each
extreme segment, a potential is defined by a force that rejects the
extreme point—the n; pixels that form the segment (x;, y;) try
to expel the extreme—and a force that attracts this extreme, due
to all other surrounding segments. So, for each extreme segment,
its extreme point (2., , Y, ) will be newly located at the position
that tries to minimize the functional

Vp, = Z i_

Tin.
icedge b

> -

r ]
i¢edge b
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where 7; , = /(i — 21,)2 + (Yi — Yn,)2. Minimizing V,,, is

equivalent to solving?

F=_-VV =0, ﬁ/:(av av>.

Ox’ Oy

We propose a greedy method that at each step finds a new
extreme, stopping when this extreme reaches another segment.
If the segment reached is an extreme segment, it can be analyzed
to become a corresponding element. Otherwise, the process
will stop by reaching an arc segment and the growing process
is frozen. Note that the extreme segment will be awakened
if another extreme segment connects to it, during its growing
process. In such a case, the segments will become corresponding
segments. If the process is completed and no other extreme
segment has been reached, a junction point in the arc segment
is created. Fig. 5 shows an example of these elements.

The notation used in the detailed formulation is as follows.

1) For each extreme segment e, we describe its coordinates
obtained from the edge extraction as &) {j =1:n;},
where n; is its length.

2) Associated with each element ¢!, we code the spurious
segments, such as s*, where j € {1 : n_esp;}. The iden-
tification of segments is espi, where {I = 1:n_esp,}.
Fig. 5 includes an example of extreme and their spurious
segments.

3) The arcs that connect directly with extreme segments (e?)
are called neighbors; being ngh, the number of segments
associated with e’. The components of these segments are
prohibited locations for the growing process in the first
iterations, in order to avoid loops.

4) During the growing process, the extreme segment is al-
lowed to reach another segment that is not from its neigh-
bor. In this case, we consider that the segment touches an
edge at the position p (bit on). I(p) represents the edge
image value (1 or 0) at p.

In the energy formulation, for each extreme segment ¢, we

consider that the rejecting force over the point 7, fr(e’, ) =

ZL’
S 5, comes from the extreme segment components—
k=1 Hf’ [EEE

both the orlgmal and the added points, as Well as the expelling
force due to the associated spurious segments )’ and the neigh-
bor segments. Each one is weighted in different ways, depending
on the confidence in the data. For example, the weight associated
with the edge points w, is greater than the one associated with
the added coordinates waqq. The spurious segments linked to
an extreme segment will produce the same effects as the edge
points of the extreme segment. For that reason, the parameters
Wesp and wpep normally have the same value as w,.. As we can
see, the point distance will reduce the magnitude of the force.
=y TE
k=ni+1 |z-e|*
carried by the attracting components, comes from the rest of
the arcs not directly connected to the extreme segment e*. We
apply the same reasoning to the rejecting force, for the different

The subtractive contribution f4(e?, %)

3If a multivariable function V'(x) is differentiable in a neighborhood of a
point xg, then V' (x) decreases fastest if one goes from x¢ in the direction of
the negative gradient of V' at xq.

(b) (©)

Fig.6. (a)Inputimage, (b) edges obtained with HED, and (c) completed edges.
The red arrow points to the accepted added boundaries, while the blue one points
to the area rejected.

elements—the original edge points are stronger than the added
ones. We use wpiton to weight the elements that come from the
edge image map; and we take into account especially the points
inaround environment B(+, rr)—in the examples we have chosen
r = 2 - Amin , due to the fact that larger circular areas take more
computational time and the results do not improve. From the
final extreme position é’ini , the force delivers a new segment end
position by generating a new component é'ﬁm 11

n_esp;
éﬁmg—i—l = ’l’)’LL + We fR( ) T)’L )+w(’ép Z fR 7 'rrL )
7j=1
n_ngh;
+wngh Z fR ej é% )
+ Whiton Z fA (p7 é%ml)
p € Blej,, )
1(p) = 1
+ Wadd Z fA m)
j=1
j#

The first phase of the process finishes when all the extreme
segments stop because they have reached a corresponding ex-
treme segment or created a junction with an arc segment. The
second phase starts with only one difference—the attracting
contribution is reduced to the corresponding extreme segment
[, providing it exists. The evolution equation is

n_esp;
€pmit1 = €, T We fR( s €m,; )+ Wesp Z fr(s )

n_ngh,

+ Wngh Z fR(ejaé,lmi) + wefA(el7ayli)
Jj=1

+ Wadd Z fA v nL)
j=1
j#i.

