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Abstract

The Receiver Operating Characteristic (ROC) curve is a graphical tool commonly
used to assess the discriminatory ability of continuous markers in binary classification
problems. Different extensions of the ROC curve have been proposed in the prognosis
context, where the characteristics in study are time-dependent events. Perhaps the
most direct generalization is the so-called cumulative/dynamic (C/D) ROC curve.
The main particularity when dealing with the C/D ROC curve estimation is the
presence of incomplete information. Several approximation methods addressing this
censoring problem have been suggested in the statistical literature, most of them
focused on the right-censored case. Interval censorship arises naturally from those
studies where subjects undergo periodical follow-ups. They may miss a scheduled
appointment and the exact event times are only known to fall in a certain range.
A new approach for estimating the C/D ROC curve under the particular scheme of
interval censorship is presented in this work. Its finite-sample behavior is studied
via Monte Carlo simulations on two different scenarios. Results suggest that the
proposed approximation is better than the existing one in terms of absolute error.
Its direct application is illustrated in the real-world data set which motivated this
research. The uniform strong consistency and a suitable R function for its practical
implementation are provided as appendices.
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1 Introduction

Biomedical researchers frequently deal with problems regarding diagnosis and prognosis.

Both involve the tasks of classifying subjects and making decisions. The former aims to

identify the presence of certain condition according to the symptoms observed. The latter

refers to the prediction of a future event (frequently the appearance of a condition of

interest) based on symptoms measured at baseline. The Receiver Operating Characteristic

(ROC) curve [Zhou et al., 2002, Pepe, 2003] is a graphical tool routinely used to study the

discriminatory ability of continuous markers, on binary outcomes. It plots the sensitivity,

Se, or proportion of individuals with the condition under study who are correctly classified

as positive, against the complement of the specificity, 1 − Sp, or proportion of subjects

wrongly declared positive. Assuming (without loss of generality) that larger values of the

marker are associated with higher probabilities of being positive, the ROC curve depicts

the points {1− Sp(c), Se(c)} for each c ∈ R. Equivalently, it is defined by

R(p) = Se(Sp−1(1− p)) = 1− F (G−1(1− p)), p ∈ [0, 1],

where F and G are the cumulative distribution functions (CDF) of the marker variable

referred to the positive and negative subjects, respectively; Sp−1(·) = inf{x : Sp(x) ≥ ·}

and analogously G−1(·) = inf{x : G(x) ≥ ·} . The classification groups defining a subject as

positive are subsets in the way (c,∞) with c ∈ R (c = G−1(1−p)). Besides, the area under

the ROC curve, AUC (=
∫
R(p)dp), is the most commonly used index of global diagnostic

accuracy [Fluss et al., 2005]. It has several appealing properties which give it advantage on

its competitors. Mart́ınez-Camblor and Pardo-Fernández [2019] proved that the area under

the standard ROC curve can be read as the probability that, for two randomly selected

subjects, one negative and one positive, there exists an eligible classification subset such

that both subjects are correctly classified. Under particular conditions, this interpretation

can be extended to more general ROC curves, for instance, to the gROC curve proposed

by Mart́ınez-Camblor et al. [2017] (in this case, the classification subsets are in the form

(−∞, a] ∪ [b,∞) with a ≤ b ∈ R).

Prognosis is closely related to time-to-event outcomes. The interest lies in determining

when the event in study is likely to appear, in order to identify groups of individuals at

risk. Different ROC curve extensions have been proposed to accommodate these time-
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dependent outcomes (see, for instance, Etzioni et al. [1999] or Pepe et al. [2008]). Among

them, the so-called cumulative/dynamic (C/D) ROC curve [Heagerty et al., 2000], based

on cumulative sensitivity and dynamic specificity (defined in next section), is perhaps the

most direct ROC curve generalization. Moreover, prognosis study designs involve a follow-

up period and the presence of incomplete information or censorship is frequent. The most

common mechanism that can lead to censored data is right censoring: at the end of the

follow-up, some of the enrolled subjects may not have experienced the event of interest or

this follow-up may be missed for others for reasons unrelated to the study. In any case, the

actual status for those individuals remains unknown. Several C/D ROC curve estimation

methods have also been proposed in the specialized literature addressing the right censoring

problem.

Different circumstances give rise to another censoring scheme called interval censor-

ship. This is the case, for example, of clinical trials, where individuals are not constantly

monitored. They are scheduled periodically to evaluate their condition and some of the

appointments may be missed. The exact event time is not observed and is only known

to lie between two consecutive revisions. C/D ROC curve estimation under this particu-

lar scheme is scarce in the statistical literature. It should be noticed that, once set the

time point of interest, t, subjects with unknown status are those whose observable interval

contains the point t. There exist a naive approximation [Li and Ma, 2011] where these un-

defined individuals are removed from the original sample and two model-based approaches

for another frameworks (semi competing risks), provided by Jacqmin-Gadda et al. [2016].

In this paper we propose a new C/D ROC curve estimator under interval censorship, the

so-called Mixed subjects approach. Undefined individuals are considered as both, positive

and negative, with certain probabilities. The cumulative sensitivity and dynamic specificity

are accordingly approximated in terms of these probabilities.

Rest of the paper is organized as follows. In Section 2 the problem of generalizing

the ROC curve to incorporate the time-dimension is revisited. Different types of time-

dependent sensitivity and specificity are introduced and defined here. In Section 3 we briefly

review the C/D ROC curve estimation problem under the usual right censoring context.

The interval censored scenario is presented and a revision of the estimation proposals for this

particular scenario is also provided. In Section 4, we present the Mixed subjects approach for

the estimation of the C/D ROC curve under interval censorship. A non-exhaustive revision
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of the available R packages (free at CRAN; www.r-project.com) for computing different

estimation methods of C/D ROC curves is exposed in Section 5. Monte Carlo simulations

computed for studying the performance of our proposal are described in Section 6 and

an illustrative application to a real-world dataset is shown in Section 7. In Section 8 we

expose our conclusions. Full details about the strong uniform consistency of the proposed

estimator and an R function for its practical implementation are provided as appendices.

