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,is research study presents a new theoretical model to calculate the indirect tensile strength for the Brazilian disk with loading
arcs, based on numerical simulations, two-dimensional elasticity theory, and Griffith failure criterion. ,e new expression
incorporates a no uniform contact pressure distribution determined by the results of the simulations with the finite element
method. A computational experiment design has been developed to test the accuracy of the predictions made with the proposed
model.,is study demonstrates that the stresses predicted with the newmodel are closer to those determined by the finite element
models than other theoretical solutions available in the literature. Additionally, a comparative analysis with experimental results
obtained by other authors also indicates that the new model provides a more accurate magnitude of the indirect tensile strength.

1. Introduction

,e Brazilian test is an indirect procedure used to determine
the tensile strength in rocks and concrete materials and is
based on the assumption of an elastic and homogeneous
behaviour of the materials and two-dimensional elastic
theory [1–3]. ,is technique provides a practical and less
expensive alternative test compared to the direct tensile test
[4, 5]. Unlike the classical uniaxial test, it is not necessary to
attach the specimen ends to the loading device, thereby
avoiding premature failure during the test setup [6, 7]. In the
Brazilian test, a circular disk sample extracted from the
material is diametrically compressed until the transverse
stress normal to the loading diameter causes specimen
failure. According to the expression adopted by interna-
tional standards [1–3], the maximum tensile stress is in the
centre of the disk, so it is assumed that crack initiation
occurs in this area. ,e International Society for Rock
Mechanics (ISRM) [1] suggested using two steel jaws with a
face radius 1.5 times that of the specimen radius
(Figure 1(a)) in order to obtain a final contact angle between

the tested disk and the loading device of approximately 10°.
,erefore, the indirect tensile strength can be calculated with
the following equation:

σt �
P

πRt
. (1)

,e failure procedure in the Brazilian test is generally
analysed by the Griffith criterion [8]. According to this
theory, crack initiation has to occur in the centre of the disk
to ensure that the maximum transverse stress produced at
this location corresponds to the uniaxial tensile strength [9].
Nevertheless, several studies have observed a premature
failure of the tested disk close to the loading zone, which
invalidates the test for determining the tensile strength
[9–13]. ,erefore, the effectiveness of the classical Brazilian
test adopted by the ISRM is not guaranteed, as the Griffith
criterion is not fulfilled [8].

To reduce the stress concentration on the loading zone,
Jaeger and Hoskins [14] proposed using loading arcs
(Figure 1(c)) instead of classical ISRM jaws, in order to allow
for better control of the contact angle. Years later, Mellor

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 2935812, 19 pages
https://doi.org/10.1155/2020/2935812

mailto:ragutier@ing.uc3m.es
https://orcid.org/0000-0001-5817-9718
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2935812


and Hawkes [15] criticized this loading configuration,
claiming that the arc ends could penetrate the sample and
that the central disk failure was not guaranteed. However, Yu
et al. [16] experimentally observed that when the contact
angle between the disk sample and the loading device was
larger than 20°, the crack initiation was well defined, and the
variability of the experimental tensile strength value was
small. Additionally, Erarslan et al. [11] proposed the use of
loading arcs, demonstrating that they could produce a better
measure of the tensile strength if the procedure is carefully
performed. According to these authors, the loading arc
method ensures the central failure of the disk for
20°≤ 2α≤ 30°. To prove this, they compared the experi-
mental results with the numerical models and observed that
the crack moves towards the centre of the disk as the contact
angle increases.

,e contact angle in the Brazilian test performed with
loading arcs (Figure 1(c)) is distributed over a finite length.
Consequently, the classical expression initially proposed by
the International Society of Rock Mechanics (ISRM) [1] no
longer seems valid.

,e theoretical stress expression used by Erarslan et al.
[11] is based on the Hondros analytical solution [17]. ,is
solution supposes that a uniform pressure is applied radially
over a short finite arc (Figure 1(b)), under the assumption of
isotropic and homogeneous material behaviour of the disk
and the plane-stress condition.

According to Hondros [17], the complete stress field
along the vertical diameter of the disk shown in Figure 1(b)
can be calculated as follows:

σθ �
P

πRtα
1 − (r/R)2 sin 2α

1 − 2(r/R)2 cos 2α +(r/R)4
− tan− 1 1 +(r/R)2

1 − (r/R)2
tan α 

⎧⎨

⎩

⎫⎬

⎭,

σr � −
P

πRtα
1 − (r/R)2 sin2α

1 − 2(r/R)2 cos 2α +(r/R)4
+ tan− 1 1 +(r/R)2

1 − (r/R)2
tan α 

⎧⎨

⎩

⎫⎬

⎭,

τrθ � 0,

(2)

where P is the radial load applied over a finite arc of the disk,
R is the radius of the disk sample, r is the vertical distance of
the point measured from the centre, t is the thickness of the
disk, and 2α is the angle of the finite loading arc.

Experimentally, it is difficult to know the real pressure
distribution in the contact surfaces between the loading
device and the disk. Analytical studies have been performed

to analyse the influence of the contact pressure distribution
(parabolic, uniform, and sinusoidal) to theoretically predict
the splitting tensile stress [18, 19]. It was concluded that the
effect of the contact pressure distribution could be negligible
at points far from the contact area. ,e fact that the stress
field at the centre of the disk is quite insensitive to the
loading pressure distribution does not guarantee the validity
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Figure 1: (a) Brazilian test with classical jaws. (b) Disk sample subjected to radial uniform distributed loads over a finite arc. (c) Brazilian test
with loading arcs.
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of the results obtained from a statistical point of view. A
recent research work indicated that the distribution of the
contact load is not uniform and that the statistical validity of
the prediction, based on the Hondros assumption [17],
depends on the loading arc length [20].

,e models developed in the engineering field usually
intend to reproduce the case under study with the required
accuracy. ,erefore, validation methodology can be devel-
oped with a predefined acceptable error due to simplification
of either the model or some boundary conditions that are
not taken into account [21]. ,erefore, the goal of the
statistical model validation is to measure if the mathematical
model is successfully defined by quantifying the quality of
the predictive response of the model [22].

,e objective of the engineering models is not to re-
produce the physical behaviour exactly, but simply to
approximate the behaviour to some acceptable level of
error [21]. Once these errors have been identified, they can
be incorporated into the model in order to increase the
quality of the predictions and meet the requirements of the
statistical validation. ,erefore, the response of a statis-
tically validated model will always be more accurate than
that of another that does not comply. ,is is why it is
important to determine the pressure distribution in the
contact zone for the Brazilian test with loading arcs because
with this, the predictions of the stresses in the disk can be
improved.

