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S. Garćıa-Galán · E.F. Combarro ·
J. Ranilla

Received: date / Accepted: date

Abstract This paper presents a parallel system for searching a digital score
of classical music in a personal library. The application scenario of the system
is for a musician who wants to search for a specific score in its own device by
playing an excerpt of a few seconds of the composition. We propose a solution,
based on audio-to-score alignment, which allows to identify the correct score
in a database of musical pieces in real time. This is a challenging task because
we focus on a real time system targeted for handheld devices characterized by
both mobility and low power consumption. Experimental results show that it
is possible to achieve real time execution in the tested scenarios using parallel
computing techniques with ARM processors.
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1 Introduction

Paper sheet music is often a source of annoyance for musicians for several rea-
sons. Music scores can be voluminous to store and uncomfortable to handle
while performing. They can become deteriorated from repeated use and brittle
with age. When a music score is placed on a music stand, it can be easily dis-
lodged causing some very anxious moments for the performer. Furthermore,
nothing is more frustrating than thumbing through paper sheet music try-
ing to find the desired music. In this way, advancements in technology during
the last decade have resulted in rapid growth of software for displaying dig-
ital scores. Examples include Beatik1, which is a page-turning software that
adjusts to the musician playing in real time; Antescofo2, which is a musical
accompaniment software for classical musicians; Tonara3, which is a music
tracking platform focusing on the amateur musicians; and Newzik4, which is
a digital score display system. All of these applications allow users to store
digital scores in their personal libraries. However, as users use this kind of
tools, their personal libraries can grow to the point that searching a specific
digital score can become a tedious task.

This paper addresses the problem of searching a digital score of classical
music in a personal library. Imagine a musician who wants to search for a
specific score in its own device and decides to play an excerpt of a few seconds;
the system should present the user with the title, the composer, and display
the digital sheet music. Therefore, given a short audio query corresponding
to a music interpretation, the goal is to identify in real-time the score on
which the performance is based. To do this, the application keeps a database
of scores in a symbolic format (e.g. MIDI) and decides which one best matches
the input audio. This problem can be considered as a particular case of cover
identification. In classical music, this is not an easy task, because different
interpretations of the same piece often have considerable differences in terms of
tempo, loudness and other important aspects. Moreover, the matching process
must be as fast as possible, because the database may contain a large number
of entries.

One popular approach used in music identification is audio fingerprinting.
A typical example of this strategy is the well-known service Shazam5 [24],
which is mainly aimed at popular music. In audio fingerprinting, a set of
fingerprint tokens is generated for each piece, each with a time stamp. These
tokens are stored in a table, with a portion of the token acting as a hash key
to provide a quick access to the token. When a query is presented, the system
computes fingerprint tokens from the audio and extracts matching tokens from
the database via the hash key. The piece that shares the largest continuous
sequence of tokens with the query is returned as a result. This approach is very

1 https://beatik.com
2 https://www.antescofo.com
3 https://tonara.com
4 https://newzik.com
5 https://www.shazam.com
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fast and enables online applications with millions of pieces, but it requires that
the input audio is almost an exact copy of the reference version stored in the
database. In [3], a more flexible variation of the algorithm is proposed for score
identification in classical music, where the tokens are constructed using triplets
of note pitches. Unfortunately, the algorithm requires a music transcriber to
obtain the audio tokens, which introduces some errors and limits the system
to piano music.

Another method to address this task is based on audio alignment [11]. In
this case, each score is represented as a sequence of audio-like features, ob-
tained from a synthesized version of the score. Given a query, a full pairwise
distance matrix of audio and score features is computed, and the alignment
path through this matrix is obtained with Dynamic Time Warping (DTW).
The process is repeated against each candidate score, choosing the score with
the lowest alignment cost. The main drawback of this method is its highest
computational intensity, despite being generally more flexible than fingerprint-
ing approaches. Additionally, if the systems used by the musicians are devices
characterized by both mobility and low power, such as smartphones or tablets,
identifying in real-time the score on which the performance is based will be
a greater complexity problem. For this reason, this strategy is preferred for
offline applications, such as automatic indexing of audio or MIDI databases.
Some efforts have been made to reduce the computation time. In [13], a novel
indexing strategy is used to greatly reduce the cost. In [17], feature vectors are
mapped to a space where the distortion is much more efficient, and a reduced
number of vectors can be used.