2 Time-dependent ROC curves

Prognosis processes refer to a prediction of a future event of interest (outcome), frequently

based on the observed symptoms measured at baseline. In this context, a subject will be

positive or negative depending on when s/he is evaluated. Different definitions emerge

for positive and negative individuals giving rise to proper extensions of sensitivity and

specificity and the corresponding time-dependent ROC curves. Among those extensions

we focus on the C/D ROC curve, based on the so-called cumulative sensitivity, SeCt and

dynamic specificity, SpDt , introduced by Heagerty et al. [2000]. For a fixed point of time, t,

the former gives the proportion of positive subjects correctly identified as such (considering

as positive all individuals suffering the studied event before or at time t). The latter

gives the proportion of negative subjects correctly classified, considering as negative those

subjects who may experience the event in study beyond t. Formally, once set the time t,

SeCt (c) = P{X > c | T ≤ t},

SpDt (c) = P{X ≤ c | T > t},

where T and X stand for the time-to-event and marker variables, respectively and c ∈ R

is the so-called threshold or cutt-off point of the marker. The C/D ROC curve is given by

RC/D
t (p) = SeCt ([1− SpDt ]−1(p)), p ∈ [0, 1],

where, for the fixed t ∈ R+, [1 − SpDt ]−1(·) = inf{x : 1− SpDt (x) ≤ ·}. At time t, the area

under the C/D ROC curve has the expression

AUCC/D(t) =

∫ 1

0

RC/D
t (p)dp.
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The AUC can be interpreted as the probability that given two randomly chosen subjects,

one suffering the event of interest prior to t and the other one beyond t, the marker value

will be greater for the first than for the second one.

Other time-dependent ROC curves are the Incident/Dynamic (I/D) ROC curve [Hea-

gerty and Zheng, 2005] and the Incident/Static (I/S) ROC curve [Etzioni et al., 1999, Slate

and Turnbul, 2000]. At a time point t, the I/D ROC curve displays the incident sensitivity

against the complement of the dynamic specificity. The incident sensitivity gives the pro-

portion of subjects declared positive by the marker among those experiencing the event in

study exactly at the considered time t.

On the other hand, at time t, the I/S ROC curve plots the pairs formed by the incident

sensitivity and the complement of the static specificity. The later stands for the proportion

of subjects classified as negative by the marker among those event-free during a fixed follow-

up period (0, t∗). The time t∗ is considered long enough to observe the event so the negative

subjects are also known as ‘long term survivors’.

3 C/D ROC curve estimation

3.1 Right censorship

Longitudinal studies are frequently subject to censorship. In practice, the right censoring

is the most common pattern. The only information provided by a right-censored individual

ensures that the event time is greater than the observation time. Mathematically, it is

assumed that for the ith individual (1 ≤ i ≤ n) there is a time-to-event, ti, a censoring time,

ci and it is only observed zi = min{ti, ci} (we have then the status indicator δi = 1 if zi =

ti; δi = 0 if zi = ci). Sometimes independence between time-to-event and censoring

variables is also assumed (independent right censoring). Figure 1 shows an example of the

status of five individuals considering two times, t1 and t2, throughout the follow-up period.

At t1, all subjects are negative except number 3, who has already experienced the event in

study before that time, so it is positive. On the other hand, at t2, subjects 2 and 5 are still

negative while individual 1 has become positive. No affirmations can be made regarding

the number 4, whose follow-up has been missed. It is a right-censored observation. Besides,

it should be noticed that, at the end of the follow-up, subject 5 neither has experienced
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Figure 1: Examples of the status of five subjects at times t1 and t2. A cross represents the

event time and a circle means that the follow-up has been missed for the observation.

the target event nor has dropped out from the study, however its status remains unknown.

It is another right-censored observation.

Different methods have been proposed for the estimation of the C/D ROC curve under

right censorship. An illustrative revision can be found in Blanche et al. [2013]. The authors

also provided a brief discussion of the applicability of the methods according to whether

or not censorship depends on the marker. Once set a time of interest t, the simplest

proposal is the naive method, where observations censored before t are removed from the

original sample. The C/D ROC curve is approximated by the observed true-positive and

false-negative proportions, over the remaining individuals. Obviously, a loss of information

takes place and the estimator may lead to biases. There exist other procedures accounting

to the information provided for the censored observations before t. Among them, those

provided by Heagerty et al. [2000], Chambles and Diao [2006], Uno et al. [2007], Hung

and Chiang [2010], Blanche et al. [2013], Wolf et al. [2011] and the smooth estimation

methodology suggested by Mart́ınez-Camblor and Pardo-Fernández [2018].

Finally, we highlight an interesting C/D ROC curve estimation method proposed by

Mart́ınez-Camblor et al. [2016]. Censored observations before the considered time t are

treated as mixed subjects: they are partially allocated to both, positive and negative

groups. We will refer this method as the Mixed subjects approach and it will be exposed in

detail in the next section.
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Figure 2: Example of the status of five interval censored individuals at two different times

t1 and t2. Left bracket ( stands for the last revision time before the event happened and

the right square bracket ] represents the next revision time when the event has already

taken place.

3.2 Interval censorship

Interval censorship arises when the event times are not exactly observed and it is only

known that they lie in a certain range. The final available information consists of intervals

(L,R] with L ≤ R and T ∈ (L,R], where T represents the time-to-event event variable;

L stands for the last observable time before the event occurs and R indicates the revision

time when the event was first observed. We will use the notation of left-open and right-

closed intervals although the edges L and R may take 0 and∞ values, respectively or may

represent an exact observation (L = R).

An example of the status of some individuals under an interval censoring scheme is

shown in Figure 2. Once fixed a time t, positive individuals are those whose observable

interval meets R ≤ t (subject 3 at t1 and t2 and subjects 2 and 4 at t2). Negative individuals

are those for who t < L (subject 5 at t1 and t2 and subject 2 at t1). Finally, subjects for

who L ≤ t < R are going to be referred as undefined individuals because no affirmation

can be made about their status at t.

References regarding C/D ROC curve estimation methods for interval-censored data

are not as numerous as they are for the right censoring context. Li and Ma [2011] proposed

to remove the undefined individuals from the original sample (naive procedure). Corre-
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sponding cumulative sensitivity and dynamic specificity are subsequently estimated with

the remaining individuals. The bias in the estimation is quantified in terms of the unde-

fined subjects proportion. The authors state that as much as this proportion increases,

the accuracy of the estimator decreases. Jacqmin-Gadda et al. [2016] suggested additional

approaches for particular frameworks. Wu et al. [2018] propose a non-parametric estimator

of the joint distribution function of the bivariate vector (Marker, Time-to-event) and the

corresponding marginal distribution of the Marker. On simulation studies, as the authors

pointed out, the bias increases with the correlation between the marker and the event time.

