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Abstract 

In multi-objective optimization models, it is common that the decision maker expresses the 

relative importance of objectives through a weighting scheme. However, many solving techniques 

do not assure that the corresponding solution fits the preferential weights. It could be the case that 

an objective with a very low weight achieves a good value, whereas another with a high weight 

yields a very poor achievement. In order to overcome the aforementioned drawback, this paper 

proposes a new resolution method based on the well-known Reference Point Method. The 

methodology consists in generating a sequence of Reference Point Method models which share 

the same reference point fixed at the vector of preferential weights. In the iterative process, the 

projection direction on the Pareto frontier changes in each iteration according to the deviations 

between the preferential weights and the current normalised objective values. In this way, a 

sequence of Pareto-efficient solutions is generated which converges towards a solution that best 

fits the decision maker's preferential weights. The proposed method is illustrated by means of a 

numerical example. In order to show its feasibility and usefulness, the methodology is applied to 

a portfolio selection problem where the corporate sustainability performance of each firm is taken 

into account. 

Keywords: Multi-objective optimisation; Pareto optimality; Preferential weights; Reference 

point method. 

1. Introduction 

Decision making usually involves multiple conflicting criteria. This conflict could involve the 

non-existence of a solution unanimously accepted by any stakeholder. By an accepted solution 

we refer to a Pareto optimal solution which the decision maker (DM) considers to be her/his best 

option. We focus on multi-objective programming (MOP) problems, i.e. decision problems 

formulated by a set of objective functions of the decision variables that have to be simultaneously 

optimised over a feasible set defined by constraint functions (Miettinen, 2008). An important task 
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that should be frequently addressed when solving MOP problems is to introduce DM preferential 

information. Miettinen (1999) and Ruiz et al. (2009) classify MOP methods according to the 

information flow between the DM and the modeller. No information methods, involve no 

information flows at all. A priori information methods exist where the DM is asked to provide 

some information about her/his preferences before solving the problem with a view to finding the 

solution that best fits these preferences. A posteriori information method involves the DM 

choosing one solution from a set of possible solutions, depending on her/his preferences. Finally, 

interactive methods are characterised by a continuous information flow between the DM and the 

modeller. In MOP problems, we highlight three common ways of incorporating a priori 

preferential information. The DM can assign importance weights to the objectives (Saaty, 1987, 

Ruiz et al., 2009, 2010, Jones & Tamiz, 2010) which are used by the modeller for building the 

MOP model. In some situations, the DM could establish the so-called aspiration or reference 

levels (Romero et al., 1998, Wierzbicki, 1977) which are values that the DM wishes to achieve 

for each objective. Lastly, it is possible to use the lexicographic ordering in which each objective 

is set at a predefined level (Romero, 2003, van Haveren et al., 2017). Each of these approaches 

can be used both separately and jointly. Moreover, all of them present several drawbacks to which 

we will refer to below. The aim of this paper is focused on proposing a new MOP model into 

which the DM’s preferential weights can be incorporated.  

The existing literature regarding the essential role of weighting in multiple-criteria decision 

making (MCDM) is really extensive. Pairwise comparison methods (Saaty, 1980, Pamučar et al, 

2018), in which the DM supplies information regarding the pairwise relative importance of the 

objectives, are a very classical tool to determine a preferential set of weights. Ruiz et al. (2009) 

analyse and classify several weighting schemes for the general reference point (a vector formed 

by the reference levels) interactive procedure. They distinguish pure normalisation schemes from 

others where the weights have a preferential meaning. Hunt et al. (2010) present a cone-based 

preference framework for modelling the relative importance of the criteria. The DM’s perception 

of the relative importance is quantified by an allowable trade-off between two objectives 

representing the maximum allowable amount of deterioration of a less important objective per 

one unit of improvement of a more important objective. Nevertheless, real situations exist in 

which it is very difficult to assign a precise value to the relative importance of objectives. In order 

to overcome this circumstance, a widespread approach is to apply fuzzy logic to classical 

procedures (van Laahovden and Pedriyzc, 1983, Cvetkovic & Parmee, 2002, Mikhailov, 2004, 

Bilbao et al., 2014, Chan et al., 2019) 

Using a goal programming framework, Jones and Tamiz (2010), develop an algorithm for the 

analysis of the space of weight, where the term ‘weight’ has a preferential meaning. From an 

initial solution (weights equal or specified by the DM), the authors explore the entire weight space 

to produce a set of solutions that are presented to the DM for his/her consideration. However, the 
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generation of such solutions involves an unnecessary computational effort and is unsuitable, since 

a large number of generated solutions are not in accord with the DM's preferences (Jones, 2011, 

p. 239). In order to improve these issues, Jones (2011) proposes a weight space exploration 

algorithm that allows the DM to give additional preference information in order to more 

effectively guide the bounds of the search and produce a set of solutions that are more in accord 

with her/his preferences. Jones’s weight sensitivity algorithm can be used to investigate a portion 

of weight space resulting of interest to the DM. The author presents the type of information 

regarding the initial estimate of weights and additional preference information as well as its 

impact on the weighting space. This information (absolute information about the relative 

importance of a single weight and/or a set of weights and/or pairwise ordinal/cardinal information 

regarding weights) is modelled by linear constraints and it is used to restrict weight space 

exploration. A set of lexicographic goal programs is constructed to find the maximum values of 

each weight direction for a single weight change. The aim of this paper is, therefore, to offer a 

methodology for carrying out a post-optimum analysis on the weighting scheme. A proposal 

presented by Jones and Jiménez (2013) incorporates an additional meta-objective, the aim of 

which is to reduce the discrepancy between the preferences of the DM and the preferences shown 

by the solution. 

Between the proposed methods to solve MCDM problems the interactive procedures using 

reference points (Wierzbicki, 1982, Mietinen, 2010, p. 131) have proved one of the most utilised. 

The most usual way for finding a Pareto-efficient solution, close to the reference point, is by 

optimising an achievement scalarising function (Wierzbicki, 1977, 1980, 1982). In this way the 

reference point is projected over the Pareto frontier. By changing the reference point, in an 

interactive way, the DM is able to derive a subset of the Pareto frontier and from this subset can 

select the most preferred solution. In most of these methods, the weights of the achievement 

function are kept unchanged their purpose mainly being to normalise the different objectives. That 

is, the reference point changes but the projection direction over the set of Pareto solution does 

not. Luque et al. (2009) and Miettinen et al. (2009) introduce new ways of utilizing preference 

information specified by the DM in interactive RPM. The authors take into account the desires of 

the DM when projecting the reference point into the Pareto frontier. In this way, they find the 

most satisfactory solutions faster. Wierzbicki et al. (2000) and Cabello et al. (2014) generalise the 

classic RPM using a double reference point. Namely, the DM is asked to give, for each criterion, 

a level under which the values of the function are not regarded as acceptable (reservation level) 

and a desirable value for the criterion (aspiration level). 