Using a numerical approach as the finite element
method, the boundary element method and the discrete
element method have become essential tools for the stability
analysis of rock and concrete. ,ese tools allow for the
initiation and propagation of single and multiple cracks in
rock and concrete failure studies to be verified [23].

,e results from several research studies performed to
date show that the finite element method (FEM) can
effectively recreate the indirect test in its different con-
figurations (flat pattern, loading arc, and classical Bra-
zilian). Indriyantho and Nuroji [6] developed a finite
element programme that is able to accurately reproduce
the load-displacement curves of the concrete under the
Brazilian test. ,e author recommended using a plane-
strain model instead of a plane-stress model because the
first more closely resembles the experimental data.
Erarslan et al. [11] implemented a numerical finite ele-
ment approach called rock fracture process analysis
(RFPA) to corroborate the fracturing process in a Bra-
zilian disk under different loading device configurations.
,is approach allows for the heterogeneity of the me-
chanical properties of rocks to be modelled as defined by
probability density functions. Erarslan et al. [11] con-
cluded that the numerical simulations correctly represent
the real fracture behaviour of the rocks tested. Komurlu
et al. [24] realized an extensive experimental analysis of
different rock disks tested with different configurations of
the steel jaws. ,ey observed that the standard jaw rec-
ommended by the ISRM sometimes causes catastrophic
failure. According to these authors, the standard jaw
origins scattered fractures so that the crack initiation is
not clear. ,ey also concluded that the crack initiation is

difficult to determine experimentally, as was reported in
other research [9]. In both studies, the finite element
methods helped to check the beginning and evolution of
the disk failure.

,erefore, why not use the finite element method to
develop a new analytical model for indirect testing with
loading arcs after the results of the simulations? It is for
this reason that this method has been used in the present
research to analyse the resulting pressure distribution in
the contact of the loading arc with the disk. ,is infor-
mation will allow for a new analytical model to be de-
veloped that is closer to the behaviour observed in the
virtual tests for the contact angles recommended by
Erarslan et al. [11].

In this research work, several virtual tests have been
performed in order to do the following:

(i) Verify through numerical simulations the influence
of the friction between the contact surfaces by
means of a sensitivity analysis for the loading device
as recommended by Erarslan et al. [11]. ,is will
allow for checking the areas of the disk that are more
affected by the value of friction, and its compatibility
with the observations of other authors [25, 26].

(ii) Check the influence of the elastic properties of the
disk material and the friction in the indirect tensile
strength for loading arcs of 20°, 25°, and 30°. ,is
allows for analysing what loading conditions are less
sensitive to the randomness of the elastic properties
and can guarantee the smallest experimental
deviation.

(iii) Quantify the differences between the new model
proposed and the Hondros analytical solution, us-
ing the results of the virtual Brazilian tests in terms
of the Griffith equivalent stress, considering the
uncertainty in the models.,is section will allow for
quantifying the degree of success of the theoretical
models considered for different material properties
and contact angles.

(iv) Compare the new analytical solution with the ex-
perimental results from other authors so that it is
possible to demonstrate its higher accuracy without
being affected by the length of the contact arc.

,e present research work tries to minimize the highly
stochastic nature of this type of test through the develop-
ment of a model that best represents the Brazilian test in the
area of potential failure and therefore allows for a greater
degree of confidence in the magnitude of the indirect tensile
strength.

2. Contact of Two-Dimensional Bodies

,e elastic compression of a disk due to diametrically op-
posed concentrated loads was first developed by Timo-
shenko [27]. If the contact between the surfaces shown in
Figure 2 is small (a≪R), the stress field at pointM inside the
compressed disk can be calculated as the superposition of the
following contributions [28]:
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(i) ,e stress state due to the contact pressure distri-
bution between the top and the bottom compression
devices on the disk.

(ii) A uniform biaxial stress (3) applied so that the
boundary of the disk is free from any stress [27]:

σu �
P

πRt
, (3)

where P is the applied load and R and t are the radius and the
thickness of the disk, respectively.

Figure 2 represents the contribution of the stress due to
the normal pressure p(s), considering that the effect of the
friction on the contact area can be neglected.,e pressure on
a portion of the contact surface, ds, located at a distance s
from the vertical radius, can be calculated as the quotient of a
concentrated force p and ds. ,ese concentrated forces
produce two simple radial distributions at point M
according to directions r1 and r2. ,ey can be expressed in
rectangular coordinates by

σx � σr1 sin
2θ1 + σr2 sin

2θ2 � −
2P

π
x2y1

x2 + y2
1( 

2 +
x2y2

x2 + y2
2( 

2
⎡⎣ ⎤⎦,

(4)

σy � σr1 cos
2θ1 + σr2 cos

2θ2 � −
2P

π
y3
1

x2 + y2
1( 

2 +
y3
2

x2 + y2
2( 

2
⎡⎣ ⎤⎦,

(5)

τxyr � σr1 sin θ1 cos θ1 + σr2 sin θ2 cos θ2

� −
2P

π
xy2

1

x2 + y2
1( 

2 +
xy2

2

x2 + y2
2( 

2
⎡⎣ ⎤⎦.

(6)

Replacing x by (x − s) in equations (4)–(6) and inte-
grating over the loaded surface, it is possible to obtain the
stress field in point M due to the two simple radial distri-
butions created by the normal pressure p(s) on both loading
arcs.

σx � −
2y1

π


a

− a

p(s)(x − s)2

(x − s)2 + y2
1 

2 ds

−
2y2

π


a

− a

p(s)(x − s)2

(x − s)2 + y2
2 

2 ds,

(7)

σy � −
2y3

1
π


a

− a

p(s)

(x − s)2 + y2
1 

2 ds

−
2y3

2
π


a

− a

p(s)

(x − s)2 + y2
2 

2 ds,

(8)

τxy � −
2y2

1
π


a

− a

p(s)(x − s)

(x − s)2 + y2
1 

2 ds

−
2y2

2
π


a

− a

p(s)(x − s)

(x − s)2 + y2
2 

2 ds.

(9)

If the distribution p(s) is known, the final stresses inside
the compressed disk can be deduced by the integration of the
previous expressions together with the uniform biaxial
tension given by (3).