4 The Mixed subjects C/D ROC curve estimator

4.1 General context

The criterion used by Mart́ınez-Camblor et al. [2016] to estimate the C/D ROC curve un-

der right censorship (also used later by Li et al. [2018]) can be extended to more general

situations. Once set a time point t, the underlying procedure accounts censored observa-

tions before t as partially both, positive and negative. The information brought by these

individuals is used to get adequate estimators of the real probabilities of being positive (re-

spectively, negative). Based on those estimates, censored individuals are partially allocated

to the positive and negative groups.

Notice that, for any random variable Y , once fixed the time t, the cumulative sensitivity

can be expressed as

SeCt (c) = P(X > c | T ≤ t)

=
P(X > c , T ≤ t)

P(T ≤ t)

=
EY [P(X > c , T ≤ t | Y )]

EY [P(T ≤ t | Y )]
,

where T and X stand, as usual, for the time-to-event and marker variables, respectively

and c ∈ R. Assuming that Y is a random variable containing all the information available

in the sample (marker values, X, and other relevant information, W ), we have

SeCt (c) =

∫
P(T ≤ t |W = w, X = x) I(c,∞)(x) dH(w) dx∫
P(T ≤ t |W = w, X = x) dH(w) dx

,
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where H(·) stands for the CDF of the variable W and I is the indicator function (IA(x)

takes the value 1 if x ∈ A and 0 otherwise). Analogously, at time t, the dynamic specificity

can be written as

SpDt (c) =
EY [P(X ≤ c , T > t | Y )]

EY [P(T > t | Y )]

=

∫
P(T > t |W = w, X = x) I(−∞,c](x) dH(w) dx∫

P(T > t |W = w, X = x) dH(w) dx
.

Let {yi}ni=1 be a random sample, independent and identically distributed where each yi

contains all the available information for the ith subject, i ∈ {1, · · · , n} (again, the marker

value xi is included in each yi as well as other relevant information, wi). The natural

semi-parametric estimators for SeCt and SpDt are

ŜeCt (c) =

∑n
i=1 I(c,∞)(xi) · p̂i(t)∑n

i=1 p̂i(t)
and

ŜpDt (c) =

∑n
i=1 I(−∞,c](xi) · [1− p̂i(t)]∑n

i=1[1− p̂i(t)]
,

respectively and, for i ∈ {1, · · · , n}, p̂i(t) (= p̂i,n(t)) are adequate estimators for pi(t) =

P(ti ≤ t | yi). Of course, when ti is observed, p̂i(t) should take the value 1, if ti ≤ t and 0

when ti > t. Directly, the Mixed subjects C/D ROC curve estimator associated to a time

point t, is defined by

R̂C/D
t (p) = ŜeCt ([1− ŜpDt ]−1(p)]), p ∈ [0, 1],

where [1− ŜpDt ]−1(·) = inf{x : 1− ŜpDt (x) ≤ ·}.

4.2 The rigth censorship context

Mart́ınez-Camblor et al. [2016] proposed two different estimation procedures for the prob-

abilities pi(t) (1 ≤ i ≤ n) in the right-censored case. Notice that, in this context, each

sample observation is in the way yi = {zi, δi, xi} where, for i ∈ {1, · · · , n}, zi depicts the

observed time, δi stands for the status of the observation and xi for the marker value.

In the first procedure, the estimators are given by p̂i(t) = 1 −
(
ŜC(t|xi) / ŜC(zi|xi)

)
,

1 ≤ i ≤ n, where ŜC(·) is the approximation for the survival function obtained from

a Cox proportional hazards model. With the second one, the estimators are given by

p̂i(t) = 1 −
(
ŜKM(t) / ŜKM(zi)

)
, 1 ≤ i ≤ n, being ŜKM(·) the Kaplan-Meier estimator
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for the survival function. Li et al. [2018] expressed the probabilities pi(t) (1 ≤ i ≤ n)

in terms of the conditional survival distribution of the time-to-event variable given the

marker. The authors suggested the use of the kernel weighted Kaplan-Meier estimator for

approximating this survival function. Formally, the expressions for these estimators are

p̂i = 1 −
(
ŜL(t|xi)/ŜL(zi|xi)

)
, (1 ≤ i ≤ n) where ŜL(·) is the survival function estimator

conditioned to the marker value:

ŜL(t|xi) =
∏

{s∈Ω, s≤t}

{
1−

∑
j Kh(xj, xi)I(zj = s)δj∑
j Kh(xj, xi)I(zj ≥ s)

}
;

Ω stands for the set of distinct event times; I is the indicator function and Kh(·, ·) stands

for the uniform kernel. An important handicap is the impact of the bandwidth parameter

associated to kernel procedures on the obtained estimations.

4.3 The interval censorship context

Under the interval censored scheme previously described in Section 3, each sample obser-

vation is in the way yi = {(li, ri, xi)}, where for i ∈ {1, · · · , n}, li and ri are the lower and

upper edges, respectively, of the observed interval containing the unobserved event time

ti (li ≤ ti ≤ ri) and xi stands for the marker value. It is assumed the common condition

of non-informative censoring which guarantees that the mechanism generating censorship

is independent of the underlying distribution of the time-to-event variable T . It is also

assumed that this mechanism is independent of the considered marker X. Once set the

point time t, we propose the following estimators for the probabilities pi(t),

p̂i(t) = 1− Ŝn(t|xi)− Ŝn(vi|xi)
Ŝn(ui|xi)− Ŝn(vi|xi)

,

where ui = min{li, t} and vi = max{ri, t} (1 ≤ i ≤ n). We suppose as well that S(t|X) is

specified by a proportional hazards model S(t|X) = S0(t)e
X′β

, where S0(t) is the baseline

survivor function and X ′ the transpose of the marker variable. We propose the use of the

semi-parametric proportional hazards model under interval censorship given by Finkelstein

[1986] for estimating the survival function S(·). The resulting estimator is a step function

outside the Turnbull’s intervals [Turnbull, 1976] and remains undefined inside them, because

one range of solutions are possible. Among them, we have chosen the linear interpolation

between the upper edge of one step and the lower of the next one. Obviously, as it happened
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in the right censoring context, the resulting p̂i(t) estimations will take the value 1 for

positive subjects and 0 for the negative ones.