In this paper, we propose a real-time score identification parallel system
based on audio-to-score alignment. For this purpose, we decompose the prob-
lem into two main stages. Firstly, a feature extraction process from the audio
signal is carried out to characterize some specific information about the mu-
sical content. Then, the alignment is performed over all the entries of the
digital score database. The kernel of this proposal is based on our robust sys-
tem proposed in [1,2], employing a fast spectral factorization algorithm and
DTW.

Unlike the previous studies [1,2], where the audio-to-score alignment is
used for tracking the reproduction of a musical piece over its corresponding
digital score, here we address the problem of searching for the score that is
more similar to a given musical interpretation among all those stored in a
database. The challenge is clearly greater, not only in terms of computational
complexity by having to align a greater number of MIDI scores in real-time,
but also because a new mechanism is needed to measure similarity. From a
signal processing point of view, the novelty lies in the development of a new
model which uses the β-divergence to measure the similarity between an in-
terpretation and a MIDI score. Consequently, this work proposes a completely
different approach that incorporates new functional modules, and modifies
others, to address the new formal and theoretical aspects. Accordingly, a new
prototype is implemented using a mixed parallelism scheme to obtain high
accelerations.
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The paper shows a study of the behaviour of the application running on
a NVIDIA Jetson AGX Xavier development kit. The AGX Xavier has a low-
energy ARM processor with four power envelopes in seven different modes,
allowing to simulate a wide range of mobile devices, from the least powerful
to those with the greatest performance. This set of test combinations allows
us to validate our system framework as a useful tool for solving the online
score identification problem. According to the best of our knowledge, no holis-
tic, flexible, free and cross-platform system that addresses this problem on
systems-on-chips (SoC) with ARM architecture has been presented yet. As a
proof of concept, some experiments are carried out on two different databases,
showing reliable results.

The paper is organized as follows. In Section 2, we review related works
on audio-to-score alignment. The proposed score identification system is de-
scribed in Section 3. Section 4 details the parallel approach developed in this
work. Experimental results are shown in Section 5, and conclusions are finally
outlined in Section 6.

2 Background of the alignment system

Audio-to-score alignment is the task of synchronizing a musical recording with
its corresponding score. This automatic alignment spares manual alignment
which is very tedious since musicians usually interpret each piece in a personal
way by introducing variations in the tempo, dynamics and/or articulation.
This topic has been intensely researched since the mid 1980s. Traditionally,
these systems consist in two steps: feature extraction and alignment.

Firstly, both the score and the audio signal are represented by two fea-
ture sequences that must be aligned: U = (u1, . . . ,un, . . . ,uN ) and V =
(v1, . . . ,vt, . . . ,vT ), where N represents the number of time instants in the
score and T is the number of time instants in the audio. In the literature, sev-
eral methods have been proposed to design these features in order to capture
robustly the musical content and to be as much discriminative as possible be-
tween different musical situations. The most common approaches are chroma
vectors [11], semigrams [8], decaying locally adaptive normalized chroma onset
(DLNCO) [9], beat-tracking [16], peak structure distance (PSD) [23] or mea-
sures derived from analysis with Non-negative Matrix Factorization (NMF) [7].
The goal of the alignment stage is to find corresponding time points in the
two features sequences (i.e. the corresponding position in the score for each
point in time). For this purpose, a comparison measure for each pair from U
and V is computed by the majority of the methods. Then, the best general
alignment is found by employing stochastic (e.g. hidden Markov models) [19]
or, more commonly, DTW [15].