3. Finite Element Models

To characterize the load distribution in the contact area, a set
of virtual Brazilian tests with loading arcs (Figure 3) were
performed in the commercial software Abaqus as two-di-
mensional plane-strain models considering the state of the
art [6, 11]. An elastic and homogeneous behaviour of the
material properties was assumed. ,e contact between the
loading arcs and the disk was simulated using a surface-to-
surface contact discretization. ,e approach considers the
shape of the contact geometries and provides more accurate
results than a node-to-surface formulation if the surface
geometry is well characterized, i.e., without irregularities,
such as crests and troughs [29]. ,e contact conditions are
defined over a finite region instead of at each node, which
tends to alleviate contact problems as the master surface
penetrating the slave surface. ,is is suitable in situations in
which the normal direction of the surfaces in contact are
opposite, as is the case of the Brazilian disk with the loading
device. For its implementation, it is necessary to identify a
master surface, generally the strongest surface, which in our
case study is the loading arcs, and a slave surface, which is
the Brazilian disk.,e finite-sliding contact formulation was
selected in order to continually update which part of the
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Figure 2: Contact of the two-dimensional bodies.
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master surface is in contact with each slave node as the disk
is compressed. Following the recommendation of the
Abaqus documentation, a minimum tolerance of 0mm for
the surfaces in contact was specified. ,is avoids possible
converge problems due to overclosed nodes [29].

,e loading arcs were modelled with a typical steel
Young modulus of 210GPa and a Poisson ratio of 0.33. ,e
loading device materials guarantee the stiffness of the
loading device and are in agreement with the requirement
given by the ISRM [1]. ,e disk was meshed with 4-node
bilinear plane-strain quadrilateral elements 0.5mm of size.
,e final element size used guarantees the convergence of
the solution with respect to mesh refinement. ,e loading
arcs were modelled with the same element type as the disk
but with a size of 0.2mm, in order to obtain a high number
of nodes to analyse the contact pressure distribution of the
numerical solutions.

A uniform pressure of 35MPa was applied to the flat
surface of the top loading arc, while the bottom was com-
pletely fixed in the lower face. ,e disk has a diameter of
58mm and a thickness of 29.7mm and is based on the
geometry commonly used in other studies [1, 11, 26, 30, 31].

A sensitivity analysis was performed with the numerical
Brazilian with loading arcs of 20°, 25°, and 30° in order to
verify the influence of the friction between the contact
surfaces on the loading radius of the disk.

To check the stability of the tensile stress results in the
centre of the disk and quantify their differences with respect
to the theoretical solutions, a response surface methodology
was applied to the virtual Brazilian test. ,e design of the
numerical experiments was performed considering the
variation in the material properties of the Brazilian disk as

Young’s modulus E (22GPa–70GPa), Poisson’s ratio v

(0.15–0.33), and different friction coefficient values μ
(0.2–0.5) between the contact surfaces. ,e computational
experimental design was constructed according to the dif-
ferent rocks and concrete materials found in the literature
review [24, 30–35]. ,ese parameters were varied up to five
levels using a central composite design (CCD). For the
analysis, the elastic properties of the loading arcs were not
modified.

Table 1 shows the computational experimental combi-
nations for the Brazilian disk conducted in this research
work. ,e computational experiment was implemented for
contact angles of 20°, 25°, and 30°, generating a total of 48
simulations.

4. Distribution of the Contact Stress
Resulting from Simulation

Ideally, the Brazilian test with loading arcs guarantees that
the contact angle does not depend on the applied load and
on the material properties of the loading device and the
tested disk because the face radius of the loading arcs is the
same that the radius of the disk. ,e problem is that it is
complicated to know the real distribution of the contact
pressure. In this situation, finite element simulations can
help analyse the possible distributions under different
loading boundary conditions. Figure 4 shows the final
contact stress per unit length from the simulations with a
frictionless loading arc of 20° and 30°.

It should be noted that the distribution of the contact
stresses shown in Figure 4 differs from all the distributions
studied to date by different authors (parabolic and sinu-
soidal) [18, 19]. In fact, they tend to be opposite to the
distribution found in the present research work, as they are
high in the centre and low in the extreme (concave).
,erefore, it is important to verify how this distribution
affects the theoretical stresses in the loading diameter of the
disk. For this, it is necessary to find a theoretical distribution
that is closer to the numerical one. Figure 4 also represents
the values of the theoretical pressure calculated from a
frictionless rigid flat punch (10). As seen, the rigid punch
distribution presents a behaviour that is very similar to the
finite elements results, except for the ends. ,e rigid punch
distribution is defined as follows [28]:

p(s) �
P

πt a2 − s2( )
1/2, (10)

where P is the applied load, t is the disk thickness, and a and s
are the edge and an arbitrary point position, respectively.

It is therefore be appropriate to develop a new analytical
expression for the Brazilian test with loading arcs consid-
ering the punch distribution in order to verify if the accuracy
of the predictions can be improved.

5. New Analytical Expression for the Brazilian
Test with Loading Arcs

In brittle or quasi-brittle materials, such as concrete and
rocks, the failure initiation is usually analysed by the Griffith

Contact
area 

Contact
area 

Top loading arc

Bottom loading arc

p

Figure 3: Numerical Brazilian test with loading arcs.
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criterion [8]. In agreement with this theory, the crack ini-
tiation in the Brazilian test has to be located in the centre of
the disk to guarantee that the tensile failure corresponds to
the uniaxial tensile strength. Failure begins when the
equivalent Griffith stress σG is greater than or equal to the
tensile strength σt of the brittle material.

,e work performed by Satoh [36], and verified later by
others authors [20, 37], concludes that the predominant
failure condition in this alternative test according to the
Griffith criterion is 3σθ+ σr< 0. ,erefore, the tensile
strength is given by the equivalent Griffith’s stress [8]:

σG � −
σθ − σr( 

2

8 σθ + σr( 
. (11)

In all the simulations performed, it was verified that the
predominant Griffith’s failure condition is 3σθ+ σr< 0,
which is in agreement with the results obtained by other
researchers [36, 37]. Consequently, the tensile strength has
been determined with the Griffith equivalent stress (11).

Figure 5 shows the disk distribution map of the
equivalent Griffith stress. ,is equivalent stress has been
calculated by means of a routine developed in MATLAB
from the stress results of the simulations for each of the
nodes that make up the disk.

Figure 5 indicates that the maximum equivalent stress is
located in the centre of the disk for the two analysed cases.
,e edges of the arcs also present a relative concentration of
equivalent stress with magnitudes approximately equal to
60% and 50% of the value in the centre for angles of 20° and
30°, respectively. It can then be expected that the crack will
begin in the centre and probably propagate towards the
edges of the loading arc, as was observed from previous
research studies [11, 12, 38].

