1	Timing of formation of neoglacial landforms in the South Shetland Islands (Antarctic
2	Peninsula): regional and global implications
3	David Palacios ¹ , Jesus Ruiz-Fernández ² , Marc Oliva ³ , Nuria Andrés ¹ , José M.
4	Fernández-Fernández ¹ , Irene Schimmelpfennig ⁴ ,
5	Laëtitia Leanni ⁴ , Benjamín González-Díaz ² , ASTER Team ^{4,5}
6	
7	1 Department of Geography, Complutense University of Madrid, Spain
8	² Department of Geography, University of Oviedo, Spain
9	³ Department of Geography, Universitat de Barcelona, Spain
10	⁴ Aix-Marseille Université, CNRS, IRD, Coll. France, UM 34 CEREGE, Aix-en-
11	Provence, France
12	⁵ Consortium: Georges Aumaître, Didier Bourlès, Karim Keddadouche
13	
14	Key words: Antarctic Peninsula, Byers Peninsula, Neoglaciation, surface exposure
15	dating.
16	Abstract
17	The timing of neoglacial advances in the Antarctic Peninsula (AP) is not yet well
18	constrained. Accurate temporal reconstruction of Neoglaciation in the AP is needed to
19	better understand past glacial responses and regional and global teleconnections during
20	the Holocene. Here, we examine all available information about neoglacial advances in
21	the South Shetland Islands (SSI) as well as in the broader geographical context of the AP
22	region and Antarctic continent. In order to shed light on the contrasting chronologies
23	existing for neoglacial advances in these regions, we focused on a case study where a
24	detailed picture of the Holocene deglaciation was already available. Lake sediments
25	revealed that Byers Peninsula, west of Livingston Island (SSI), was fully deglaciated
26	during the Holocene Thermal Maximum. To complement this approach, we identified
27	glacially polished bedrock surfaces, erratic boulders and a moraine ridge near the present
28	front of the glacier in the SE corner. We applied cosmogenic ray exposure (CRE) dating
29	using in situ ³⁶ Cl for basalt rocks and ¹⁰ Be for granitic rocks in: (i) 8 samples from glacial
30	erratic and ice-rafted boulders, (ii) 2 samples from moraine boulders, (iii) 2 samples from

polished bedrock surfaces, and (iv) 1 sample from an erratic boulder deposited on one of

these surfaces. The CRE dates indicate that the onset of deglaciation started around $9.9 \pm$ 32 1.2 ka, with two phases of glacier expansion during the Mid-Late Holocene forming 33 moraines at $\sim 4.1 \pm 0.5$ and $\sim 1.0 \pm 0.2$ ka, respectively. The main neoglacial advances in 34 the AP and the SSI were mostly synchronous and coincided with cold periods, as shown 35 by other records (e.g. glacio-isostatic marine terraces, marine and lake sediments). In 36 addition, these periods of glacial expansion show a similar timing to those recorded in the 37 Arctic. These results suggest that Neoglaciation was driven by global climate forcing in 38 both polar areas despite temporal variations at regional and local scale. 39

40

41

63

64

1. Introduction

The Antarctic Peninsula (AP; Fig. 1) is affected by intense warming, which is recorded 42 through reliable meteorological measurements since approximately 1950. This most 43 recent period has been called Recent Rapid Warming (RRW), and is characterized by an 44 accelerated temperature increase being four times greater in the AP region than the 45 Earth's average (Vaughan et al., 2003; Turner et al., 2005). This dramatic temperature 46 rise caused fast melting of glaciers and a generalized retreat of glacier fronts (Vaughan 47 and Doake, 1996; Cook et al., 2005, Kunz et al., 2012; Pritchard et al., 2012). However, 48 since 1998 a tendency towards cooling in the AP and a return to positive mass glacial 49 balances has been detected (Navarro et al. 2013; Engel et al., 2018). This shift is 50 associated with an increase in the frequency of low pressure systems that has led higher 51 precipitation and lower summer temperatures in the region, particularly in the N and NE 52 AP region, including the South Shetland Islands (SSI) (Turner et al., 2016; Sancho et al., 53 2017; Oliva et al., 2017a) (Fig. 2). Therefore, the question arises whether RRW is the 54 beginning of a trend towards deglaciation in the AP, or a brief warming within the long-55 term cooling trend affecting this region over the last millennia, continuation of the long-56 term cooling started since the Neoglaciation (Vaughan et al., 2003; Bentley et al., 2009). 57 However, the timing, distribution, evolution and origin of the neoglacial advances in the 58 AP region is still poorly understood because of: (i) the lack of historical information on 59 this continent, (ii) the limited number of terrestrial natural archives as sources of 60 palaeoenvironmental information, and (iii) the difficulties of dating these glacial 61 advances in Antarctica (Davies et al., 2012). 62

Porter and Denton (1967) proposed the generalization of the term Neoglaciation to refer to the glacial advances that occurred after the Holocene Thermal Maximum (HTM: 11-5

ka, Renssen et al., 2009) until the end of the Little Ice Age (LIA). Evidence of Late 65 Holocene glacial advances has been found in a great variety of latitudes and continents 66 (Solomina et al., 2015), widespread also in mountains of the Southern Hemisphere 67 (Clapperton and Sugden, 1988; Porter, 2000) and Antarctica (Clapperton and Sugden, 68 1988; Clapperton et al., 1989; Ingólfsson et al., 1998). However, delimiting the end of the 69 HTM and the onset of the neoglacial chronology in the Polar Regions is a matter of great 70 complexity (Kaufman et al., 2004; Renssen et al., 2009, 2012). Similarly, the concept of 71 Neoglaciation in the Arctic has been proposed as a tendency to climate cooling (McKay 72 et al., 2018). However, phases of glacial advances in the Arctic during Neoglaciation 73 alternated with warm periods and glacial retreat, occurring asynchronously across the 74 region without a clear regional pattern (McKay et al., 2018). 75 As in the Arctic, the chronology of Neoglaciation varied significantly within the AP and 76 throughout the Antarctic continent (Bentley and Hodgson, 2009). According to the 77 available glacio-marine sedimentary records, cold phases during Neoglaciation in the AP 78 region were short, not exceeding 0.5 ka (Yoon et al., 2010), and alternated with longer 79 warm periods (Davies et al., 2012). The first synthesis on climatic and glacial evolution 80 in the AP during the Holocene was carried out by Ingólfsson et al. (1998) who suggested 81 the first neoglacial advances after 5 ka. Ingólfsson et al. (2003) proposed several other 82 neoglacial advances between 3 and 1 cal ka BP. Bentley et al. (2009, 2014) reported a 83 generalized warm period in the AP between 4.5 and 2.8 cal ka BP followed by a relatively 84 widespread cold period between 2.5 and 1.2 cal ka BP. Bentley and Hodgson (2009) 85 highlighted that Late Holocene cold phases in different sites across the AP were not 86 synchronous, even in close regions. Hall (2009) provided a synthesis of Holocene glacial 87 evolution for the entire Antarctic continent, including the AP, with many references to 88 neoglacial landforms. Subsequent studies provided new glacial evidence of neoglacial 89 landforms in other regions, thus confirming the occurrence of the Neoglaciation as a 90 widespread pattern of glacial advance in the AP (Davies et al., 2012, 2013; Carrivick et 91 al., 2012; Cofaigh et al., 2014). However, these new data also introduce new uncertainties 92 about the time range of neoglacial phases in different areas across this region (Allen et 93 94 al., 2010; Davies et al., 2012; Barnard et al., 2014; Cofaigh et al., 2014). The spatiotemporal variations of glacial oscillations over the last centuries are also a consequence 95 of climate variability in the region (Mosley-Thompson et al., 1990; Guglielmin et al., 96

2016; Brightley, 2017). Recently, Čejka et al. (2019) examined the neoglacial onset in

the AP region through the revision of 22 studies focused on ice cores and marine and lake 98 sediments. They concluded that the beginning of neoglacial cooling occurred, in average, 99 at 2.6 ± 0.8 cal ka BP, with large spatio-temporal differences within the AP region ranging 100 between 4.8 ka and 1.2 cal ka BP. However, a review on glacier oscillations during 101 102 Neoglaciation is still missing. Kaplan et al. (2020) provided new information about the Neoglaciation chronology in the AP and compared it with the neoglacial advances in 103 104 Patagonia. The Byers Peninsula, on the western end of Livingston Island, is the largest deglaciated 105 106 terrestrial area in the SSI (Fig. 2). In this area, lake records suggest that the retreat of the Rotch Dome Glacier occurred throughout the Holocene (Toro et al., 2013; Oliva et al., 107 2016; Ruiz-Fernández and Oliva, 2016), although the existence of neoglacial landforms, 108 such as moraines, is not yet evidenced. The application of cosmogenic radiation exposure 109 (CRE) methods – that have not been applied yet to neoglacial landforms in the SSI – 110 offers new possibilities to obtain a detailed chronology for the development of these 111 neoglacial landforms. The knowledge of the age of moraines formed in neoglacial 112 advances in the Byers Peninsula can provide important information on the possible 113 synchrony of these advances within the context of the AP. 114 The aim of this paper is to map and date neoglacial landforms in the SSI as well as explore 115 their paleoclimatic implications in the context of the Antarctic continent. Firstly, we 116 review the current state of knowledge of Neoglaciation in Antarctica, focusing mainly in 117 the AP. In order to provide the most detailed picture on the paleoclimatic evolution in this 118 region, we examined all available records from ice cores, deep marine sediment cores, 119 lake sediments and glacial landforms. Subsequently, we focused on an area of the AP 120 region where information about Holocene glacial advances is still absent: the Byers 121 Peninsula. In this peninsula, we have mapped the spatial distribution of possible 122

125

126

127

128

129

123

124

these landforms.

2. The Neoglaciation in the Antarctic Peninsula and South Shetland Islands

A recent synthesis of the evolution of the West and East Antarctic Ice Sheets shows that glacial mass loss was intense from 9 until 7-6 ka in both areas (Mackintosh et al., 2011, 2014), mainly due to ocean warming, although the long-term glacial shrinking had

neoglacial moraines, analyzed the geomorphological setting, and applied CRE dating to

- already begun before 10 ka (Larter et al., 2014). (Fig. 1, Table 1). A wide range of climatic
- proxies provides data on the occurrence of various cold periods in the AP for the last
- millennia.
- In order to constrain the magnitude and the chronology of neoglacial advances and
- retreats in the SSI, we first review the climatic evolution over the Mid- and Late Holocene
- in the AP region based on different environmental sources:
- (i) Neoglaciation from ice cores in the AP. Polar ice cores preserve and provide
- information on climatic changes and their causes, mainly from comparison of the δ ¹⁸0,
- deuterium and CO₂ concentration variations in different layers, as well as on the climate
- and chronology from the impurities of the ice (Lorius et al., 1990). The most accurate
- reconstruction from ice core records in the AP comes from James Ross Island, NE AP,
- which revealed a cold phase between 2.5 and 0.6 cal ka BP, and a peak of cold climate
- that occurred roughly at 1.4 cal ka BP (Mulvaney et al., 2012; Abram et al., 2013). The
- last phase of intense cooling was recorded during the LIA at around AD ~1410-1460
- (Abram et al., 2013), as also detected in ice cores from other areas in Antarctica, e.g. Ross
- Sea, with a temperature ca. 2° C colder than present (Bertler et al., 2011), or in Princess
- Elizabeth Land, East Antarctica, with a significant cooling at AD 1450–1850 (Li et al.,
- 147 **2009**) (Fig. 1 and Table 1).
- 148 (ii) Neoglaciation from marine sediments in the AP. Deep marine sediment cores can
- reveal climatic changes based on the proportion of foraminifera and microfossils that are
- highly sensitive to sea surface temperatures. The ratio of the oxygen isotopes from the
- calcium carbonate shells of foraminifera and coccoliths, and from the silicon dioxide
- shells of radiolarians and diatoms, is indicative of the temperature of the ocean during the
- build-up of every shell layer (Rothwell and Rack, 2006). Several sedimentary records
- were collected from areas adjacent to the AP region. As in ice core records, most records
- show changes in sedimentation patterns during neoglacial cold periods, with notable
- chronological differences. Records obtained in the Bransfield Strait reported abrupt cold
- conditions at 4.5 and 2.5 cal ka BP (Shevenell et al., 2011), at 3.5 and 1.2 cal ka BP (Khim
- et al., 2002; Heroy et al., 2008; Barnard et al., 2014) and during the LIA (Khim et al.,
- 2002; Barnard et al., 2014). In other records from the western side of the AP, similar
- patterns were observed, including long-term cooling trends from 3.3 to 0.1 cal ka BP in
- Palmer Deep (Domack et al., 2001), from 2.8 to 0.2 cal ka BP in Marguerite Bay (Allen
- et al., 2010), and during the LIA in Müller Ice Shelf (Domack et al., 1995) and in Barilari

Bay, Graham Land (Christ et al., 2015; Reilly et al., 2016). Neoglacial cooling was also 163 reported in the NE of the AP, as in the Firth of Tay, where marine sediment cores revealed 164 a minor glacial advance between 6.0 and 4.5 cal ka BP, retreat between 4.5 and 3.5 cal ka 165 BP, and glacial readvance from 3.5 cal ka BP to recent times (Michalchuk et al., 2009) 166 167 (Fig. 1 and Table 1). (iii) Neoglaciation from lake sediments in the AP. Paleolimnological studies can reveal 168 climatic changes from a wide range of proxies including the analysis of magnetic 169 susceptibility, grain-size distribution, geochemistry, diatoms studies, and geochronology 170 (Zale and Karlén, 1989; Čejka et al., 2019). Čejka et al. (2019) examined the onset of 171 Neoglaciation in the AP region from lacustrine sediments suggesting that it occurred at 2 172 cal ka BP, with significant regional variations. Conversely, in our study, we analyzed 173 periods during the Neoglaciation that led to glacial advances. Evidences of neoglacial 174 advances in the AP from lacustrine sediments suggest a phase of glacial expansion at 1.2 175 cal ka BP in James Ross Island, (Björck et al., 1996a), at around 5 ka and during the LIA 176 in Hope Bay (Zale and Karlén, 1989) and from 2.6 until 1.1 cal ka BP in Marguerite Bay 177 (Hodgson et al., 2013) (Fig. 1 and Table 1). 178 (iv) Neoglaciation from raised beaches in the AP. Rates of glacio-isostatic uplift inferred 179 from the elevation of raised beaches are indicative of the intensity of the deglaciation 180 (Simkins et al., 2013). Hall and Denton (1999) determined that these rates were especially 181 high between 8 and 5 cal ka BP in the Ross Sea, suggesting that glacial shrinking 182 decreased during the Mid Holocene. However, decreasing uplift rates can be also 183 indicative of glacial advances (Simkins et al., 2013). In Beak Island, NE AP, the relative 184 sea level fell from a maximum uplift rate of 3.91 mm yr⁻¹ at around 8 cal ka BP to 2.11 185 mm yr-1 between 6.9 and 2.9 cal ka BP, 1.63 mm yr-1 between 2.9 and 1.8 cal ka BP, and 186 finally to 0.29 mm yr⁻¹ during the last 1.8 ka BP. This reveals a trend towards more glacial 187 stability and/or glacial readvances during the neoglacial period (Roberts et al., 2011) (Fig. 188 1 and Table 1). 189 (v) Neoglaciation from glacial landforms in the AP. Together with these proxies, some 190 studies have focused on the direct dating of neoglacial landforms in the AP. Radiocarbon 191 dating of unconsolidated glacial sediments demonstrated the occurrence of six neoglacial 192 advances at 6.5, 4.6, 3.9 cal ka BP, two around 2.6 cal ka BP, as well as glacial expansion 193 during the LIA in James Ross Island (Strelin et al., 2006). This LIA glacial advance has 194

been also detected in the western AP, namely in Rothera Point, Marguerite Bay

- 196 (Guglielmin et al., 2016) as well as in Anvers Island, where the glacier front was at or
- behind its present position at 0.7-0.9 cal ka BP (Hall et al., 2010) (Fig. 1 and Table 1).
- Outside the AP, in the Scott Coast, in Ross Sea, Late Holocene moraines are distributed
- on dated raised beaches indicating a neoglacial advance that occurred between 3.5 ka and
- the LIA (Hall and Denton, 2002).
- However, the most reliable approach to date Neoglaciation in the AP is based on the
- dating of glacial landforms using CRE methods. In James Ross Island, one of the areas
- with most CRE dates available, deglaciation was intense until 6 ka (Hodgson et al., 2011;
- Glasser et al., 2014) and neoglacial advances occurred at ~4.8 ka and from 1.5 to 0.3 ka
- 205 (10Be ages) (Davies et al., 2014). Close to James Ross Island, in Solari Bay, the Sjögren,
- Boydell and Drygalski glaciers advanced at 1.4 ka (10Be ages) (Balco et al., 2013).
- Recently, a work focusing on James Ross Island area reported 49 ¹⁰Be ages of Holocene
- glacial landforms (Kaplan et al., 2020). These results suggest that the major glacial
- 209 advance following the HTM occurred at ~7-4 ka, with subsequent phases of glacier
- expansion between 3.9 and 3.6 ka, just after 3 ka, between ~2.4 and ~1 ka, and from
- ~ 0.3 to ~ 0.1 ka (Kaplan et al., 2020).
- Using CRE dating, neoglacial advances were also detected in the western AP region, as
- in Alexander Island, Marguerite Bay, where a period of glacial expansion took place at
- 4.4 ± 0.7 and 1 ka (10 Be ages) (Davies et al., 2017). Neoglacial advances have been
- reported in other areas in Antarctica, such as in the Darwin Mountains between 3 and 0.5
- 216 ka (10Be ages) (Storey et al., 2010) (Fig. 1 and Table 1).
- (vi) Neoglaciation in the South Shetland Islands. The SSI archipelago, located NW of
- 218 the AP, lies at 120 km from the AP. The existence of neoglacial landforms in the SSI is
- known since the last third of the 20th century (Fig. 2 and Table 2). In the first
- geomorphological studies, at the end of the 1960s and early 1970s, researchers focused
- on the existence of moraines distributed a few hundred meters away from the present-day
- glacier fronts, which transgressed and overlapped recent raised beaches (Araya and
- Hervé, 1966; Everett, 1971; John and Sugden, 1971; John, 1972; Sugden and John, 1973).
- This geomorphological pattern was first described in several deglaciated areas of the SSI,
- such as Byers and Hurd peninsulas (Livingston Island) and Fildes peninsula (King George
- Island). Since then, attention has been paid to inferring the age of deglaciation of these
- raised beaches and their relationship with moraines which transgressed them. Previous

works considered that the raised beaches formed as a result of glacio-isostatic rebound due to the partial deglaciation of these islands. The existence of moraines distributed on some of these raised beaches suggest that the moraines are chronologically younger than the raised beaches. Radiocarbon dating of organic fragments interbedded in the raised beach provide a minimum age for the formation of the moraine resting on this beach. In Hurd Peninsula, Everett (1971) inferred a phase of glacial expansion that advanced on a raised beach at 10-12 m a.s.l. and a subsequent glacier advance that left a moraine on a raised beach at 4-6 m a.s.l., which was known as the "False Bay event" (Everett, 1971). The application of radiocarbon dating to raised beaches at 4-6 m a.s.l. in Fildes Peninsula yielded an age of 0.4-0.7 cal ka BP. As this level of the raised beach (4-6 m a.s.l.) is frequently occupied by the youngest moraines existing in the SSI, geomorphologists deduced that these moraines were of LIA age (John and Sugden, 1971; John, 1972; Sugden and John, 1973). Subsequently, further radiocarbon dates differentiate between two levels of raised beaches in the SSI that were covered by the last neoglacial advances: (i) the first one at 6 m a.s.l., (varying locally between 5 and 7.5 m a.s.l.) associated with a 2-3 km glacier readvance dated at the 13th to early 16th centuries A.D., and (ii) another one at 2-3 m a.s.l. associated with a 0.25-1 km glacier readvance at approximately the 15-17th centuries A.D, that in some areas overlapped the previous (Curl, 1980; Sugden and Clapperton, 1986; Clapperton, and Sugden, 1988). Further radiocarbon dates of raised beaches also suggest, at least, two neoglacial advances between 3 and 1 cal ka BP (Barsch and Mäusbacher, 1986). The application of lichenometric dating to the moraines distributed on the lowest raised beaches in the SSI confirmed that these landforms developed during LIA glacial advances (Birkenmajer, 1981, 1995; 1998) (Fig. 2 and Table 2). To better understand the relationship between glacial advances and raised beaches transgressed by moraines, a more accurate geomorphological mapping was conducted to determine the altitude and extent of raised beaches in the Byers Peninsula (Arche et al., 1996) and their correlation with those existing in other ice-free areas in this archipelago (Fretwell et al., 2010). The abundance of ice rafted debris of allochthonous lithology on raised beaches dated between 0.25 and 1.7 cal ka BP suggest that these beaches were related to cold periods of increased glacial extent and greater iceberg delivery (Hall and Perry, 2004). In addition, the dating of the highest raised beaches (located at about 16-20 m a.s.l.) indicates that the most massive deglaciation phase in this peninsula occurred