Several approaches have addressed the online alignment task. Dixon [8]
proposed to use a local cost function to compare pairs of audio and score
segments
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d(n, t) = f(un,vt), (1)

where f(·) is any type of feature comparison function, and d(n, t) can be
viewed as the cost of aligning un with vt. Then, an accumulated cost matrix
is constructed by Eq. 1, containing the value of the minimum cost path up to
(n, t). Given a specific time t, the result of Dixon’s method is the point (n, t)
with the minimum cost. In this implementation, only the neighboring cells
around the current position are considered, thus saving processing time and
memory consumption. The main drawback of the framework described in [8]
is that the algorithm tends to get lost in the score, and is not able to recover
due to the heavy constraints imposed on the path. Other modifications of the
classic DTW algorithm have been proposed to reduce memory cost or increase
speed. In [12], a short-time version of DTW is proposed, which performs the
matching by dividing the sequences into shorter portions, providing the same
result than standard DTW under some hypothesis. Unfortunately, the algo-
rithm is not intended to work online, but only as a tool to reduce memory
consumption.

Carabias et al. [5] proposed an online audio-to-score alignment where the
feature extraction stage pre-processes the MIDI score to represent it in a suit-
able format. Firstly, the score information is analyzed to detect how many
unique combinations of notes occur during the piece. Each unique combination
of notes is called a score unit. These combinations take into account the in-
struments involved, such that two combinations having identical note numbers
but different instruments are considered as two different score units. Observe
that this approach is suitable for both monophonic and polyphonic interpre-
tations, since a score unit can represent a single note or a chord compounded
by many notes of a single instrument or multiple instruments. Moreover, the
number of units will be often much smaller than the number of frames, since
the music is repetitive and many combinations of notes usually span across
multiple frames.

Once the score is arranged into score units, a single spectral pattern for
each of them is learnt in the feature extraction module. For this purpose, a
software synthesizer is used to convert the MIDI score into an audio file. The
result is a synthetic low-quality signal which is converted to the time-frequency
domain and decomposed using supervised NMF. As a result, a single spectral
pattern is obtained for each score unit.

Each score feature un in the sequence U is the spectral pattern correspond-
ing to the active unit in instant n. Concerning the audio signal, Carabias et
al. proposed to extract a vector of features vt per each frame acquired at time
t. This feature vector vt is computed from the input frame as its conversion
to the frequency domain.

In the alignment module, the matching cost between vt and every element
in the score sequence U is computed for each input frame. The corresponding
position in the score is determined from the accumulated costs given by an
implementation of online DTW. In this approach, the cost measure between t
and every instant in the score is given by the following distortion:
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d(n, t) = Dβ (gn,tun|vt) , (2)

where Dβ(·) is the β-divergence function [6,10], β ∈ [0, 2], and gn,t is obtained
by the following fast spectral decomposition equation [5]:

gn,t =
|vtu

(β−1)
n |1

|uβ
n|1

. (3)

In the field of music signal processing, the β-divergence has been widely
used obtaining reliable results, since the parameter β essentially controls the
assumed statistics of the observation noise and can be either fixed or learned
from training data or by cross-validation.

In [2], we proposed a Real-time Musical Accompaniment System (ReMAS6)
based on the online alignment system described in [5]. ReMAS was design to
track the reproduction of a musical piece with the aim to match the score
position to its symbolic representation on a digital sheet. ReMAS is a parallel
and efficient system that was implemented and optimized for low-power pro-
cessors, such as ARM processors, which are the heart of smartphones, laptops,
tablets and other embedded systems.

3 Proposed score identification system

In this paper, we propose a parallel system to identify the digital score corre-
sponding to a piece of classical music by analysing an audio excerpt of only
a few seconds. In particular, we propose a framework, based on the audio-to-
score alignment presented in [5], which we have called ShizMidi7. For this
purpose, we have addressed major design changes with respect to ReMAS
by incorporating new computational modules and proposing a new parallel
approach to adapt it to this new problem. The software solution has been de-
veloped satisfying two basic requirements: real time and mobility. Therefore,
this design should take the low computational power of the handheld devices,
especially the cheapest ones, into consideration, and should deeply use the
possibilities offered by parallel architectures.