According to the Griffith stresses shown in Figure 5
when a 20° loading arc is used, the immediate appearance of
a central crack in the entire vertical diameter of the disk can
be expected because the stresses in this area are similar. On
the contrary, when using a loading arc of 30°, the crack will
be located in a smaller central area.,ese observations are in
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Figure 4: Contact stress distribution from the numerical Brazilian test with loading arcs. (a) 2α� 20°. (b) 2α� 30°.

Table 1: Computational experiment design of the Brazilian disk.

Run order Young modulus E (GPa) Poisson’s coefficient v (με/με) Coefficient of friction μ (N/N)
1 5.64 0.24 0.35
2 22 0.15 0.50
3 22 0.33 0.20
4 22 0.15 0.20
5 22 0.33 0.50
6 46 0.24 0.35
7 46 0.24 0.10
8 46 0.24 0.60
9 46 0.09 0.35
10 46 0.39 0.35
11 46 0.24 0.35
12 70 0.15 0.20
13 70 0.33 0.50
14 70 0.33 0.20
15 70 0.15 0.50
16 86.36 0.24 0.35
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agreement with the results of different research works
[11, 16, 24].

,e results of the simulations indicate that higher
stresses occur in the loaded vertical diameter of the disk.
,erefore, the analytical solution developed in this research
is restricted to the vertical diameter (x� 0), as it corresponds
to the potential failure region. Moreover, it is also necessary
to determine the influence of the tangential forces in the
contact due to the friction between the loading arc and the
disk in the distribution of the equivalent stresses.

Figure 6 shows the differences expressed in terms of the
Griffith equivalent stress (ΔσG � σG_0.75 − σG_0) between the
numerical solution of the Brazilian disk with a coefficient of
friction of 0.75 (σG_0.75) and without friction (σG_0) for the
loading arcs of 20° and 30°. ,e distribution of these dif-
ferences provides global information of the stress behaviour
on the surface of the disk but only due to variations in the
friction coefficient. ,e difference has been obtained using
an algorithm implemented in MATLAB through each nodal
stress solution from the finite element simulation.

In Figure 6, it can be seen that the difference between the
equivalent stresses from the simulations of models with
friction 0.75 and the frictionless model is only present on the

edges of the two analysed loading arcs, with a value slightly
higher than 2MPa. It has also been found that the influence
of friction on the rest of the disk is negligible, not exceeding
0.5MPa in any case. ,ese results justify that the new
theoretical expression developed in this research work does
not consider the tangential forces produced by the friction in
the contact area. However, the fact that friction has a
negative effect near the contact edges of the loading arcs may
cause premature disk failure, unless certain precautions are
taken. According to the simulation results, as the friction
coefficient increases, the magnitude of the contact pressure
near the edge of the loading arc also increases. ,erefore,
irregularities in the contact surface of both the disks and jaws
(due to a poor preparation of the sample or the loading
device) can favour from the development of unwanted small
cracks near the edges of the contact, simultaneously with a
central crack.,is situation could invalidate the test results if
it is not clear which of the cracks was the first to initiate.

Including equation (10) into equations (7)–(9), it is
possible to determine the stress components of the radial
distribution generated by the frictionless rigid punch
pressure:

σx � −
2Py1

π2t


a

− a

(x − s)2

a2 − s2( )
1/2

(x − s)2 + y2
1 

2 ds −
2Py2

π2t


a

− a

(x − s)2

a2 − s2( )
1/2

(x − s)2 + y2
2 

2 ds,

σy � −
2Py3

1
π2t


a

− a

1

a2 − s2( )
1/2

(x − s)2 + y2
1 

2 ds −
2Py3

2
π2t


a

− a

1

a2 − s2( )
1/2

(x − s)2 + y2
2 

2 ds,

τxy � −
2y2

1
π
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− a

(x − s)

a2 − s2( )
1/2

(x − s)2 + y2
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2 ds −
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2
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Figure 5: Equivalent Griffith stress distribution for the virtual Brazilian disk for a contact angle of: (a) 20°. (b) 30°.
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where from Figure 2, we have

a � Rα,

y1 � R − r,

y2 � R + r,

ρ �
r

R
.

(13)

Finally, solving the previous integrals for x� 0 and su-
perposing the uniform tensile stress (3), the new expressions
for the calculus of the stress field for the loading diameter of
the Brazilian disk with loading arcs are

σθ �
P

πRt
1 − α2

1

α2 +(1 − ρ)2 
3/2 +

1

α2 +(1 + ρ)2 
3/2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

σr �
P

πRt
1 −

α2 + 2(1 − ρ)2

α2 +(1 − ρ)2 
3/2 +

α2 + 2(1 + ρ)2

α2 +(1 + ρ)2 
3/2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

τθr � 0.

(14)

Several studies have concluded that the numerical sim-
ulations correctly represent the failure initiation and prop-
agation of the damage on the Brazilian disk [6, 11, 24].
,erefore, the new expression proposed in the actual research
work, developed considering the contact stress distribution of
the simulations results, allows for the accuracy of the calculus
for the stresses in the loading area to be improved.

6. Verification of the Analytical Model with the
Numerical Results

Before comparing the results of the simulations with the
theoretical models, it is necessary to verify that the developed

finite element models are well defined. For this, the com-
putational results have been compared with those obtained
by Erarslan et al. [11] for the contact angles of 15°, 20°, and
30°. ,ese include the heterogeneity of the mechanical
properties of the rock in the numerical model. ,e authors
concluded that the computational results correctly charac-
terize the real fracture behaviour of the tested rock. ,eir
results and our numerical results are shown in Table 2. It can
be seen that, despite not considering the heterogeneity of the
disk material as did Erarslan et al. [11], our simulation
results do not differ significantly from the results of these
authors. ,erefore, it can be concluded that the heteroge-
neity of the material does not significantly affect the mag-
nitude of the indirect tensile strength. According to the
results of different authors [11, 24], it can be said that the
heterogeneity of the material probably affects the speed and
evolution of the disk failure once the crack begins.

For the calibration and verification of the finite element
model, the simulation results have also been compared with
the experimental results of the Brazilian test presented by Jin
et al. [38]. ,e authors analyse the influence of the specimen
size on the quasi-static and dynamic experimental studies on
the tensile strength of concrete and mortar disks. ,e
concrete and mortar specimens were 70mm in diameter and
30mm and 55mm thick, respectively. ,e Young moduli of
the cement and concrete calculated by the authors were
30.32GPa and 27.45GPa, respectively. ,e Poisson ratio for
both materials was 0.18. To reduce the stress concentration
in the contact zone, they used a 20° loading arc.