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

- between 9 and 6 cal ka BP, with glaciers close to their current position by 5.5 cal ka BP
- 262 (Barsch and Mäusbacher, 1986; Mäusbacher, 1991; Del Valle et al., 2002; Hall, 2003;
- 263 Bentley et al., 2005; Hall, 2010; Watcham et al., 2011).
- New records obtained during the early 21st century have improved our knowledge on the
- age of moraines in the SSI (Fig. 2 and Table 2). The oldest moraines in Livingston Island
- identified by Everett (1971) were dated at >7.3 ka, predating the formation of the oldest
- raised beaches (Sugden and John, 1973; Curl, 1980; López-Martínez et al., 1992; Hall
- and Perry, 2004; Bentley et al., 2005; Hall, 2009; Fretwell et al., 2010). Hall (2007) dated
- by radiocarbon the youngest moraines previously studied in Fildes and Hurd Peninsulas
- 270 (Everett, 1971, John and Sugden, 1971; John, 1972; Sugden and John, 1973). However,
- Hall (2007) considers the possibility that there could have been previous advances as old
- as 2.8 cal ka BP. Radiocarbon ages from a 4-6 m raised beach related to these moraines
- support glacial advance and transgression during the LIA. The application of Optically
- Stimulated Luminescence (OSL) dating methods to these younger beaches at 4-6 m in the
- Fildes Peninsula confirmed an age of the 16-18th centuries AD, which coincided with the
- 276 LIA (Simms et al., 2011a, 2012).
- On the one hand, at the end of the 80s and beginning of the 90s, sediment cores collected
- from several lakes in Livingston and King George Islands reported radiocarbon minimum
- ages of 4-5 cal ka BP for deglaciation (Mäusbacher et al., 1989; Björck et al., 1991, 1993,
- 1996b). The analysis of lake sediments from a number of lakes in the western part of the
- Byers Peninsula suggested the occurrence of a warm period occurring between 3.2 and
- 282 2.7 cal ka BP (B örck et al., 1993) and a remarkable cooling between 1.5 and 0.5 cal ka
- BP (Björck et al., 1991). More recent studies suggest that the onset of the deglaciation of
- the Byers Peninsula occurred at 8.3 cal ka BP (Toro et al., 2013), with the deglaciation of
- the central plateau taking place between 8.3 and 5.9 cal ka BP and ice-free exposure of
- the easternmost fringe, close to the present-day glacier front, around 1.8 cal ka BP (Oliva
- 287 et al., 2016).
- 288 CRE dating methods were applied to polished bedrock surfaces in the Barton Peninsula
- 289 (King George Island) along a transect from the highest peaks to the coast. These data
- showed that deglaciation of this small peninsula had begun earlier than inferred from lake
- sediments and raised beaches, between 17 and 14 ka, and had finished 1 ka ago (Seong et
- al., 2009). Hall (2009) CRE dated moraines from Hurd Peninsula and Marion Cove (King
- George Island) at 1.5-1.0 ka (Hall and Stone, personal communication).

Finally, the analysis of marine sediments in Maxwell Bay (King George Island) 294 determined that there was rapid glacial retreat from 10.1 to 8.2 cal ka BP and a period of 295 gradual cooling and more extensive sea-ice cover in the bay from 5.9 cal ka BP onwards, 296 with no evidence of LIA glacial advance (Milliken et al., 2009). However, a more recent 297 298 study of marine sediments in Maxwell Bay confirmed that the deglaciation began as soon as 14 cal ka BP – as was proposed by CRE dating in the nearby Barton Peninsula (Seong 299 et al., 2009) – and that deglaciation was completed by 5.9 cal ka BP, with a neoglacial 300 advance into the bay ending at approximately 1.7 ka (Simms et al., 2011a). Recent coastal 301 sediment analysis in Fildes Peninsula showed a cold period from 5.8 to 4.8 cal ka BP, a 302 mid-Holocene climatic optimum between 4.4 and 2.7 cal ka BP, and the onset of 303 Neoglaciation at 2.7 cal ka BP (Chu et al., 2017). Sediment cores obtained from the 304 continental shelf of the northern SSI pointed to the existence of a cold period around 0.33 305 cal ka BP, which must have corresponded to the LIA (You et al., 2009). 306 To sum up, despite varied results, a common pattern can be deduced in studies of 307 neoglacial phases in the SSI in the context of AP region. The glaciers were similar to or 308 smaller than present-day in the AP, as in the SSI, around 6 ka. 309 Before the warmer period detected in the AP between 4.5 and 2.8 cal ka BP (Bentley et al., 2009), a cold period with the first neoglacial advances occurred around 5 ka in many

310 311 places of the AP and the rest of the continent (Zale and Karlén, 1989; Mosley-Thompson, 312 1996; Khim et al., 2002; Strelin et al., 2006; Heroy et al., 2008; Bentley et al., 2009; 313 Michalchuk et al., 2009; Davies et al., 2012; Shevenell et al., 2011; Carrivick et al., 2012; 314 Cofaigh et al., 2014; Barnard et al., 2014; Davies et al., 2017; Kaplan et al., 2020). So far, 315 there is no evidence of this neoglacial advance in the SSI, except perhaps for the 316 references made by Everett (1971) in the Hurd Peninsula about moraines in relation to 317 the raised beaches at 10-12 m a.s.l. 318

Another period of widespread neoglacial advance took place in the AP between 2.8 and 319 1.4 ka, with cooling intensifying between 1.8 and 1.4 cal ka BP. (Mosley-Thompson, 320 1996; Björck et al., 1996; Khim et al., 2002; Heroy et al., 2008; Bentley et al., 2009; Yoon 321 et al., 2010; Domack et al., 2001; Strelin et al., 2006; Michalchuk et al., 2009; Allen et 322 al., 2010; Davies et al., 2012; Mulvaney et al., 2012; Shevenell et al., 2011; Mulvaney et 323 al., 2012; Abram et al., 2013; Hodgson et al., 2013; Barnard et al., 2014; Davies et al., 324 2014, Čejka et al., 2019; Kaplan et al., 2020). To date, this glacial advance is also poorly 325 represented in the SSI, with the only reference by Hall (2007, 2009). However, there is 326

such as ice rafted debris on raised beaches (Hall and Perry, 2004), lake sediments (Björck 328 et al., 1991, 1993; Oliva et al., 2016), and marine records (Chu et al., 2017). 329 The information available on glacial advances during the LIA is varied across the AP, as 330 in the SSI. Similarly, there is clear evidence of advances in some areas (Strelin et al., 331 2006), but it is absent in archives such as lake and marine sediments (Shevenell et al., 332 2011; Hodgson et al., 2013) as well as in ice core records (Mulvaney et al., 2012; 333 334 Brightley, 2017). In any case, it is important to note that in many areas a cooling period was observed from 1.5 ka to the first cooling events associated with the LIA (Zale and 335 Karlén, 1989; Domack et al., 2001; Hall and Denton, 2002; Allen et al., 2010; Storey et 336 al., 2010; Michalchuk et al., 2009; Balco et al., 2013; Davies et al., 2014; Davies et al., 337 2017). On the other hand, most of the studies carried out on the youngest moraines of the 338 SSI, transgressing the 4-6 m raised beach, confirmed that they were formed during the 339 LIA, between the 16th and 18th centuries AD, with minor age differences depending on 340 dating methods. 341

some evidence of a cold period around 1.8 ka in the SSI from other paleoclimatic proxies,

327

342

343

3. Geographical setting of the case study: the Byers Peninsula

With the aim of resolving the discrepancies observed between the SSI and the rest of the 344 AP on the timing of development of neoglacial landforms, this work explores the age of 345 formation of several landforms in an area that is already known to have been deglaciated 346 during the Mid-Late Holocene (Oliva et al., 2016), the Byers Peninsula, the largest ice-347 free area in the SSI (Fig. 2 and Table 3). The Byers Peninsula (62°34'35"-62°40'35"S, 348 60°54'14"-61°13'07"W) is located on the western end of Livingston Island, the second 349 largest island in the SSI, with an area of approximately 60 km², and a maximum altitude 350 of 265 m a.s.l.. The peninsula is part of a Jurassic-Quaternary magmatic forearc generated 351 by Mesozoic and Cenozoic subduction processes along the South Shetland Trench 352 (Smellie et al., 1980; Alfaro et al., 2010). This peninsula is composed of Upper Jurassic-353 Lower Cretaceous sedimentary deposits (mainly sandstones, mudstones and 354 conglomerates) and volcanic and volcanoclastic rocks, with abundant intrusive igneous 355 rocks of basalt-basaltic andesite composition (Smellie et al., 1980; Hathway and Lomas, 356 1998; Parica et al., 2007; Alfaro et al., 2010). The geomorphology of the Byers Peninsula 357 (Araya and Hervé, 1966; John and Sugden, 1971; López-Martínez et al., 1996) is formed 358 by a high plateau (80-110 m), considered a marine platform, onto which protruded a series 359

of volcanic plugs such as Start Hill (265 m a.s.l.), Chester Cone (188 m), Cerro Negro 360 (143 m), Tsamblak Hill (113 m) and Clark Nunatak (147 m). Many lakes are distributed 361 on this plateau, such as the Limnopolar, Chester, Escondido, Cerro Negro and Domo lakes 362 (Fig. 2, Table 3). This central plateau is encircled by an intermediate marine platform (50-363 364 80 m) that is surrounded by a lower platform above which Holocene raised beaches from 2 to 15-16 m a.s.l have developed. The sequence of raised beaches is particularly well-365 preserved in the South beaches (S), the Robbery beaches (N), and the President beaches 366 (W). The ice-free area of the Byers Peninsula is delimited in its eastern flank by the Dome 367 Rotch Glacier, which covers the rest of the western part of Livingston Island reaching a 368 maximum altitude of 360 m. Although there is no information about the recent evolution 369 of Dome Rotch Glacier in the side of the Byers Peninsula, significant retreat has been 370 observed in other neighbouring coastal fringes since the 1950s (Birkenmajer 2002) that 371 seems to have decelerated in the last decade (Navarro et al., 2013, Oliva et al., 2017). 372 The mean annual temperature is around -2.8 °C at 80 m and annual precipitation (rain 373 and snowfall) reaches ca. 650 mm at this altitude (Bañon et al., 2013; De Pablo et al., 374 2014). Discontinuous permafrost patches have been detected in raised beaches (Correia 375 et al., 2017) whereas permafrost is continuous at the central plateau (de Pablo et al., 2014). 376 Abundant periglacial landforms distributed across the peninsula show evidence of active 377 periglacial dynamics in the area, strongly conditioned by local topography and snow 378 distribution (Serrano et al., 1996; López-Martínez et al., 2012; Hrbáček et al., 2016; Ruiz-379 Fernández et al., 2016; Oliva et al., 2017b). Most of the area is covered by bryophytes 380 and lichens, including the two native Antarctic phanerogams on the raised beaches 381 (Lindsay, 1971, Vera, 2013), which makes the Byers Peninsula a unique environment in 382 terms of terrestrial biodiversity within Antarctica (Benayas et al., 2013; Almela et al, 383 2019). To protect this hotspot of biodiversity, the Byers Peninsula was designated an 384 Antarctic Specially Protected Area (ASPA N° 126). 385 The Byers Peninsula was covered by an ice sheet distributed across the SSI during the 386 last glacial cycle (Araya and Hervé, 1966; John and Sugden, 1971; López Martínez et al., 387 1996). This ice sheet was connected with the AP ice sheet during the maximum ice extent, 388 though it became isolated as ice started thinning during the deglaciation (Cofaigh et al., 389 390 2014). Previous studies on lake sediments have determined that the deglaciation of the Byers Peninsula occurred from W to E, with a timing of 7.5 to 1.8 cal ka BP (Toro et al., 391 2013; Oliva et al., 2016; Ruiz-Fernández and Oliva, 2016). Domo Lake, located only at 392

350 m from the present glacier front, was deglaciated around 1.8 ka (Oliva et al., 2016). 393 Several geomorphological landforms and deposits of glacial origin are distributed 394 between the contemporary glacial front and the sea. This is the case of the large 395 longitudinal ice-cored moraines located in front of the Rotch Dome Glacier (Martinez de 396 397 Pisón et al., 1996; Ruiz-Fernández et al., 2016). John and Sugden (1971) observed how these moraines override all marine levels incorporating littoral deposits; they suggested 398 399 that the most recent moraines were directly related to the 4-6 m beach and were contemporary in age, representing thus a recent glacial readvance. Hansom (1979) 400 radiocarbon dated a 10 m a.s.l. raised beach at 1.8 cal ka BP, whereas Curl (1980) reported 401 that the 6 m a.s.l. raised beach formed during the 15-17th centuries AD. Hall and Perry 402 (2004) suggested that this beach and the 10 m a.s.l. unit formed during cold periods over 403 the last 1.7 cal ka BP, as they are rich in ice rafted debris. Hall (2003, 2010) contributed 404 numerous dates for all the sequences of raised beaches in the main complexes of the Byers 405 Peninsula, concluding that the highest levels formed at 7.4 cal ka BP and confirming that 406 the 6 m a.s.l. raised beach developed during the 15-17th centuries AD. The frontal ice-407 cored moraines in front of the Rotch Dome Glacier have been very stable over the last 408 decades, as can be seen in photos and descriptions in old publications (John and Sugden, 409 1971; López Martínez et al., 1996; Hall, 2010). The glacier has retreated from these 410 moraines only in the vicinity of the northern coast and in the southern fringe, around Clark 411 Nunatak (Martinez de Pisón et al., 1996). In the nearby peninsula of Elephant Point, only 412 3 km SE of Clark Nunatak, a similar retreat occurred from 1956 to 2000 (Oliva and Ruiz-413 Fernández, 2015, 2017) (Fig. 2 and Table 3). 414

5. Methodology

415

- 5.1 Geomorphological research and sampling strategy
- In the eastern fringe of the Byers Peninsula, next to Rotch Dome Glacier, an ice-cored 417 moraine has been described to be in contact with the glacier front from 1966 to 1996 418 419 (Araya and Hervé, 1966; John and Sugden, 1971; Martinez de Pisón et al., 1996) (Fig. 2). Over these thirty years, the limits, extent, and shape of the ice-cored moraine crests were 420 identical to those described in earlier observations (Martinez de Pisón et al., 1996), 421 showing evidence of the prevailing geomorphic stability at annual to decadal timescales 422 (López Martínez et al., 1996; Hall, 2010). The ice-cored moraine system develops from 423 a single polygenic ridge in the southern edge to a sequence of twelve ridges in its northern 424 fringe next to Robbery beaches (Ruiz-Fernández et al., 2016). These ice-cored moraines 425

are similar to those described in other areas of the AP region (Hambrey et al., 2015). As for Hurd and Fildes peninsulas, Martínez de Pisón et al., (1996) proposed also a synchronicity between the timing of formation of raised beaches and moraines in the Byers Peninsula.

The objective of the geomorphological research was to explore the existence of moraines disconnected from the glacier front of the Roch Dome Glacier, which would suggest the occurrence of neoglacial advances. Roch Dome Glacier moraines include sediments transported by the glacier from the interior of the island, and, therefore, are mostly composed of basalts. We sampled some of these moraine boulders to apply CRE dating using *in situ* ³⁶Cl. These moraines transgressed raised beaches whose age is already well constrained (Hall 2003 and 2010) and provide a minimum age for the development of the moraines that lay on them. In addition, researchers already identified the existence of icerafted granite boulders on these raised beaches (Hall and Perry, 2004). These boulders were sampled to be dated using the *in situ*-produced ¹⁰Be dating method to study their possible chronological relationship with the sampled moraine. Finally, we collected samples from glacially polished bedrock surfaces close to the present glacier front for ³⁶Cl dating in order to date the glacier retreated from this position.

3.2. CRE sampling and analytical procedures

During the fieldwork campaign, a total of 12 samples were taken from glacially polished outcrops and >1-m-diameter erratic/moraine boulders by means of hammer and chisel. We focused on flat gentle surfaces on the top of the boulders/outcrops and avoided steep surfaces and sharp crests in order to ensure the optimal cosmic-ray flux reception. We selected the most stable boulders, which were rooted in the moraines, with no signs of spalling or fracturing and that could not have been deposited through gravitational processes from rock walls. The thickness of the samples ranged from 1.8 to 4.5 cm (Table 4). Following the sample collection, they were crushed and sieved to the 0.25-1 mm fraction at the "Physical Geography Laboratory" of the Complutense University of Madrid. Then the samples were physically and chemically processed at the "Laboratoire National des Nucléides Cosmogéniques" (LN2C) of the "Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement" (CEREGE, Aix-en-Provence, France). As the sampled surfaces were constituted both by basaltic and granitic rocks (Table 4), samples were processed for measurement of the *in situ* cosmogenic nuclides ³⁶Cl (10 samples) and ¹⁰Be (2 samples) by accelerator mass spectrometry (AMS),

459 respectively.

In the case of the ³⁶Cl, the sample preparation procedures were similar to those described 460 in Schimmelpfennig et al. (2011). Magnetic separation was performed on one sample 461 (BYC-10) to isolate the abundant feldspar minerals for ³⁶Cl extraction by discarding the 462 magnetic minerals with a magnetic separator "Frantz LB-1". ³⁶Cl extraction from whole 463 rock was conducted for the other 9 samples, which had insufficient amounts of feldspar 464 minerals. In both cases, aliquots of untreated bulk sample were taken to determine the 465 sample composition (major and trace elements; Table 5). Samples with initial weights of 466 467 120 g were rinsed and shaken with ultrapure water for 3 hours to remove dust and fines. After that, between 40 and 50% of the initial weight was dissolved with a mixture of 468 diluted nitric acid (10% HNO₃) and concentrated hydrofluoric acid (48% HF) in order to 469 remove atmospheric ³⁶Cl and potentially Cl-rich groundmass. After this partial 470 dissolution, the remaining etched sample mass was rinsed and dried, and 2-g aliquots 471 were taken to determine the major element concentrations (Table 6). Compositional 472 analyses of all aliquots were performed at the "Service d'Analyse des Roches et des 473 Minéraux" (SARM, CRPG, Nancy, France). Before total dissolution, ~260 µL of a 35Cl 474 carrier (spike: 010813(4), 6.92 mg Cl g⁻¹, ³⁵Cl/³⁷Cl ratio 917.75) manufactured in-house 475 were added to the samples for isotopic dilution (Ivy-Ochs et al., 2004), allowing for 476 simultaneous determination of the ³⁶Cl and Cl concentrations from the ³⁶Cl/³⁵Cl and 477 ³⁵Cl/³⁷Cl measurements. For the total dissolution of the rock samples, a mixture of 9 mL 478 of 10% HNO₃ per gram of sample and 4.5 mL of 48% HF per gram of sample was used. 479 After the total dissolution, the samples were centrifuged to discard the undissolved 480 residues and gel (fluoride complexes, CaF₂). Then, the chlorine in the liquid solution was 481 precipitated to silver chloride (AgCl) by adding 2 ml of a silver nitrate (AgNO₃) solution 482 at 10%. To achieve this, samples were stored for 2 days in a dark place to allow the AgCl 483 to settle down on the bottom of the bottles. This enabled the extraction of the supernatant 484 solution (excess HF and HNO₃) by a peristaltic pump avoiding the disturbance of the 485 AgCl precipitate. In the next step, aiming to reduce the isobaric interferences of ³⁶S 486 throughout the ³⁶Cl measurements in the Accelerator Mass Spectrometer (AMS) sulphur 487 488 was removed in the form of barium sulphate (BaSO₄) obtained after the re-dissolution of this first AgCl precipitate and the addition of 1 mL of a saturated solution of barium 489 nitrate (Ba(NO₃)₂). BaSO₄ was discarded by centrifuging and filtering the supernatant 490 with a syringe and an acrodisc filter. Then, AgCl was precipitated again with 3-4 mL of 491

diluted HNO₃ (1:1 vol.). The precipitate was collected after centrifuging, and was rinsed 492 and finally dried in the oven at 80 °C for 2 days. Once the AgCl precipitate was 493 completely dried, it was loaded in cathodes. Subsequently, targets were stored in the oven 494 in order to protect them from atmospheric humidity until they were measured by AMS. 495 For the ¹⁰Be extraction, the processing started with the quartz isolation from the bulk rock. 496 Magnetic minerals were discarded by using the magnetic separator "Frantz LB-1". After 497 that, the non-magnetic fraction was chemically attacked at successive rounds with a 498 mixture of concentrated hydrochloric (1/3 HCl) and hexafluorosilicic (2/3 H₂SiF₆) acids 499 500 aiming to dissolve non-quartz minerals. Then, the remaining minerals were decontaminated from meteoric ¹⁰Be by means of three successive partial dissolutions with 501 concentrated HF, which also dissolved the remaining impurities from the previous step. 502 The samples yielded 60-80 g of purified quartz (Table 7). Before the total dissolution, 503 150 μL of a ⁹Be carrier solution (concentration: 3025 ± 9 μg g⁻¹; Merchel et al., 2008) 504 manufactured in-house from a phenakite crystal were added to the samples. Quartz was 505 totally dissolved in 48 % HF (3.6 mL per g of quartz + 30 mL in excess). The resulting 506 solutions were evaporated until dryness and samples were recovered with hydrochloric 507 acid. Subsequently samples were precipitated with ammonia before successive 508 separations through an anion exchange column (Dowex 1X8) to remove iron and a cation 509 exchange column (Dowex 50WX8) to discard boron (isobar) and recover Be (Merchel 510 and Herpers, 1999). Finally, the eluted Be was precipitated to Be(OH)₂ with ammonia and 511 oxidized to BeO at 700 °C. The targets were prepared by mixing Niobium powder with 512 the BeO oxide for AMS measurements. 513 The final AgCl and BeO targets were analysed at the AMS facility ASTER "Accélérateur 514 pour les Sciences de la Terre, Environnement et Risques" at CEREGE to measure the 515 specific isotope ratios for ³⁶Cl (³⁵Cl/³⁷Cl and ³⁶Cl/³⁵Cl) and ¹⁰Be (¹⁰Be/⁹Be) dating. The 516 ³⁶Cl measurements were normalized to the in-house standard SM-CL-12 with an assigned 517 $^{36}\text{Ol}/^{35}\text{Cl}$ ratio value of (1.428 ± 0.021) x 10⁻¹² (Merchel et al., 2011) and assuming a 518 natural ³⁵Cl/³⁷Cl ratio of 3.127. The ¹⁰Be measurements were calibrated against the in-519 house standard STD-11, using an assigned 10 Be/ 9 Be ratio of (1.191 \pm 0.013) x $^{10-11}$ 520 (Braucher et al., 2015). Analytical 1 σ uncertainties include uncertainties in AMS counting 521 statistics, the standard ¹⁰Be/⁹Be ratio, an external AMS error of 0.5% (Arnold et al., 2010) 522 and a chemical blank measurement. A ¹⁰Be half-life of (1.387 ± 0.0012) x 10^6 years was 523 used (Chmeleff et al., 2010; Korschinek et al., 2010). 524