The gaps between edges left by edge extraction are completed
by taking into account the fact that the total energy of the edges
must be at a minimum. By doing this, one of the advantages
of the model is achieved—we obtain regular boundaries. Some
examples can be seen in the third step (red lines) of Figs. 2
and 6.
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2) Model Fitting: Once the EM has been applied, the image
is completely segmented in terms of the number of fields and
their approximate boundaries. But, for each boundary that has
been completed, it is still necessary to analyze the ratio between
the length of the segments added and the one that comes from
the HED extraction. Also, isolated long edges are analyzed to
decide whether they are clues to add the complete division of the
field or if they represent just a groove. Moreover, it is necessary
to take into account the length of the contours to avoid closing
small regions over themselves. This is similar to the way that the
edge completion step rejects reaching the segment that grows at
the beginning of the process. These processes are done not only
using the segments, but also by taking into account the image in-
formation inside the output regions. An added line in a boundary
is analyzed, and even modified, by a local radiometry growing
process that uses a threshold (Addy, ). The boundary modified
is kept when the number of nonoverlapping pixels, between the
original region and the output one, is lower than Add? _ . Other-
wise, if the added pixels are lower than Add,,,x, the addition is
admitted. Fig. 6 shows how the outputs of the EM phase produces
edges that will be included in the final results, depending on
whether these additions stay under the Add,,,, parameter.

III. EXPERIMENTAL RESULTS

This section includes a description of the dataset, the imple-
mentation settings, the statistical measures used for validation
purposes, and the experimentation carried out to evaluate the
proposed method, including a comparison with state-of-the-art
methods and a discussion of the results.

A. Agricultural Field Dataset

To the best of our knowledge, there are no representative
public datasets that fit our goal of segmenting agricultural fields
from HRV images. For this reason, we built a complete dataset
composed of 1200 HVR images and evaluated our approach on
it. Moreover, it is publicly available*'> to serve as a benchmark
for comparing the agricultural field segmentation of different al-
gorithms. Our dataset is composed of 1200 HVR images (RGB,
spatial resolution: 500 x 500 pixels), and their associated ground
truth (GT) delineated by a human operator. Fig. 7(a) shows 13
original images and their corresponding GT delineated by a
professional experienced in manual aerial boundary delineation.

The dataset is composed of images available on the Institut
Cartografic i Geologic de Catalunya website®, which are parts
of 1:25.000 orthophotos. We have chosen areas with assorted
agricultural field appearances and from the agricultural regions
of Catalonia, such as la Plana de Lleida, Baix Camp, and Penedes
(Tarragona, Spain). The flights to obtain the aerial images which
form orthophotos were taken under clear weather conditions.
The growing state of the crop is not important as long as the fields
can be distinguished from their surroundings or are surrounded

4Online. [Available]: http:/www.aic.uniovi.es/bremeseiro/agriculturalfield-
seg/

SOnline. [Available]:
dataset_af-seg.html

©Online. [Available]: https:/icgc.cat/

https://mat-web.upc.edu/people/fernando.martinez/

Fig. 7. (a) Input images with boundaries drawn by a human operator (GT),
(b) HED results, (c) eCognition results, (d) BDCN results, and (e) DeepNEM
results. These images represent a wide range of agricultural fields, in terms of
radiometry and texture.
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by linear elements, such as roads or water streams. This is one of
the main advantages of mainly relying on contrast lines instead
of doing it with radiometric clues. We have selected several types
of crops, such as wheat, corn, hay, olive orchard, vineyard, and
fruit trees.

The images contain more than 3300 agricultural fields. It is
worth noting the great variability of the images, not only in
terms of crops or textures, but also in size, shape, and different
kind of elements acting as boundaries. Note also that the dataset
contains fields with limits not completely defined, as well as
others that contain some isolated elements, such as trees, bushes,
or grooves.