Table 3 shows the experimental tensile strength obtained
by Jin et al. [38] with their corresponding expanded un-
certainty for a confidence level of 95% and the numerical
tensile stress from our simulations models.

According to Table 3, it can be concluded that the results
of the computational model developed in the actual research
work adequately represent the tensile strength for both
cement and concrete for the different thicknesses studied by
Jin et al. [38]. According to the results of these authors, one
could say that the elastic properties of the material seem to
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Figure 6: Equivalent Griffith stress distribution for the virtual Brazilian disk for a contact angle of: (a) 20°. (b) 30°.
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Table 3: Comparative analysis of the numerical simulations with the results of Jin et al. [38] for a confidence level of 95%.

,ickness (mm)
Failure load (kN) Tensile strength at the centre of

the disk (MPa) [38]
Tensile stress from our
simulations (MPa)

Concrete Mortar Concrete Mortar Concrete Mortar
30 8.71 11.44 2.64± 0.14 3.6± 0.10 2.50 3.36
55 15.71 20.26 2.6± 0.10 3.35± 0.12 2.44 3.20
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Figure 7: Dimensionless tangential and radial stresses along the vertical radii of the disk. (a) Loading arc of 20°. (b) Loading arc of 25°.
(c) Loading arc of 30°.

Table 2: Comparative analysis of the numerical simulations with the results of Erarslan et al. [11].

Loading arc angle (°) Tensile stress at the centre of the disk (MPa) [11] Tensile stress from our simulations (MPa)
15 8.04 8.20
20 8.29 8.45
30 8.70 8.64
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affect the magnitude of the failure load, but not the accuracy
of the calculated tensile stress if the experimental and nu-
merical results are compared. It is thus clear that it is im-
possible to calculate the ultimate load through simulations,
but it is interesting to verify how the properties of the
material can affect to the tensile strength for the same load
magnitude value.

,erefore, it is confirmed that the computational models
can be considered appropriate for the calculus of the
splitting tensile stress in the Brazilian disk with loading arcs.

Figure 7 presents the distribution of the dimensionless
tangential σθ/(P/πRt) and radial stresses σr/(P/πRt) along the
vertical radius of the disk for loading arcs of 20°, 25°, and 30°.
,e numerical solutions as well as Hondros and the pro-
posed analytical expressions are represented.

As can be seen, there is not a significant difference in the
evolution of the calculated dimensionless theoretical tan-
gential stress, except for the points closer to the contact. ,e
Hondros tangential stress shows a behaviour more similar to
the numerical result for the frictionless contact assumption

compared to the new model. However, the last is best suited
for the rest of the contact surface conditions. On the contrary,
the new model improves the predictions of the radial stress,
especially for a contact angle of 30°.,erefore, it confirms that
the assumed pressure distribution has a greater impact on the
radial stresses than on the tangential ones.

Figure 8 shows the dimensionless Griffith equivalent
stress along the vertical radius of the disk for the FEM and
theoretical models. As can be observed, the new model
provides better results with respect to the simulations, along
with a slight underestimating tendency compared to the
Hondros model, thus producing safer results.,e equivalent
stress calculated with the new model does not seem to be
affected by the length of the contact arc compared to the
ones calculated with the Hondros model.

,e changes in the contact conditions seem to have no
influence in areas far from the contact. However, a deeper
analysis is needed in order to quantify the differences be-
tween the analytical models with respect to the numerical
solutions.
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Figure 8: Dimensionless equivalent stress along the vertical radii of the Brazilian disk. (a) Loading arc of 20°. (b) Loading arc of 25°.
(c) Loading arc of 30°.
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6.1. Influence of theMaterial Properties on the Accuracy of the
MaximumGriffith Equivalent Stress. ,e theoretical models
analysed in the actual research are based on the supposed
elastic behaviour of rock and concrete. ,erefore, it is
necessary to verify and identify the areas of the disk that are
less sensitive to elastic properties, friction, and contact angle.
According to the results of the simulations developed from
the computational experimental design shown in Table 1, the
considered physical properties have a negligible effect in the
areas near the centre of the disk. ,e numerical equivalent
tensile stress in the centre of the disk has an experimental
deviation in percentage terms with respect to the mean of
0.7%, 0.5%, and 0.4%, for contact angles of 20°, 25°, and 30°,
respectively. ,erefore, it has been confirmed that the effect
of the properties of the material, together with the friction
present in the loading area, is negligible in the calculus of the
maximum tensile strength for contact angles of 20° to 30°.

However, the effects of Young’s modulus, Poisson’s
ratio, and friction coefficient are significant near the contact
zone. We have been able to verify that from a radius ratio
ρ≥ 0.8, the equivalent tensile stress becomes unstable and
therefore difficult to predict with the analytical models. It has
been observed that as the contact angle increases, the
possible variation in the equivalent stress values in the area
near the contact decreases. ,e greatest variation of the

equivalent stress in this area (ρ� 0.8) is the one corre-
sponding to a contact angle of 20°, with approximately 17%.
On the contrary, for a contact angle of 30°, the variation
decreases to 11%. ,ese results have been calculated taking
the magnitude of the equivalent stress resulting from the
simulation model of Run order 1 of Table 1 as a reference.

Figure 9 presents the comparative analysis of the fac-
torial numerical design indicated in Table 1 for contact
angles of 20°, 25°, and 30°. ,e magnitude compared is the
maximum dimensionless equivalent stress, located in the
centre of the disk. Additionally, the improvement of the
Hondros model, proposed by Satoh (15), has been consid-
ered in this comparison:

σGC � σG ·
sin α cos2 α

α
. (15)

Figure 9 indicates that the properties of the material and
the friction existing in the contact zone do not have a
significant influence on the accuracy of the results according
to the randomness of the relative errors. It is observed that
smaller differences are obtained in all cases with the pro-
posed model, with all being below 1.8%. Moreover, the
increase in the contact arc length affects the predictions of all
the theoretical models analysed. However, the difference is
nearly insignificant in the case of the new model.