We calculated ³⁶Cl ages using two different procedures. On the one hand, the ExcelTM spreadsheet for *in situ* ³⁶Cl exposure age calculations designed by Schimmelpfennig et al. (2009), as it allows using different ³⁶Cl production rates from spallation. In this case, the elevation-latitude scaling factors were based on the time invariant "St" scheme (Stone, 2000). The production rate of epithermal neutrons for fast neutrons in the atmosphere at the land/atmosphere interface was 696±185 neutrons (g air)-1 yr-1 (Marrero et al., 2016). The high-energy neutron attenuation length value applied was 160 g cm⁻². We used the following ³⁶Cl production rates –references to sea-level and high latitude (SLHL)– from spallation of different elements: 42.2±4.8 atoms ³⁶Cl (g Ca)⁻¹ yr⁻¹ for Ca spallation (Schimmelpfennig et al., 2011), 148.1±7.8 atoms ³⁶Cl (g K)⁻¹ yr⁻¹ for K spallation (Schimmelpfennig et al., 2014), 13±3 atoms ³⁶Cl (g Ti)⁻¹ yr⁻¹ for Ti spallation (Fink et al., 2000), 1.9 ± 0.2 atoms 36 Cl (g Fe) $^{-1}$ yr $^{-1}$ for Fe spallation (Stone et al., 2005). On the other hand, we calculated the ³⁶Cl exposure ages using the trial version of the online calculator CREp for ³⁶Cl (Schimmelpfennig et al., 2019), where the "LSD" (Lifton-Sato-Dunai) elevation latitude scaling scheme was implemented, together with the LSD geomagnetic database framework (Lifton et al., 2014) and the same production rates from the spallation of the abovementioned elements. As Ca spallation is the most dominant ³⁶Cl production reaction and the Schimmelpfennig et al. (2011) production rate was calibrated at the Etna volcano (i.e. an area with a different atmospheric setting from the Antarctica sampling sites), we corrected the atmospheric pressure of the sampling sites. South Shetland Islands are affected by permanent subpolar low-pressure systems, which affect the cosmic-ray particle flux so that it influences (i.e. increases) the local cosmogenic nuclide production rate. Consequently, this atmospheric pressure anomaly has to be taken into account when scaling the SLHL production rates. In fact, Dunai (2010) advises including any long-term atmospheric pressure anomaly at least for Holocene exposure periods. Thus, the atmospheric pressure value was corrected for the elevation of each sampling site by implementing the ERA40 (Uppala et al., 2005) atmosphere model using the MATLAB function "ERA40.mat" (Lifton et al., 2014). The specific Antarctica atmosphere model (Stone, 2000) was not used as the atmosphere in continental Antarctic is affected by the air flow over the ice-sheet, which impacts the elevation/air pressure relationship in the opposite way (thermal high pressure at surface level). The ³⁶Cl ages that will be presented and discussed throughout this work are those obtained from the "LSD" scaling scheme so that they are comparable to the ¹⁰Be ages.

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

Finally, ¹⁰Be exposure ages were calculated by using the online calculator "CREp" (Martin et al., 2017; available online at: http://crep.crpg.cnrs-nancy.fr/#/). In this calculator, we applied again the "LSD" elevation latitude scaling scheme (Lifton et al., 2014), the ERA40 atmospheric model (Uppala et al., 2005) and the geomagnetic database based on the LSD framework (Lifton et al., 2014). These parameters yield a SLHL ¹⁰Be production rate from Be spallation of 3.98±0.22 atoms g-1 yr-1.

We include the results, with total error and analytical errors in Table 7 and Fig. 3. In the text and in the figures we show the results with the total error. We do not have any quantitative information on the snow cover during the surface exposure duration. Therefore, samples were taken from surfaces that are exposed to strong winds, in order to limit the potential effects of prolonged snow cover on the cosmogenic nuclide production. We also avoided surfaces that showed signs of significant erosion or spalling. In addition, denudation rates in Antarctica are reported to be extremely low (0-1 m/Ma; e.g. Schäfer et al., 1999, Balco et al., 2014), thus having no significant effect on the Holocene exposure ages. Hence, no corrections for potential effects of snow cover or denudation were applied to the ages, in consistency with other studies from this region (e.g. Ciner et al., 2019).

6. Results of the timing of neoglacial advance in the Byers Peninsula

6.1 Geomorphological setting of neoglacial landforms

The ice-cored moraine system in the present front of the Roch Dome Glacier is formed by sharp-crested ridges standing 50 to 70 m above the adjacent bedrock surface, with blocks > 1 m in diameter (Fig. 4, 5 and 6). The extensive debris cover has a very high ice proportion, exceeding 60% of the total volume, according to field observations. The sediments are distributed in the direction of the glacier's foliation and its lithology reflects that of the basalt bedrock, which indicates that the moraine results from basal and englacial debris. From the moraine crests, a steep ramp of ice (40° slope) descends to the southern side of the peninsula. The unconsolidated sediments of the moraines are currently being intensely reworked by mass wasting processes, and are thus not appropriate for surface exposure dating methods (lichenometry or CRE).

This ice-cored moraine ridge overrides all raised beaches from the central plateau to the 6 m a.s.l. raised beach in the N and S coastal fringes (Fig. 4). Our research focuses on the

southern sector of the moraine system, where it overlaps the raised beaches until the Clark 590 Nunatak. Just SW of this nunatak, a small peninsula - called Rish Point - formed by a 591 series of volcanic plugs stands only at 60 m from the coast line (Fig. 4, 5 and 6). 592 Next to the highest volcanic plug of the area (Ritli Hill, 45 m) (Fig. 4, 5, 6 and 7), we

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

observed a glacial polished surface at an elevation of 28 m, and a distance of 600 m southwards of the present moraine ridge. Here, we collected the bedrock sample BYC-1. On another volcanic plug, only 350 m from the moraine ridge and at elevation of 47 m, another polished surface was observed with an erratic on it. Samples were taken from bedrock surface BYC-2 and from the erratic boulder BYC-3.

On the western side of the Clark Nunatak, the ice ramp descending from the external part of the ice-core moraine ridge does not connect with the bedrock surface but to thick layers of till, which rest on the 10-12 m a.s.l. raised beach. At the connection between the till deposits and the raised beach, there is a group of large, stable erratic glacial boulders, aligned parallel to the limit of the glacier. This line of erratic boulders is located about 200 m to the S of the present glacier front and lies on the 10-12 m a.s.l. beach. These boulders are basalts and we assume that were deposited by Dome Rotch glacier during a small advance, when it trespassed the 10-12 m a.s.l. beach. The five largest and most stable basaltic boulders were selected from this line to take samples for ³⁶Cl dating (BYC-9, 10, 11, 13 and 14) (Fig. 5, 6, 8). In addition to the erratic basaltic boulders that rest on the 10-12 m a.s.l raised beach, there are some granite boulders that were embedded in the sediments of this raised beach protruding around a meter above the beach sand level. We assume that these granitic boulders were transported by icebergs from the AP during the beach formation, as there are no granitic rocks in Byers bedrock (Hall and Perry, 2004). We sampled two of the ice rafted granitic boulders (BYB-10 and BYC-12) (Fig. 4, 5, 6, 8 and 9). We assume that the ice-rafted boulders have been stable since they were deposited on the beach, and therefore CRE ages of these boulders must coincide with the age of formation of the beach where they are distributed.

On the other hand, there is a moraine ridge surrounding the W side of Clark Nunatak and with the eastern extreme of Rish Point, which trespassed the 4-6 m a.s.l. raised beach. This is one of the few sites in the Byers Peninsula where the current front of the glacier is separated from the ice-core moraine crest (distance of ca. 500 m). This moraine is formed by several crests and arcs that overlap one another. The youngest arcs constitute ice-cored moraine ridges and are very unstable and subject to mass movements and

- intense remobilization. The outer most crests are stable. Two boulders from this stable
- older sector of the moraine were selected for CRE samples (BYC-4 and 5), located at
- elevation of 35 m (Fig. 4, 5, 6, and 10).
- 626 *6.2 CRE results*
- 627 CRE results show a complex spatio-temporal pattern with regards to the glacial evolution
- during the Mid-Late Holocene in the Byers Peninsula.
- The oldest ages correspond to the deglaciation of the Rish Point. Samples BYC-1 and 2
- on the two polished surfaces located on the summit of volcanic plugs reported the same
- ³⁶Clage of 10.4 ± 1.2 and 10.3 ± 1.3 ka. The erratic boulder BYC-3 deposited on the same
- polished surface as BYC-2 yielded a slightly younger 36 Cl age of 9.1 \pm 1.1 ka. The
- arithmetic mean of these three samples is 9.9 ± 1.2 ka (n=3) (Fig. 3, 4, 5, 6 and Table 7).
- The samples taken from the erratic boulders lying on the 10-12 m a.s.l. raised beach
- 635 (BYC-9, 10, 11, 13 and 14) yielded the following ${}^{36}\text{Clages}$: 3.0 ± 0.7 , 4.2 ± 0.6 , 3.6 ± 0.6 ,
- 4.7 \pm 0.6 and 3.6 \pm 0.7 ka, respectively. The arithmetic mean is 3.8 \pm 0.6 ka (n=5). The
- ages of the granitic boulders embedded in the 10-12 m a.s.l. raised beach (BYB-10) and
- on the littoral platform (BYC-12) give 10 Be ages of 3.5 \pm 0.4 ka and 5.5 \pm 0.4 ka,
- respectively, with an arithmetic mean of 4.4 ± 0.4 ka (n=2). In fact all this ages are
- indistinguishable from each other with an average of 4.1 ± 0.5 ka (n=7) (Fig. 3, 4, 5, 6 and
- 641 Table 7).
- The two boulders distributed on the moraine from the eastern flank of the Clark Nunatak
- where the front of the glacier has significantly retreated over the last decades (BYC-4 and
- 5) showed similar Cl³⁶ ages of 1.1 ± 0.3 and 0.8 ± 0.2 ka, respectively. The mean is 1.0 ± 0.3
- 645 0.2 ka (n=2) (Fig. 3, 4, 5, 6 and Table 7).
- **7. Discussion**
- 7.1 Analysis of the results in the context of the SSI and the AP
- The here presented first CRE dates from the Byers Peninsula indicate the existence of
- three different periods concerning glacier evolution in the area. The first group of
- landforms correspond to the polished surfaces and the erratic boulder located in Rish
- Point. These samples are indicative of the northwards retreat of Rotch Dome Glacier,
- which occurred at around 11-9 ka $(9.9 \pm 1.2 \text{ ka}; \text{ n=3})$. This ice-free corner was deglaciated
- prior to the oldest raised beaches distributed at 15-16 m a.s.l. that were dated at 7.4 cal ka

BP in the Byers Peninsula (Hall 2003; 2010). The age of these landforms fits also with 654 the chronological framework of deglaciation inferred from lake records in this peninsula, 655 suggesting that the initial deglaciation of the central plateau took place at 8.3 cal ka BP 656 (Toro et al., 2013; Oliva et al., 2016). The Early Holocene deglaciation of coastal 657 environments also occurred between 9 and 6 ka in the rest of the SSI (Barsch and 658 Mäusbacher, 1986; Mäusbacher, 1991; Del Valle et al., 2002; Hall, 2003; Bentley et al., 659 2005; Hall, 2010; Watcham et al., 2011), or even before 9 ka (Milliken et al., 2009; Seong 660 et al., 2009; Simms et al., 2011). This timing also coincides with data from other records 661 from the AP, such as marine sediments, which show a clear warming trend beginning 12 662 ka ago (Shevenell et al., 2011), as well as from CRE dating of glacial landforms in this 663 peninsula (White et al., 2011; Glasser et al., 2014; Anderson et al., 2017) (Fig. 11). 664 A second group of landforms includes glacial basaltic boulders distributed on the beach 665 and littoral platform at 10-12 m a.s.l (BYC 9, 10, 11, 13 and 14) and the two ice rafted 666 granitic boulders embedded in the sediments of this raised beach (BYB 10) or located on 667 the same littoral platform (BYC 12). The results obtained show very similar ages for all 668 types of boulders, both basalts and granites, with an average of 4.1± 0.5 ka (n=7). 669 Therefore, the ages of the stabilization of these boulders transported by the Rotch Dome 670 Glacier should correspond to the age of this beach level, where ice rafted granitic boulders 671 are embedded. Radiocarbon dating from whale bones of similar altitude raised beach in 672 the South Beaches, suggested younger ages, between 2.6 and 2 cal ka BP (Hansom, 1979; 673 Hall and Perry, 2004; Hall, 2003, 2010). These data coincide with OSL dates of this level 674 of raised beaches from other islands in this archipelago, between 2.3 and 2.1 ka (Simms 675 et al., 2011a and 2012). Our results from the ice-drafted granitic boulders indicated older 676 ages for this raised beach, 4.4 ± 0.4 ka (n=2), which are synchronous with the glacial 677 boulders that are distributed on it. There is a lack of correspondence between the older 678 ages of the erratic and ice-rafted boulders and the former much younger radiocarbon dates 679 attributed to this raised beach. To understand this apparent contradiction, it is important 680 to highlight that there is no direct dating of the raised beach in the area. Landforms at 681 similar altitudes within the same region do not necessarily have identical chronologies, 682 683 as glacio-isostatic uplift rates enhanced also by neotectonic activity vary throughout the archipelago (Bentley et al., 2005; Fretwell et al., 2010; Simms et al., 2018). In fact, it 684 seems reasonable that the raised beach at +10-12 m a.s.l where the erratic boulders are 685 distributed may constitute an intermediate level between the raised beach dated at 2.6 and 686

which was dated at 7.4 cal ka BP in different areas of this archipelago (Fig. 11). 688 689 The ages of glacial boulders prove the existence of a neoglacial advance in the Byers Peninsula occurred ~4 ka. Until now, no such advance had been proposed, although Hall 690 and Perry (2004) related the 10 m raised beach to a cold period with abundant rich ice-691 rafted debris, and Everett (1971) proposed the same for the 10-12 m a.s.l. raised beach 692 existing in the Hurd Peninsula. Previous studies proposed that the glacier fronts in the 693 Byers Peninsula, as well as in the rest of the SSI, were approximately at their present-day 694 position by 5.5 ka (Barsch and Mäusbacher, 1986; Mäusbacher et al., 1989, Björck et al., 695 1991, 1993, 1996b; Mäusbacher, 1991; Del Valle et al., 2002; Hall, 2003, 2010; Bentley 696 et al., 2005; Watcham et al., 2011; Simms et al., 2011a and 2012; Toro et al., 2013; Oliva 697 et al., 2016). Our results highlight the occurrence of a limited neoglacial advance at ~4 698 ka not exceeding 200 m from the present-day glacier front. Consequently, due to the small 699 extent of this neoglacial expansion, it may have not been detected yet in other areas. There 700 is evidence of a cold period in the SSI before 4 ka according to the analysis of lake (Björck 701 et al., 1991) and marine sediments (Milliken et al., 2009; Chu et al., 2017). In the context 702 of the entire AP area and the rest of the continent, as discussed above, there is robust 703 paleoenvironmental evidence that colder conditions with neoglacial associated advances 704 occurred around 5 ka and were interrupted by the thermal maximum around 4-3 ka (Zale 705 and Karlén, 1989; Mosley-Thompson, 1996; Ingólfsson et al., 1998, 2003; Khim et al., 706 2002; Strelin et al., 2006; Heroy et al., 2008; Bentley et al., 2009; Hall, 2009; Michalchuk 707 et al., 2009; Davies et al., 2012; Shevenell et al., 2011; Carrivick et al., 2012; Cofaigh et 708 al., 2014, Barnard et al., 2014; Davies et al., 2017; Kaplan et al., 2020) (Fig. 11). 709 The last set of glacial landforms corresponds to the moraine ridges of the Rotch Dome 710 Glacier on the southern flank of Clark Nunatak. This is the only area where the glacier is 711 now spatially disconnected from the moraine and includes evidence of a Late Holocene 712 advance of the glacier around the nunatak. Till and disperse erratic boulders are 713 distributed on the 4-6 m a.s.l. raised beach. The BYC-4 and 5 samples were taken from 714 the highest and most stable sector of the moraine showing an average age of ~1. ka. 715 Although, to date, a similar advance has not been confirmed during this time in the SSI, 716 there is some sedimentological evidence pointing to that fact. Barsch and Mäusbacher 717 (1986) suggested two neoglacial advances at 3 and 1 cal ka BP in the SSI. Björck et al. 718 (1991) proposed a cold period in the Byers Peninsula between 1.5 and 0.5 cal ka BP. Hall 719

2 cal ka BP in other sectors of the SSI and the highest raised beach of +15-17 m a.s.l.,

```
and Perry (2004) delimited two cold periods at 0.25 and 1.7 cal ka BP. Hall (2009) used
720
       the CRE <sup>10</sup>Be methodology to date moraines in the Hurd Peninsula and Marion Cove to
721
       1.5–1.0 ka (Hall and Stone, personal communications). Simms et al. (2011a) indicated a
722
       neoglacial advance that ended at approximately 1.7 cal ka BP in Maxwell Bay (King
723
724
       George Island). Lake Domo, which is very close to the study area and located only 350
       m from the present-day glacier front, was deglaciated around 1.8 cal ka BP, probably after
725
       a neoglacial advance (Oliva et al., 2016). Chu et al. (2017) proposed the onset of
726
       neoglacial advances in the Fildes Peninsula at 2.7 cal ka BP. As discussed before, plentiful
727
       evidence from the AP confirm the occurrence of glacial advances between 2.8 and 1.4 ka
728
       (Mosley-Thompson, 1996; Björck et al., 1996; Khim et al., 2002; Heroy et al., 2008;
729
       Bentley et al., 2009; Yoon et al., 2010; Domack et al., 2001; Strelin et al., 2006;
730
       Michalchuk et al., 2009; Allen et al., 2010; Davies et al., 2012; Mulvaney et al., 2012;
731
       Shevenell et al., 2011; Mulvaney et al., 2012; Abram et al., 2013; Hodgson et al., 2013;
732
       Barnard et al., 2014; Davies et al., 2014; Čejka et al., 2019 and Kaplan et al., 2020) (Fig.
733
       11).
734
       As in previous glacial landforms, the ages of the moraine boulder (~1.0 ka) contradict the
735
       age of the raised beach where they rest (LIA). In fact, this raised beach at about 6 m a.s.l.
736
       has been dated in the Byers Peninsula and other islands as belonging to the LIA, between
737
       approximately the 13 and 17th centuries AD (Everett, 1971; John and Sugden, 1971;
738
       John, 1972; Sugden and John, 1973; Curl, 1980; Sugden and Clapperton, 1986;
739
       Clapperton and Sugden, 1988, Hall, 2007; Hall, 2010; Simms et al., 2011a and 2012)
740
       (Fig. 11).
741
       The only place where a moraine similar to the one studied in this work has been directly
742
       dated in the SSI was the Collins Glacier moraine in the Fildes Peninsula by Hall (2007),
743
       according to radiocarbon ages of mosses incorporated into the interior of the moraine. As
744
       in our study area, this sector of moraine was almost the only area where the moraine was
745
       separated from the present Collins Glacier front, and was also at a distance of about 500
746
747
       m. The first results of this work indicated that the most external advance was 2.8 to 1 cal
       ka BP, although Hall (2007) discards this possibility, precisely because the moraine rests
748
       on the 6 m a.s.l. beach.
749
       The discordance between the ages of the moraines dated by CRE ages and the ages of
750
       raised beaches provided by radiocarbon dating of organic fragments present in their sands
751
       will remain a topic of debate until we directly date the studied raised beaches instead of
752
```