Another interesting extension of RPM is presented by Miettinen et al. (2010). They propose an 

interactive RPM, Nautilus, where the weights and reference points are changed for each iteration 

in accordance with the information provided by the DM. Therefore, Nautilus requires intervention 

from DM for each step with the exception of the first one. It does not use an initial preferential 



4 

 

reference point but instead starts with the nadir point. The reason argued by the authors for this 

choice is to avoid the a priori elimination of zones belonging to the Pareto frontier.  

Incorporating a priori preferential information could prove to be a difficult task. When the DM 

sets preferences through importance weights assigned to the objectives, she/he could face an 

undesired situation because the results shown in the objective space could deviate from those 

expressed preferences: an objective with a low weight can reach a very high value, and vice versa, 

an objective with a large weight can present a very low value (assuming maximisation). In 

addition, sensitivity analysis often shows that small changes in the weights can lead to large 

changes in the solution and large changes in the weights may not produce any change whatsoever 

in the solution (Jones & Tamiz, 2010, Jones, 2011, Jones & Jiménez, 2013). In summary, there is 

no assurance that the preference expressed by the weights is reflected in the obtained solution. As 

mentioned above, setting aspiration levels is another way of incorporating preferential 

information. But, there are many contexts in which the lack of information makes the aspiration 

level amount difficult to estimate, this leading to the proposal of either over optimistic or over 

pessimistic levels. Obviously, in these circumstances, the achieved solution could be wrong. 

Similar issues can be applied to the classical RPM, which guarantee the efficiency of the solution, 

but distort the balanced nature of the solution, that is, non-adjustment to the relative preferences 

proposed by the DM (Romero et al., 1998). Besides, the RPM convergence may not prove fast 

enough because the method does not help the DM to find improved solutions. (Miettinen, 1999, 

p.170).  

On the other hand, using a lexicographic order for the set of objectives gives rise pre-emptive 

priorities. This involves infinite trade-offs among objectives placed at different levels of priority, 

leading to a high level of achievement for the objectives placed at the higher priority levels and a 

very low level of achievement for those situated at secondary priority levels, a scenario that may 

lead to unsatisfactory results.  

In order to overcome the aforementioned drawbacks, we propose a method that handles the 

preferential weights of the DM as prior information. Furthermore, the establishment of aspiration 

levels for the objectives is not required. We integrate the preferential information proposed by the 

DM as a reference point or benchmark in a sequential RPM. Unlike classical RPM methods, this 

reference point remains unaltered, while the coefficients in the achievement scalarising function 

are modified in each iteration. That is, the projection directions on the Pareto frontier change 

according to the distance between the initial preferential weights and the current normalised 

objective values. The algorithm runs until it finds the solution that best approximates the reference 

point, i.e. the preference weights. Our proposal is framed within the a priori information methods. 

Therefore, the DM intervention is restricted to the starting point -providing the weighting system- 

and the algorithm can run autonomously until the end. To the best of our knowledge, no method 

exists for solving a MOP in which weights are integrated as aspiration levels of the model. 
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In the current literature, MCDM techniques are reported in a wide range of real-world problems. 

For green transporting models, see, e.g. Demir et al. 2014, Jabir et al. 2015 and Sawik et al. 2017. 

For forest planning, see, e.g. Diaz-Balteiro & Romero, 2007, 2008, Jiménez et al., 2012, Bilbao-

Terol et al., 2014, Diaz-Balterio & Romero, 2016 and references therein. For humanitarian 

logistic operations, see, e.g. Ferrer et al. 2018 and Mejia-Argueta et al., 2018. For portfolio 

selection Sawik, 2008, Aouni et al. 2018, Bilbao-Terol et al. 2018 and, amongst others. We apply 

our proposal to a portfolio selection problem where the Corporate Sustainability (CS) 

performance of each firm is taken into account. Thus, the firms are assessed by both financial and 

CS criteria. We have CS valuations of the firms from a corporate sustainability rating agency 

(Vigeo) and the financial measures are gathered from the financial agencies (Morningstar Direct 

and YCharts). Vigeo is a European extra-financial rating agency that measures companies’ CS 

performance by 6 domains. We group these domains under three objectives: environment, social 

and governance (ESG) and also consider the three financial ratios which assess the financial 

performance of the companies. We have worked with 117 firms and assume that the investor 

reveals her/his preferences by assigning importance weights for the six objectives. The proposed 

model is sensitive to the particular preferences of the investor with respect to the importance 

granted to each objective considered. The preferences may change from one investor to another 

as they depend on diverse factors such as the personal values and beliefs, religion, country, 

amongst others. This gives rise to different investor profiles: sustainable, environmental, social, 

financial, balanced, etc. 

The rest of the paper is structured as follows. Section 2 presents the Sequential Weighting 

Reference Point Method (SWRPM). In Section 3, we use a numerical example to illustrate the 

proposed methodology. In Section 4, the feasibility of the SWRPM is demonstrated for a portfolio 

selection problem where corporate sustainability and financial criteria are considered 

simultaneously. Finally Section 5 draws conclusions.   

 

2. The Sequential Weighting Reference Point Method (SWRPM) 

Let us consider the following MOP problem: 

( )1 2optimise ( ) ( ), ( ), , ( )

subject to  

kf f f

S

 =




f x x x x

x
                                   (1) 

involving k conflicting objective scalar functions if . The decision variables ( )1 2, , , nx x x=x  

belong to the nonempty feasible region 
nS R . Objective vectors in objective space 

kR  consist 

of objective values ( )1 2( ) ( ), ( ), , ( )kf f f=f x x x x  and the image of the feasible region is called 

the feasible objective region ( ) kZ S R= f . 
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Solving model (1) means looking for a Pareto-efficient solution which satisfies the DM 

preferences.  

In an a priori information framework based on preferential weights, the difficulty for the DM lies 

in setting values in the weight space that correspond with the results in the objective and decision 

space. Furthermore, the relation between the changes in weight space and the changes in decision 

and objective space could be abrupt. Equally, seemingly large changes in weight space can lead 

to no change in decision (and hence objective) space. 