B. Implementation Settings

The HED network delivered was trained from scratch, using
an initial learning rate of 10~°, which was lowered by 10 times
each 1000 epochs. Note that the learning rate is important to
start the training process, since the process does not converge
when it is set to a value greater than 1072,

For experimentation purposes, the dataset has been split into
train and test partitions with the following distribution—the
training set contains 920 images, while the test set includes 280
images.

Data augmentation has proven to be a crucial technique to
obtain more reliable results when dealing with DNs with a large
amount of parameters, as a way to enlarge the dataset in order
to train the network. In this sense, we rotated the images at 16
different angles and cropped the largest rectangle in the rotated
image. Moreover, we flipped these images at each angle, leading
to an augmented training set that is a factor of 32 larger than the
original one. All these images were scaled to the half and to the
double. To sum up, we used a total of 96 x 920 training images.
After the training process with the augmented data, the method
was tested over the 280 images, and the results were compared
to the GT.

C. Performance Measures

Some quantitative metrics were used to evaluate the perfor-
mance of our method. On the one hand, we consider the Jaccard
distance (JD) between two regions A and B, which represents
the number of pixels that fall into the intersection of both regions,
normalized by the pixels counted by the union (also known as
intersection over union)

|AN B

D= ——.
AU B

ey

For a given image, we use this equation to compute the JD
between all the regions extracted from an input image and its
corresponding GT regions. The average JD is calculated as the
mean value of the JD computed for all the pairs of fields in the
image.

On the other hand, the under and oversegmentation must also
be considered in the problem at hand. For this purpose, we
defined three different types of regions as follows:

1) type A: one extracted region that fully represents one GT

field;

(b) (©)

Fig. 8. (a) Input image with delineated GT, (b) results obtained with Deep-
NEM, and (c) results in terms of over and undersegmentation: regions type A in
red, type B in green, and type C in blue.

2) type B: two or more extracted regions that represent one
GT field (oversegmentation);

3) type C: one extracted region that represents two or more
GT fields (undersegmentation).

In this case, we calculated the number of regions for each
type. It should be noted that for regions of type A, the higher the
number, the better; while for the regions of type B and C, the
lower, the better.

Note that these distinctions among the different ways of
recovering fields are necessary and highly related to human
interpretation, as shown in Fig. 8. Some fields are clearly de-
fined but, in others, the human operator may add some lines
or may erase others. The automatic process needs clues and
only rejects them when they do not follow the model clearly,
not by interpretation. The red areas in GT are fields recovered
only by a single region. On the other hand, green ones are fields
clearly split into two or more areas by DeepNEM, while the
opposite phenomenon is shown in blue color. For these reasons,
it is necessary to compute the JD not only when the corre-
spondence falls in type A category, but also when fields have
been clearly split or merged with neighbors. In some of these
last categories, human delineation could have split or merged
delineations.

Additionally, we consider three region-based metrics [22],
[23] commonly used in different segmentation problems.

® Covering (CO): It represents the level of overlapping be-

tween each pair of regions (R and R’) corresponding to the
GT and the output (O) images
|[RN R|

1
CO=— R| - max ——— (2)
NR§T| | ReO|RUR/|

where N is the number of pixels of the image.

® Rank index (RI): It represents the compatibility of assign-
ments between pairs of elements in the GT and the output
images

RI =

(11V) Z [(t; ==t; Ap; == p;)+1(t; #t; Api # p;)]
2) i<y
(3)

where (];[ ) is the number of possible unique pairs among
the IV pixels of each image, and I is the identity function.
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TABLE 1
RESULTS OBTAINED BY DEEPNEM USING DIFFERENT VALUES FOR THE THREE PARAMETERS: A min, Tmins AND Addmax

No. of regions
Apin Toin  Addpmaz average JD Type A Type B Type C JD >0.9 JD <0.7

40 8 10 0.9032 + 0.0277 2087 441 327 1745 458
15 0.9044 + 0.0267 2068 504 290 1766 451

20 0.9047 + 0.0265 2030 570 273 1790 440

25 0.9044 + 0.0266 2021 600 266 1797 426

30 0.9049 + 0.0263 2015 623 251 1804 424

40 6 20 0.9047 + 0.0267 2021 581 273 1802 438
8 0.9047 + 0.0265 2030 570 273 1790 440