- basing their age on a simple correlation of altitudes. This approach could lead to important
- errors related to the regional variability and local neo-tectonics (Bentley et al., 2005;
- 755 Fretwell et al., 2010; Simms et al., 2018).
- The results suggest that these younger moraines may be somewhat older than the LIA, as
- previously thought (Everett, 1971; John and Sugden, 1971; John, 1972; Sugden and John,
- 1973; Curl, 1980; Sugden and Clapperton, 1986; Clapperton, and Sugden, 1988; Hall,
- 759 2007; Hall, 2010). Our proposal is that they are polygenic moraines formed by several
- neoglacial advances driven by cold periods that may have expanded from 2 ka to the LIA,
- as has been proposed in many other areas of the AP (Zale and Karlén, 1989; Domack et
- al., 2001; Hall and Denton, 2002; Allen et al., 2010; Storey et al., 2010; Michalchuk et
- al., 2009; Balco et al., 2013; Davies et al., 2014; Davies et al., 2017). In fact, although the
- outermost crest of the moraine dates back to ~1.0 ka, based on our results (Fig. 4), the
- glacier must have retreated from the moraine limits very recently, probably after 1950, as
- occurred in the nearby peninsula of Elephant Point (Oliva and Ruiz-Fernández, 2015,
- 767 **2017**) (Fig. 11).
- The available proxy data for the Mid and Late Holocene does not yet allow to constrain
- which climate parameters are responsible for such glacial oscillations. Bentley et al.
- 770 (2009) provided evidence of the occurrence of relative warmth from 4.5 to 2 cal. ka BP
- in the AP region, which is also confirmed by ice core records from the NE corner of the
- AP reporting relative stable temperature until 2.5 ka BP when climate cooled (Mulvaney
- et al., 2012). Past surface air temperature changes are similar to those inferred from
- several sites across the AP from moss banks (Charman et al., 2018).
- 7.2 The Neoglaciation of the SSI and the AP in a global context
- Despite significant regional variations in the timing of Neoglaciation in the AP, there are
- some common patterns in all records: the end of maximum deglaciation occurred at
- around 7-6 ka and the first neoglacial started at 5 ka, with new and previously undated
- neoglacial advances between 2.7 and 1 ka, and even up to the LIA, before the RRW. Most
- records in the SSI are not concurrent with neoglacial timing in the AP. This can be related
- to the different nature of the records and dating methods used in each study. In fact, each
- of the proxies examined in this work (ice core, marine and lake sediments, raised beaches
- and glacial landforms) as well as the dating methods have been substantially refined over
- the last years and inter-comparisons between areas and methods are needed to
- homogenize and compare results (e.g. Simonsen et al., 2019; Singer et al., 2019; Sadatzki

et al., 2019; Čejka et al., 2019). However, our data show that the chronology inferred 786 directly from glacial landforms shows a similar timing for neoglacial advances in the SSI 787 and the AP. Recently, Kaplan et al. (2020) highlighted synchronous millennial-scale 788 neoglacial oscillations in the NE edge of the AP and in Patagonia. These authors proposed 789 790 that these neoglacial advances coincided with negative phases of the Southern Annular Mode (SAM), when the westerly winds expanded towards the equator. In line with this, 791 the current RRW coincides with a positive phase of the SAM that is favoring widespread 792 glacial retreat in both regions (Abram et al., 2014). 793 The comparison of Neoglaciation in the AP with the Arctic records may reveal whether 794 neoglacial advances follow interhemispheric connection between polar regions. 795 However, neoglacial advances within the Arctic show a very different pattern, even more 796 divergent than within the AP (Solomina et al., 2015; McKay, et al., 2018). Throughout 797 the Arctic, the end of deglaciation varied from 11 to 5 ka depending on the region 798 (Renssen et al., 2012). The first phases of neoglacial advances were detected between 9 799 to 7 ka in Scandinavia and 4 ka in Greenland (Solomina et al., 2015; McKay, et al., 2018). 800 In any case, there are also some common patterns for the entire Arctic, which are quite 801 similar to those observed in the AP. According to the most recent synthesis, glaciers 802 retreated throughout the Arctic from 8.6 to 5 ka (Marcott et al., 2013; Solomina et al., 803 2015; Kaufman et al., 2016; Sejrup et al., 2016; Briner et al., 2016; McKay, et al., 2018; 804 Geirsdóttir et al., 2019), similarly to what happened in the SSI and the AP. After this 805 widespread retreat, there are two main phases of generalized neoglacial expansion in 806 (almost) all regions across the Arctic, one beginning at 4.5 ka and another from 2 ka to 807 the LIA (Solomina et al., 2015; Miller et al., 2013; Miller et al., 2017; McKay, et al., 808 2018; Gersdóttir et al., 2019). A similar timing for glacial advances was also identified 809 in the SSI and the AP. 810 Therefore, there is a common global pattern at a millennia timescale with regards to the 811 Neoglaciation dynamics in glaciers of the AP and in the Arctic. These patterns are similar 812 813 to those found in the Byers Peninsula: intensive deglaciation around 8.6 to 5 ka, followed by the first neoglacial advances around 4.5 ka and new, intensive neoglacial advances 814 around 2 ka. This Late Holocene glacier behavior in the high latitudes of both 815 816 hemispheres is very different from the evolution of temperatures that occurred in the two regions during Termination I, when temperature changes were simultaneous but inverse 817 in the two hemispheres, the pattern known as "bipolar seesaw" (Broecker and Denton, 818

1990; Barker et al., 2009, 2010). The opposite temperature trends recorded in Antarctica and Greenland during Termination I (seesaw pattern) have been confirmed by ice cores (Severinghaus and Brook, 1999; Brook and Buizert, 2018; Stolper et al., 2016) and are attributed to changes in the intensity of the Atlantic Meridional Overturning Circulation (AMOC, Baker et al., 2009, 2010). The cooling of the Northern Hemisphere reduces the strength of the AMOC (Deaney et al., 2017; Muschitiello et al., 2019), which, in turn, causes the ventilation of the Southern Hemisphere oceans and the emission of a large amount of CO₂ into the atmosphere, significantly warming Antarctica (Ahn et al., 2012; Beeman et al., 2019; Clementi and Sikes, 2019). Inverse temperatures between the two hemispheres during Termination I resulted in opposite behavior of the glaciers in each hemisphere (Jomelli et al., 2014; Darvill et al., 2016; Koffman et al., 2017; Shulmeister et al., 2019). However, this was not the case during the Holocene, mainly during Neoglaciation. The orbitally-forced changes in insolation are likely to be the main driver of Neoglaciation. In fact, negative Total Solar Irradiance anomalies are proposed as one of the main triggers of neoglacial advances into the large scale climatic transformations (Renssen 2006; Solomina et al., 2012), together with volcanic activity, which also played an important role in some of the neoglacial events (Miller et al., 2012, 2013). Both the HTM and the Neoglaciation are global-scale patterns, despite recording notable regional variability. This could be the critical difference with the current warm period (RRW), where the response of glaciers is almost global and synchronous (Renssen 2012; Solomina et al., 2012).

840

841

842

843

844

845

846

847

848

849

850

851

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

7. Conclusions

Establishing the chronology of deglaciation of ice-free areas in the AP region is of key importance in a changing climate scenario. To that purpose, we have reconstructed the calendar of the most recent glacial oscillations in the largest ice-free area in the SSI, the Byers Peninsula. Here, previous knowledge on the deglaciation was based on only a few radiocarbon dates from lake sediments that did not offer an accurate picture of the glacial evolution of the Mid-Late Holocene. We used CRE dating to examine the timing of neoglacial advances of Rotch Dome Glacier and compare it with other areas across the AP region.

Deglaciation of today's main ice-free areas in the SSI and the rest of the AP occurred between 9 and 6 ka, according to previous studies. After 6 ka, glaciers were similar or

smaller than their present-day size in most of the AP. The first neoglacial advance in this area took place from ~5.5 ka, followed by a warm period between 4 and 2.8 ka. Subsequently until 1.0 ka, there was another period of generalized neoglacial advance in the AP. In the SSI, there was evidence of cold periods from 5.8 to 5.6, and from 2.7 cal ka BP from some paleoclimatic proxies, but the glacial response to those climate shifts was still unknown. This study confirms that, as in other areas of the AP, glacial advances also occurred in the SSI during these Neoglaciation cold periods in ~4.1 and 1.0 ka.

The recent synthesis of glacial evolution in the Arctic since the Mid-Holocene shows that there was even larger regional diversity with regards to the chronology of neoglacial advances. In the Arctic, the regional climate forcings determine climate trends that can lead to glacial advance within a global tendency to warming. However, millennial-scale patterns between the Arctic and the AP region seem to follow common trends. This timing revealed by the neoglacial landforms should be taken into account when looking for the origin of climate changes that caused Neoglaciation, which was practically synchronous in both polar areas. Consequently, although the objective of this work was not to examine the origin and causes of Neoglaciation, we provide new evidence supporting a global background for neoglacial advances beyond hemispheric-scale factors, which would have favored neoglacial advances with different time ranges in both Polar Regions.

Acknowledgements

This paper was supported by the projects CTM2016-77878-P and CGL2015-65813-R of Economy and Competitiveness), (Spanish Ministry and NUNANTAR (02/SAICT/2017 - 32002; Fundação para a Ciência e a Tecnologia, Portugal). It also complements the research topics examined in the project PALEOGREEN (CTM2017-87976-P; Spanish Ministry of Economy and Competitiveness). We also thank the Portuguese Polar Program for their support in organizing field logistics. The ¹⁰Be and ³⁶Cl measurements were performed at the ASTER AMS national facility (CEREGE, Aix en Provence), which is supported by the INSU/CNRS and the ANR through the "Projets thématiques d'excellence" program for the "Equipements d'excellence" ASTER-CEREGE action and IRD. David Palacios thanks to the Institute of Alpine and Arctic Research, at the University of Colorado, the facilities provided to coordinate this work during his Fulbright Grant stay there in 2019. Marc Oliva is supported by the Ramón y Cajal Program (RYC-2015-17597) and the Research Group ANTALP (Antarctic, Arctic, Alpine Environments; 2017-SGR-1102). We thank Dr. Vincent Jomelli, Dr. Jan-Hendrik

May one anonymous reviewers for their valuable suggestions that have greatly improved

886 the paper.

887

888

References

- Abram, N.J., Mulvaney, R., Wolff, E.W., Triest, J., Kipfstuhl, S., Trusel, L.D., ... & Arrowsmith, C. (2013).

 Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century. Nature

 Geoscience, 6(5), 404. DOI: 10.1038/NGEO1787
- Abram, N.J., Mulvaney, R., Vimeuz, F., Phipps, S.J., Turner, J., England, M.H., 2014. Evolution of the southern annular mode during the past millennium. Nat. Cli-mate Change4, 564–569.
- Ahn, J., Brook, E.J.Schmittner, A., & Kreutz, K. (2012), Abrupt change in atmospheric CO2 during the last ice age, Geophys. Res. Lett., 39, L18711, DOI:10.1029/2012GL053018.
- Alfaro, P., López-Martínez, J., Maestro, A., Galindo-Zaldívar, J., Durán-Valsero, J.J., & Cuchí, J.A. (2010).

 Recent tectonic and morphostructural evolution of Byers Peninsula (Antarctica): insight into the development of the South Shetland Islands and Bransfield Basin. Journal of Iberian Geology 36(1), 21-38.
- Allen, C.S., Oakes-Fretwell, L., Anderson, J.B., & Hodgson, D.A. (2010). A record of Holocene glacial and oceanographic variability in Neny Fjord, Antarctic Peninsula. The Holocene, 20(4), 551-564. DOI: 10.1177/0959683609356581
- 903 Almela, P., Velázquez, D., Rico, E., Justel, A., & Quesada, A. (2019). Carbon pathways through the food 904 web of a microbial mat from Byers Peninsula, Antarctica. Frontiers in microbiology, 10, 628. 905 https://doi.org/10.3389/fmicb.2019.00628
- Anderson, J. T., Wilson, G. S., Fink, D., Lilly, K., Levy, R. H., & Townsend, D. (2017). Reconciling marine and terrestrial evidence for post LGM ice sheet retreat in southern McMurdo Sound, Antarctica. Quaternary Science Reviews, 157, 1-13. https://doi.org/10.1016/j.quascirev.2016.12.007
- Araya, R., & Hervé, F. (1966). Estudio geomorfológico y geológico en las Islas Shetland del Sur Antártica.
 Instituto Antártico Chileno, Nº8, Santiago, Chile.76 pp.
- Arche, A., López-Martínez, J., Serrano, J. & Martínez De Pisón, E. (1996). Marine landforms and deposits.
 In López-Martínez, J., Thomson, M.R.A. & Thomson, J.W., Eds. Geomorphological map of Byers
 Peninsula, Livingston Island. BAS GEOMAP series, sheet 5-a, 1:25 000, with supplementary text.
 Cambridge: British Antarctic Survey, 35-42.
- Arnold, M., Merchel, S., Bourlès, D.L., Braucher, R., Benedetti, L., Finkel, R.C., Aumaître, G., Gottdang,
 A., Klein, M., 2010. The French accelerator mass spectrometry facility ASTER: Improved
 performance and developments. Nuclear Instruments and Methods in Physics Research, Section
 B, Beam Interactions with Materials and Atoms, 19th International Conference on Ion Beam
 Analysis 268, 1954–1959. https://doi.org/10.1016/j.nimb.2010.02.107
- Balco, G., Schaefer, J. M., LARISSA group (2013). Exposure-age record of Holocene ice sheet and ice
 shelf change in the northeast Antarctic Peninsula. Quaternary Science Reviews, 59, 101-111. DOI:
 10.1016/j.quascirev.2012.10.022
- Balco, G., Stone, J. O., Sliwinski, M. G., Todd, C. (2014). Features of the glacial history of the Transantarctic Mountains inferred from cosmogenic 26 Al, 10 Be and 21 Ne concentrations in bedrock surfaces. Antarctic Science, 26(6), 708-723. https://doi.org/10.1017/S0954102014000261
- Bañón, M., Justel, A., Velázquez, D., & Quesada, A. (2013). Regional weather survey on Byers Peninsula,
 Livingston Island, South Shetland Islands, Antarctica. Antarctic Science, 25(2), 146-156.
 DOI:10.1017/S0954102012001046
- Barker, S., Diz, P., Vautravers, M.J., Pike, J., Knorr, G., Hall, I.R., & Broecker, W.S. (2009). Interhemispheric Atlantic seesaw response during the last deglaciation. Nature, 457(7233), 1097.
- Barker, S., Knorr, G., Vautravers, M.J., Diz, P., & Skinner, L.C. (2010). Extreme deepening of the Atlantic overturning circulation during deglaciation. Nature Geoscience, 3(8), 567.
- 933 Barnard, A., Wellner, J. S., & Anderson, J.B. (2014). Late Holocene climate change recorded in proxy

- 934 records from a Bransfield Basin sediment core, Antarctic Peninsula. Polar Research, 33(1), 17236.
 935 DOI. 10.3402/polar.v33.17236
- Barsch, D., & Mäusbacher, R. (1986). New data on the relief development of the South Shetland Islands, Antarctica. Interdisciplinary Science Reviews, 11(2), 211-218. DOI: 10.1179/isr.1986.11.2.211
- Beeman, C.J., Gest, L., Parrenin, F., Raynaud, D., Fudge, T.J., Buizert, C., & Brook, E.J. (2019). Antarctic temperature and CO2: Near-synchrony yet variable phasing during the last deglaciation. Climate of the Past, 15, 913-926, DOI: 10.5194/cp-15-913-2019.
- Benayas, J., Pertierra, L., Tejedo, P., Lara, F., Bermudez, O., Hughes, K. A., & Quesada, A. (2013). A
 review of scientific research trends within ASPA no. 126 Byers Peninsula, South Shetland Islands,
 Antarctica. Antarctic Science, 25(2), 128-145.
- Bentley, M.J., Evans, D.J.A., Fogwill, C.J., Hansom, J.D., Sugden, D.E., & Kubik, P.W. (2007). Glacial geomorphology and chronology of deglaciation, South Georgia, sub-Antarctic. Quaternary Science Reviews, 26(5-6), 644-677. DOI:10.1016/j.quascirev.2006.11.019
- Bentley, M.J., Hodgson, D.A., Smith, J A., & Cox, N.J. (2005). Relative sea level curves for the South Shetland Islands and Marguerite Bay, Antarctic Peninsula. Quaternary Science Reviews, 24(10-11), 1203-1216. DOI:10.1016/j.quascirev.2004.10.004
- Bentley, M.J., Hodgson, D.A., Smith, J.A., Cofaigh, C.O., Domack, E.W., Larter, R.D., ... & Hillenbrand,
 C.D. (2009). Mechanisms of Holocene palaeoenvironmental change in the Antarctic Peninsula
 region. The Holocene, 19(1), 51-69. DOI: 10.1177/0959683608096603
- Bentley, M.J.; Hodgson, D.A. (2009). Antarctic Ice Sheet and climate history since the last Glacial Maximum. Pages News, 17(1), 28-29.
- Bentley, M. J., Cofaigh, C. O., Anderson, J. B., Conway, H., Davies, B., Graham, A. G., ... & Mackintosh,
 A. (2014). A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since
 the Last Glacial Maximum. Quaternary Science Reviews, 100, 1-9.
 https://doi.org/10.1016/j.quascirev.2014.06.025
- Bertler, N.A.N., Mayewski, P.A., Carter, L. (2011). Cold conditions in Antarctica during the Little Ice Age
 e implications for abrupt climate change mechanisms. Earth and Planetary Science Letters, 308,
 41-51. DOI:10.1016/j.epsl.2011.05.021
- Birkenmajer, K. (1995). Glacier retreat and raised marine beaches at Three Sisters Point, King George Island (South Shetland Islands, West Antarctica). Bulletin of the Polish Academy of Sciences, 43, 135-41.
- Birkenmajer, K. (1998). Quaternary geology at Potter Peninsula, King George Island (South Shetland Islands, West Antarctica). Bulletin of the Polish Academy of Sciences, 46, 9-20.
- Birkenmajer, K. (2002). Retreat of Ecology Glacier, Admiralty Bay, King George Island (South Shetland Islands, West Antarctica), 1956–2001. Bulletin of the Polish Academy of Sciences, 50, 15-29.
- Birkenmajer, K.. (1981). Raised marine features and glacial history in the vicinity of H. Arctowski Station,
 King George Island (South Shetland Islands, West Antarctica). Bulletin of the Polish Academy of
 Sciences, 29, 109-17.
- Björck, S., Hakansson, H., Zale, R., Karlén, W. & Jónsson, B.L. (1991). A late Holocene lake sediment sequence from Livingston Island, South Shetland Islands, with palaeoclimatic implications.

 Antarctic Science, 3, 61-72.
- Björck, S., Hakansson, H., Olsson, S., Barnekow, L. & Janssens, J. (1993). Palaeoclimatic studies in South
 Shetlands Islands, Antarctica, based on numerous stratigraphic variables in lake sediments. Journal
 of Paleolimnology, 8, 233-272.
- Björck, S., Olsson, S., Ellis-Evans, C., Håkansson, H., Humlum, O., & de Lirio, J.M. (1996a). Late
 Holocene palaeoclimatic records from lake sediments on James Ross Island, Antarctica.
 Palaeogeography, Palaeoclimatology, Palaeoecology, 121(3-4), 195-220.
- Björck, S., Hjort, C., Ingólfsson, Ó., Zale, R. & Ising, J. (1996b). Holocene glacial chronology from lake
 sediments. In López-Martínez, J., Thomson, M.R.A. & Thomson, J.W., Eds. Geomorphological
 map of Byers Peninsula, Livingston Island. BAS GEOMAP series, sheet 5-a, 1:25 000, with
 supplementary text. Cambridge: British Antarctic Survey, 49-51.