We assume that the weighting system is known and it represents the relative importance of the 

objectives for the DM.  

As mentioned, the aim of this paper is to propose a model for determining a Pareto-efficient 

solution to model (1) when the DM’ preferences are expressed by importance weights and no 

aspiration level has been set. An original MOP model has been built that improves the earlier 

referred issues.  

2.1. Normalisation of the objectives 

In MOP, the ideal and nadir points, provide an upper and a lower bound for the objective values. 

We calculate the ideal point ( )* * *
1 2* , ,..., k

kf f f R= f  by optimising each objective function 

individually in the feasible region, that is,  

* ( )r r
S

f opt f


=
x

x , for all 1,2,...,r k=                                           (2) 

The nadir point ( )* 1* 2* *, ,..., k

kf f f R= f  represents the vector of worst values for each 

objective in the set of Pareto optimal solutions. It is not always easy to obtain and several ways 

to approximate it have been suggested (Miettinen, 1999; Ehrgott & Tenfelde-Podehl, 2003; Ruiz 

et al., 2009). Here, we consider the anti-ideal point, defined as the worst element of each column 

of the pay-off matrix (Ballestero and Romero, 1998), as a proxy of the nadir point. 

In order to carry out the necessary normalising process of the objective values, we use the relative 

1L  distance to the ideal point. Thus, for each objective function if  we build the individual 

achievement function iF  as 

( ) *

*

*

( )i i
i

i i

f f
F

f f

−
=

−

x
x                                                    (3) 

An achievement value equal to 1 means that the objective has reached its best value ( )*

if  and a 

value equals to 0 is reached when the objective is at its worst value. This way, all objectives are 

measured on a 0-1 scale. 

2.2. Preferential information 

It is assumed that it is possible to know a preferential weighting system 
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( )1 2, , , kw w w=w  being 
1

1
k

i

i

w
=

= ,  

that could has been obtained by applying some suitable methodology adjusted to the problem to 

be solved (e.g. AHP approach, MACBETH, entropy technique, fuzzy sets among others, see, 

Saaty, 1980, Bana e Costa & Vansnick, 1994, Cvetkovic & Parmee, 2002, Mikhailov, 2004, Zhi-

hong, 2006, Kumar et al., 2017, Pamučar et al, 2018, for further details).  

In this way, the DM would be satisfied by finding a solution, x , which verifies as much as 

possible the following relationships: 

( ) with 1scl

i iF w i k=  x   ………  (4) 

being 
scl i
i

i

w
w

max w
=  scalarised weights moving in the same scale as the normalised iF  and 

keeping the original priority ratios: 

scl

i i
ij scl

j j

w w
r

w w
= = . 

Hence, it is necessary to build a multi-objective model with an aggregating objective function that 

measures the distance between the objective vector ( )1 2( ), ( ), , ( )kF F F=F x x x  and the 

aspiration vector ( )1 2, , ,scl scl scl

kw w w=sclw . This aggregating objective function should be 

minimised. Many multi-objective models fall into this framework. In this research, we use the 

RPM for several reasons. It is easy to introduce the relationships (4) into a RPM by fixing the 

aspiration levels at the desired weights and it is also easy to design an interactive method for 

determining what weights should be used in the corresponding aggregation function in order to 

improve the current solution. Another good feature of the RPM is that the Pareto-efficiency of the 

obtained solution is assured (Miettinen, 1999). 

2.3. Reference Point Method  

The Reference Point Method (RPM) proposed by Wierzbicki (1980), is a well-known multi-

criteria decision making methodology framed within distance function methods (Romero et al., 

1998). This method is based on the so-called augmented (or regularised) min-max aggregation. 

Thus, the worst individual achievement is essentially maximised but the optimisation process is 

additionally regularised with the term representing the average achievement. The min-max 

aggregation guarantees fair treatment of all individual achievements by implementing an 

approximation to the Rawlsian principle of justice. The min-max aggregation is crucial for 

allowing the RPM to generate Pareto-efficient solutions. On the other hand, the regularisation 

term is necessary to guarantee that only Pareto-efficient solutions are generated. 

The RPM assumes that the DM specifies reference levels for each objective reflecting values 

considered as desirable ones by the DM. 
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In a situation where all objectives are maximised (that is, the case ‘more is better’) the classic 

RPM formulation is given as2: 

( )
1, ,

1

min max ( ) ( )
k

i i i i i
x S i k

i

b f x f x  
 =

=

− −        (5) 

where ( )1 2, , , kb b b=b  is the reference point, ( )1 2, , , k  =  is the direction of 

projection of b  to the Pareto frontier and   is an arbitrary small positive number (for example

610 −= ) required to avoid generating weakly non-dominated points. In most of the RPM 

interactive methods, while the reference point is changed at each iteration, coefficients 

, 1,2,...,i i k =  are kept unaltered during the whole process.  

The application of model (5) to our proposal implies the following RPM model: 

1, ,
1

min max ( ( ) ( )
k

scl

i i i i i
x S i k

i

w F F  
 =

=

 − −  x x     (6) 

Our proposal is to solve a sequence of models (6) where all elements are kept unaltered, with the 

exception of the coefficients i , that vary according to the results of the current iteration. This 

iterative process has a stop criterion determined by a measure of goodness defined as the 1L -

distance between the reached priority ratios, i

j

F

F
 , and the desired ones, 

scl

i

scl

j

w

w
, so 

                                                  
, 1

sclk
i i

scl
i j j j
i j

F w
D

F w=


= −           (7) 

The coefficients i, for each iteration, are determined by taking into account which normalised 

objectives have been left below and which ones above their corresponding level of aspiration in 

the current solution.  

 

2.4. Algorithm 

Initialisation process 

1. Normalising. Given problem (1), obtain (estimates of) the ideal objective vector 
*

f  and 

the nadir objective vector *f . Calculate normalised objective vector F  using formula (3). 

2. Preference information. Preferential weights are supposed to be known, 1, , kw w , that 

express the relative importance of reaching each individual ideal value.  

 
2 It is also possible to eliminate the coefficients 

i  in the regularisation term (Miettinen et al., 2010). 
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3. Scalarising weights. Normalise the raw weights using max i
i

w   for obtaining 
scl

iw , 

1, ,i k= .   

Iterative process 

Step 1. Starting. Fix: 1h = , 
0 810D = ,  equal coefficient, i.e. 1/h

i k = , a small number called 

tolerance error Tol  (e.g.
610−
) and the maximum number of iterations M . 