Hondros
Satoh
New

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Run order

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Re
la

tiv
e e

rr
or

 (%
)

(a)

Hondros
Satoh
New

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Run order

Re
la

tiv
e e

rr
or

 (%
)

0.0

1.0

2.0

3.0

4.0

5.0

(b)

Hondros
Satoh
New

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Run order

Re
la

tiv
e e

rr
or

 (%
)

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

(c)

Figure 9: Relative error of the dimensionless equivalent stress in the centre with respect to the FEMBrazilian disk for the factorial numerical
design. (a) Loading arc of 20°. (b) Loading arc of 25°. (c) Loading arc of 30°.
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Table 4 presents the mean absolute percentage of the
error for the theoretical equivalent stresses with respect to
the factorial design results from Figure 9. It can be noted that
the correction proposed by Satoh improves the original
Hondros solution. On the contrary, the errors of the new
proposed model remain nearly constant and do not exceed
1.1%.

Figure 10 shows the average maximum FEM stresses of
the factorial design with respect to the friction coefficient.
Notice that the numerical solutions are located within the
limits marked by the Hondros and Satoh models.

According to Figure 10, it can be seen that the newmodel
offers a solution that is located in the middle of the evolution
of the numerical solution with the friction coefficient.

6.2. Statistical Verification of the Available ;eoretical
Solutions. To verify if the predictions of the available the-
oretical solutions are a good prediction of the numerical

solutions and the real tests, it is necessary to consider the
uncertainty in the models [22]. However, it has been decided
to only take the uncertainties that affect the analytical so-
lutions into account and to consider the numerical solution
as deterministic because a normalized uncertainty procedure
for this models has not yet been specified. ,erefore, it can
be said, with a confidence level of 95%, that the theoretical
solutions are a good representation of the numerical results,
if the value of the maximum equivalent stress is within the
limits of the theoretical expanded uncertainties. ,e sources
of uncertainty are the applied load P, the contact angle 2α,
the radii R, and the thickness t of the disk.

It was considered that the uncertainty of the load cor-
responds to the values of a universal testing machine class II
[39]. ,e uncertainty propagation was developed by Monte
Carlo methods according to the Guide for the expression of
the uncertainty in measurement (GUM) [41]. Table 5 shows
the values of the uncertainties considered in the analysis and
the probability density function of each variable. ,e
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Figure 10:Maximum equivalent stress with respect to the coefficient of friction. (a) Loading arc of 20°. (b) Loading arc of 25°. (c) Loading arc
of 30°.

Table 4: Mean absolute percentage error of the theoretical equivalent stress.

Loading arc angle Hondros solution (%) Satoh solution (%) New model (%)
20° 2.08 1.81 0.80
25° 3.67 1.87 1.02
30° 4.52 3.52 0.95
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uncertainties of the geometrical parameters (R, t, and 2α)
correspond to the typical uncertainties of the tools used to
measure the magnitudes.

Figure 11 shows the probable values of the available
theoretical solutions with respect to the finite element results
for a confidence level of 95% with the contact angles of 20°,
25°, and 30°. It can be observed that the model proposed by
Hondros is only able to predict the maximum Griffith
equivalent stress of eight of the 16 materials analysed for a
contact angle of 20° (Figure 11(a)). From the uncertainty
point of view, the Hondros model is not suitable for a
contact angle higher than 20° since it was observed that the
numerical results are outside the confidence level. On the
contrary, the Satoh correction improves the predictions
based on the Hondros solution for a contact angle of 25°
(Figure 11(b)). However, while the Satoh factor is based on a
correction between experimental and theoretical results, it
lacks any justification that explains the analysed physical
phenomenon.

,e uncertainty quantification allows for the quality of
the predictions made with the new model to be confirmed.
,e possible values of the proposed analytical model co-
incide with most of the results obtained from the simula-
tions. It can be seen that, for a contact angle of 20°, only one
result of the FEM models is outside the confidence limits
(Figure 11(a)), while in the rest of the studied contact angles,
only two numerical results fall outside the range of the global
uncertainty for a confidence level of 95% (Figures 11(b) and
11(c)). ,erefore, it can be confirmed that the differences
between the Hondros model with respect to the results of the
new model and the simulations are due to the different
boundary conditions that have been assumed and specifi-
cally to the distribution of the load on the contact zone.

7. Statistical Validation of the Tensile
Strength with the Results of Other Authors

Erarslan et al. [11] recommended considering some intrinsic
material properties, such as fracture toughness, crack lo-
cation, and propagation, in order to find the optimum
condition allowing for the determination of the magnitude
of the indirect tensile strength with the higher possible
accuracy.,ey suggested using the empirical expression (16)
between the mode I fracture toughness and the tensile
strength of rock [41] to verify the optimum loading arc
length:

KIC � 0.27 + 0.107σt, (16)

where KIC is the mode I fracture toughness and σt is the
tensile strength of the rock.

,is recommendation is used to verify the new model.
,e sample of these authors was a Brisbane tuff Brazilian
disk with a diameter of 52mm and a thickness of 26mm.
,ey obtained a tensile experimental strength with (16)
knowing that the fracture toughness of this type of rock is
KIC � 0.18MPam1/2. A comparative statistical analysis is
shown in Table 6. ,e loads used to calculate the theoretical
tensile strength were 19.2 kN and 21.1 kN for 20° and 30°

contact angles, respectively [11]. ,e uncertainty of the
parameters is the same as in Table 3. ,e uncertainty
quantification was developed according to the numerical
procedure given by GUM [40].

,e results presented in Table 6 indicate that the three
theoretical solutions are close to the experimental tensile
strength for this type of rock. However, better results are
obtained with the new model for a contact angle of 20°. ,e
magnitudes given by the Hondros and Satoh models, re-
spectively, show an over and underestimating tendency with
respect to the experimental result, as seen in Figures 10
and 11.

,e normalized error (EN number) (17) can be used as a
comparison tool between the theoretical model results
(,eo) and the experimental ones (Exp), when the uncer-
tainty of both is considered. ,e normalized error compares
the error with the combined expanded uncertainty, and if
the score is less than one, it can be said that both results are
compatible [42]:

EN �
|Error|
��������
U(Error)

 �
|Exp − Theo|

������������������
U2(Exp) − U2(Theo)



�
|Exp − Theo|

�������������������������������������������

Exphigh − Explow /2 
2

− Theohigh − Theolow /2 
2

 ,

(17)

where for the case analysed in this research work,

(i) Exp is the indirect tensile strength
(ii) Exphigh and Explow are, respectively, the lower and

upper limits of the probable values of the experi-
mental results for a coverage level of 95%

(iii) ,eo� theoretical tensile stress
(iv) ,eohigh and,eolow are, respectively, the lower and

upper limits of the probable values of the theoretical
solutions for a coverage level of 95%

If the above equation (17) is applied to the comparative
results shown in Table 6, assuming that the uncertainty of
the experimental result is zero (Exphigh �Explow � 0) because
we do not know its value, the level of accuracy of the models
studied can be tested. ,e normalized errors for the three
models are 0.86 and 3.29 for the Hondros model, 1.21 and
1.33 for the Satoh solution, and 0.23 and 1.08 for the new
model. According to the values of the standardized errors,
the solutions of the new model have the best accuracy in the
range of the analysed contact angles. In fact, a small dis-
turbance of the applied load (approximately 1%) would
cause the experimental value to be within the limits of the
possible theoretical values of the new model for a contact
angle of 30°.