- Braucher, R., Guillou, V., Bourlès, D.L., Arnold, M., Aumaître, G., Keddadouche, K., Nottoli, E., 2015.

 Preparation of ASTER in-house ¹⁰Be/⁹Be standard solutions. Nuclear Instruments and Methods in Physics Research, Section B, Beam Interactions with Materials and Atoms, The Thirteenth Accelerator Mass Spectrometry Conference 361, 335–340.

 https://doi.org/10.1016/j.nimb.2015.06.012
- 990 Brightley, H. (2017). A Paleoclimate Reconstruction of the Little Ice Age to Modern Era Climate
 991 Conditions in the Eastern Ross Sea, Antarctica as Captured in the RICE Ice Core. A thesis
 992 submitted to Victoria University of Wellington in partial fulfilment of the requirements for the
 993 degree of Master of Science in Geology, School of Geography, Environmental and Earth Sciences,
 994 Victoria University of Wellington. http://hdl.handle.net/10063/6394
- Briner, J.P., McKay, N.P., Axford, Y., Bennike, O., Bradley, R.S., de Vernal, A., ... & Jennings, A. (2016).
 Holocene climate change in Arctic Canada and Greenland. Quaternary Science Reviews, 147, 340-364.
- Broecker, W.S. & Denton, G.H. (1990). The role of ocean-atmosphere reorganizations in glacial cycles.

 Quaternary Science Reviews, 9, 305-341.
- Brook, E.J., & Buizert, C. (2018). Antarctic and global climate history viewed from ice cores. Nature, 558(7709), 200.
- Carrivick, J.L., Davies, B.J., Glasser, N.F., Nývlt, D. (2012). Late Holocene changes in character and behaviour of land-terminating glaciers on James Ross Island, Antarctica. Journal od Glaciology, 58, 1176-1190. DOI: 10.3189/2012JoG11J148
- Čejka, T., Nývlt, D., Kopalová, K., Bulínová, M., Kavan, J., Lirio, J. M.,, Coria, S.H. van de Vijver, B.
 2019. Timing of the Neoglacial onset on the north-eastern Antarctic Peninsula based on lacustrine
 archive from Lake Anónima, Vega Island. Global and Planetary Change, 184
 https://doi.org/10.1016/j.gloplacha.2019.103050.
- Charman, D.J., Amesbury, M.J., Roland, T.P., Royles, J., Hodgson, D.A., Convey, P., Griffiths, H., 2018.

 Spatially coherent late Holocene Antarctic Peninsula surface air temperature variability. Geology 46, 1071–1074. https://doi.org/10.1130/G45347.1
- Chmeleff, J., von Blanckenburg, F., Kossert, K., Jakob, D., 2010. Determination of the ¹⁰Be half-life by multicollector ICP-MS and liquid scintillation counting Nuclear Instruments and Methods in Physics Research, Section B, Beam Interactions with Materials and Atoms 268, 192–199. https://doi.org/10.1016/j.nimb.2009.09.012
- 1016 Christ, A.J., Talaia-Murray, M., Elking, N., Domack, E.W., Leventer, A., Lavoie, C., ... & Petrushak, S. 1017 (2015). Late Holocene glacial advance and ice shelf growth in Barilari Bay, Graham Land, west Antarctic Peninsula. GSA Bulletin, 127(1-2), 297-315. DOI: 10.1130/B31035.1;
- Chu, Z., Sun, L., Wang, Y., Huang, T., & Zhou, X. (2017). Depositional environment and climate changes during the Holocene in Grande Valley, Fildes Peninsula, King George Island, Antarctica. Antarctic Science, 29(6), 545-554. https://doi.org/10.1017/S095410201700030X
- Çiner, A., Yildirim, C., Sarikaya, M. A., Seong, Y. B., Yu, B. Y. (2019). Cosmogenic 10 Be exposure 1022 dating of glacial erratics on Horseshoe Island in western Antarctic Peninsula confirms rapid 1023 1024 deglaciation Early Holocene. Antarctic Science, 31(6), 319-331. in the https://doi.org/10.1017/S0954102019000439 1025
- 1026 Clapperton, C.M., & Sugden, D.E. (1988). Holocene glacier fluctuations in South America and Antarctica.

 1027 Quaternary Science Reviews, 7(2), 185-198.
- 1028 Clementi, V.J., Sikes, E.L. 2019. Southwest Pacific vertical structure influences on oceanic carbon storage since the Last Glacial Maximum. Paleoceanogr. Paleoclim. 34, 734–754. 10.1029/2018PA003501
- Cofaigh, C.Ó., Davies, B.J., Livingstone, S.J., Smith, J.A., Johnson, J.S., Hocking, E.P., ... & Domack, E. (2014). Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum. Quaternary Science Reviews, 100, 87-110. DOI: 10.1016/j.quascirev.2014.06.023
- Cook, A. J., Fox, A.J., Vaughan, D.G., & Ferrigno, J.G. (2005). Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308(5721), 541-544. DOI: 10.1126/science.1104235
- 1035 Correia, A., Oliva, M., & Ruiz-Fernández, J. (2017). Evaluation of frozen ground conditions along a coastal topographic gradient at Byers Peninsula (Livingston Island, Antarctica) by geophysical and

- 1037 geoecological methods. Catena, 149, 529-537. DOI: 10.1016/j.catena.2016.08.006
- Curl, J.E. (1980). A glacial history of the South Shetland Islands, Antarctica. Institute of Polar Studies, Intitute of Polar Studies, Report No 63. The Ohio State University. 129 pp.
- Darvill, C.M., Bentley, M.J., Stokes C.R., Shulmeister, J. (2016). The timing and cause of glacial advances in the southern mid-latitudes during the last glacial cycle based on a synthesis of exposure ages from Patagonia and New Zealand. Quaternary Science Reviews, 149, 200-214.
- Davies, B.J., Glasser, N.F., Carrivick, J.L., Hambrey, M.J., Smellie, J.L., & Nývlt, D. (2013). Landscape evolution and ice-sheet behaviour in a semi-arid polar environment: James Ross Island, NE Antarctic Peninsula. Geological Society, London, Special Publications, 381(1), 353-395. DOI:10.1144/SP381.1
- Davies, B.J., Golledge, N.R., Glasser, N.F., Carrivick, J.L., Ligtenberg, S.R., Barrand, N.E., ... & Smellie,

 J.L. (2014). Modelled glacier response to centennial temperature and precipitation trends on the
 Antarctic Peninsula. Nature Climate Change, 4(11), 993. DOI: 10.1038/NCLIMATE2369
- Davies, B.J., Hambrey, M.J., Glasser, N.F., Holt, T., Rodés, A., Smellie, J.L., ... & Blockley, S.P. (2017).

 Ice-dammed lateral lake and epishelf lake insights into Holocene dynamics of Marguerite Trough
 Ice Stream and George VI Ice Shelf, Alexander Island, Antarctic Peninsula. Quaternary Science
 Reviews, 177, 189-219. DOI: 10.1016/j.quascirev.2017.10.016
- Davies, B.J., Hambrey, M.J., Smellie, J.L., Carrivick, J.L., & Glasser, N.F. (2012). Antarctic Peninsula ice sheet evolution during the Cenozoic Era. Quaternary Science Reviews, 31, 30-66. DOI:10.1016/j.quascirev.2011.10.012
- De Pablo, M. A., Ramos, M., & Molina, A. (2014). Thermal characterization of the active layer at the Limnopolar Lake CALM-S site on Byers Peninsula (Livingston Island), Antarctica. Solid Earth, 5(2), 721-739. DOI:10.5194/se-5-721-2014
- Deaney, E.L., Barker, S., & Van De Flierdt, T. (2017). Timing and nature of AMOC recovery across Termination 2 and magnitude of deglacial CO 2 change. Nature communications, 8, 14595.
- Del Valle, R.A., Montalti, D., & Inbar, M. (2002). Mid-Holocene macrofossil-bearing raised marine beaches at Potter Peninsula, King George Island, South Shetland Islands. Antarctic Science, 14(3), 263-269. DOI: 10.1017/S0954102002000081
- Domack, E., Ishman, S., Stein, A.B., McClennen, C.E., Jull, A.J.T. (1995). Late Holocene advance of Müller Ice Shelf, Antarctic Peninsula: sedimentological, geochemical, and palaeontological evidence. Antarctic Science 7, 159-170.
- Domack, E.W., Leventer, A., Dunbar, G.B., Taylor, F., Brachfeld, S., Sjunneskog, C., Party, O.L.S., (2001).

 Chronology of the Palmer Deep site, Antarctic Peninsula: A Holocene palaeoenvironmental reference for the circum-Antarctic. The Holocene 11, 1-9.
- Dunai, T.J., 2010. Cosmogenic Nuclides. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511804519
- Engel, Z., Láska, K., Nývlt, D., Stachoň. Z. (2018). Surface Mass Balance of Small Glaciers on James Ross Island, North-Eastern Antarctic Peninsula, during 2009-2015. Journal of Glaciology, 64 (245), 349-361.
- Everett, K.R. (1971). Observations on the glacial history of Livingston Island. Arctic, 41-50.
- Fretwell, P. T., Hodgson, D. A., Watcham, E. P., Bentley, M. J., & Roberts, S. J. (2010). Holocene isostatic uplift of the South Shetland Islands, Antarctic Peninsula, modelled from raised beaches.

 Quaternary Science Reviews, 29(15-16), 1880-1893. DOI:10.1016/j.quascirev.2010.04.006
- Fink, D., Vogt, S., Hotchkis, M., 2000. Cross-sections for 36Cl from Ti at Ep=35–150 MeV: Applications to in-situ exposure dating. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 172, 861–866. doi:10.1016/S0168-583X(00)00200-7
- Geirsdóttir, Á., Miller, G.H., Andrews, J.T., Harning, D.J., Anderson, L.S., Florian, C., ... & Thordarson, T. (2019). The onset of neoglaciation in Iceland and the 4.2 ka event. Climate of the Past, 15(1), 25-40. DOI: 10.5194/cp-15-25-2019
- Glasser, N.F., Davies, B.J., Carrivick, J.L., Rodés, A., Hambrey, M.J., Smellie, J.L., & Domack, E. (2014).

 Ice-stream initiation, duration and thinning on James Ross Island, northern Antarctic Peninsula.

- 1088 Quaternary Science Reviews, 86, 78-88. DOI: 10.1016/j.quascirev.2013.11.012
- Guglielmin, M., Convey, P., Malfasi, F., Cannone, N. (2016). Glacial fluctuations since the 'Medieval warm period'at Rothera Point (western Antarctic Peninsula). The Holocene, 26(1), 154-158. DOI: 10.1177/0959683615596827
- Hall, B.L. (2003). An overview of late Pleistocene glaciation in the South Shetland Islands. Antarctic Research Series, 79, 103-113. DOI: 10.1029/079ARS09
- Hall, B.L. (2007). Late-Holocene advance of the Collins Ice Cap, King George Island, South Shetland Islands. The Holocene, 17(8), 1253-1258. DOI: 10.1177/0959683607085132
- Hall, B.L. (2009). Holocene glacial history of Antarctica and the sub-Antarctic islands. Quaternary Science Reviews, 28(21-22), 2213-2230. DOI:10.1016/j.quascirev.2009.06.011
- Hall, B.L., & Denton, G.H. (1999). New relative sea-level curves for the southern Scott Coast, Antarctica: evidence for Holocene deglaciation of the western Ross Sea. Journal of Quaternary Science, 14(7), 641-650.
- Hall, B.L., Denton, G. (2002). Holocene history of the Wilson Piedmont Glacier along the southern Scott Coast. The Holocene 12, 619-627. DOI: 10.1191/0959683602hl572rp
- Hall, B.L., & Perry, E.R. (2004). Variations in ice rafted detritus on beaches in the South Shetland Islands: a possible climate proxy. Antarctic Science, 16(3), 339-344. DOI: 10.1017/S0954102004002147
- Hall, B.L., Koffman, T., Denton, G. H. (2010). Reduced ice extent on the western Antarctic Peninsula at 700–970 cal. yr BP. Geology, 38(7), 635-638. DOI: 10.1130/G30932.1
- Hall, B.L. (2010). Holocene relative sea-level changes and ice fluctuations in the South Shetland Islands.
 Global and Planetary Change 74, 15-26.
- Hambrey, M.J., Davies, B.J., Glasser, N.F., Holt, T.O., Smellie, J.L., & Carrivick, J.L. (2015). Structure and sedimentology of George VI Ice Shelf, Antarctic Peninsula: implications for ice-sheet dynamics and landform development. Journal of the Geological Society, 172(5), 599-613. DOI: 10.1144/jgs2014-134
- Hansom, J. D. (1979). Radiocarbon dating of a raised beach at 10 m in the South Shetland Islands. British Antarctic Survey Bulletin, 49, 287-288.
- Hathway, B. & Lomas, S.A. (1998). The Upper Jurassic-Lower cretaceous Byers Group, South Shetland Islands, Antarctica: revised stratigraphy and regional correlations. Cretaceous Research, 19, 43-67.
- Heroy, D.C., Sjunneskog, C., & Anderson, J.B. (2008). Holocene climate change in the Bransfield Basin,
 Antarctic Peninsula: evidence from sediment and diatom analysis. Antarctic Science, 20(1), 6987. DOI: 10.1017/S0954102007000788
- Hodgson, D.A., Roberts, S.J., Smith, J.A., Verleyen, E., Sterken, M., Labarque, M., ... & Bryant, C. (2013).

 Late Quaternary environmental changes in Marguerite Bay, Antarctic Peninsula, inferred from lake sediments and raised beaches. Quaternary Science Reviews, 68, 216-236.

 DOI:10.1016/j.quascirev.2011.10.011
- Hrbáček, F., Oliva, M., Láska, K., Ruiz-Fernandez, J., de Pablo, M.A., Vieira, G., Ramos, M. & Nývlt, D. (2016). Active layer thermal regime in two climatically contrasted sites of the Antarctic Peninsula region. Cuadernos de Investigación Geográfica, 42(2), 457-474.
- Ingólfsson, Ó., Hjort, C., & Humlum, O. (2003). Glacial and climate history of the Antarctic Peninsula since the Last Glacial Maximum. Arctic, Antarctic, and Alpine Research, 35(2), 175-186. DOI: 10.1657/1523-0430(2003)035[0175:GACHOT]2.0.CO;2
- Ingólfsson, Ó., Hjort, C., Berkman, P.A., Björck, S., Colhoun, E., Goodwin, I.D., ... & Prentice, M.L. (1998). Antarctic glacial history since the Last Glacial Maximum: an overview of the record on land. Antarctic science, 10(3), 326-344.
- 1134 Ivy-Ochs, S., Synal, H.-A., Roth, C., Schaller, M., 2004. Initial results from isotope dilution for Cl and 36Cl measurements at the PSI/ETH Zurich AMS facility. Nucl. Instruments Methods Phys. Res. 1136 Sect. B Beam Interact. with Mater. Atoms 223–224, 623–627. doi:10.1016/j.nimb.2004.04.115
- John, B.S. (1972). Evidence from the South Shetland Islands towards a glacial history of West Antarctica.

- Institute of British Geographers, Special Publication, 4, 75-89.
- John, B.S., & Sugden, D.E. (1971). Raised marine features and phases of glaciation in the South Shetland Islands. British Antarctic Survey Bulletin, 24, 45-111.
- Jomelli, V., Favier, V., Vuille, M., Braucher, R., Martin, L., Blard, P.H., Colose, C., Brunstein, D., He, F., Khodri, M., Bourles, D.L., Leanni, L., Rinterknecht, V., Grancher, D., Francou, B., Ceballos, J.L., Fonseca, H., Liu, Z., Otto-Bliesner, B.L. (2014). A major advance of tropical Andean glaciers

during the Antarctic cold reversal. Nature, 513, 224-228.

- Kaplan, M. R., Strelin, J. A., Schaefer, J. M., Peltier, C., Martini, M. A., Flores, E. Winckler, G. Schwartz, R. (2020). Holocene glacier behavior around the northern Antarctic Peninsula and possible causes. Earth and Planetary Science Letters, 534, 116077. https://doi.org/10.1016/j.epsl.2020.116077
- Kaufman, D.S., Ager, T.A., Anderson, N.J., Anderson, P.M., Andrews, J.T., Bartlein, P.J., ... & Dyke, A.S. (2004). Holocene thermal maximum in the western Arctic (0–180 W). Quaternary Science Reviews, 23(5-6), 529-560. DOI:10.1016/j.quascirev.2003.09.007
- Kaufman, D.S., Axford, Y.L., Henderson, A.C., McKay, N.P., Oswald, W.W., Saenger, C., ... & Hu, F.S. (2016). Holocene climate changes in eastern Beringia (NW North America)—A systematic review of multi-proxy evidence. Quaternary Science Reviews, 147, 312-339.
- Khim, B.K., Yoon, H.I., Kang, C.Y., Bahk, J.J. (2002). Unstable climate oscillations during the late
 Holocene in the eastern Bransfield Basin, Antarctic Peninsula Quaternary Research, 58, 234-245.
 DOI:10.1006/qres.2002.2371
- Koffman, T.N., Schaefer, J.M., Putnam, A.E., Denton, G.H., Barrell, D.J., Rowan, A.V., ... & Brocklehurst, S.H. (2017). A beryllium-10 chronology of late-glacial moraines in the upper Rakaia valley, Southern Alps, New Zealand supports Southern-Hemisphere warming during the Younger Dryas. Quaternary Science Reviews, 170, 14-25.
- Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., Rugel, G., Wallner, A.,
 Dillmann, I., Dollinger, G., von Gostomski, C.L., Kossert, K., Maiti, M., Poutivtsev, M., Remmert,
 A., 2010. A new value for the half-life of ¹⁰Be by Heavy-Ion Elastic Recoil Detection and liquid
 scintillation counting. Nuclear Instruments and Methods in Physics Research, Section B, Beam
 Interactions with Materials and Atoms 268, 187–191. https://doi.org/10.1016/j.nimb.2009.09.020
- Kunz, M., King, M.A.. Mills, J.P., Miller, P.E., Fox, A.J., Vaughan, D.G., Marsh., S.H. (2012). Multi-Decadal Glacier Surface Lowering in the Antarctic Peninsula. Geophysical Research Letters, 39 (19), 1-5.
- Larter, R.D., Anderson, J.B., Graham, A.G., Gohl, K., Hillenbrand, C.D., Jakobsson, M., ... & Witus, A.E.

 (2014). Reconstruction of changes in the Amundsen Sea and Bellingshausen sea sector of the West
 Antarctic ice sheet since the last glacial maximum. Quaternary Science Reviews, 100, 55-86. DOI:
 10.1016/j.quascirey.2013.10.016
- Li, Y., Cole-Dai, J., & Zhou, L. (2009). Glaciochemical evidence in an East Antarctica ice core of a recent (AD 1450–1850) neoglacial episode. Journal of Geophysical Research: Atmospheres, 114(D8) 1-11. DOI:10.1029/2008JD011091,
- Lifton, N., Sato, T., Dunai, T.J., 2014. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet. Sci. Lett. 386, 149-160. http://dx.doi.org/10.1016/j.epsl.2013.10.052
- Lindsay, D.C. (1971). Vegetation of the South Shetland Islands. British Antarctic Survey Bulletin, 25, 59-1180 83.
- Lorius, C., Jouzel, J., Raynaud, D., Hansen, J., & Le Treut, H. (1990). The ice-core record: climate sensitivity and future greenhouse warming. Nature, 347(6289), 139-145.
- López-Martínez, J., Martínez de Pisón, E., Arche, A. (1992). Geomorphology of Hurd Peninsula, Livingston Island, South Shetland Islands. In: Yoshida, Y., Kaminuma, K., Shiraishi, K. (Eds.), Recent Progress in Antarctic Earth Science. Terra Scientific Publishing Company, Tokyo, pp. 751-756.
- López-Martínez, J., Serrano, E., Schmid, T., Mink, S. & Linés, C. (2012). Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology, 155/156, 62-79.

- Mackintosh, A.N., Verleyen, E., O'Brien, P.E., White, D.A., Jones, R.S., McKay, R., ... & Miura, H. (2014).