Under the aforementioned assumptions, the obtained approximation, Ŝn(·) is a con-

sistent estimator of S(·) and then, the respective p̂i(t) are consistent estimators for pi(t)

(1 ≤ i ≤ n). The full derivation of the uniform strong consistence of the proposed Mixed

subjects estimator for the C/D ROC curve under interval censorship is provided as ap-

pendix.

5 Computational considerations

Most of the statistical commercial software includes procedures for computing the ROC

curve and of course R , free-available at CRAN (www.r-project.org), does. Although one

of the most popular R packages is the pROC [Robin et al., 2011], there exists a considerable

number of packages dealing with ROC curve estimation and other related topics, such as

areas under the curve, partial areas or confidence intervals for the AUC, sensitivity and

specificity. In a non-exhaustive list we include: fbroc, ROC632, rocc, roccv, rocNIT,

ROCS, auRoc, ggROC or nproc.

Computing the C/D ROC curve and/or the corresponding areas under the curve has

become, as well, a routine task in the prognosis procedures. Available R packages where

most of the estimation procedures mentioned in Section 3 have been implemented are:

survivalROC, survAUC, timeROC and smoothROCtime,among others.

The Mixed subjects approach for the estimation of the C/D ROC curve in the right-

censoring case has also been implemented in R packages: the nsROC and the tdROC. The

former provides functions for computing both, Mart́ınez-Camblor et al. [2016] and Li et al.

[2018] methods, together with another non-standard procedures to estimate different ROC

curve elements. The latter implements the Li et al. [2018] method.

Regarding the estimation of the C/D ROC curve under interval censorship, the package

intcensROC is currently available and gives approximations for the C/D ROC curve and

the corresponding AUC according to the Wu et al. [2018] proposal. We have also developed

the R function intCDroc where the Mixed subjects estimator of the C/D ROC curve under

interval censorship is implemented. The corresponding survival function estimates on which

the Mixed subjects estimator is based are computed using ic-sp function from icenReg
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package [Anderson-Bergman, 2017]. The code of the function intCDroc is provided as

appendix.

6 Simulation results

To illustrate the performance of the proposed Mixed subjects estimator we have computed

Monte Carlo simulations under two differet scenarios. The following situations for the the

time-to event variable, T , were considered:

• Scenario I: it is assumed that the event times come from a proportional hazards

model, S(t|X) = S0(t)e
X′·β

. S0(t) is generated from an exponential distribution of

mean 2. The maker variable X has been generated from a normal distribution with

mean 0 and variance 1. For the parameter β, we have considered three different values:

β = 1.250, β = 0.726 and β = 0.390 in order to represent a weak, medium and strong

association respectively, between the marker and the time-to-event variable.

• Scenario II: event times are generated from a non-proportional hazards model,

particularly, log(T ) = ρ · X +
√

1− ρ2 · M , where X is the marker and M is an

independent random variable, both following a normal distribution with mean 0 and

variance 1. Like in the previous scenario, we have taken three values for ρ to study

different correlation grades between the marker and time-to-event variables (ρ =

−730, ρ = −0.536 and ρ = −0.327).

C/D ROC curves are considered at times corresponding to the first quartile, Q1, second

quartile, Q2 and third quartile, Q3 of the time-to-event distribution, T , in each scenario.

The modeled strong, medium and weak relations between the marker values and the event

times give rise to areas under the real C/D ROC curves at point Q2 of 0.85, 0.75 and

0.65. Real C/D ROC curves at the considered times are plotted in Figures 3 and 4 for the

scenario I and II, respectively.

The interval censored mechanism has been generated as indicated in Gómez et al. [2009],

to meet the non-informative censoring condition: the lower and upper edges of each interval

satisfy, respectively, Li = max{Ti−U (1)
i , Ti+U

(2)
i −a} and Ri = min{Ti+U (2)

i , Ti−U (1)
i +a},

for i ∈ {1, · · · , n}, where U (1) and U (2) are independent continuous variables uniformly

distributed in the interval (0, a), with a = 1/2. Besides, 35% of intervals have been forced
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to be right-open (R = ∞). In order to compare the results obtained by our proposal

with the Li and Ma [2011] method, this estimator has also been computed and used as

reference. The results for the proportional hazards scenario are shown in Table 1 and those

for the non-proportional hazards one in Table 2. The means and standard deviations of the

estimated AUCs are reported for both estimators, together with the means and standard

deviations for the integrate of the absolute error (IAE):
∫ 1

0
|R̂C/D

t (p) − RC/D
t (p)|dp, where

RC/D
t is the true C/D ROC curve and R̂C/D

t its estimator. It has been computed from 2000

Monte Carlo simulations with sample sizes n = 100, n = 250 and n = 500. The percentage

of undefined individuals is shown in each situation considered .

Given the obtained results, we highlight that the Mixed subjects estimator shows to have

smaller IAE in all considered cases. The Li and Ma [2011] estimator tends to over-estimate

the AUC, as well, in all situations. The IAEs are smaller for the C/D ROC estimates

obtained by the two procedures at time t = Q3, where the censoring percentage is larger

than in the other cases. Obviously, these IAEs are greater, for both estimators, the weaker

is the association between the marker and time-to-event variables and the smallest ones

arise for the bigger sample size (n = 500). Li and Ma [2011] approximation shows to have a

slightly less IAE in the non-proportional hazards scenario than in the proportional hazards

one. These IAEs for the Mixed subjects estimator are similar in both scenarios.