10 0.9050 +0.0263 2019 562 287 1791 445

12 0.9045 + 0.0265 2003 547 300 1775 463

14 0.9045 + 0.0265 2003 547 300 1775 463

20 8 20 0.9049 + 0.0264 2024 595 278 1803 436
30 0.9047 + 0.0265 2011 584 281 1794 437
40 0.9047 + 0.0265 2030 570 273 1790 440
50 0.9046 + 0.0264 2035 565 272 1790 441
60 0.9047 + 0.0263 2040 556 274 1791 443

Blanks correspond to the same value that heads the column. Bold indicates the best value for each type of measure.

e Variation of information (VI). It represents the distance
between the GT' and the output (O) images in terms of
their average conditional entropy

VI=H(O)+H(GT)—2-MI(O,GT) (4

where H and M are the entropy and the mutual information,
respectively. In this case, the lower the better.

Finally, we also consider three boundary-based metrics [23].
For this purpose, we used the edges (boundaries of the regions)
to compute three standard measures commonly used in different
learning tasks.

1) Recall: It represents the proportion of true positives cor-

rectly classified.

2) Precision: It represents the proportion of true positives

against all the positives.

3) F-measure: It represents the harmonic mean of precision

and recall.

Note that the three region-based metrics and the three
boundary-based measures were calculated for each single image,
and then the mean across images was computed.

D. Results and Discussion

1) Robustness of the Proposed DeepNEM: In terms of Deep-
NEM algorithm, there are three parameters that affect the capac-
ity of the method to complete the field boundaries and to provide
the final segmentation, which are as follows:

1) Apin, the minimum isolated length element;

2) Tinin, the length of spurious segments;

3) Addpax, the number of pixels allowed to be added for

each boundary.

In order to analyze their impact on the performance results, we
tested different values for them. Table I shows these values and
the measures obtained for each parameter configuration. As can
be observed, DeepNEM is a robust method that provides very
competitive and stable results regardless of small changes in

Fig. 9. Output edges obtained after the edge map construction (top), and
their corresponding regions (bottom). (a), (b) Results obtained with parameter
Amin = 40 and different Ty,;,, values. (a) Tiin = 6 allows to keep more
detailed segments and to complete the two boundaries pointed out by the arrows
(JD = 0.8950, type A = 15). (b) Tinin = 14 provides less detailed segments
and so these two boundaries are lost (JD = 0.8937, type A = 14). (c), (d)
Results obtained with parameter T,i, = 8 and different A,,;, values. (c)
Amin = 20 generates more division inside fields (JD = 0.9053, type A = 12).
(d) Amin = 60 deletes pixel areas (JD = 0.9051, Ttype A = 13). Since the
minimization process acts globally, some details that are kept depending on the
parameters will affect other neighboring fields, as it is pointed out with the red
arrows in the final results (a). Some parts of fields are completed meanwhile
these regions will not be recovered without these clues (b).

the parameters. Depending on the purpose of the segmentation,
priority may be given to obtaining more type A regions or
having more regions with a distance of JD above 0.9. Taking
into account the problem at hand, the best tradeoff for all the
metrics evaluated is achieved when the parameter configuration
is: Amin = 40, Thin = 8, and Add, . = 20.

Finally, Figs. 9 and 10 show the impact of these parameters by
means of some representative examples. First, Fig. 9 shows the
effects of the parameters A,,;, and Ty,;,. As can be observed,
the lower they are, the more details are kept and the more likely
the results are to present oversegmentation.
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TABLE II
PERFORMANCE MEASURES OBTAINED WHEN APPLYING THE THREE DIFFERENT METHODS TO THE 280 TEST IMAGES

HED eCognition BDCN DeepNEM

average JD 0.8983 £ 0.0367 0.8870 +0.0324 0.7916 + 0.0892 0.9047 + 0.0265
No. of type A regions (1 to 1) 1759 1301 1305 2030
No. of type B regions (over-segmentation) 63 795 232 570
No. of type C regions (under-segmentation) 756 478 112 273
Covering 0.590 0.609 0.589 0.782
Rank index 0.880 0.849 0.888 0.874
Variation of information 0.442 0.530 0.387 0.474
Recall 0.571 0.654 0.490 0.679
Precision 0.543 0.563 0.491 0.581
F-measure 0.557 0.604 0.491 0.626

The average JD is in terms of mean =+ standard deviation, calculated across all the test images. Bold indicates the best value for each type of measure.