 Retreat history of the East Antarctic Ice Sheet since the last glacial maximum. Quaternary Science
 Reviews, 100, 10-30. DOI: 10.1016/j.quascirev.2013.07.024
- Mackintosh, A., Golledge, N., Domack, E., Dunbar, R., Leventer, A., White, D., ... & Gore, D. (2011).

 Retreat of the East Antarctic ice sheet during the last glacial termination. Nature Geoscience, 4(3),
 195. DOI: 10.1038/NGEO1061
- 1196 Marcott, S. A., Shakun, J. D., Clark, P. U., & Mix, A. C. (2013). A reconstruction of regional and global 1197 temperature for the past 11,300 years. Science, 339(6124), 1198-1201. DOI: 1198 10.1126/science.1228026
- Martin, L.C.P., Blard, P.-H., Balco, G., Lavé, J., Delunel, R., Lifton, N., Laurent, V., 2017. The CREp program and the ICE-D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages. Quat. Geochronol. 38, 25–49. https://doi.org/10.1016/J.QUAGEO.2016.11.006
- Martínez De Pisón, E., Serrano, E., Arche, A. & López-Martínez, J. (1996). Glacial geomorphology. In López-Martínez, J., Thomson, M.R.A. & Thomson, J.W., Eds. Geomorphological map of Byers Peninsula, Livingston Island. BAS GEOMAP series, sheet 5-a, 1:25000, with supplementary text. Cambridge: British Antarctic Survey, 23-27.
- Mäusbacher, R. (1991). Die jungquartäre Relief- und Klimageschichte im Bereich der Fildeshalbinsel Su"d-Shetland-Inseln, Antarktis. Ph.D. dissertation, Geographisches Institut der Universität Heidelberg, 382 pp.
- Mäusbacher, R., Müller, J., Schmidt, R. (1989). Evolution of postglacial sedimentation in Antarctic lakes (King George Island), Zeitschrift Fur Geomorphologie, 33(2), 219-234.
- Marrero, S.M., Phillips, F.M., Caffee, M.W., Gosse, J.C. 2016. CRONUS Earth cosmogenic 36Cl calibration. Quat. Geochronol. 31, 199–219. 10.1016/j.quageo.2015.10.002
- McKay, N.P., Kaufman, D.S., Routson, C.C., Erb, M.P., & Zander, P.D. (2018). The onset and rate of Holocene Neoglacial cooling in the Arctic. Geophysical Research Letters, 45(22), 12-487. 10.1029/2018GL079773
- Merchel, S., Herpers, U. 1999. An update on radiochemical separation techniques for the determination of long-lived radionuclides via accelerator mass spectrometry. Radiochimica Acta, 84(4), 215-220.
- Merchel, S., Arnold, M., Aumaître, G., Benedetti, L., Bourlès, D.L., Braucher, R., Alfimov, V., Freeman, S.P.H.T., Steier, P., Wallner, A., 2008. Towards more precise ¹⁰Be and ³⁶Cl data from measurements at the 10–14 level: Influence of sample preparation. Nuclear Instruments and Methods in Physics Research, Section B, Beam Interactions with Materials and Atoms 266, 4921–4926. https://doi.org/10.1016/j.nimb.2008.07.031
- Merchel, S., Bremser, W., Alfimov, V., Arnold, M., Aumaître, G., Benedetti, L., Bourlès, D.L., Caffee, M., Fifield, L.K., Finkel, R.C., Freeman, S.P.H.T., Martschini, M., Matsushi, Y., Rood, D.H., Sasa, K., Steier, P., Takahashi, T., Tamari, M., Tims, S.G., Tosaki, Y., Wilcken, K.M., Xu, S., 2011. Ultra-trace analysis of 36Cl by accelerator mass spectrometry: an interlaboratory study. Anal. Bioanal. Chem. doi:10.1007/s00216-011-4979-2.
- Michalchuk, B.R., Anderson, J.B., Wellner, J.S., Manley, P.L., Majewski, W., & Bohaty, S. (2009).

 Holocene climate and glacial history of the northeastern Antarctic Peninsula: the marine sedimentary record from a long SHALDRIL core. Quaternary Science Reviews, 28(27-28), 3049-3065. DOI:10.1016/j.quascirev.2009.08.012
- Miller, G.H., Geirsdóttir, Á., Zhong, Y., Larsen, D.J., Otto-Bliesner, B.L., Holland, M.M., Bailey, D.A.,
 Refsnider, K.A., Lehman, S.J., Southon, J.R., Anderson, C., Björnsson, H., Thordarson, T. (2012).
 Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophysical Research Letters, 39, L02708. DOI: 10.1029/2011GL050168
- Miller, G.H., Landvik, J.Y., Lehman, S.J., & Southon, J.R. (2017). Episodic Neoglacial snowline descent and glacier expansion on Svalbard reconstructed from the 14C ages of ice-entombed plants.

 Quaternary Science Reviews, 155, 67-78.
- Miller, G.H., Lehman, S.J., Refsnider, K.A., Southon, J R., & Zhong, Y. (2013). Unprecedented recent summer warmth in Arctic Canada. Geophysical Research Letters, 40, 5745–5751. DOI: 10.1002/2013GL057188

- Milliken, K.T., Anderson, J.B., Wellner, J.S., Bohaty, S.M., & Manley, P.L. (2009). High-resolution Holocene climate record from Maxwell Bay, South Shetland Islands, AntarcticaHolocene climate record from Maxwell Bay. GSA Bulletin, 121(11-12), 1711-1725.
- Mosley-Thompson, E. (1996). Holocene climate changes recorded in an East Antarctica ice core. Climatic variations and forcing mechanisms of the last 2,000. In Jones, P.D., Bradley, R. and Jouzel, J., editors, NATO advanced research series I 41, 263-79.
- Mosley-Thompson, E., Thompson, L.G., Grootes, P.M., & Gundestrup, N. (1990). Little ice age (neoglacial) paleoenvironmental conditions at siple station, Antarctica. Annals of Glaciology, 14, 199-204.
- Mulvaney, R., Abram, N.J., Hindmarsh, R.C., Arrowsmith, C., Fleet, L., Triest, J., ... & Foord, S. (2012).

 Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature,
 489(7414), 141. DOI:10.1038/nature11391
- Muschitiello, F., D'Andrea, W.J., Schmittner, A., Heaton, T.J., Balascio, N.L., Caffee, M.W., ... & Dokken, T.M. (2019). Deep-water circulation changes lead North Atlantic climate during deglaciation. Nature communications, 10(1), 1272.
- Navarro, F., Jonsell, U., Corcuera, M.I., Martín Español, A.- (2013). Decelerated mass loss of Hurd and Johnsons Glaciers, Livingston Island, Antarctic Peninsula. Journal of Glaciology, 59 (213), 115-128.
- Oliva, M., & Ruiz-Fernández, J. (2015). Coupling patterns between para-glacial and permafrost degradation responses in Antarctica. Earth Surface Processes and Landforms, 40(9), 1227-1238. DOI: 10.1002/esp.3716
- Oliva, M., Navarro, F., Hrbáček, F., Hernández, A., Nývlt, D., Pereira, P., ... & Trigo, R. (2017a). Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Science of the Total Environment, 580, 210-223. DOI: 10.1016/j.scitotenv.2016.12.030
- Oliva, M., & Ruiz-Fernández, J. (2017). Geomorphological processes and frozen ground conditions in Elephant Point (Livingston Island, South Shetland Islands, Antarctica). Geomorphology, 293, 368-379. DOI: 10.1016/j.geomorph.2016.01.020Oliva, M., Antoniades, D., Giralt, S., Granados, I., Pla-Rabes, S., Toro, M., ... & Vieira, G. (2016). The Holocene deglaciation of the Byers Peninsula (Livingston Island, Antarctica) based on the dating of lake sedimentary records. Geomorphology, 261, 89-102. DOI: 10.1016/j.geomorph.2016.02.029
- Oliva, M., Hrbacek, F., Ruiz-Fernández, J., de Pablo, M. Á., Vieira, G., Ramos, M., & Antoniades, D. (2017b). Active layer dynamics in three topographically distinct lake catchments in Byers Peninsula (Livingston Island, Antarctica). Catena, 149, 548-559. DOI: 10.1016/j.catena.2016.07.011
- Oliva, M., Antoniades, D., Giralt, S., Granados, I., Pla-Rabes, S., Toro, M., Liu, E.J., Sanjurjo, J., Vieira,
 G. 2016. The Holocene deglaciation of the Byers Peninsula (Livingston Island, Antarctica) based
 on the dating of lake sedimentary records. Geomorphology 261, 89–102.

 https://doi.org/10.1016/j.geomorph.2016.02.029.
- Parica, C.A., Salani, F.M., Vera, E., Remesal, M. & Césari, S.N. (2007). Geología de la formación Cerro Negro (Cretácico) en la isla Livingston: aportes a su geocronología y contenido paleontológico. Revista de la Asociación Geológica Argentina, 62, 553-567.
- Porter S.C.; Denton, G.H. (1967). Chronology of the neoglaciation in the North American cordillera, American Journal of Science, 265(3), 177-210.
- Porter, S.C. (2000). Onset of neoglaciation in the Southern Hemisphere. Journal of Quaternary Science: Published for the Quaternary Research Association, 15(4), 395-408.
- Pritchard, H.D., Ligtenberg, S.R.M., Fricker, H.A., Vaughan, D.G., van den Broeke, M.R., Padman, L. (2012). Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502-505. DOI DOI:10.1038/nature10968
- Reilly, B. T., Natter, C. J., & Brachfeld, S. A. (2016). Holocene glacial activity in Barilari Bay, west
 Antarctic Peninsula, tracked by magnetic mineral assemblages: Linking ice, ocean, and
 atmosphere. Geochemistry, Geophysics, Geosystems, 17(11), 4553-4565. DOI:
 10.1002/2016GC006627

- Renssen, H., Seppä, H., Crosta, X., Goosse, H., & Rotche, D. M. (2012). Global characterization of the Holocene thermal maximum. Quaternary Science Reviews, 48, 7-19. DOI: 10.1016/j.quascirev.2012.05.022
- Renssen, H., Seppä, H., Heiri, O., Rotche, D. M., Goosse, H., & Fichefet, T. (2009). The spatial and temporal complexity of the Holocene thermal maximum. Nature Geoscience, 2(6), 411. DOI: 10.1038/NGEO513
- Roberts, S.J., Hodgson, D.A., Sterken, M., Whitehouse, P.L., Verleyen, E., Vyverman, W., ... & Moreton, S.G. (2011). Geological constraints on glacio-isostatic adjustment models of relative sea-level change during deglaciation of Prince Gustav Channel, Antarctic Peninsula. Quaternary Science
- Rothwell, R. G., Rack, F. R. (2006). New techniques in sediment core analysis: an introduction. Geological Society, London, Special Publications, 267(1), 1-29. Reviews, 30(25-26), 3603-3617. DOI:10.1016/j.quascirev.2011.09.009
- Ruiz-Fernández, J. & Oliva, M. (2016). Relative paleoenvironmental adjustments following deglaciation of the Byers Peninsula (Livingston Island, Antarctica). Arctic, Antarctic, and Alpine Research, 48(2), 345-359. DOI: 10.1657/AAAR0015-014
- Ruiz-Fernández, J., Oliva, M. & García-Hernández, C. (2016). Procesos geomorfológicos y formas del relieve en dos cuencas lacustres de la Península Byers (Isla Livingston, Antártida Marítima): implicaciones paleoambientales. Polígonos, Revista de Geografía, 28, 211-237.
- Sadatzki, H., Dokken, T. M., Berben, S. M., Muschitiello, F., Stein, R., Fahl, K., ... & Jansen, E. (2019).

 Sea ice variability in the southern Norwegian Sea during glacial Dansgaard-Oeschger climate cycles. Science advances, 5(3), eaau6174. DOI: 10.1126/sciadv.aau6174
- Sancho, L.G., Pintado, A., Navarro, F., Ramos, M., De Pablo, M.A., Blanquer, J.M., ... & Green, T.G.A. (2017). Recent warming and cooling in the Antarctic Peninsula region has rapid and large effects on lichen vegetation. Scientific reports, 7(1), 5689. DOI:10.1038/s41598-017-05989-4
- Schäfer, J. M., Ivy-Ochs, S., Wieler, R., Leya, I., Baur, H., Denton, G. H., & Schlüchter, C. (1999).

 Cosmogenic noble gas studies in the oldest landscape on earth: surface exposure ages of the Dry Valleys, Antarctica. Earth and Planetary Science Letters, 167(3-4), 215-226.

 https://doi.org/10.1016/S0012-821X(99)00029-1
- Schimmelpfennig, I., Benedetti, L., Finkel, R., Pik, R., Blard, P.H., Bourlès, D., Burnard, P., Williams, A., 2009. Sources of in-situ 36Cl in basaltic rocks. Implications for calibration of production rates. Quat. Geochronol. 4, 441–461. doi:10.1016/j.quageo.2009.06.003
- Schimmelpfennig, I., Benedetti, L., Garreta, V., Pik, R., Blard, P.H., Burnard, P., Bourlès, D., Finkel, R.,
 Ammon, K., Dunai, T., 2011. Calibration of cosmogenic 36Cl production rates from Ca and K
 spallation in lava flows from Mt. Etna (38°N, Italy) and Payun Matru (36°S, Argentina). Geochim.
 Cosmochim. Acta 75, 2611–2632. doi:10.1016/j.gca.2011.02.013
- Schimmelpfennig, I., Schaefer, J.M., Putnam, A.E., Koffman, T., Benedetti, L., Ivy-Ochs, S., Team, A., Schlüchter, C., 2014. 36 Cl production rate from K-spallation in the European Alps (Chironico landslide, Switzerland). J. Quat. Sci. 29, 407–413. doi:10.1002/jqs.2720
- Schimmelpfennig, I., Tesson, J., Blard, P.H., Benedetti, L., Zakari, M., Balco, G., 2019. The CREp Chlorine-36 exposure age and depth profile calculator. Goldschmidt. Barcelona, Spain. https://goldschmidtabstracts.info/2019/2996.pdf
- Sejrup, H.P., Seppä, H., McKay, N.P., Kaufman, D.S., Geirsdóttir, Á., de Vernal, A., ... & Andrews, J.T. (2016). North Atlantic-Fennoscandian Holocene climate trends and mechanisms. Quaternary Science Reviews, 147, 365-378.
- Seong, Y. B., Owen, L. A., Lim, H. S., Yoon, H. I., Kim, Y., Lee, Y. I., & Caffee, M. W. (2009). Rate of late Quaternary ice-cap thinning on King George Island, South Shetland Islands, West Antarctica defined by cosmogenic 36Cl surface exposure dating. Boreas, 38(2), 207-213. https://doi.org/10.1111/j.1502-3885.2008.00069.x
- Serrano, E., Martínez De Pisón, E. & López-Martínez, J. (1996). Periglacial and nival landforms and deposits. In López-Martínez, J., Thomson, M.R.A. & Thomson, J.W., eds. Geomorphological map of Byers Peninsula, Livingston Island. BAS GEOMAP Series, Sheet 5-A, Scale 1:25 000. Cambridge: British Antarctic Survey, 28-34.

- Severinghaus, J.P.; Brook, E. (1999). Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science, 286, 930-934.
- Shevenell, A.E., Ingalls, A.E., Domack, E.W., & Kelly, C. (2011). Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula. Nature, 470(7333), 250. DOI:10.1038/nature09751
- Shulmeister, J., Thackray, G.D., Rittenour, T.M., Fink, D., & Patton, N.R. (2019). The timing and nature of the last glacial cycle in New Zealand. Quaternary Science Reviews, 206, 1-20.
- Simkins, L.M., Simms, A.R., & DeWitt, R. (2013). Relative sea-level history of Marguerite Bay, Antarctic
 Peninsula derived from optically stimulated luminescence-dated beach cobbles. Quaternary
 Science Reviews, 77, 141-155. DOI:10.1016/j.quascirev.2013.07.027
- Simms, A.R., De Witt, R., Kouremenos, P., & Drewry, A.M. (2011b). A new approach to reconstructing sea levels in Antarctica using optically stimulated luminescence of cobble surfaces. Quaternary Geochronology, 6(1), 50-60.
- Simms, A.R., Ivins, E.R., DeWitt, R., Kouremenos, P., & Simkins, L.M. (2012). Timing of the most recent Neoglacial advance and retreat in the South Shetland Islands, Antarctic Peninsula; insights from raised beaches and Holocene uplift rates. Quaternary Science Reviews, 47, 41-55. DOI:10.1016/j.quascirev.2012.05.013
- Simms, A.R., Milliken, K.T., Anderson, J.B., & Wellner, J.S. (2011a). The marine record of deglaciation of the South Shetland Islands, Antarctica since the Last Glacial Maximum. Quaternary Science Reviews, 30(13-14), 1583-1601. DOI:10.1016/j.quascirev.2011.03.018
- Simms, A. R., Whitehouse, P. L., Simkins, L. M., Nield, G., DeWitt, R., Bentley, M. J. 2018. Late Holocene relative sea levels near Palmer Station, northern Antarctic Peninsula, strongly controlled by late Holocene ice-mass changes. Quaternary Science Reviews, 199, 49-59. https://doi.org/10.1016/j.quascirev.2018.09.017
- Simonsen, M.F., Baccolo, G., Blunier, T. et al. East Greenland ice core dust record reveals timing of Greenland ice sheet advance and retreat. Nat Commun 10, 4494 (2019). https://doi.org/10.1038/s41467-019-12546-2
- Singer, B. S., Jicha, B. R., Mochizuki, N., & Coe, R. S. (2019). Synchronizing volcanic, sedimentary, and ice core records of Earth's last magnetic polarity reversal. Science advances, 5(8), eaaw4621. DOI: 10.1126/sciadv.aaw4621
- Smellie, J.L., Davies, R.E.S., & Thomson, M.R.A. (1980). Geology of a Mesozoic intra-arc sequence on Byers Peninsula, Livingston Island, South Shetland Islands. British Antarctic Survey Bulletin, 50, 55-76.
- Solomina, O.N., Bradley, R.S., Hodgson, D.A., Ivy-Ochs, S., Jomelli, V., Mackintosh, A.N., ... & Young, N.E. (2015). Holocene glacier fluctuations. Quaternary Science Reviews, 111, 9-34. DOI: 10.1016/j.quascirev.2014.11.018
- Stolper, D., Bender, M., Dreyfus, G., Yan, Y. & Higgins, J.A. (2016). Pleistocene ice core record of atmospheric O2 concentrations. Science 353, 1427–1430.
- Stone, J.O., 2000. Air pressure and cosmogenic isotope production. J. Geophys. Res. Solid Earth 105, 23753–23759. doi:10.1029/2000JB900181
- Storey, B.C., Fink, D., Hood, D., Joy, K., Shulmeister, J., Riger-Kusk, M., & Stevens, M.I. (2010).

 Cosmogenic nuclide exposure age constraints on the glacial history of the Lake Wellman area,

 Darwin Mountains, Antarctica. Antarctic Science, 22(6), 603-618.

 DOI:10.1017/S0954102010000799
- Strelin, J., Sone, T., Mori, J., Torielli, C., Nakamura, T. (2006). New data related to Holocene landform development and climatic change from James Ross Island, Antarctic Peninsula. In: Fu" tterer, D., Damaske, D., Kleinschmidt, G., Miller, H., Tessensohn, F. (Eds.), Antarctica: Contributions to Global Earth Sciences. Springer-Verlag, New York, pp. 455–460.
- Sugden, D.E., & Clapperton, C.M. (1986). Glacial history of the Antarctic Peninsula and South Georgia.
 South African Journal of Science, 82(9), 508-509.
- Sugden, D.E. & John, B.S. (1973). The ages of glacier fluctuations in the South Shetland Islands,
 Antarctica. In: van Zinderen Bakker, E.M. (ed.), Palaeoecology of Africa, the Surrounding Islands

- and Antarctica, 8, 141-159. Balkema, Cape Town.
- Toro, M., Granados, I., Pla, S., Giralt, S., Antoniades, D., Galán, L., ... & Appleby, P.G. (2013).