7 Real world application

The performance of the proposed estimator is illustrated on a real-world problem. In

particular, we consider the Hepatitis C data set, which has motivated this research. The

Hepatitis C virus (HCV) is a major cause of chronic hepatitis, cirrhosis, and hepatocellular

carcinoma (HCC), affecting over 170 million people world-wide [Lavanchy, 2009, Hoofnagle,

2002]. HCV does not integrate its genetic material into the host genome so it requires

continuous replications to maintain chronic infection. As a consequence, HCV may promote

carcinogenesis through chronic inflammation of hepatic cells, with the subsequent fibrosis

[Matsuzaki and Murata, 2007]. The most severe forms of fibrosis yield to cirrhosis and in

a long term, to the development of HCC. An early prognosis of the severity of the fibrosis

allows physicians to identify individuals at risk who may receive appropriate treatments to

prevent the HCC. The main goal of this study is to assess the predictive ability of certain
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Figure 3: Scenario I - Real C/D ROC curves under the scenario of time events from a

proportional hazards model. Top: strong association between biomarker and time-to-event

variables (AUC ∼ 0.85); middle: medium association (AUC ∼ 0.75) and bottom: weak

association (AUC ∼ 0.65).
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Figure 4: Scenario II - Real C/D ROC curves under the scenario of event times coming

from a non-proportional hazards model. Top: strong correlation between biomarker and

time-to-event variables (AUC ∼ 0.85); middle: medium correlation (AUC ∼ 0.75) and

bottom: weak correlation (AUC ∼ 0.65).
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n t AC/D(t) % U.
Mixed subjects Li&Ma

AUC Error AUC Error

100 Q1 0.832 21 0.836± 0.05 0.049± 0.02 0.857± 0.06 0.066± 0.03
100 Q2 0.850 23 0.847± 0.04 0.041± 0.02 0.864± 0.04 0.049± 0.02
100 Q3 0.872 26 0.863± 0.04 0.038± 0.02 0.879± 0.04 0.045± 0.02

250 Q1 0.832 21 0.837± 0.03 0.031± 0.01 0.860± 0.03 0.045± 0.02
250 Q2 0.850 22 0.846± 0.02 0.026± 0.01 0.867± 0.03 0.034± 0.01
250 Q3 0.872 25 0.864± 0.02 0.024± 0.01 0.882± 0.03 0.029± 0.01

500 Q1 0.832 21 0.833± 0.02 0.022± 0.01 0.857± 0.02 0.034± 0.01
500 Q2 0.850 23 0.833± 0.02 0.019± 0.01 0.866± 0.02 0.026± 0.01
500 Q3 0.872 25 0.863± 0.02 0.018± 0.01 0.882± 0.02 0.022± 0.01

100 Q1 0.730 21 0.729± 0.06 0.061± 0.03 0.748± 0.07 0.075± 0.03
100 Q2 0.750 24 0.744± 0.05 0.053± 0.02 0.768± 0.06 0.062± 0.03
100 Q3 0.779 27 0.762± 0.05 0.050± 0.02 0.788± 0.05 0.057± 0.02

250 Q1 0.730 21 0.725± 0.03 0.038± 0.02 0.746± 0.04 0.048± 0.02
250 Q2 0.750 23 0.742± 0.03 0.034± 0.02 0.765± 0.03 0.040± 0.02
250 Q3 0.779 26 0.763± 0.03 0.034± 0.02 0.790± 0.03 0.038± 0.02

500 Q1 0.730 21 0.728± 0.02 0.026± 0.01 0.750± 0.03 0.037± 0.02
500 Q2 0.750 24 0.743± 0.02 0.023± 0.01 0.768± 0.02 0.031± 0.01
500 Q3 0.779 27 0.765± 0.02 0.025± 0.01 0.792± 0.02 0.028± 0.01

100 Q1 0.634 21 0.635± 0.06 0.067± 0.07 0.648± 0.07 0.080± 0.04
100 Q2 0.650 24 0.643± 0.06 0.058± 0.06 0.661± 0.06 0.067± 0.03
100 Q3 0.672 28 0.657± 0.05 0.056± 0.06 0.680± 0.06 0.064± 0.03

250 Q1 0.634 21 0.631± 0.04 0.041± 0.02 0.645± 0.05 0.050± 0.02
250 Q2 0.650 24 0.642± 0.04 0.038± 0.02 0.662± 0.04 0.044± 0.02
250 Q3 0.672 27 0.638± 0.04 0.039± 0.02 0.682± 0.04 0.044± 0.02

500 Q1 0.634 21 0.632± 0.03 0.029± 0.01 0.647± 0.03 0.037± 0.02
500 Q2 0.650 24 0.644± 0.02 0.026± 0.01 0.664± 0.03 0.032± 0.01
500 Q3 0.672 27 0.660± 0.02 0.027± 0.01 0.686± 0.03 0.022± 0.01

Table 1: Scenario I, Proportional hazards model. Mean ± standard deviation of AUC
and

∫ 1

0
|R̂C/D

t (p) − RC/D
t (p)|dp, where RC/D

t is the true C/D ROC curve and R̂C/D
t is its

estimator, computed from 2000 Monte Carlo simulations with sample size n = 100, n = 250
and n = 500. AC/D(t) is

∫ 1

0
RC/D

t (p)dp and %U depicts the expected percentage of undefined
individuals.
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n t AC/D(t) %U.
Mixed subjects Li&Ma

AUC Error AUC Error

100 Q1 0.854 27 0.847± 0.04 0.045± 0.02 0.897± 0.05 0.067± 0.03
100 Q2 0.850 29 0.841± 0.04 0.043± 0.02 0.882± 0.04 0.054± 0.02
100 Q3 0.854 30 0.843± 0.04 0.042± 0.02 0.872± 0.04 0.048± 0.02

250 Q1 0.854 27 0.846± 0.03 0.028± 0.01 0.899± 0.03 0.052± 0.02
250 Q2 0.850 29 0.843± 0.02 0.026± 0.01 0.883± 0.02 0.041± 0.02
250 Q3 0.854 30 0.846± 0.02 0.026± 0.01 0.878± 0.03 0.035± 0.02

500 Q1 0.854 27 0.847± 0.02 0.020± 0.01 0.901± 0.02 0.049± 0.02
500 Q2 0.850 29 0.842± 0.02 0.019± 0.01 0.884± 0.02 0.038± 0.01
500 Q3 0.854 30 0.844± 0.02 0.020± 0.01 0.877± 0.02 0.029± 0.01