Fig. 10. Examples of oversegmentation (top) and undersegmentation (bot-
tom). (a) Input images with their delineated GT, (b) HED results, (c) DeepNEM
results after EM, and (d) final DeepNEM results. (Top) The JD is similar in (d)
and (e), 0.8860 and 0.8853, respectively; whereas the number of type A regions
increases from 7 to 8. (Bottom) The JD improves from (d) to (e), 0.8947 and
0.9051, respectively; while the number of type C regions increases from 0 to 3,
because the three parcels highlighted (red circle) are recovered as only one.

Regardless of the established parameters, it is difficult to
recover human interpretation. DeepNEM can reinforce this di-
vision or just ignore it, because there are not enough clues for
it. This fact is recovered by fitting the results to a model, as it is
shown in Fig. 10 (top). The opposite phenomenon is also shown
in Fig. 10 (bottom): the division, due to minimization process,
delivers a segmentation coincident with the GT in terms of region
number, but their boundaries are different since the process is
driven by radiometric information. The final model constraint
will erase this division because the number of boundary pixels
added is greater than a Add,,ax.

2) Comparison to the State-of-the-Art: We compared Deep-
NEM with the following three state-of-the-art methods for aerial
segmentation:

1) HED [12], in order to reveal the improvement achieved by

adding the proposed EM framework;

2) eCognition [1], the commercial software most widely used

in remote sensing field;

3) BDCN [16], one of the most recent frameworks for edge

detection and segmentation.
We applied DeepNEM as well as these three approaches to
the 280 test images of the dataset described in Section III-A.

B HED B eCognition BDCN [ DeepNEM

2000

1790

1500

1000
735739

no. GT parcels

500

JD>=0.9 0.8<=JD<0.9

0.7<=JD<0.8

JD<0.7

Jaccard distance

Fig. 11.  Performance of the different methods in terms of the number of GT
fields segmented, for different values of JD.

Regarding the parameter settings of DeepNEM, we used the
most competitive ones according to the experimentation pre-
sented in Section III-D1: A i, = 40, Tynin = 8 and Add . =
20. With respect to the BDCN network, it was trained from
scratch using an initial learning rate of 10~, which was reduced
by 10 times each 10 000 epochs. Other configuration parameters
include a momentum of 0.9, and weight decay of 27%.

Table II includes the results of the four methods considered
(HED, eCognition, BDCN, and DeepNEM) in terms of the
average JD calculated over the 280 test images. As can be seen,
the worst results are obtained with eCognition; while the best
results are achieved when using DeepNEM, demonstrating the
adequacy of the EM process applied to the edges provided by
HED. The results achieved by DeepNEM are not only better on
average (mean), but also have a lower standard deviation.

Fig. 11 shows the results obtained with the four different
methods in four intervals of JD—from greater than or equal
t0 0.9, to lower than 0.7. As can be observed, DeepNEM obtains
the best results by detecting 1790 regions with a JD >= 0.9,
which represents 54.03% of all the fields detected. This method
is followed by HED, demonstrating once again the adequacy
of using DNs in the problem at hand, and providing a better
performance than the commercial software eCognition and the
novel BDCN, which has a lower performance in this case.
Analyzing the fields with a low JD, it should be highlighted
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Fig. 12.  Graphical representation of JD for three of the five images shown in
Fig. 7: ID > 0.9 (green), 0.8 < JD < 0.9 (red), and 0.7 < JD < 0.8 (blue).
Note that all regions are types A or B.

that only 13.28% of the regions detected by DeepNEM have a
JD < 0.7.

Table IT also shows the results in terms of the different types of
regions (A, B, and C). Regarding the fields successfully recov-
ered (type A), the numbers obtained when applying eCognition
are noticeably lower than when using DNs, showing that eCogni-
tion tends to produce over or undersegmentation. HED achieves
the best results in terms of oversegmentation (type B), with only
63 regions showing that it tends to produce undersegmentation.
On the other hand, BDCN provides the best results in terms
of undersegmentation (type C), with only 112 regions. In fact,
BDCN shows the best balance between types B and C regions.
However, the number of fields 1 to 1 is quite low, similar to
the one achieved by eCognition. The most competitive results
in terms of 1 to 1 regions (type A) are achieved by DeepNEM,
which also provides a good tradeoff with respect to the number of
over and undersegmented fields (types B and C, respectively).
In order to illustrate the different types of fields associated to
aerial image segmentation, Fig. 12 uses different colors to show
how DeepNEM works on three sample images. As can be seen,
almost all the regions are extracted one to one with a JD > 0.9.