 Chronostratigraphy of the sedimentary record of Limnopolar Lake, Byers Peninsula, Livingston
 Island, Antarctica. Antarctic Science, 25(2), 198-212. DOI:10.1017/S0954102012000788
- Turner, J., Colwell, S.R., Marshall, G.J., Lachlan-Cope, T.A., Carleton, A.M., Jones, P.D., ... & Iagovkina, S. (2005). Antarctic climate change during the last 50 years. International journal of Climatology, 25(3), 279-294. DOI: 10.1002/joc.1130
- Turner, J., Lu, H., White, I., King, J.C., Phillips, T., Hosking, J.S., ... & Deb, P. (2016). Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535(7612), 411. DOI:10.1038/nature18645
- Uppala, S.M., Kållberg, P.W., Simmons, A.J., Andrae, U., da Costa Bechtold, V., Fiorino, M., Gibson, 1409 J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, 1410 1411 R.P., Andersson, E., Arpe, K., Balmaseda, M.A., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., 1412 Hagemann, S., Hólm, E., Hoskins, B.J., Isaksen, L., Janssen, P.A.E.M., Jenne, R., McNally, A.P., 1413 1414 Mahfouf, J.F., Morcrette, J.J., Rayner, N.A., Saunders, R.W., Simon, P., Sterl, A., Trenberth, K.E., 1415 Untch, A., Vasiljevic, D., Viterbo, P., Woollen, J., 2005. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131, 2961–3012. https://doi.org/10.1256/qj.04.176 1416
- Vaughan, D.G. & Doake, C.S.M. 1996: Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature 379, 328–31.
- Vaughan, D.G., Marshall, G., Connolley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D.A., King, J.C., Pudsey, C.J., Turner, J. & Wolff, E. (2003). Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change 60, 243-74.
- Vera, M. (2013). Distribution and reproductive capacity of Deschampsia antarctica and Colobanthus quitensis on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. Antarctic Science, 25, DOI: 10.1017/S0954102012000995.
- Watcham, E.P., Bentley, M.J., Hodgson, D.A., Roberts, S.J., Fretwell, P.T., Lloyd, J.M., ... & Moreton, S.G. (2011). A new Holocene relative sea level curve for the South Shetland Islands, Antarctica. Quaternary Science Reviews, 30(21-22), 3152-3170. DOI:10.1016/j.quascirev.2011.07.021
- White, D. A., Fink, D., & Gore, D. B. (2011). Cosmogenic nuclide evidence for enhanced sensitivity of an East Antarctic ice stream to change during the last deglaciation. Geology, 39(1), 23-26 https://doi.org/10.1130/G31591.1
- Yoo, K.C., Yoon, H.I., Kim, J.K., & Khim, B.K. (2009). Sedimentological, geochemical and palaeontological evidence for a neoglacial cold event during the late Holocene in the continental shelf of the northern South Shetland Islands, West Antarctica. Polar Research, 28(2), 177-192. DOI:10.1111/j.1751-8369.2009.00109.x
- Yoon, H.I., Yoo, K.C., Bak, Y.S., Lim, H.S., Kim, Y., & Lee, J.I. (2010). Late Holocene cyclic glaciomarine sedimentation in a subpolar fjord of the South Shetland Islands, Antarctica, and its paleoceanographic significance: sedimentological, geochemical, and paleontological evidence. Bulletin, 122(7-8), 1298-1307.
- Zale, R., & Karlén, W. (1989). Lake sediment cores from the Antarctic Peninsula and surrounding islands.

 Geografiska Annaler: Series A, Physical Geography, 71(3-4), 211-220.

1441

1442 Figure captions

- Figure 1. Location of areas cited in the text related to Antarctica. A) Antarctic Ice Sheet;
- B) Ross Ice Shelf; C) Antarctic Peninsula; D) Graham Land. This figure is available in
- colour in the online version.
- Figure 2. Location of the areas cited in the text. A) South Shetland Islands; B) Hurd
- Peninsula; C) Fildes and Barton peninsulas; D) Byers Peninsula. This figure is available
- in colour in the online version.
- Figure 3. Probability density plots of CRE ages for differentiated chronostratigraphical
- units: A) Deglaciation, b) First Neoglacial advance and c) Second Neoglacial advance.
- 1451 This figure is available in colour in the online version.
- Figure 4. Location of the study area, with the main geomorphological features, CRE
- samples and their ages plotted in a Google Earth satellite image. This figure is available
- in colour in the online version.
- Figure 5. Geomorphological sketch with CRE arithmetic mean ages for each
- geomorphological unit. This figure is available in colour in the online version.
- Figure 6. Geomorphological transect of the main features with arithmetic mean of the
- 1458 CRE ages in each unit. This figure is available in colour in the online version.
- Figure 7. BYC-1 and -2 samples and CRE ages in Rish Point, Byers Peninsula. This
- figure is available in colour in the online version.
- Figure 8. BYC-11 and -12 and BYB-10 samples and CRE ages on South Beaches area,
- Byers Peninsula. This figure is available in colour in the online version.
- Figure 9. BYC-12 and -13 samples and CRE ages in front of Rish Point, Byers Peninsula.
- 1464 This figure is available in colour in the online version.
- Figure 10. BYC-4 and -5 samples and CRE ages in the moraine between Rish Point and
- 1466 Clark Nunatak, Byers Peninsula. This figure is available in colour in the online version.
- Figure 11. Summary table comparing the timing of neoglacial expansion in the AP region
- and the results of this work. This figure is available in colour in the online version.

1469 **Table captions**

- Table 1. Timing of Neoglacial advances in the AP region.
- Table 2. Timing of the end of deglaciation and geomorphic evidence of Neoglacial
- advances in the SSI.
- Table 3. End of deglaciation, Neoglacial evidence and related features in the Byers
- 1474 Peninsula.
- Table 4. Geographic location of samples, topographic shielding factor, sample thickness
- and distance from terminus.
- Table 5. Chemical composition of the bulk rock samples before chemical treatment. The
- data in italics correspond to the average values of the element concentrations of the
- samples BYC-2, BYC-4, BYC-11 (included in this studio) and others of similar lithology
- collected in nearby areas, but not included in this study. These average values have been
- used for the age-exposure calculations of those samples without bulk chemical
- 1482 composition analysis.
- Table 6. Concentrations of the major elements determined in splits taken after the

chemical pre-treatment (acid etching). P_2O_5 (%) concentrations are below detection limit (0.10 ± 0.015) .

Table 7. AMS analytical data and calculated exposure ages. ³⁶Cl/³⁵Cl, ³⁵Cl/³⁷Cl and ¹⁰Be/⁹Be ratios were inferred from measurements at the ASTER AMS facility. The numbers in italics correspond to the internal (analytical) uncertainty at one standard level.

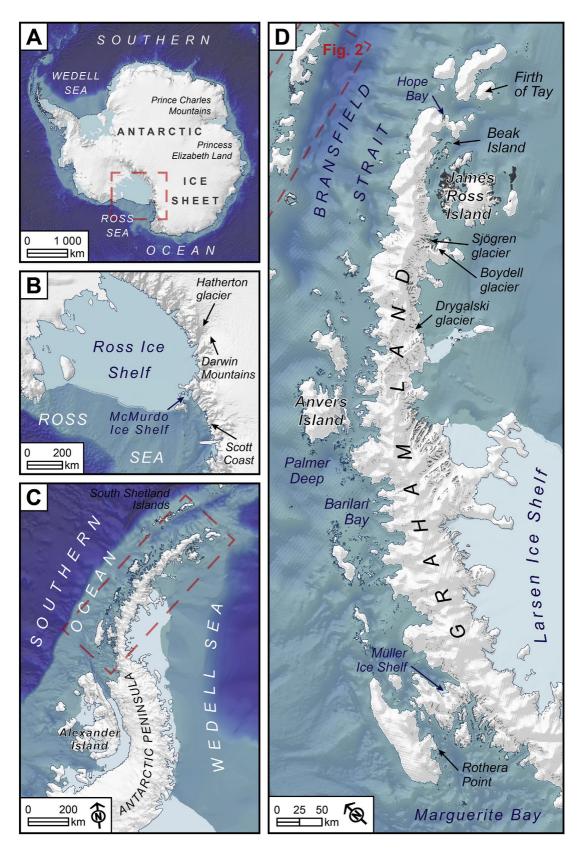


Fig. 1. Location of areas cited in the text related to Antarctica. A) Antarctic Ice Sheet; B) Ross Ice Shelf; C)
Antarctic Peninsula; D) Graham Land.

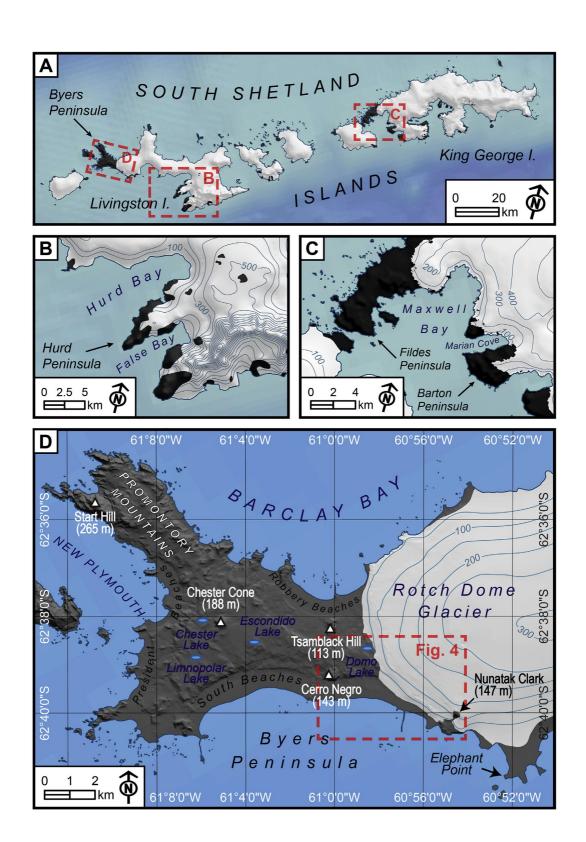


Fig. 2. Location of the areas cited in the text. A) South Shetland Islands; B) Hurd Peninsula; C) Fildes and Barton peninsulas; D) Byers Peninsula.

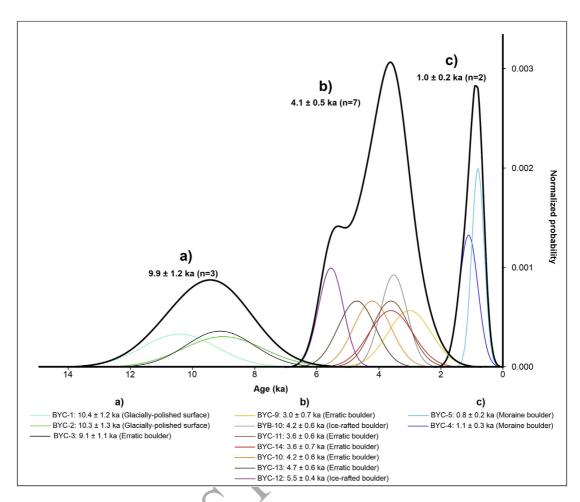


Fig. 3. Probability density plots of CRE ages for differentiated chronostratigraphical units: A) Deglaciation, b) First Neoglacial advance and c) Second Neoglacial advance.

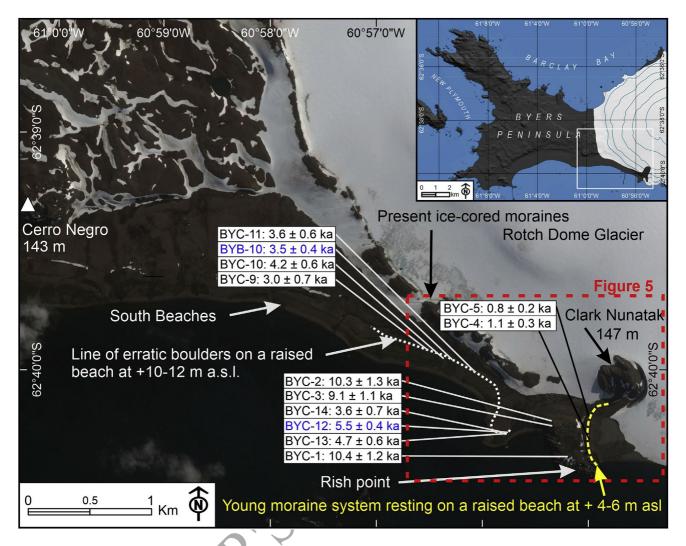


Fig. 4. Location of the study area, with the main geomorphological features, CRE samples and their ages plotted in a Google Earth satellite image.

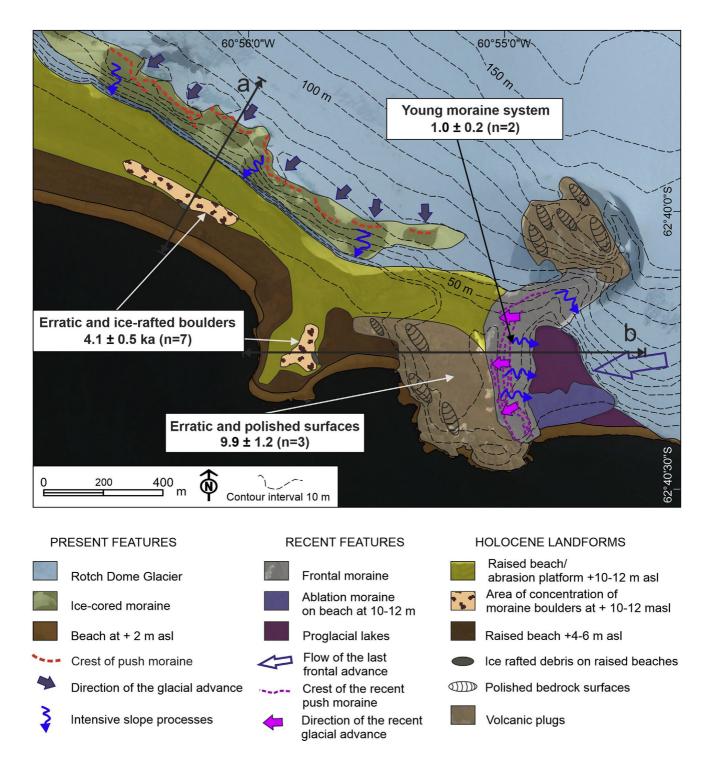


Fig. 5. Geomorphological sketch with CRE arithmetic mean ages for each geomorphological unit.

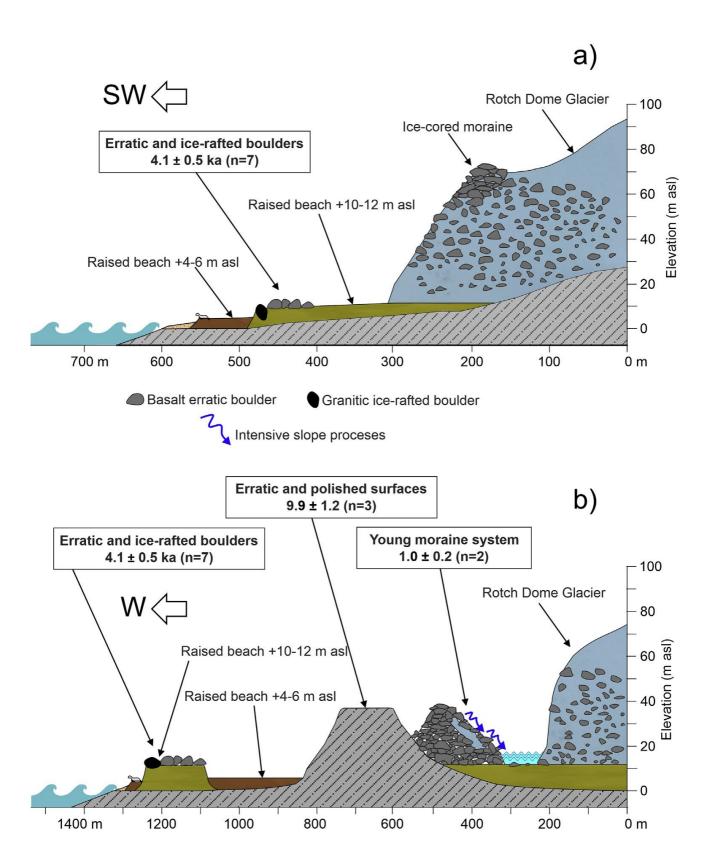


Fig. 6. Geomorphological transect of the main features with arithmetic mean of the CRE ages in each unit.

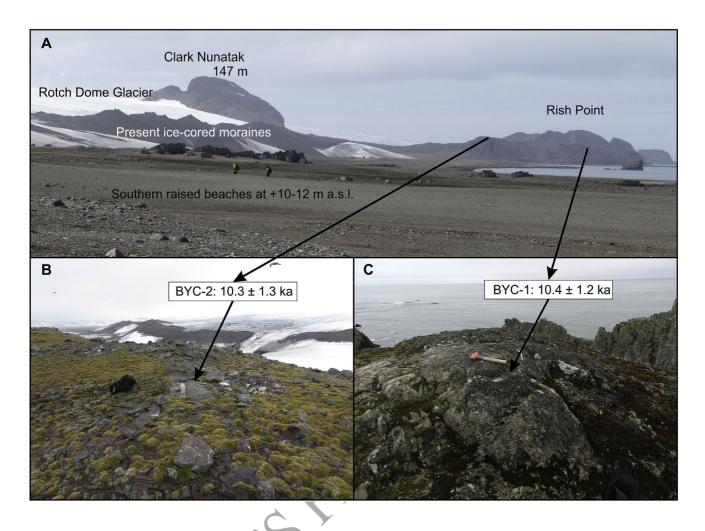


Fig. 7. BYC-1 and -2 samples and CRE ages in Rish Point, Byers Peninsula.

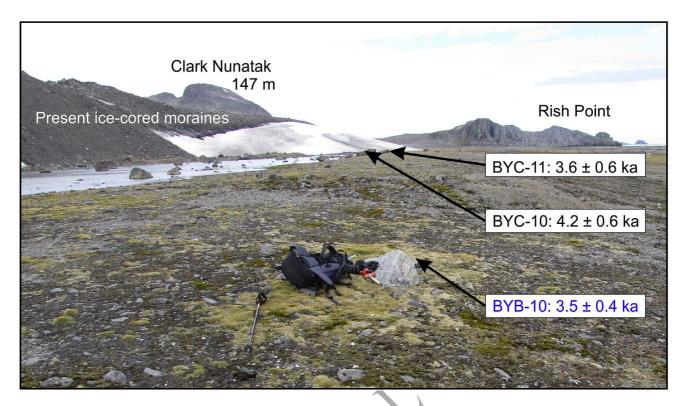


Fig. 8. BYC-11 and -12 and BYB-10 samples and CRE ages on South Beaches area, Byers Peninsula.

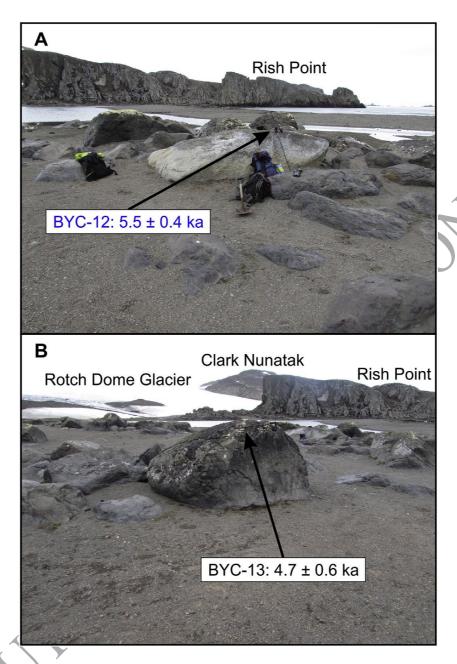


Fig. 9. BYC-12 and -13 samples and CRE ages in front of Rish Point, Byers Peninsula.

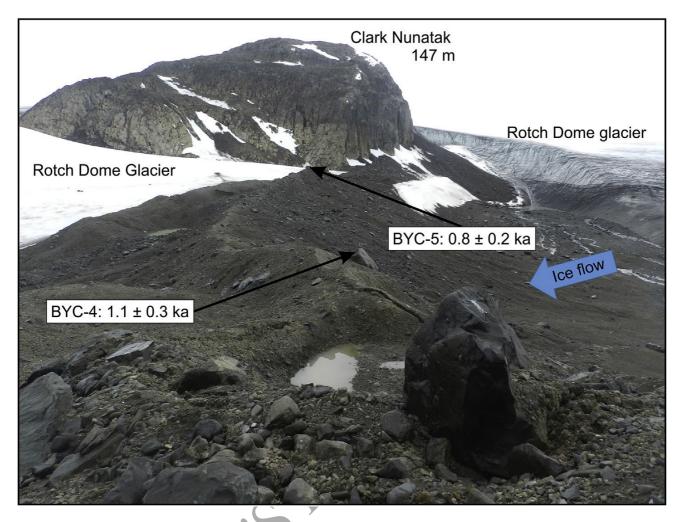


Fig. 10. BYC-4 and -5 samples and CRE ages in the moraine between Rish Point and Clark Nunatak, Byers Peninsula.