Step 2. New solution. Solve problem (6) with 
h

i i =  . Let hx  be the optimal solution, 
h

F  the 

corresponding normalised objective vector and 
hD  the matching measure. The set of 

objectives is partitioned in those objectives reaching a value below their aspiration level, 

1I , i.e. objective 1i I  if 
s

i

cl

iF w , and those reaching a value greater or equal to their 

aspiration level, 2I , i.e. objective   2i I  if 
scl

i iF w . 

Step 3. Stop Criterion. Calculate 
1h hD D− − , if this difference is less than Tol  stop the process 

and hx  is the obtained solution.  

 If the number of iterations, M , has not been surpassed and the difference 
1h hD D− −  is 

greater than Tol  then go to Step 4. Alternatively, it is possible to ask the DM whether 

she/he agrees with the current solution and, then the process can stop.  

Step 4. New weights. Calculate the normalised deviations    

scl h

i i
i scl

i

w F
dev

w

−
=                                                               (8) 

and new weights according to: 

i) Calculate 

1h h

i i ih dev + = +                                                            (9) 

 If  
1h

i
+

 is lesser than 0 then fix  
1 *10h p k

i
+ −=   being p  a factor lesser or equal than 

1.  

 If  
1h

i
+

 is greater than 1 then fix  
1 1h

i + = − , being   an arbitrary small positive 

number. 

  

Note that 1i I  gives rise 0idev   and therefore the updated coefficient  
1h

i
+

 is greater than 

the current coefficient, 
h

i . Otherwise, the updated coefficient is lesser or equal than the 

current coefficient. 

ii) Normalise the weights 
1h

i
+

  according to  
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1

1

1

1ˆ h

i

h

i

k
h

i

i





 +
+

+

=

=


                                                           (10) 

Fix  
11 ˆ

i

h h

i + += , 1h h= +  and go to Step 2. 

 

2.5 The features of our proposal: 

 

• Necessary information. The method is demanding of a priori preferential information. 

Therefore, it is applicable when the DM is able of expressing the relative importance 

between the objectives directly (Miettinen et al., 2010) or applying some methodology 

adapted to the problem considered. Pairwise comparison methods have been used to 

determine a set of weights (Saaty, 1980, Gass, 1986, Bana e Costa & Vansnick, 1994, 

Cvetkovic & Parmee, 2002, Mikhailov, 2004, Wey and Wu, 2007, Kahraman and 

Büyüközkan, 2008, Li et al., 2009, Kou et al., 2016, Pamučar et al, 2018). Besides, 

penalty structures (Jones & Tamiz, 1995, Chang & Lin, 2009) and methodology from the 

field of multi-criteria decision analysis such as the Promethee method (Martel & Aouni, 

1990) are used to give weighting schemes. When it is easy to communicate and interpret 

percentages of achievement of the best values for each objective our proposal could be 

useful. 

• The weights work as reference levels for the normalised objective functions. This seems 

more suitable for fitting DM preferences with obtained solution. Our aim is to be able to 

produce a solution that is more satisfactory to the DM than the ones produced with 

standard approaches. 

• Much more iterative than interactive. Once the weights have been set, little information 

and interaction is required from the DM. The algorithm knows how to go to the following 

iteration without interacting with the DM, current results providing all the necessary 

information. This feature can be considered as a good characteristic because information 

such as the trade-off between objectives is difficult for the DM. Only the DM joins in to 

express her/his agreement with the current solution or alternatively, her/his wish to 

continue iterating.  

• Classical RPM method does not help the DM to find improved solution, so there is no 

clear strategy to find the final solution (see, Miettinen et al., 2010, p.170). However, with 

our proposal the coefficients are modified in order to achieve a solution close to the 

preferred one by the DM. 
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• The non-compensatory character of the aggregation min-max helps to the convergence 

of the algorithm, large weights acting on positive deviations are reflected on the solution 

and, thus weighting is not lost.  

 

In order to illustrate the proposed model and evaluate its performance, SWRPM is tested on a 

numerical example in the next section.  

3. Numerical example 

In this section, we illustrate the behaviour of the method introduced in Section 2 with a linear 

multi-objective optimization problem involving three objective functions of the form 

( )

( )

( )

1 1 2 3 4 1 2 3 4

2 1 2 3 4 1 2 3 4

3 1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Max 3 7 3 5

Max 4 6 2

Min 4 6 0 5      

subject to 

7 6 8 6  110

2 3 2 5  50

3 4 7 6  80

0i

f x ,x ,x ,x x x x x

f x ,x ,x ,x x x x x

f x ,x ,x ,x x x . x x

x x x x

x x x x
X

x x x x

x

= + + +

= + + +

= + + +

+ + + 


+ + + 
= 

+ + + 
 

                                           (11) 

For this problem, we have the following ideal and anti-ideal objective vectors 

( )* 128.33, 75,10f =  and ( )* 50, 20,110f = , respectively. The objectives are normalised 

using (3) 

( )

( )

( )

1 2 3 4
1

1 2 3 4
2

1 2 3 4
3

3 7 3 5 50

78.33

4 6 2 20

55

110 4 6 0.5

100

x x x x
F

x x x x
F

x x x x
F

+ + + −
=

+ + + −
=

− − − −
=

x

x

x

 

From these expressions the following RPM model is formulated as: 

3

1,2,3
1

min max ( ( ) ( )scl

i i i i i
x X i

i

w F F  
 =

=

 − −  x x                                         (12) 

Let us suppose that the DM assigns the following relative importance to the objectives 

( )0.2,0.6,0.2w= . Referring iw  to the range 0-1, we obtain the reference point, 

( )1 3,1,1 3sclw =  that will remain unchanged throughout the whole process. 
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We have set the maximum number of iterations, M , at 150, the stop criterion number, Tol , at 

610−
 and 

610 −= . Then the corresponding model (12) that we have to solve in the first iteration 

is 

( )
3

6

1 3

1

2

1 1 1 1 1 1
min max ( ) , 1 ( ) , ( ) 10 ( )

3 3 3 3 3 3
i

x X
i

F F F F−


=

    
− − − −    

    
x x x x  

The solution is shown in Table 1. Observe that 1F  reaches values bigger than the aspiration level 

( )1 3 , whereas 2F  and 3F  reach values lower than the respective aspiration levels (1 and 1 3 ). 