The proposed algorithm outputs a ranked list of digital scores stored in a
previously trained database. This list is sorted by the scores which are most
similar to the audio excerpt captured by the microphone. To measure this
similarity, we use the accumulated cost computed by DTW over the diver-
gence matrix (see Eq. 2). In this way, the score corresponding to the audio
performance will accumulate the lowest cost. Fig. 1 displays the full system.
As it can be observed, the problem is decomposed in two main stages: feature
extraction and alignment.

6 https://gitlab.com/SSPressing/ReMAS
7 https://gitlab.com/SSPressing/shizmidi

https://gitlab.com/SSPressing/ReMAS
https://gitlab.com/SSPressing/shizmidi
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Fig. 1: Block diagram of the proposed system.

First, when a new frame arrives at time t, the process starts at the feature
extraction stage. As in ReMAS [2], this stage extracts the features which char-
acterize the musical content of the input audio frame. To do this, a low-level
spectral representation of the audio data (time–frequency representation) is
computed by a Hanning-windowed fast Fourier transform (DFT). Afterwards,
the magnitude spectrum is computed from the complex output of the DFT
and converted from linear frequency to MIDI resolution summing up the fre-
quency bins belonging to the same MIDI interval. Note that the number of
MIDI pitches corresponds with the range of notes that a piano can play in
MIDI scale.

After the DFT block, we have implemented a new module, called Beta
Norma (see Fig. 1). This module normalizes the magnitude spectrum of the
input frame to the β–norm as

x
′

t(f) =
xt(f)

β

√∑
f xt(f)β

(4)

where xt(f) is the magnitude spectrum computed in the DFT block. The used
β-divergence value is 1.3 in line with other works in the state-of-the-art [4,20,
14].

This normalization step is essential for the proper performance of the sys-
tem, since, as explained in the previous section, the cost function used in Eq. 2
to measure the similarity between the audio frames and the score units de-
fined in a MIDI score is the β-divergence. Therefore, when both the magnitude
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spectrum of the audio frames and the spectral patterns of the score units are
normalized to the β-norm, the cost function can only reach values defined in
the range [0, 1/β]. Thus, if a frame has a strong similarity with a certain score
unit, the β-divergence returns a value close to zero, and vice versa. Observe
that, without this normalization process, the system would not be able to
identify the target score in the database, since the accumulated cost for each
score would depend on the energy of its spectral patterns and the audio signal;
and, therefore, it could not be compared.

Once the information related to the musical content of the input frame
has been extracted, the alignment process is performed over all the entries of
the database. In this sense, the main function of this stage is to compute the
alignment path with the minimum accumulated cost. For this purpose, the
distortion block computes the β–divergence between the magnitude spectrum
of the input frame and the spectral patterns of all the concurrent notes (score
unit) which compound the score using Eq. 2. Note that a low value of β–
divergence is obtained when the notes of a specific score unit match to the
notes of the input audio. In this way, the score corresponding to the audio
performance will obtain frame-by-frame lower divergence values than the other
scores.

Then, DTW is used to compute the minimum value of the accumulated
cost at frame t. From the local distances d(n, t) computed in Eq. 2, when a
new audio frame arrives, the accumulated cost matrix D is computed using
the following recursion:

D(n, t) = min
cn,ct


D(n− 1, t− ct) + d(n, t)σ1,ct

...
D(n− cn, t− 1) + d(n, t)σcn,1

 (5)

where cn and ct are the step sizes at each dimension, and whose values are the
integers in the range cn ∈ [1, Cn] and ct ∈ [1, Ct]. Scalars Cn and Ct are then
the maximum allowed step sizes in the score and in the performance, respec-
tively. The weights σ control the bias toward diagonal steps. Unlike ReMAS,
here we have set it to σx,y = y, so the path is biased towards horizontal steps
(i.e. towards interpretation times). In this way, DTW is forced to progress
through the interpretation time regardless of the score duration. This is an
important point, since without this consideration, the system would penal-
ize those scores with a long duration, which could accumulate a higher cost,
compared to shorter duration scores. Observe that D(n, t) is the accumulated
cost matrix of the minimum-cost path from (1, 1) to (n, t), and that D(1, 1)
is initialized to d(1, 1), because the alignment result is constrained to include
the point (1, 1).