100 Q1 0.755 27 0.747± 0.06 0.058± 0.03 0.795± 0.07 0.081± 0.04
100 Q2 0.750 29 0.738± 0.05 0.055± 0.03 0.778± 0.06 0.066± 0.03
100 Q3 0.755 30 0.740± 0.05 0.055± 0.03 0.771± 0.06 0.062± 0.03

250 Q1 0.755 26 0.748± 0.03 0.036± 0.02 0.797± 0.04 0.058± 0.03
250 Q2 0.750 28 0.741± 0.03 0.033± 0.02 0.782± 0.03 0.047± 0.02
250 Q3 0.755 30 0.743± 0.03 0.034± 0.02 0.776± 0.04 0.043± 0.02

500 Q1 0.755 27 0.748± 0.02 0.026± 0.01 0.800± 0.03 0.051± 0.02
500 Q2 0.750 28 0.741± 0.02 0.024± 0.01 0.782± 0.02 0.040± 0.02
500 Q3 0.755 30 0.743± 0.02 0.025± 0.01 0.776± 0.02 0.033± 0.01

100 Q1 0.634 26 0.649± 0.06 0.066± 0.03 0.686± 0.08 0.089± 0.04
100 Q2 0.650 29 0.640± 0.06 0.059± 0.03 0.668± 0.07 0.072± 0.03
100 Q3 0.672 30 0.641± 0.06 0.059± 0.03 0.663± 0.07 0.068± 0.03

250 Q1 0.634 26 0.649± 0.04 0.041± 0.02 0.683± 0.05 0.060± 0.03
250 Q2 0.650 29 0.644± 0.04 0.037± 0.02 0.672± 0.04 0.050± 0.02
250 Q3 0.672 30 0.644± 0.04 0.037± 0.02 0.668± 0.04 0.046± 0.02

500 Q1 0.654 27 0.650± 0.03 0.029± 0.01 0.686± 0.04 0.047± 0.02
500 Q2 0.650 28 0.644± 0.02 0.026± 0.01 0.673± 0.03 0.037± 0.02
500 Q3 0.656 30 0.645± 0.02 0.026± 0.01 0.669± 0.03 0.033± 0.01

Table 2: Scenario II, Non-proportional hazard model scenario. Mean ± standard de-
viation of AUC and

∫ 1

0
|R̂C/D

t (p) − RC/D
t (p)|dp, where RC/D

t is the true C/D ROC curve

and R̂C/D
t is its estimator, computed from 2000 Monte Carlo simulations with sample size

n = 100, n = 250 and n = 500. AC/D(t) is
∫ 1

0
RC/D

t (p)dp and %C depicts the expected
percentage of undefined individuals.
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polymorphism combined with clinical variables to determine the worsening in the fibrosis

stage, in individuals infected by the HCV virus.

A total of 722 patients diagnosed with chronic HCV infection who underwent medical

revision at centers University Central Hospital of Asturias (HUCA) in Oviedo (Asturies,

Spain), La Princesa Hospital in Madrid (Spain) and San Agustin Hospital in Avilés (As-

turies, Spain), were enrolled in a retrospective study, during the period between January

and December of 2016. The fibrosis stage of the patients and several polymorphisms ex-

pressions were registered. In particular, we focus in variant rs27044 of the ERAP1 , whose

analyzed combination alleles were C/C , C/G and G/G . The HCV infection diagnostic date

and other background variables such us age and gender were also collected. The fibrosis

stages values range from 0 (free of fibrosis) to 5 (worst condition) and were categorized as

a binary outcome. The highest stages (values 4 and 5) were considered as a worsening in

the disease. The remainder values depicted not having or suffer the disease in a low stage.

A total of 154 patients were finally removed from the original sample because of the lack

of HCV infection diagnosis date.

In this time-to-event study, the event of interest for an individual is to have a worsening

in the disease. The period that elapses since the HCV infection diagnosis date until that

event ocurrs, represents the time-to-event variable. Two different situations may arise: at

the scheduled revision the subject does not have fibrosis or suffers it in its lowest stages

or, at that revision, it is found that s/he presents a highest stage of fibrosis. However,

in the later, physicians do not know the exact moment of the onset of that stage. The

only information available is the range between the HCV infection diagnosis date, when

the subject was event-free, and the revision date, when the fibrosis status is determined.

It is well-known that the age is a risk factor for the worsening of the fibrosis stage in

patients. We are going to consider the continuous marker defined as a linear combination

of the age and the three categories of the rs27044 variant of ERAP1 . The weights for

the linear combination will be the coefficients from the correspondent proportional hazards

regression model under interval censorship. The discriminatory ability of the marker for

predicting the potential worsening in the fibrosis disease status will be evaluated at four

different times: 5, 10, 15 and 20 years.

The time-free of worsening in the fibrosis status is shown in Figure 5. During the two

first years of the follow-up, approximately 40% of patients have suffered a deterioration in
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Figure 5: Turnbull estimation for the survival function on all individuals included in the

study, except those for who the fibrosis diagnosis date has been missed. Linear interpolation

was made in the Turnbull intervals.

their fibrosis status. After that time, the worsening takes place smoothly and over 25 years

of the follow-up, around the 36% remain in the lowest stages of the disease. The median of

the time until getting more advanced stages in fibrosis is 16 years. The mean of the length

of the finite observed intervals is around 20 years with a standard deviation of 7 years. The

shortest and highest ones have a length of 2 and 37 years, respectively.

Table 3 shows the number of positive individuals, the number of negative and the

number of those whose status can not be determined with the available information, at the

four considered points of time: 5, 10, 15 and 20 years. It can be observed that there is

a large number of undefined subjects for every set of time and that this number does not

increase as long as we consider greatest times.

In order to assess the predictive ability of the marker, both estimations of C/D ROC

curve under interval censorship (Mixed subjects and Li and Ma [2011]) have been computed

at times: 5, 10, 15 and 20 years. The graphics in Figure 6 show that Li and Ma [2011]

estimator provides higher values for the AUCs at all considered points of time. However, as

it was seen in the Monte Carlo simulations, this estimation method tends to over estimate
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t = 5 t = 10 t = 15 t = 20

Positive 10 41 90 148

Negative 188 148 107 71

Undefined subjects 290 299 291 269

Table 3: Number of Positive, Negative and Undefined individuals at the considered points

of time. Individuals with age missing values were not taking into account.

the AUC. These values, computed with the Mixed subjects estimator, increase as we consider

points further away in time. Particularly, the AUC remains quite similar at times t = 5

and t = 10, and then increases progressively, reaching the higher values at time t = 20. On

the other hand, for the Li and Ma [2011] estimator, AUCs are bigger at t = 5 and then,

decrease progressively until they take their lowest value at t = 20.