For this solution we obtain the matching measure defined as (7), 
1 2D = . If we apply the stop 

criterion for this first solution, we have 
0 1 8 310 2 10D D −= − −  and therefore, we must continue 

iterating. To do this, we calculate the normalised deviations and the new weights according to (8) 

and (9) fixing 1p =  in Step 4-i): 

1

1 3 0.703

1/ 3
1.108dev = −

−
= ;  2

1 0.964

0.96
0.036

7
dev =

−
= ;  3

1 3 0.297

0.29
0.108

7
dev =

−
=  

2

1 0.001 = ; 
2

2 0.036
1

0.369
3

 = + = ; 
2

3 0.108
1

0.441
3

 = + =  

Normalising the above values, we obtain the second iteration weights as (10):  

( ) ( )1 2 3
ˆ ˆ ˆ, , 0.001,0.455,0.544   =  

that we introduce in model (12): 

( )

 

1 2 3

1 2 3

6

1 1
min max 0.001 ( ) ,0.455 1 ( ) ,0.544 ( )

3 3

10 0.001 ( ) 0.455 ( ) 0.544 ( )

x X
F F F

F F F



−

    
− − − −    

    

− + +

x x x

x x x

 

The process stops after 150 iterations. The supplied solution could be considered as the Pareto-

efficient one that best fits the preferences of the DM. 

Table 1 

Pareto-efficient solutions: the objective and the normalised objective functions. 

ITERATION 
1f  

1F  

2f  

2F  

3f  

3F  
D  

1 
105.033 

0.703 

73.020 

0.964 

80.267 

0.297 
2 

2 
104.776 

0.699 

72.865 

0.961 

79.913 

0.301 
1.913 
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150 
103.656 

0.685 

72.195 

0.949 

78.400 

0.316 
1.566 

 

Figure 1 shows how at each iteration the solution improves the previous one, converging to the 

one that best fits the DM preferences. We have realised an analysis of sensitivity changing the 

vector of weights at ( )0.25,0.5,0.25w = , therefore ( )1 2,1,1 2sclw = , the results obtained are, 

in this situation,  1 2 30.61, 0.89, 0.39F F F= = = . Comparison with the last row in Table 1 shows 

the performance of the algorithm. 

Figure 1. Evolution of the measure of goodness, D , obtained at each iteration. 

 

In order to prove the goodness of our model we have compared our solution with the solutions 

that were obtained if we use compromise programming (Zeleny, 1973) and RPM with the initial 

weights set by the DM. Table 2 shows the solutions obtained by the compromise programming 

with the distances 1L  , L  and RPM.  

Table 2 

Compromise and RPM solutions: the objective and the normalised objective functions. 

 1f  2f  3f  D  
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1F  2F  3F  

1L  
112.5 

0.798 

75 

1 

91.25 

0.187 
6.053 

L  
92.246 

0.539 

65.348 

0.825 

62.65 

0.474 
1.718 

RPM 
85.42 

0.4522 

60.69 

0.7399 

52.91 

0.5709 
2.19 

 

The goodness measures D  corresponding to   the 1L  and  RPM solutions are higher than that of 

our first solution (iteration 1) while for the L  distance the solution would correspond roughly 

to the one obtained in the iteration 7. Therefore, our procedure allows us to improve the 

compromise and RPM solutions.  

 

The presented methodology is applied to a portfolio selection problem being the firms (see Table 

11 in the Appendix) assessed by both financial and corporate sustainability (CS) criteria. We have 

CS valuations of the firms from corporate sustainability rating agencies and the financial measures 

are gathered from the financial rating agencies. We assume that the investor reveals her/his 

preferences assigning importance weights for the criteria. In this case, the sustainability and 

financial performance of each of the firms invested is taken into account. 

4. Application: selecting firms based on both Corporate Sustainability and Financial 

Criteria 

Corporate Sustainability (CS) is a mainstream element of the business in the 21st century, where 

corporations address the positive and negative impacts of its corporative actions. A first 

consequence of the CS concerns is the necessity on the part of organizations to keep all 

stakeholder groups well informed. The CS reports are the key tool used by the firms although the 

self-declaration aspect is criticised. CS rating agencies (e.g. VigeoEiris, Covalence, MSCI ESG 

STATS, ASSET4 database and Sustainable Investment Research Institute-SIRIS) have arisen 

with the aim of providing external and reliable information about business behaviour. Each one 

of these agencies has its own methodology and information sources. We consider that the analysis 

of a set of firms, based on both sustainability and financial criteria provides an interesting field 

for the application of our methodology. 

In this paper, data for firms’ CS performance evaluation come from Vigeo (VigeoEiris, created 

in 2015 from the merger of two leaders in their historical markets). Vigeo is a rating and research 

agency that measures the integration of environmental, social and governance (ESG) factors into 

corporate strategies, operations and management with a focus on promoting economic 
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performance, responsible investment and sustainable value creation. Vigeo offers an ESG rating 

system based on 38 precise sustainability criteria grouped into 6 domains of analysis: 

environment, human rights, human resources, community involvement, business behaviour and 

corporate governance. A description of these domains is presented in Table 3. We group these 

domains into three objectives: Environmental (E), Social (S) and Corporate Governance (G). 

Table 3.  

Vigeo evaluation domains. 

Objective Domain Description 

Environment (E) Environment (ENV) Integration of environmental issues into 

corporate policy, product manufacturing, 

distribution, use and disposal. 

Social (S) Human Rights (HRts) Proactive human resources corporate policy, 

including career development, continuous 

improvement of labour relations, quality of 

working conditions. 

Human Resources (HR) Constant improvement of professional and 

labour relations, as well as working 

conditions. 

Community 

Involvement (CIN) 

Integration of the firm’s impacts on local 

communities and responsible societal 

behaviour. 

Business Behaviour 

(C&S)  

Sustainable and transparent relationships with 

customers and suppliers. 

Corporate 

Governance (G) 

Corporate Governance 

(CG) 

Balanced power within the board of directors, 

respect of shareholders' rights, executive 

remuneration, audit and internal controls. 

Source: http://www.vigeo-eiris.com 

Through a series of questions, Vigeo’s analysis focuses on how each company addresses each 

criterion in terms of leadership, implementation and results. Each of these questions is scored on 

a scale from 0 to 100, representing the level of the firm’s CSR engagement and management of 

associated risks. Detailed description of the Vigeo methodology is given in Bilbao-Terol et al. 

(2017, 2019) and Liern & Perez-Gladish (2018). 

We also have considered three financial ratios of the companies in order to assess their financial 

performance: Tobin´s Q, Return on Equity (ROE) and Market Value´s Growth. According to the 

financial literature these ratios are appropriated measures for estimating financial performance. 

The financial data are gathered from Morningstar Direct and YCharts databases. 