The accumulated cost matrix D is filled as new audio frames arrive to the
system. At each time t, the corresponding minimum cost value is estimated
directly from the information accumulated up to t, which can be considered
as a sub-optimal solution. The algorithm simply returns the minimum value
associated to the best path, that is, vout = argminn D(n, t).
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Note that, for a specific frame, both the feature extraction stage and the
alignment stage have to be run before the next frame arrives in order to reach
the real-time requirement.

Finally, after analyzing all the frames related to the audio excerpt cap-
tured by the microphone, the system outputs a ranked score list based on the
minimum cost value accumulated over the whole audio segment.

4 ShizMidi parallel design

As mentioned, ShizMidi is based on our system ReMAS, and it has been
developed satisfying real time and mobility. In [2], a study of the theoretical
computational complexity of ReMAS is carried out. Eq. 6 shows the complexity
of the sequential version:

O
(
T + F log2(F ) +NMU + S

)
(6)

where T is the frame length, F is the fast Fourier transform length, U is the
number of score units, NM is the number of notes in MIDI scale and S is the
number of states. As in [21], we have used F = 16, 384 bins, since this value is
chosen to have enough frequency resolution for low frequency sounds, and T is
fixed as 5,700 samples to have enough temporal resolution. We have selected
NM = 114 that corresponds to a range of notes of 9.5-octaves in one sample
per semitone of MIDI resolution. On the other hand, U and S depend on the
composition and are obtained from the reading of the MIDI score.

ReMAS is mainly conformed by loops with independent iterations which
can be easily divided among CPU cores, excepting DTW, which includes a
reduction operation, and the DFT, where an external optimal code is used.
ReMAS parallel complexity is shown in Eq. 7,

O

(
T

p
+ F log2

(
F

p

)
+

NMU

p
+

p log2(p) + S

p

)
(7)

where p is the number of processors or cores used.
However, the design of fine-grain parallelism of ReMAS is not suitable for

ShizMidi. ReMAS was designed to track in real time the reproduction of
musical pieces as long as possible. In that case, U and S are greater than T ,
F and NM , as the number of score units and states grow as the duration of
the composition increases.

Nevertheless, ShizMidi only needs to track a short excerpt of each MIDI
score, as we will show in Section 5. Therefore, in this case the number of
score units and states are smaller than T and F . In addition, the number
of scores to be analyzed in the database is a new variable that affects the
alignment stage (see Fig. 1). Under these conditions, keeping the design of
fine-grain parallelism in the alignment stage would not allow to obtain high
accelerations due to the high overhead resulting from the creation of a large
number of low computational intensity processes.
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Considering all these aspects, ShizMidi adapts a mixed parallelism scheme.
On the one hand, it keeps the grain-fine for the feature extraction, which is
applied only once per frame. On the other hand, coarse-grained parallelism is
applied at the alignment stage, each score being a concurrent task. Thus, the
parallel theoretical computational complexity of ShizMidi is shown in Eq. 8,

O


T
p + F log2

(
F
p

)
+ NM

p

DS

p1

(
NMU
p2

+ p2 log2(p2)+S
p2

)
 feature stage

alignment stage

(8)

where p is defined as p = p1 + p2, being 1 ≤ p1, p2 ≤ p, and DS is the number
of analyzed MIDI scores from the database.

Regarding the alignment stage, ShizMidi can control the granularity by
enabling/disabling nested parallelism. In the case of medium/large databases,
p2 is set to one and, therefore, the theoretical alignment stage complexity is

O
(

DS

p (NMU + S)
)
. On the other hand, when DS is small and U and S are

large, p1 is fixed to one and the complexity is O
(
DS

(
NMU

p + p log2(p)+S
p

))
.