Yu et al. [16] conducted several Brazilian tests with the
loading arc of 20° using the simplified expression of the
indirect tensile strength suggested by the ISRM [1]. Table 7
shows their results.

To verify if the solution of the ISRM and the ex-
pressions analysed in the present research work are a good
representation of the Brazilian test with loading arcs,
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additional simulations have been conducted with the
experimental values of Table 7. As in the study of Yu et al.
[16], Young’s modulus used was 20 GPa and Poisson’s
ratio was 0.2.

Table 8 presents a statistical comparison of the final
numerical indirect tensile strength of the cement mortar
tested by Yu et al. [16] with the theoretical models. Because
the sample size of the cement mortar experimented on could
be considered insufficient for statistical inference, the upper
and lower limits of the numerical results were determined by

10000 reiterations using a resampling technique known as
the bootstrap method [43] with all the available FEM so-
lutions. Considering that numerous investigations have
certified that the solution provided by the finite elements
methods accurately represent this type of indirect test
[11, 24], the result of the simulations conducted will be taken
as a reference value.

In Table 8, it can be seen that all the analytical models
considered have some value in common with the possible
numerical tensile strengths, according to the lower and
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Figure 11: Comparison of the numerical results and the probable theoretical solutions for a confidence level of 95%. (a) Loading arc of 20°.
(b) Loading arc of 25°. (c) Loading arc of 30°.

Table 5: Uncertainties of the theoretical variables.

Variable Units Uncertainty u Probability density function
P N 8.75×10− 3P Normal
D mm 2.89×10− 2 Normal
t mm 2.89×10− 2 Normal
2α Radians 1.00×10− 3 Rectangular
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upper limits for a confidence level of 95%. However, for the
statistical validation of the analytical models, it is required
that the difference between the mean values of the reference
solution and the other solutions must be smaller than the
combined expanded uncertainty of both. We can define a
total uncertainty (18) equal to the sum of the variance of the
FEM results u2(σG FEM) and the theoretical results
u2(σG Theo), as it was verified that these are normally dis-
tributed random variables:

uTotal �

���������������������

u2 σG FEM(  + u2 σG Theo( 



. (18)

,is total uncertainty will be associated with the theo-
retical results as recommended by Hills [21]. ,erefore, we
can conclude that the theoretical tensile strength is valid if
the mean numerical tensile strength σG FEM falls inside its
coverage limits of 95% [21].

Figure 12 shows the histogram distribution of the the-
oretical tensile strength calculated by 106 Monte Carlo re-
iterations, as well as the upper and lower limits of the total
uncertainty for a confidence level of 95%.

In Figure 12, it can be observed that the ISRM solution
falls outside of the coverage limits of 95%, so this is the only
solution that cannot be declared valid, i.e., this solution
does not represent the FEM results. ,e best result in this
case is obtained with the Satoh correction followed by the

new model prediction and the Hondros model. It can be
said that the configuration of 20° represents the optimal
boundary condition because all the solutions, except the
ISRM which does not consider this angle, fit with the finite
element solution. For this contact length, the Saint-Venant
principle [44] is fulfilled because the effects of the loading
distribution with the same magnitude dissipate quickly as
the distance increases such that they can be considered
insignificant.

Considering that the properties of the material do not
significantly affect the results of the splitting tensile stress in
the centre of the disk for the same load magnitude, it was
decided to analyse the stress in a steel disk submitted to a
longitudinal compression with loading arcs. ,e reason for
using steel instead of materials such as rock or concrete is
that strain gages can be easily instrumented to calculate the
tensile stress in the centre of the disk. ,e appropriate gage
length for materials such as concrete depends on the size of
the grain. In this case, it is recommended to use a mea-
suring grid length five times longer than the largest ag-
gregate grain size [45]. On the contrary, with the steel being
a homogeneous material, the strain gages of a shorter
length than rock and concrete can be used. ,erefore, the
difference between the average stress measured by the
strain gages and the stress in the centre of the disk can be
considered negligible.

Table 7: Experimental results from other research work [16].

Cement mortar number Diameter (mm) ,ickness (mm) Experimental load (N)
1 49.36 9.98 3756
2 49.40 10.18 3596
3 49.42 10.10 2640
4 49.66 10.26 3918
5 49.20 10.22 3660
6 49.42 10.36 4096
7 49.40 9.76 3630
8 49.38 9.88 3556
9 49.44 10.10 3966
10 49.40 10.20 3598
11 49.44 10.10 4528
12 49.36 9.94 3966
13 48.48 10.14 3194
14 49.32 10.04 3458

Table 6: Comparative analysis of the theoretical tensile strength with the results of other authors.

Loading arc angle (°)
Indirect tensile

strength of Brisbane
tuff (MPa) [11]

Numerical tensile strength (MPa) [11]
,eoretical solutions (MPa)

Hondros Satoh New model

20 8.55 8.29 8.68 (8.53, 8.83) 8.37 (8.23, 8.52) 8.52 (8.37, 8.66)
30 8.70 9.06 (8.90, 9.21) 8.36 (8.21, 8.50) 8.71 (8.56, 8.86)

Table 8: Statistical comparison of the final numerical indirect tensile strength of the cement mortar tested by Yu et al. [16] with the
theoretical models.

Numerical tensile strength of mortar cement σG FEM (MPa)
,eoretical solutions σG Theo (MPa)

ISRM Hondros Satoh New model

4.36 [4.08, 4.64] 4.70 [4.61, 4.79] 4.52 [4.43, 4.60] 4.36 [4.28, 4.44] 4.43 [4.35, 4.51]
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An F114 steel disk with a 151mm diameter and a
76.3mm thickness was instrumented with three 6mm grid
length stacked rectangular rosettes aligned with the trans-
verse and radial directions in three different positions.
Rosette 1 is in the centre of the disk, rosette 3 is near the
contact zone, and rosette 2 is at an intermediate point be-
tween the centre and the contact. Figure 13 shows the ex-
perimental setup.