• TOBIN’s Q (Tobin, 1969; Chung and Puitt, 1994; Chung et al., 2005). We consider an 

approximation of Tobin's Q, based on the research by Chung and Pruitt (1994). These 

authors noted that an approximation of Tobin's Q could be made as an "approximate Q" 

where this is made with market capital, preferred stock, short term liabilities without short 

term debt, and total assets: 
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'
Market Cap Pref Stocks Short T Liab Short T Debt

TOBIN s Q
Total assets

+ + −
=  

• Return on Equity (ROE) (Penman, 1991). It is the return on equity (net profit divided by 

stockholders equity). 

Net Profit
ROE

Stockholder Equity
=  

• Market Value´s Growth (GROWTH) (Ramirez-Orellana et al., 2017). It is the level of 

growth of the market value. 

( 1) ( )

( )

Market Val t Market Val t

Market Val t
GROWTH

+
=

−
 

A total of 117 firms constitute our set of investment options (see Table 11 in the Appendix), 

( )1, 2 117, , , ,jx x x xx =  while the criteria are the sustainability and financial objectives 

defined above, ( ) ( ) ( )E S Gf , f , f ,x x x ( ) ( ) ( )Q R GRf , f , fx x x . Our model includes the usual 

constraints, the budget constraint and the no-short-sale constraint. Thus, the formulation of our 

initial problem is as follows: 

( ) ( ) ( ) ( ) ( ) ( )( )
117

1

1 0

E S G Q R GR

j j

j

Maximise f , f , f , f , f , f

s.t. x , x
=

= 

x x x x x x

 

In order to calculate the ideal and the anti-ideal point it is necessary to obtain the individual 

optimum of each objective (see Table 4).  

Table 4. 

The pay-off matrix. 

 
Ef   Sf  Gf  Qf  

Rf  GRf  

Ef  75 52 53 0.1313 10.24 0.0342 

Sf  63 69.5 49 2.532 14.05 0.1777 

Gf  48 34.25 89 0.5914 -2.88 0.027 

Qf  40 47.75 76 3.725 46.52 0.3973 

Rf  66 40.25 68 1.62 92.38 0.5525 

GRf  60 51.75 30 0.3492 10.76 2.2566 

 

The ideal point appears on the main diagonal, while the worst values per column correspond to 

the anti-ideal point. Then, we have the following ideal and anti-ideal objective vectors: 
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( )* 75, 69.5,89,3.725,92.38,2.2566f =  

( )* 40, 34.25,30,0.1313, 2.88,0.027f = − . 

Thus, for the sustainability and financial objectives we built the individual achievement function 

according to (3), ( ) ( ) ( )E S GF ,F ,F ,x x x ( ) ( ) ( )Q R GRF ,F ,Fx x x . 

One key point in the modelling based on our proposal is the consideration of the importance of 

the objectives for the DM. The DM preferences are included in the model through positive 

normalised weights noted by 
scl

iw ,  , , , , ,i E S CG Q R GR . The application of model (6) to 

our selection portfolio problem is as follows: 

 
 

, , , , ,
, , , , ,

117

1

. .

min ma

1

x ( ( ) (

,

)

0

scl

i i i i
i E S G Q R GR

i E S G Q R GR

j j

j

i

s x x

w F F

t

  




=

 − 

= 

 − 



x x

 

We consider different investor profiles. Each profile is determined by the DM weighting system 

that we integrate into the RPM model as the reference point (see Table 5). 

Table 5. 

Investor profile and weights. 

Profile 
Ew  

( )scl

Ew  

Sw  

( )scl

Sw  

Gw  

( )scl

Gw  

Qw  

( )scl

Qw  

Rw  

( )scl

Rw  

GRw  

( )scl

GRw  

Balanced 
1 6  

(1) 

1 6  

(1) 

1 6  

(1) 

1 6  

(1) 

1 6  

(1) 

1 6  

(1) 

Environmental 
0.5 

(1) 

0.1 

(0.2) 

0.1 

(0.2) 

0.1 

(0.2) 

0.1 

(0.2) 

0.1 

(0.2) 

Social 
0.1 

(0.2) 

0.5 

(1) 

0.1 

(0.2) 

0.1 

(0.2) 

0.1 

(0.2) 

0.1 

(0.2) 

ESG  
0.7 3  

(1) 

0.7 3  

(1) 

0.7 3  

(1) 

0.1 

(0.4286) 

0.1 

(0.4286) 

0.1 

(0.4286) 

Financial 
0.1 

(0.4286) 

0.1 

(0.4286) 

0.1 

(0.4286) 

0.7 3  

(1) 

0.7 3  

(1) 

0.7 3  

(1) 

 

We apply the SWRPM model for each profile. Table 6 collects the results obtained in the first 

iteration of our sequential process considering all the equal coefficients, 
1

6
i = , 

 , , , , ,i E S G Q R GR . 

Table 6. 
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First iteration: The objective and the normalised objective functions. 

Profile 
Ef  

EF  

Sf  

SF  

Gf  

GF  

Qf  

QF  

Rf  

RF  

GRf  

GRF  
 

Balanced 
57.1209 

0.48917 

50.4246 

0.45886 

57.0725 

0.45886 

1.7803 

0.45886 

40.8305 

0.45886 

1.0501 

0.45886 
 

Environmental 
72.2669 

0.92191 

48.6762 

0.40925 

56.9031 

0.45598 

0.5694 

0.12191 

16.2173 

0.20048 

0.2988 

0.12191 
 

Social 
61.2415 

0.60690 

67.9858 

0.95704 

50.3677 

0.34522 

2.2033 

0.57657 

13.7038 

0.17409 

0.3771 

0.15704 
 

ESG  
65.5433 

0.72981 

59.9757 

0.72981 

73.0587 

0.72981 

1.6003 

0.40877 

37.7215 

0.42622 

0.3801 

0.15838 
 

Financial 
54.0904 

0.40258 

47.3706 

0.37222 

56.6336 

0.45142 

1.9216 

0.49818 

44.5765 

0.49818 

1.1377 

0.49818 
 

 D  Decision  variables  

Balanced 0.3303 22 0.19x =   23 0.13x =  49 0.26x =  56 0.06x =  80 0.36x =   

Environmental 24.9004 45 0.14x =   66 0.69x =  79 0.17x =     

Social 21.4291 56 0.80x =   73 0.20x =      

ESG  13.6439 23 0.76x =   56 0.09x =  73 0.13x =  80 0.02x =    

Financial 3.8923 22 0.25x =  49 0.37x =  80 0.38x =     

 

The convergence speed of the algorithm changes depending on the investor profile. In this sense, 

we can emphasize that for a balanced or financial investor convergence is reached at the first 

iteration whereas for an Environmental, Social or ESG profile the maximum fixed number of 

iterations (100) is reached (see Figures 2-4). Table 7 shows the optimal solution obtained in the 

final iteration of our algorithm. 