5 Evaluation and experimental results

In this section, we are going to analyze the results obtained in two different
types of experiments. First, we have tested the reliability of our proposed sys-
tem over the MusicNet database [22]. This dataset is a collection of 330 freely-
licensed classical music recordings gathered from various musical archives. The
database includes also their corresponding not-aligned MIDI scores, which are
used to build our score database. This database features 11 different instru-
ments arranged in small chamber ensembles, ranging from solos to octets,
under various studio and microphone conditions.

The second experiment has been carried out on a synthetic database to
analyze the performance of the application in terms of efficiency and speedup.
In this regard, the number of digital scores stored in the database varies widely,
from twenty-five to more than one thousand.

Regarding the used testbed, we have focused our interest on the NVIDIA
Jetson AGX Xavier development kit, which is an embedded system-on-chip
(SoC) with an eight-core ARM v8.2 CPU and a NVIDIA 512-core Volta GPU.
It can operate at 2.26 GHz and runs a version of the Linux operating system
especially tailored to this device. Xavier supports different kinds of running
modes and it can be configured with the NVPModel command tool. This
fact allows to simulate a wide range of mobile devices such as smartphones,
laptops, tablets, and other embedded systems. Table 1 lists the details of all the
configuration modes. We have also included for each mode the first equivalent
ARM architecture with its market release year. As observed, four different
power envelopes in seven different modes are defined. The power envelopes are
n/a, 30W, 15W and 10W. Moreover, the possible number of running cores are
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NVPModel Configuration

Mode No. CPUs Power Budget (W) Max. frequency (MHz) 1st Equiv. Architecture
0 8 n/a 2266 ARMv8 (2016)
1 2 10 1200 ARMv7 (2011)
2 4 15 1200 ARMv7 (2012)
3 8 30 1200 ARMv8 (2015)
4 6 30 1450 ARMv8 (2016)
5 4 30 1780 ARMv8 (2013)
6 2 30 2100 ARMv8 (2016)

Table 1: NVPModel mode definition.

2, 4, 6 and 8 with various CPU frequencies. Mode 1 is a special one, rebooting
is required for changing to/from this mode to adjust the system services. For
this reason, it has not been included in the experimentation.

In our first experiment, we have tested the reliability of our system and
determined the audio segment needed to perform the score identification. In
this way, for each audio file of the database, six segments of 3, 6, 9, 12, 15 and
180 seconds starting from the beginning of the file were selected and entered
as a query into the system. Table 2 summarizes the obtained results in terms
of accuracy. Here, we define accuracy as the percentage of searches in which
the correct MIDI score is in the first position of the ranked list.

Time (s) 3 6 9 12 15 180

Accuracy (%) 57,58 82,12 91,21 92,73 94,85 98,48

Table 2: Accuracy results as a function of the duration of the analyzed audio
segment.

As shown, the accuracy of the score identification improves significantly as
the length of the audio segment increases. For a query length of 15 seconds the
correct score is detected in about 95% of the occasions, while a significant loss
of accuracy occurs when queries of 3 seconds (57%) are employed instead. Note
that the 100% of accuracy is never reached in this database because we have
detected five MIDI scores badly annotated, so the maximum is approximately
98%.

According to the experiment, for segments longer than 15 seconds, the ac-
curacy is always very similar, improving only a 3% for the case of 180 seconds.
This is an important finding for our application, because it reveals that the
matching measure does not improve with longer queries.

For the second experiment, we generated a synthetic database to test and
explore the limits of the system. The complexity of the algorithm per frame
depends on the number of scores to be analyzed. Therefore, in our tests we
have varied the size of the database from 25 to 1500 scores. Moreover, the
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(a) Tempo

(b) Number of score units (c) Number of states

Fig. 2: Statistics about the MIDI parameters encrypted in the 330 MIDI files of
the MusicNet database. The histogram in the top row shows the distribution
of tempos and the histograms in the bottom row show the distributions of the
score units and states across all MIDI files.

duration of audio file used to identify the score was set to 15 seconds, since
this is the minimum duration to ensure an acceptable performance/////the//////////correct
//////score/////////////////identification , as previously seen.