Regarding the region- and boundary-based metrics, they are
also reported in Table II. As can be observed, DeepNEM out-
performs the other three methods in four out of the six mea-
sures (covering, precision, recall, and f-measure), followed by
eCognition. With respect to the other two metrics (rank index
and variation of information), the best results are provided by
BDCN. However, it is worth noting that there are no significant
differences in terms of the rank index, with very similar results
achieved regardless the method considered.

Fig. 7 shows 13 images for a qualitative comparison. Fig. 7(a)
shows the original images with their corresponding GT stacked,
Fig. 7(b) shows the results obtained with HED (using the fusion
layer as output), Fig. 7(c) shows the results obtained with eCog-
nition, Fig. 7(d) shows the results obtained with BDCN, and
Fig. 7(e) shows the results obtained with DeepNEM. As can be
observed, DeepNEM keeps the boundaries more clearly delin-
eated. On the other hand, there are more regions oversegmented
with eCognition than with DeepNEM. This oversegmentation
is due to radiometric variability inside each field, which is
relevant enough to be recovered by a software that relies on
radiometry. On the other hand, DeepNEM relies more on linear
elements, since it has been trained to find these clues, and
introduced constraints to keep these elements in the EM process.

-
<

() (b) (©

Fig. 13.  Original images (top) and DeepNEM results (bottom). (a) and
(b) Original images from the AIRS dataset. (c) Original image from the Mas-
sachusetts dataset.

Note that eCognition is used in productive environments as a
classification-segmentation software. So, it is very important
to evaluate results in terms of overlapping areas, as well as
to analyze the way in which areas are recovered—under and
oversegmentation. This fact determines the amount of manual
edition necessary to obtain a final product. Note that DeepNEM
reduces by a quarter the necessary edition obtaining much less
under and oversegmented images.

3) Aerial Datasets: As far as the authors know, there is
no public dataset for aerial segmentation. However, we have
found two aerial datasets for object detection (instead of field
segmentation)—AIRS [24] and Massachusetts Buildings [25].
Despite this, it is possible to identify some agricultural regions
among their images. We used them in order to check how robust
is our algorithm run on different datasets.

From these datasets, we selected the images that contain
fields, and ran our DeepNEM. The results are shown in Fig. 13.
Due to the fact that their resolution is smaller than that associated
with our training dataset, DeepNEM has to rely more on con-
straints associated with the model than on the edges extracted by
the HED. For this reason, the results are slightly oversegmented
in fields that are highly textured. Anyway, the improvement of
the results over these images makes necessary GT associated to
these agricultural fields, and train the DN with them.

IV. CONCLUSION

We present a joint venture between a DN and an EM model-
guided radiometric method that improves the benefits of each
component. The two-step process we proposed, represented
by DeepNEM, has been trained and tested over a new public
aerial dataset of 1200 images. The contours delivered by our
DeepNEM are really close to the GT both in area and shape.
Furthermore, it is possible to take advantage of the by-products
in order to trigger other semiautomatic segmentation processes,
as we have demonstrated in the validation section. The two step
process can improve as other networks deliver better edges.
DeepNEM has been tested over a variety of natural areas and
compared with other region extraction algorithms. This has
demonstrated that DeepNEM eliminates the need for human
interaction and obtains smoother and more reliable results. When
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the image is a continuum of regions, DeepNEM will pull them
apart, whether or not there is any evidence of border reliable
enough. Moreover, if inside the fields, there are some trees or
bushes, which are not large enough to become an isolated entity,
the process will not consider them.

Nowadays, the earth is continuously monitored with different
types of sensors at different resolutions. As for future lines of
research, it will be not only important, but also effective to
train the system with images at different resolutions and see
how a single network manages this variety. Furthermore, we
plan to investigate how to diversify the model to cope with this
multiresolution. Further research also includes the evaluation of
a network of networks to solve this challenge.
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