Table 7. 

The optimal final solution: the objective and the normalised objective functions. 

Profile 
Ef  

EF  

Sf  

SF  

Gf  

GF  

Qf  

QF  

Rf  

RF  

GRf  

GRF  
 

Balanced 
57.1209 

0.48917 

50.4246 

0.45886 

57.0725 

0.45886 

1.7803 

0.45886 

40.8305 

0.45886 

1.0501 

0.45886 
 

Environmental 
71.0172 

0.88620 

47.1537 

0.36606 

58.6974 

0.48640 

0.7669 

0.17685 

18.9077 

0.22872 

0.4213 

0.17685 
 

Social 
62.0594 

0.63027 

67.2962 

0.93748 

47.7712 

0.30121 

2.2071 

0.57763 

14.1467 

0.17874 

0.4442 

0.18711 
 

ESG  
63.7730 

0.67923 

58.1928 

0.67923 

70.0744 

0.67923 

1.2917 

0.32291 

32.5249 

0.37167 

0.6750 

0.29061 
 

Financial 54.0904 47.3706 56.6336 1.9216 44.5765 1.1377  
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0.40258 0.37222 0.45142 0.49818 0.49818 0.49818 

 D  Decision variables  

Balanced 0.3303 22 0.19x =   23 0.13x =  49 0.26x =  56 0.06x =  80 0.36x =   

Environmental 15.0391 45 0.20x =   66 0.55x =  79 0.25x =     

Social 18.2073 56 0.84x =   73 0.07x =  80 0.09x =     

ESG  2.7399 23 0.64x =   45 0.04x =  73 0.25x =  80 0.07x =    

Financial 3.8923 22 0.25x =  49 0.37x =  80 0.38x =     

 

For the environmental profile, the portfolio obtained at the first iteration presents poor 

performance (0.12191) in two financial criteria, namely Q-Tobin and Growth. After iterative 

process the found portfolio presents features more balanced and Q-Tobin and Growth rate reach 

values (0.17685) close to the fixed aspiration levels (0.2). In this case the distance, between the 

reached ratios, i

j

F

F
 , and the desired ones, 

scl

i

scl

j

w

w
, improves greatly from 24.9004 at the first 

iteration to 15.0391 at the last one (see Figure 2). 

We note that the Balanced portfolio consist of firms that also appear in the ESG and Financial 

portfolios. For Environmental and Social profile, the firms with the highest proportion in the 

portfolio are those that reach the ideal values in the environmental and social objectives, 

respectively. In the ESG portfolio, the firm with the highest proportion in the portfolio has scores 

above the mean in the ESG criteria. Finally, the Financial portfolio consists of three firms that 

reach one of the three financial ideals (see Tables 8 and 9). 

 

Table 8.  

Scores of the final optimal firms. 

Firms E S G Tobin- Q ROE Growth 

F22 66 40.25 68 1.620 92.38 0.5525 

F23 68 58.75 80 1.653 46.26 0.2129 

F45 65 38.25 73 0.015 6.64 1.8931 

F49 40 47.75 76 3.725 46.52 0.3973 

F56 63 69.5 49 2.532 15.05 0.1777 

F66 75 52 53 0.131 10.24 0.0342 

F73 54 61.75 56 0.850 8.16 1.1983 

F79 67 43.50 60 2.744 47.44 0.1197 

F80 60 51.75 30 0.349 10.76 2.2566 

Source: Financial data obtained from Morningstar Direct and YCharts at 2015. ESG  

data obtained from Vigeo agency 

 

Table 9. 

Descriptive statistics for ESG and financial measures. 

Statistics E S G Tobin- Q ROE Growth 
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Mean 48.761 46.494 57.128 0.895 11.120 0.076 

St.Dev. 12.303 10.349 13.383 0.714 15.287 0.438 

Variance 151.373 107.097 179.095 0.509 233.685 0.192 

Kurstosis 1.128 -0.112 -0.751 2.710 7.291 10.900 

Asymmetry -0.719 -0.401 -0.058 1.450 1.150 0.767 

Min 1 16.75 30 0.0044 -38.18 -1.934 

Max 75 69.5 89 3.725 92.38 2.2566 
Source: Financial data obtained from Morningstar Direct and YCharts at 2015. ESG data obtained from 

Vigeo agency 

Figure 2. Evolution of the distance D  for the environmental profile. 

 

 

For the ESG profile, the portfolio obtained at the first iteration reaches a  low value of the Growth 

objective (its value is 0.15838 in the first solution). In order to reach a higher value (0.29061) the 

algorithm runs 100 iterations and, of course, decreases the achieved outcomes on other objectives 

(see Table 7 and Figure 3). A similar behavior can be observed in the social case (see Figure 4). 

In the other cases (balanced and financial profile) the best solution is reached in the first iteration 

of our algorithm. 

 

Figure 3. Evolution of the distance D  for the ESG profile. 
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Figure 4. Evolution of the distance D  for the Social profile. 

 

 

The above numerical and graphical results are obtained using Matlab R2018b software. 

 

Conclusions 

In many real decision situations, it may be suitable to express preferential information in terms of 

relative importance weights between objectives. For example, it can be easier for the DM to 

explain these weights to stakeholders than other types of preferential information such as 
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aspiration levels or pre-emptive priorities for the objectives. However, the possibility of non-

correspondence between the proposed weights and the solution obtained in some multi-objective 

programming models can be a barrier to the use of such models. This work tries to overcome this 

difficulty by proposing a model that can force to fulfil these weights. Based on the classical RPM 

approach, a sequential algorithm has been developed.  

We have proposed a model where the preferential weights work as the reference point of a RPM. 

It should be noted that in our method, the reference point in each iteration remains unaltered 

throughout the whole process, however the scaling function coefficients are modified in order to 

achieve a solution that best suits DM's wishes. Unlike other methods in this work, the DM 

intervention is restricted to the starting point and the algorithm can run autonomously until the 

end, i.e. our proposal is framed within a priori information methods. In each iteration, the 

algorithm minimises the distance between the DM preferences and those achieved by the current 

solution. To do this, it uses information from the previous iteration updating the technical set of 

coefficients of the SWRPM. We use a measure of goodness defined by the 1L -distance. The 

algorithm converges to a Pareto-efficient solution that can be considered as the most preferred by 

the DM. 