,e compressive strengths were tested with a universal
testing machine class I. ,e test was conducted according to
the ISRM standard [1]. ,e disk was compressed with a
loading arc of 30° with steel F-131.,e data acquisition system
was able to simultaneously record the measured strain, the
applied load, and the vertical displacement of the loading
device.,e transverse and radial stresses were calculated using
the biaxial form of Hooke’s law [46]. ,e Young modulus and
the Poisson ratio of the steel disk are 211GPa± 1% and
0.3± 0.5%, respectively. ,e elastic properties were calculated
from flat specimens of the same material tested following the
recommendation given in [47, 48].

Figure 14 presents the experimental results together with
the theoretical solutions. Satoh’s correction factor can only
be applied for the maximum stress at the centre of the disk,
which is why it has not been included in the rest of the areas
studied and in the radial stress comparison. ,e positions of
the rosettes are expressed with respect to the radius of the
disk; therefore, a value of 0 refers to the strain gage rosette
located in the centre and that of 0.9 to the rosette bonded in
the contact zone.

According to Figure 14, the available solutions are close
to the experimental results except in the contact zone.
,erefore, it can be affirmed that the theoretical solutions
resemble the real model as we move away from the contact

Figure 13: Tested setup of the steel specimen under a 30° loading
arc.
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Figure 12: Comparison of the numerical results, represented by a dashed line, and the probable theoretical solutions of the tensile strength
for a confidence level of 95%. (a) ISRM tensile strength. (b) Hondros tensile strength. (c) Satoh tensile strength. (d) New model tensile
strength.
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area as described in the Saint-Venant principle [44]. ,e
best behaviour is observed for the transverse stress at the
centre of the disk and in the studied intermediate position
(Figure 14(a)). Additionally, it is observed that the pre-
diction of the new model is closer to the experimental
stress than the other solution for the three strain gage
rosettes.

,e differences in the transverse stress in the centre of
the disk are 0.23%, 4.49%, and 3.62% for the new model,
Hondros’s model, and the Satoh correction, respectively.
On the contrary, the differences in the radial stress were
23% and 31% for the new model and the Hondros model,
respectively. However, we have verified that the effect of
the difference between the radial stresses calculated by the
models and the experimental one does not affect the value
of the Griffith equivalent stress (11) in the centre of the
disk.

Table 9 shows the statistical comparison of the experi-
mental tensile stress results of the steel disk and the theo-
retical solutions. ,e uncertainty quantification of the
experimental stress was developed according to GUM [49].
,e experimental uncertainty considers the contribution of
the experimental standard deviation of five repetitions of the
Brazilian test, as well as the uncertainty of the material
properties of the disk. ,e uncertainty in the strain gage
measurements was not considered, as it was previously
verified that it could be neglected.

According to the results shown in Table 9, the best score
in terms of the normalized error EN is obtained by the new
model, so it can be said that this solution and the experi-
mental results represent the same measurand.

8. Conclusions

,is research presented a new analytical solution for the
Brazilian test with loading arcs.,e validation of the proposed
model is based on the comparative analysis of other analytical
expressions, numerical simulations, and experimental results.
For the comparison analysis, several finite element simula-
tions were generated in order to check the sensibility of the
results with the boundary conditions. ,e results obtained in
this research study provide the following conclusions:

(i) ,e study of the possible influencing factors, such as
the material properties, contact angle, and contact
friction of the disk, performed with a factorial de-
sign of 48 numerical virtual tests indicates that the
maximum equivalent stress according to the Griffith
criterion is located in the centre of the disk.
However, in certain cases, high equivalent stresses
can be observed at the edge of the loading arcs.

(ii) For the 20° loading arc configuration, it was ob-
served that the stresses along the vertical diameter of
the disk are very similar. ,erefore, an immediate
appearance of a central crack in the entire vertical
diameter of the disk can be expected when this
configuration is used. On the contrary, for a loading
arc of 30°, stresses with similar values are located in a
smaller area, so it can be concluded that the ap-
pearance of the crack can be better defined than the
20° configuration.

(iii) According to the numerical results, the friction in
the contact surface has almost no effect on the
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Figure 14: Comparison results in terms of (a) the transverse stress and (b) the radial stress.

Table 9: Statistical comparison of the experimental transverse stress in the centre the steel disk with the theoretical models.

Experimental transverse stress σEXP (MPa)
,eoretical solutions σG Theo (MPa) EN (MPa/MPa) (17)

Hondros Satoh New model Hondros Satoh New model

1.90 [1.88, 1.92] 1.99 [1.96, 2.03] 1.84 [1.80, 1.87] 1.92 [1.88, 1.95] 2.01 1.66 0.55
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equivalent stress in the centre of the disk, whereas its
influence increases towards the contact edge of the
loading arc. ,erefore, special attention should be
paid to the surface finish both the disk and the
loading arcs since it has been observed that an
increased friction value increases the stress con-
centration at the edges of the contact, which can
favour the appearance of unwanted cracks in this
zone together with a central crack.

(iv) As for the variability of the numerical results in the
centre of the disk, the experimental deviations for a
confidence level of 95% are inferior to 1%. It can
thus be concluded that for the range analysed, all the
contact angles produce a very low variability, so it
can be expected that the real experimental stresses
will have a small dispersion.

(v) ,e study of the contact pressure distribution by
means of the FEM models reveals that this pressure
is close to a rigid punch distribution. ,is allowed
for a new analytical model integrating this distri-
bution with the classical elasticity theories to be
developed. ,e new model allows the tensile
strength to be calculated correctly according to the
developed statistical validation and is less sensitive
to the influence of the length of the contact than the
other considered models.

(vi) It has been found that the 20° loading arc config-
uration is the least sensitive to the load distribution
since all the possible solutions, for a confidence level
of 95%, are similar.

To summarize, 52 comparisons of the maximum
tensile stress in the centre of the disk were made, which
included both the numerical and experimental results of
the new model presented and the models of other authors.
It can be concluded that the new model guarantees a
greater success in the calculus of the indirect tensile stress
than the other analytical solutions. In 88% of the analysed
cases, it can be confirmed that the theoretical model
represents the reference tensile stress value for a confi-
dence level of 95%. However, this only happens in 21% and
33% of cases for the Hondros model and Satoh correction,
respectively.
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