Although more optimistic results are achieved with the Li and Ma [2011] proposal, it

dispenses with a lot of information from the sample. This behaviour matches with that

shown in Monte Carlo simulations. It is worth to notice that if we want to estimate the C/D

ROC curve at a point t and we just know the status of the subjects at times t1 < t < t2,

the estimator for the cumulative sensitivity, for example, at a fixed threshold c, is given by

the probability that the marker takes values greater than the threshold, conditioned to the

event time were less or equal than t1 instead of less or equal than the considered point time

t. A more realistic assessment of the marker has been achieved with the Mixed subjects

estimator.

8 Discussion

Interval censored data arise frequently in prognosis studies with time-to-event outcomes.

Subjects are not constantly monitored and at the revision times is only known whether or

not they experienced the event in study. Besides, even in the first case, it is not possible

to determine exactly when the event took place.

When estimating the C/D ROC curve, a common practice dealing with interval-censored

data is to impute the unknown event time to some point in the observed interval and then

to use any of the C/D ROC curve estimators for the right-censored case. To the best
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Figure 6: Left: C/D ROC curve estimations and their corresponding AUCs for marker X

at different years: t = 5, upper left; t = 10, upper right; t = 15, bottom left, t = 20 bottom

right. The dotted lines are those obtained with the Li and Ma [2011] procedure and the

solid lines represent those computed with the Mixed subjects estimator.

21



of our knowledge, only an estimation method for the C/D ROC curve under the general

context of interval censorship has been published. Once set the time t, those subjects whose

observed interval contains that point are removed from the sample and the approximation

is made with the remaining individuals. Clearly, their status as positive or negative is

unambiguously defined.

In this paper we propose a new estimator for the C/D ROC curve for interval-censored

data, where the information provided for all individuals in the sample is used. It is an ex-

tension to the interval-censored scenario of the Mixed subjects approach, already proposed

by Mart́ınez-Camblor et al. [2016] in the right-censored case. Individuals whose status is

unknown at a time t are partially allocated to both, positive and negative groups, with

certain probabilities. These probabilities are estimated from different approaches according

to the censoring scenario. In particular, our proposal is based on the proportional hazards

model for interval-censored data. Besides, we prove the uniform consistency of the estima-

tor. This result can be easily applied to the previously proposed procedures in the right

censoring context, just treated empirically by the mentioned authors.

In the Monte Carlo study conducted under two different scenarios (event times from

a proportional and a non-proportional hazards models, respectively), the Mixed subjects

estimator has shown to have less integrate absolute error (IAE) than the already existing

method, which tends, as well, to over estimate the corresponding areas under the C/D

ROC curve.

Our proposal was applied to the Hepatitis C data set. We defined a continuous marker

as the linear combination of the age and the scores from a proportional hazards model

with variant rs27044 of the polymorphism ERAP1 as covariate. Our goal was to assess the

ability of this marker to identify individuals at risk of reaching advanced stages of fibrosis

over time (and the subsequent development of carcinoma). C/D ROC curve approximations

were obtained with both, Mixed subjects and Li and Ma [2011] estimators, at four different

times: 5, 10, 15 and 20 years. The former shows to be more realistic than the latter, which

dispenses with more than a half of the available sample observations at all considered times.

In short, the proposed Mixed subjects estimator proves to have good asymptotic prop-

erties and improves the existing procedures, even when the underlying predictive model is

misspecified (scenario II). The methodology is quite general and could be applied to other

types of data and censorship patterns. Notice that its practical implementation requires
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a linear interpolation, whose impact on the final estimation could be the source of future

researches.
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Appendix A: Strong uniform consistency

Next theorem guarantees the strong uniform consistency for the Mixed subject C/D ROC

curve estimator on the interval censorship context. The proof is more general and useful

when the probabilities computed for the so-called undefined subjects are estimated from a

consistent predictive model.

Theorem. Let {li, ri, xi}ni=1 be an independent random sample where for the ith subject

xi stands for its marker value and it is known that the time-dependent event lies within

the interval (li, ri) (1 ≤ i ≤ n). Assuming

A1 Mechanism generating the random intervals (censorship), (L,R], is independent from

both, the time-to-event, T , and the marker, X, variables.

A2 There exists a function, S0(t), and a real number, β, such that, for a given value of

the marker, x, then S(t|x) = S0(t)e
x·β

.

Let RC/D
t be the C/D ROC curve associated with the marker, X, at t satisfying

A3 RC/D
t has two continuous and bounded derivatives.

Then, if R̂C/D
t denotes the Mixed subject C/D ROC curve estimator based on the Finkel-

stein [1986] model, we have the uniform convergence

sup
p∈(0,1)

|R̂C/D
t (p)−RC/D

t (p)| −→n 0 (almost surely).

Proof.
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First we prove, under assumptions A1 and A2, the uniform consistency of both the

sensitivity and the specificity and then that these consistencies are enough for having the

uniform consistency of the C/D ROC curve estimator based on those.

Let Io(t) ⊂ {1, · · · , n} the set of indices containing those subjects in the sample whose

real status at t are really observed (p̂i(t) = 0 or p̂i(t) = 1, i ∈ {1, · · · , n}) and let no be its

cardinal. We have that, for each x ∈ R,

1

n

n∑
i=1

I(x,∞)(xi) · p̂i(t) =
no

n
· [1− F̂t(x)] +

1

n

∑
i 6∈Io(t)

I(x,∞)(xi) · p̂i(t),

where F̂t is the empirical cumulative distribution function (ECDF) estimator for the CDF

of the marker values on positive subjects, Ft, based on those who we know they actually

are positive at time t. Besides,

1

n

∑
i 6∈Io(t)

I(x,∞)(xi) · p̂i(t) =

∫ ∫ ∞
x

P̂(T ≤ t |W , X = x) · [1− IOt(W )] dĤW dx,

where W stands for the random variable containing all the information available in the

sample (excluding the marker values), being HW its CDF and ĤW the corresponding

ECDF and X depicts the random variable representing the marker. Denoting Y = (W , X),

P̂(T > t | Y ) stands for the predictive model on which the Mixed subject C/D ROC curve

estimator is based andOt the subset in which the information contained in Y determines the

real status at t. The Large Numbers Law guarantees that no/n →n πo(t) (= P(Y ∈ Ot)).