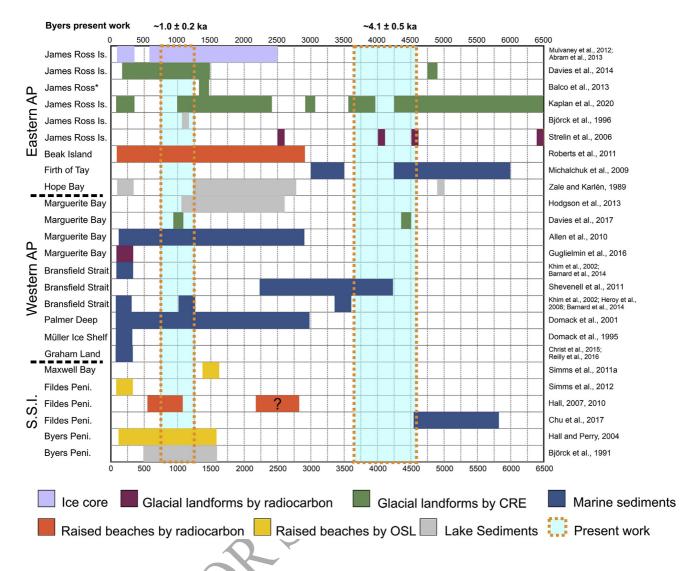


Fig. 11. Summary table comparing the timing of neoglacial expansion in the AP region and the results of this work.

AUTHOR'S FINAL VERSION

Table 1 Timing of neoglacial advances in the Antarctic Peninsula.

Location	Evidence	Chronology of related events	Neoglacial environments and landforms	References		
James Ross Island	Ice cores	From 2.5 to 0.6 cal ka BP, especially around 1.4 cal ka BP	Cold period	Mulvaney et al., 2012; Abram et al., 2013		
James Ross Island	Lake sediments	At 1.2 cal ka BP	Glacial advance	Björck et al., 1996		
James Ross Island	Glacial landforms	At 6.5, 4.6, 3.9, 2.6 cal ka BP	Glacial advances	Strelin et al., 2006		
James Ross Island	Glacial landforms	At 4.8 ka Be ¹⁰	Glacial advance	Davies et al., 2014		
James Ross Island	Glacial landforms	From 1.5 to 0.3 ka Be ¹⁰	Glacial advances	Davies et al., 2014		
Bransfield Strait	Marine sediments	At 4.5 and 2.5 cal ka BP	Cold periods	Shevenell et al., 2011		
Bransfield Strait	Marine sediments	At 3.5 and 1.2 cal ka BP	Cold periods	Khim et al., 2002; Heroy et al., 2008; Barnard et al., 2014		
Marguerite Bay	Marine sediments	From 2.8 to 0.2 cal ka BP	Cold period	Allen et al., 2010		
Marguerite Bay	Lake sediments	From 2.6 / 2.0 to 1.1 cal ka BP	Cold periods	Hodgson et al., 2013		
Marguerite Bay	Glacial landforms	At 4.4 ± 0.7 ka Be ¹⁰	Glacial advance	Davies et al., 2017		
Marguerite Bay	Glacial landforms	At 1 ka Be ¹⁰	Formation of ice-cored moraines	Davies et al., 2017		
Palmer Deep	Marine sediments	From 3.3 to 0.1 cal ka BP	Cold period	Domack et al., 2001		
Firth of Tay	Marine sediments	Between 6.0 and 4.5 cal ka BP	Minor glacial advance	Michalchuk et al., 2009		
Firth of Tay	Marine sediments	From 3.5 cal ka BP	General neoglaciation	Michalchuk et al., 2009		
Hope Bay	Lake sediments	Around 5 ka	Glacial advance	Zale and Karlén, 1989		

		From 2.9 cal ka BP	Decreased rates of sea level rise		
Beak Island	Raised beaches	FIOHI 2.9 CAI KA DP	associated with neoglacial events	Roberts et al., 2011	
Scott Coast	Glacial landforms	From 3.5 ka to the LIA	Glacial advances	Hall and Denton, 2002	
Anvers Island	Glacial landforms	Until 0.7-0.9 cal ka BP	Glacial advances followed by retreat	Hall et al., 2010	
Sjögren, Boydell and Drygalski glaciers	Glacial landforms	After 1.4 ka	Glacial advances	Balco et al., 2013	
Hatherton Glacier, Darwin Mountains	Glacial landforms	Between 3 and 0.5 ka Be ¹⁰	Formation of moraines	White et al., 2011	
Bransfield Strait	Marine sediments	LIA	Glacial advance	Khim et al., 2002; Barnard et al., 2014	
Müller Ice Shelf	Marine sediments	LIA	Glacial advance	Domack et al., 1995	
Palmer Deep One	Marine sediments	LIA	Glacial advance	Domack et al., 2001	
Barilari Bay, Graham Land	Marine sediments	LIA	Glacial advance	Christ et al., 2015; Reilly et al., 2016	
Hope Bay	Lake sediments	LIA	Glacial advance	Zale and Karlén, 1989	
James Ross Island	Glacial landforms	LIA	Glacial advance	Strelin et al., 2006	
Marguerite Bay	Glacial landforms	LIA	Glacial advance	Guglielmin et al., 2016	

Table 2 Timing of the end of deglaciation and geomorphic evidence of neoglacial advances in the South Shetland Islands

Location	Chronology of related events	Neoglacial environments and landforms	References			
Several raised beaches in Livingston and King George islands	vingston and King At 5.5 cal ka BP Raised beaches distributed at about 16-20 m a.s.l. indicate that the					
Several lakes in Livingston and King George islands	At 4-5 cal ka BP	Total deglaciation and glaciers close to their current position	Mäusbacher et al., 1989; Björck et al., 1991, 1993, 1996b			
Maxwell Bay (King George Island)	Around 5.9 cal ka BP	Deglaciation was completed	Simms et al., 2011a			
Maxwell Bay (King George Island)	From 5.9 cal ka BP	Gradual cooling and more extensive sea-ice cover in the bay	Milliken et al., 2009			
Maxwell Bay (King George Island)	Until 1.7 ka	Neoglacial advance	Simms et al., 2011a			
Several areas in King George Island	13-17th centuries	Occurrence of two glacial advances: (i) a 2-3 km long advance was dated at the 13th to early 15th CE related to the raised beach 6 m a.s.l., (ii) and another smaller glacial expansion of 0.25-1 km at the 16-17th CE related to raised beach 2-3 m a.s.l.	Curl, 1980; Sugden and Clapperton, 1986; Clapperton, and Sugden, 1988; Birkenmajer, 1981, 1995; 1998			
Fildes Peninsula (King George Island)	16-18th centuries AD, OSL ages	Moraine associated with the development of the raised beach 4-6 m a.s.l.	Simms et al., 2011a, 2012			
Fildes Peninsula (King George Island)	At 0.65 cal ka BP, but possible older advances occurred from 2.8 cal ka BP onwards	Moraine associated with the development of the raised beach 4-6 m a.s.l.	Hall, 2007; Hall, 2010			
Fildes Peninsula (King George Island)	From 5.8 to 4.8 cal ka BP	Cold period	Chu et al., 2017			
Fildes Peninsula (King George Island)	From 2.7 cal ka BP	Beginning of neoglacial advances	Chu et al., 2017			
Byers and Fildes peninsulas	From 3 to 1.5 ka cal ka BP	Two glacial advances	Barsch and Mäusbacher, 1986			

Byers and Fildes peninsulas	At 0.4-0.7 cal ka BP	Glacial advances associated with the development of the raised beach 4-6 m a.s.l.	John and Sugden, 1971; John, 1972; Sugden and John, 1973
Hurd Peninsula (Livingston Island)	Middle and Late Holocene	Two glacial advances related to raised beach 10-12 m a.s.l. and 4-6 m a.s.l.	Everett, 1971
Byers Peninsula (Livingston Island)	At 5.9 cal ka BP	Deglaciation of the central plateau	Toro et al., 2013; Oliva et al., 2016
Byers Peninsula (Livingston Island)	From 1.7 to 0.25 cal ka BP	Cold periods of increased glacial extent and greater iceberg delivery	Hall and Perry, 2004
Byers Peninsula (Livingston Island)	Between 1.5 and 0.5 cal ka BP	Cold period	Björck et al., 1991
Byers Peninsula (Livingston Island)	Around 1.8 cal ka BP	Deglaciation of the area close to the present glacial front of Dome Rocth glacier	Oliva et al., 2016

Table 3 End of deglaciation, Neoglacial evidence and related features in the Byers Peninsula.

Location	Evidence	Chronology of related events	Neoglacial environments and landforms	References
From West to East	Lake sediments	From 8.3 to 1.8 cal ka BP	Deglaciation of the entire peninsula	Toro et al., 2013; Oliva et al., 2016
Front of the Rotch Dome glacier	Geomorphic evidence	LIA?	Ice-cored moraines distributed on the raised beach 4-5 m a.s.l.	John and Sugden, 1971; López Martínez et al., 1996.
Domo Lake	Lake sediments	Slightly younger than 1.8 cal ka BP	Deglaciation of the lake	Oliva et al., 2016
Midge Lake	Lake sediments	Between 1.5 and 0.5 cal ka BP	Cold periods	Björck et al., 1991
Southern Beaches	Raised beaches	1.8 cal ka BP	Raised beach 10 m a.s.l.	Hansom, 1979
Southern Beaches	Raised beaches	15-17th centuries CE	Raised beach 6 m a.s.l.	Curl, 1980
Southern Beaches	Raised beaches	1.7 cal ka BP	Raised beach 6 and 10 m a.s.l.with ice rafted debris	Hall and Perry, 2004
Southern Beaches	Raised beaches	From 7.4 cal ka BP to 15-17th centuries CE	Raised beaches from 15 to 6 m a.s.l.	Hall, 2003, 2010
West front of the Rotch Dome glacier	Aerial imagery	From 1971	Stable ice-cored moraines	John and Sugden, 1971; López Martínez et al., 1996; Hall, 2010
South front of the Rotch Dome glacier	Aerial imagery	From 1956 to 2000	Retreat of ice-cored moraines	Oliva and Ruiz-Fernández, 2015, 2017

Table 4. Geographic location of samples, topographic shielding factor, sample thickness and distance from terminus.

Sample name	Geomorphological unit	Landform	Latitude (DD)	Longitude (DD)	Elevation (m a.s.l.)	Topographic shielding factor	Thickness (cm)	Dist. from present moraine ridge	Isotope
BYC-1	Deglaciated bedrock	Glacially-polished surface	-62.6731	-60.9199	28	0.9961	1.8	600	³⁶ Cl
BYC-2	Deglaciated bedrock	Glacially-polished surface	-62.6705	-60.9223	47	0.9995	4.8	350	³⁶ C1
BYC-3	Deglaciated bedrock	Erratic boulder	-62.6707	-60.9223	47	0.9912	4.0	350	³⁶ C1
BYC-4	Moraine (nunatak Clark, W)	Moraine boulder	-62.6716	-60.9163	36	0.9963	4.5	-	³⁶ C1
BYC-5	Moraine (nunatak Clark, W)	Moraine boulder	-62.6704	-60.9166	35	0.9956	3.5	-	36C1
BYC-9	Raised beach (+10/12 m)	Erratic boulder	-62.6654	-60.9409	11	0.9992	3.0	200	³⁶ C1
BYC-10	Raised beach (+10/12 m)	Erratic boulder	-62.6660	-60.9386	10	0.9992	2.0	200	³⁶ Cl
BYC-11	Raised beach (+10/12 m)	Erratic boulder	-62.6668	-60.9349	10	0.9992	3.1	200	³⁶ Cl
BYC-12	Raised beach (+10/12 m)	Ice-rafted boulder	-62.6714	-60.9293	4	0.9900	3.5	-	$^{10}\mathrm{Be}$
BYC-13	Raised beach (+10 m)	Erratic boulder	-62.6714	-60.9295	\5	0.9900	3.2	-	³⁶ C1
BYC-14	Raised beach (+10 m)	Erratic boulder	-62.6713	-60.9298	5	0.9900	1.8	-	³⁶ C1
BYB-10	Raised beach (+10/12 m)	Ice-rafted boulder	-62.6663	-60.9380	8	0.9988	3.5	-	$^{10}\mathrm{Be}$

Table 5. Chemical composition of the bulk rock samples before chemical treatment. The data in italics correspond to the average values of the element concentrations of the samples BYC-2, BYC-4, BYC-11 (included in this study) and others of similar lithology collected in nearby areas, but not included in this study. These average values have been used for the age-exposure calculations of those samples without bulk chemical composition analysis.

		_				_			_					4			
Sample	CaO	K ₂ O	TiO ₂	Fe ₂ O ₃	Cl	SiO ₂	Na ₂ O	MgO	Al ₂ O ₃	MnO	P_2O_5	Li	В	Sm	Gd	Th	U
name	(%)	(%)	(%)	(%)	(ppm)	(%)	(%)	(%)	(%)	(%)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
BYC-2	8.989	0.432	1.411	12.575	145	51.580	3.053	4.749	14.928	0.203	0.230	9.800	5.200	3,484	3.877	0.620	0.174
BYC-4	8.920	0.498	1.419	12.515	74	50.670	3.244	4.867	15.233	0.184	0.210	5.550	4.400	3.410	3.773	0.632	0.192
BYC-11	9.565	0.482	1.305	12.175	58	50.580	2.625	5.388	15.008	0.192	0.190	3.830	2.900	3.096	3.392	0.600	0.194
Average	9.651	0.524	1.094	10.741	74	48.099	3.082	4.746	15.906	0.211	0.194	48.099	3.082	4.746	15.906	0.211	0.194

Table 6. Concentrations of the major elements determined in splits taken after the chemical pre-treatment (acid etching). P₂O₅ concentrations are below detection limit (0.015%).

Sample name	CaO (%)	K ₂ O (%)	TiO ₂ (%)	Fe ₂ O ₃ (%)	SiO ₂ (%)	Al ₂ O ₃ (%)	MnO (%)	MgO (%)	Na ₂ O (%)
BYC-1	8.99 ± 0.45	0.40 ± 0.10	0.78 ± 0.16	10.21 ± 0.20	55.49 ± 1.11	14.37 ± 0.29	0.19 ± 0.04	4.38 ± 0.44	8.99 ± 0.29
BYC-2	8.06 ± 0.40	0.39 ± 0.10	1.07 ± 0.11	10.71 ± 0.21	58.03 ± 1.16	13.45 ± 0.27	0.19 ± 0.04	3.86 ± 0.39	8.06 ± 0.30
BYC-3	8.15 ± 0.41	0.43 ± 0.11	1.40 ± 0.14	10.54 ± 0.21	57.13 ± 1.14	13.24 ± 0.26	0.18 ± 0.04	4.67 ± 0.47	8.15 ± 0.27
BYC-4	8.21 ± 0.41	0.49 ± 0.12	0.74 ± 0.15	9.30 ± 0.93	56.98 ± 1.14	14.41 ± 0.29	0.17 ± 0.03	4.01 ± 0.40	8.21 ± 0.33
BYC-5	8.20 ± 0.41	0.41 ± 0.04	0.87 ± 0.17	10.70 ± 0.21	57.04 ± 1.14	13.35 ± 0.27	0.20 ± 0.04	4.53 ± 0.45	8.20 ± 0.30
BYC-9	8.71 ± 0.44	0.29 ± 0.07	1.22 ± 0.12	11.03 ± 0.22	57.09 ± 1.14	11.31 ± 0.23	0.20 ±0.04	5.75 ± 0.12	2.27 ± 0.23
BYC-10	7.51 ± 0.38	0.49 ± 0.12	1.19 ± 0.12	8.77 ± 0.88	61.48 ± 1.23	10.86 ± 0.22	0.16 ± 0.03	4.51 ± 0.45	2.00 ± 0.20
BYC-11	8.35 ± 0.42	0.35 ± 0.09	1.22 ± 0.12	10.00 ± 1.00	57.42 ±1.15	11.45 ± 0.23	0.18 ± 0.04	5.46 ± 0.11	2.07 ± 0.21
BYC-13	8.22 ± 0.41	0.49 ± 0.12	1.04 ± 0.10	9.67 ± 0.97	57.94 ± 1.16	12.55 ± 0.25	0.18 ± 0.04	4.84 ± 0.48	2.39 ± 0.24
BYC-14	8.75 ± 0.44	0.32 ± 0.08	1.27 ± 0.13	10.70 ± 0.21	57.05 ± 1.14	11.84 ± 0.24	0.19 ± 0.04	5.58 ± 0.11	2.23 ± 0.22

Table 7. AMS analytical data and calculated exposure ages. ${}^{36}\text{Cl}/{}^{35}\text{Cl}$, ${}^{35}\text{Cl}/{}^{37}\text{Cl}$ and ${}^{10}\text{Be}/{}^{9}\text{Be}$ ratios were inferred from measurements at the ASTER AMS facility. The numbers in italics correspond to the internal (analytical) uncertainty at one standard deviation. Note that the ${}^{36}\text{Cl}$ ages reported for "St" scaling were calculated through the ExcelTM spreadsheet by Schimmelpfennig et al. (2009) and those for "LSD" scaling were calculated through the trial version of the CREp online calculator (Schimmelpfennig et al., 2019).

³⁶ Cl samples								
Sample name	Sample weight (g)	mass of Cl in spike (mg)	³⁵ Cl/ ³⁷ Cl	³⁶ Cl/ ³⁵ Cl (10 ⁻¹⁴)	[Cl] in sample (ppm)	[³⁶ Cl] (10 ⁴ atoms g ⁻¹)	Age (ka) "St" scaling	Age (ka) "LSD" scaling
BYC-1	78.58	1.821	13.808 ± 0.231	11.015 ± 0.702	8.8	5.54 ± 0.37	$11.0 \pm 1.4 \; (1.0)$	$10.4 \pm 1.2 \ (0.7)$
BYC-2	76.22	1.777	7.833 ± 0.138	8.731 ± 0.681	20.4	5.70 ± 0.47	$11.0 \pm 1.5 (1.2)$	$10.3 \pm 1.3 \; (1.0)$
BYC-3	66.44	1.809	13.201 ± 0.220	8.028 ± 0.575	10.9	4.79 ± 0.36	$9.7 \pm 1.2 \; (1.0)$	$9.1 \pm 1.1 \; (\theta.8)$
BYC-4	75.32	1.807	8.490 ± 0.142	1.207 ± 0.197	18.3	0.68 ± 0.13	$1.2 \pm 0.3 \; (0.3)$	$1.1 \pm 0.3 \; (\theta.2)$
BYC-5	75.46	1.811	10.409 ± 0.171	1.093 ± 0.176	13.4	0.53 ± 0.11	$1.0 \pm 0.2 \; (0.2)$	$0.8 \pm 0.2 \; (\theta.2)$
BYC-9	74.98	1.819	3.962 ± 0.066	1.927 ± 0.263	120.8	3.69 ± 0.59	$3.4 \pm 0.8 \ (0.7)$	$3.0 \pm 0.7 \ (0.6)$
BYC-10	68.10	1.814	25.547 ± 0.495	3.983 ± 0.390	4.6	1.95 ± 0.21	$4.4 \pm 0.7 \ (0.6)$	$4.2 \pm 0.6 \; (0.4)$
BYC-11	67.49	1.821	6.966 ± 0.121	2.753 ± 0.330	29.0	2.19 ± 0.29	$3.9 \pm 0.7 \ (\theta.6)$	$3.6 \pm 0.6 \; (0.5)$
BYC-13	70.44	1.819	19.341 ± 0.347	4.606 ± 0.422	6.3	2.32 ± 0.23	$5.0 \pm 0.7 \ (\theta.6)$	$4.7 \pm 0.6 \; (0.5)$
BYC-14	69.89	1.799	5.217 ± 0.088	2.623 ± 0.335	51.0	2.77 ± 0.39	$4.0 \pm 0.8 \ (0.7)$	$3.6 \pm 0.7 \ (\theta.6)$
³⁶ Cl Blanks					Total atoms Cl	Total atoms ³⁶ Cl		
				X '	(10^{17})	(10^4)		
BL-1	-	1.805	353.174 ± 11.131	0.265 ± 0.073	2.252 ± 0.160	8.264 ± 2.264	-	-
BL-5	-	1.822	362.525 ± 8.014	0.290 ± 0.075	2.177 ± 0.133	9.133 ± 2.377	-	-
¹⁰ Be samples				~				
Sample name	Quartz weight (g)	mass of carrier (9Be mg)	10	¹⁰ Be/ ⁹ Be (10 ⁻¹⁴)		[¹⁰ Be] (10 ⁴ atoms g ⁻¹)		Age (ka)
BYC-12	64.5799	152.29		5.644 ± 0.286		2.701 ± 0.137		$5.5 \pm 0.4 \; (\theta.3)$
BYB-10	82.2924	151.98	Y	4.719 ± 0.496		1.762 ± 0.185		$3.5 \pm 0.4 \; (0.4)$
¹⁰ Be Blank			7					
BYB-BK	-	151.29	,		-	-	-	-