On the other hand, the complexity of the alignment stage per MIDI score
mainly depends on the number of score units and states (see [1]). However,
only the score units and states corresponding with the first 15 seconds are
required to be analyzed. For a specific composition, the tempo annotated in
the MIDI file determines the pace of the performance, and therefore, it has a
strong relation with the notes played (i.e. score units) in a fraction of time.
In [18], a statistical analysis of the information available in MIDI files was
carried out over a huge database. This analysis demonstrated that the range
of tempos most frequently used varies between 60 and 130 bpm. In order to
determine the number of score units and states required for our synthetic
database, we have carried out a similar statistic over the proposed MusicNet
database. Fig. 2 displays the histogram of the distribution of tempos. As it can
be observed, the range of tempos mainly varies between 60 and 130 bpm as in
[18]. Regarding score units and states, the average value obtained is 40 and 80
respectively. Therefore, for our synthetic database we have used these average
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(b) Execution times measured in millisec-
onds per frame for the parallel code.
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Fig. 3: Experimental results as a function of the operating mode of the NVIDIA
AGX Xavier and the number of MIDI scores stored in the synthetic database.

values plus the typical deviation (i.e. 69 and 128, respectively) to consider the
worst-case scenario.

Experimental results obtained for the synthetic database are summarized
by Fig. 3. These results are presented as a function of the operation mode
of the NVIDIA AGX Xavier (see Table 1) and the number of MIDI scores
stored in the database. Firstly, Fig. 3a shows the results of the sequential code
in terms of time per frame in milliseconds. As it can be seen, the execution
time increases as the number of scores in the database grows and the CPU
frequency decreases. Note that the number of scores that can be analyzed
in real-time oscillates between 100 and 225 for mode 3 (the one with lowest
CPU maximal frequency) and mode 0 (the one with highest CPU maximal
frequency), respectively. On the other hand, Fig. 3b outlines the execution time
results of the parallel code. As expected, the fastest modes are those which
use a greater number of cores, being the CPU frequency and the power budget
only relevant when using the same number of cores. In this case, our system
can deal with collections of different sizes, from small (400 MIDI scores) to
large (more than 1500 MIDI scores). For devices with more than two available
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Fig. 4: Experimental results of the MusicNet database as a function of the
operating mode of the NVIDIA AGX Xavier.

cores and a high power consumption (i.e. mode 0, 3, 4 and 5), a large amount
of MIDI scores can be analyzed (from 700 to more than 1500). Moreover, using
our parallel approach allows to reduce the power consumption, respecting the
use of battery, and address a collection of up to 500 scores in real-time (i.e.
mode 2 is faster than mode 6 consuming half power). Regarding the efficiency
of the system (see Fig. 3c), it is close to one in all modes when the number
of MIDI scores grows. Therefore, we can assert that, when the number of
processors and the size of the problem grow, our system scales correctly.

The obtained results for the MusicNet database can be seen in Fig. 4. In
this case, real-time execution is achieved by the parallel approach for all the
operation modes of the NVIDIA AGX Xavier. On the contrary, the sequential
version does not reach real time in any case, even in mode 0, where more
resources are used. Concerning the efficiency, it is very high, except for modes
3 and 6. MusicNet database is not large enough for these modes to reach the
permanent regime for efficiency (see Fig. 3). Therefore, for this database it is
enough to use the lowest performance modes, e.g., mode 2 (15W) and 6 (2
cores).

6 Conclusion

In this paper, we have proposed a score identification parallel system based
on audio-to-score alignment. To the best of our knowledge, this is the first
implementation in real time which addresses this problem. Our system has
focused on achieving real time execution using handheld devices characterized
by both mobility and low power consumption. We have decomposed the task
into two main stages: a feature extraction stage, where the input audio signal is
characterized; and an alignment stage, where all the entries of the digital score
database are analyzed in parallel. The proposed system has been evaluated
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using a synthetic and a real database. Experimental results show that reliable
results for the score identification task can be achieved in real time.
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