On the other hand, from A1 and A2, we directly have that

P(X > x, T ≤ t) = πo(t) · [1− Ft(x)] +

∫ ∫ ∞
x

P(T ≤ t |W , X = x) · [1− IOt(W )] dHW dx.

Finkelstein [1986] guarantees that, under assumptions A1 and A2, for each t > 0, |p̂i(t) −

pi(t)| →n 0. The Glivenko-Cantely Lemma completes the argument for having that,

sup
x∈R

∣∣∣∣∣ 1n
n∑

i=1

I(x,∞)(xi) · p̂i(t)− P(X > x, T ≤ t)

∣∣∣∣∣ −→n 0 (almost surely),

and directly, we obtain the uniform convergence for the cumulative sensitivity, that is

sup
x∈R
|ŜeCt (x)− SeCt (x)| −→n 0 (almost surely). (1)

Arguing similarly we get

sup
x∈R
|ŜpDt (x)− SpDt (x)| −→n 0 (almost surely). (2)
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Now, we are proving that these convergences guarantee the C/D ROC curve consistency.

From A3, for any sequence {pn}n∈N ∈ (0, 1), it is hold the equality,

[R̂C/D
t (p)−RC/D

t (p)] = [R̂C/D
t (p)−RC/D

t (pn)] + rt(p) · (pn − p) +O([pn − p]2).

where rt(·) stands for the (bounded) first derivative of RC/D
t . Let be xn = [1 − ŜpDt ]−1(p)

and pn = 1− SpDt (xn), then

[R̂C/D
t (p)−RC/D

t (p)] = [ŜeCt (xn)− SeCt (xn)]

+ rt([1− ŜpDt ](xn)) · [SpDt (p)− ŜpDt (p)] + [SpDt (p)− ŜpDt (p)]2.

(3)

Results in (1), (2) and (3) directly imply the strong uniform consistency.

Appendix B:

intCDroc <- function(data, t){

# Incoming parameters:

# data -> three-columns matrix: lower and upper edges of the observed

# interval and marker values.

# t -> numeric value representing the moment of time at which the C/D ROC

# curve will be estimated.

# Split the incoming data matrix:

L <- as.vector(data[,1]) # Lower edge of the observable interval

R <- as.vector(data[,2]) # Upper edge of the observable interval

X <- as.vector(data[,3]) # Marker values

# Basic data checks:

if (sum(L > (ifelse(is.na(R), (max(L) + 1 ), R))) > 0){

stop(message ("Non-valid data.

Interval left side greater than right side"))}

# First auxiliary function implementing the Mixed subjects estimator
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# for the computation of the probabilities of being positive (p_i)

# for the undefined individuals:

pundef <- function(i,M, mod, pt){

# Second auxiliary function for computing the value of the

# survival funtion estimate for a given point. If it belongs to a

# Turnbull Interval (TI), the estimate is obtained by interpolating

# the two consecutive survival function values before and after

# the TI. Othercase, the corresponding survival funtion value is taken.

pi <- function(p,M,S){

In <- which((M[,1]<= p) & (M[,2] >= p))

pi <- ifelse(length(In) == 0,

ifelse(is.finite(max(which((M[,1]<= p)))),

S[max(which((M[,1]<= p)))],1),

approxfun(c(M[In,1], M[In,2]),c(S[In-1], S[In]))(p))}

# Marker value

new_data <- data.frame(X = c(as.numeric(X[i])))

# Survival curve estimate corresponding the given marker value

rownames(new_data) <- c(’grp1’)

Ma <- getSCurves(mod,new_data)

# Mixed subjects estimator computation for p_i

d <- ifelse(is.na(M[i,2]),0,

pi(M[i,2],Ma$Tbull_ints,Ma$S_curves$grp1))

p_i <-(pi(pt,Ma$Tbull_ints,Ma$S_curves$grp1) - d) /

(pi(M[i,1],Ma$Tbull_ints,Ma$S_curves$grp1) - d)}

# Initialization of vectors

Pr <- NULL

auc <- NULL
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# Computation of the proportional hazard model for interval-censored data

# (function ic_sp from icenReg package is used).

modsp <- ic_sp(Surv(L, R, type="interval2") ~ X ,

B = c(0,1), model = "ph")

# Allocation of probabilities p_i

# Positive subjects; p_i <- 1

IL <- which (L >= t); Pr[IL] <- 1

# Negative subjects; p_i <- 0

IR <- which (R <= t); Pr[IR] <- 0

# Undefined subjects; p_i computed by the Mixed subjects estimator

# implemented in the pundef function.

IU <- which((L < t) & ( t < R | is.na(R)))

Pr[IU] <- sapply(IU, FUN = pundef, M = data, mod = modsp, pt = t)

# Computed probabilities are added to the original data matrix

data <- cbind(data,Pr)

# False positive

FP <- 1 -

(sapply(X, function(i){sum(data[which(X <= i),4])}) /

sum(data[,4]))

# True positive

TP <- sapply(X, function(i){sum(1 - (data[which(X > i),4]))}) /

sum(1-data[,4])

# ROC curve

p <- seq(0, 1, 1/50)
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R <- approxfun(c(0,FP,1),c(0,TP,1))(p)

# AUC (rectangles method)

auc <- c(auc,(p[2] - p[1]) * sum(R))

# Function output: sROCt object.

# sROCt is a list with the following elements:

# th <- vector of thresholds or cut-off points.

# FP <- vector of false positive (complement to specificity).

# TP <- vector of true positive (sensitivities).

# p <- sequence of equidistant points between 0 and 1 for which C/D

# ROC curve is plotted.

# ROC <- sequence of values of the ROC curve computed for each p.

# t <- single value at which the C/D ROC curve is estimated.

# auc <- area under the C/D ROC curve.

ret = list( th = X, FP = FP, TP = TP, p = p, ROC = R, t = t, auc = auc)

class(ret) <- "sROCt"

return(ret)}
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