In summary, our contribution circumvents several issues of the weighting scheme that often 

appear in multi-objective programming models. In our framework, it is available a priori 

preferential information defined in the way of the relative importance between the objectives. 

This type of information could be easy to communicate to non-specialised stakeholders and also 

is easy to interpret percentages of achievement of the best values for each objective.  

Moreover, the method presented is more iterative than interactive because, once the weights have 

been set, little technical information is required from the DM. Our algorithm knows how to go to 

the following iteration without interacting with the DM, current results are providing all the 

necessary information. Only, the DM joins in to express her/his agreement with the current 

solution or alternatively, prefers to continue iterating. The non-compensatory character of the 

aggregation min-max helps the convergence of the algorithm, large weights are acting on positive 

deviations and are reflected on the solution and, thus weighting scheme is not lost. 

A numerical example is used to compare our results with those obtained by close traditional 

methods (Compromise Programming and RPM). Our procedure allows us to improve these 

traditional solutions. Finally, a real selection portfolio model demonstrates the performance of the 

proposal. For an investor concerned by social, environmental and governance issues it would be 

easy to express the features of the desired portfolio by pairwise comparisons. Several investor 

profiles have been modelled. The results show that the matching between proposed relative 

importance weights and weights achieved in the obtained portfolios. 
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Appendix 

Table 10.  

Notations. 

Notation Description 

( ), 1,...,if i k=x  k conflicting objective scalar functions 

( )1 2( ) ( ), ( ), , ( )kf f f=f x x x x  Objective vector  

mx  Decision variable 

nS IR  Nonempty feasible region 

( ) kZ S R= f  Feasible objective region 

( )* * *
1 2* , ,..., kf f f=f  Ideal point 

*
rf  Optimum of the r-th objective in  S  

( )* 1* 2* *, ,..., kf f f=f  Anti-ideal point 

*if  The worst element of the i-th column of the pay-off matrix 

( )1 2( ), ( ), , ( )kF F F=F x x x  Achievement vector 

iF  Individual achievement function 

( )1 2, , , kw w w=w  Weighting system of the criteria 

iw  Weight assigned to the i-criterion 

i
ij

j

w
r

w
=  Original priority ratios 

scl i
i

i

w
w

max w
=  Scalarised weight 

( )1 2, , ,scl scl scl

kw w w=sclw  Scalarised aspiration vector 

i  Coefficient assigned to if  in the classic RPM formulation 

( )1 2, , , kb b b=b  Reference point 

( )1 2, , , k  =  
Direction of projection of the reference point to the Pareto 

frontier 

  Arbitrary small positive number 

D Measure of goodness 

Tol Tolerance error 

M Maximum number of iterations 
scl

i i
i scl

i

w F
dev

w

−
=  i-th normalised deviations  
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Table 11.  

Firms’ database. 

Firm Name Firm Name 

F1 ABB Ltd F60 Lloyds Banking Group PLC 

F2 Accor SA F61 LM Ericsson Telephone Co B 

F3 adidas AG F62 LVMH Moet Hennessy Louis Vuitton SE 

F4 Ageas NV F63 Man Group PLC 

F5 Akzo Nobel NV F64 Marks & Spencer Group PLC 

F6 Allianz SE F65 Mediaset SpA 

F7 Anglo American PLC F66 Munich Re 

F8 Anheuser-Busch Inbev SA F67 National Grid PLC 

F9 ArcelorMittal SA F68 Nestle SA 

F10 Assa Abloy AB B F69 Nokia Oyj 

F11 Assicurazioni Generali F70 Norsk Hydro ASA 

F12 AstraZeneca PLC F71 Novartis AG 

F13 Aviva PLC F72 Greek Organisation of Football Prognostics SA 

F14 AXA SA F73 Orange SA 

F15 BAE Systems PLC F74 Orkla ASA 

F16 Banco Bilbao Vizcaya Argentaria SA F75 Pearson PLC 

F17 Banco Santander SA F76 Pernod Ricard SA 

F18 Barclays PLC F77 Prudential PLC 

F19 Basf SE F78 Reckitt Benckiser Group PLC 

F20 BHP Billiton PLC F79 Reed Elsevier PLC (RELX PLC) 

F21 BP PLC F80 Renault SA 

F22 Sky PLC F81 Repsol SA 

F23 BT Group PLC F82 Rio Tinto PLC 

F24 Carrefour F83 Roche Holding AG Dividend Right Cert. 

F25 Centrica PLC F84 Koninklijke DSM NV 

F26 Cie Generale des Etablissements Michelin SA F85 Royal Dutch Shell PLC Class A 

F27 Continental AG F86 RWE AG 

F28 Credit Suisse Group AG F87 Ryanair Holdings PLC 

F29 CRH PLC F88 SABMiller PLC 

F30 Daimler AG F89 Compagnie de Saint-Gobain SA-CODYY 

F31 Danone SA F90 Sanofi SA 

F32 Deutsche Bank AG F91 SAP SE 

F33 Deutsche Boerse AG F92 Schneider Electric SE 

F34 Deutsche Telekom AG F93 SES SA DR 

F35 Diageo PLC F94 Siemens AG 

F36 Electricite de France SA F95 Sodexo 

F37 Enel SpA F96 SSE PLC 

F38 Eni SpA F97 Statoil ASA 

F39 Ferrovial SA F98 STMicroelectronics NV 

F40 Fortum Oyj F99 Stora Enso Oyj R 

F41 GDFSUEZ (Engie SA) F100 Swiss Re AG 

F42 GKN PLC F101 Syngenta AG 

F43 Glencore PLC F102 Telecom Italia SpA 

F44 Heineken NV F103 Telefonica SA 

F45 HSBC Holdings PLC F104 Teliasonera AB (Telia Company AB) 

F46 Iberdrola SA F105 Tenaris SA 

F47 Imperial Tobacco GRP (Imperial Brands PLC) F106 Tesco PLC 

F48 ING Groep NV F107 Linde AG 

F49 ITV PLC F108 Total SA 

F50 Sainsbury (J) PLC F109 Valeo SA 

F51 Johnson Matthey PLC F110 Veolia Environnement SA 

F52 PPR (Kering) F111 Vinci SA 

F53 Kingfisher PLC F112 Vivendi SA 

F54 Royal Philips NV F113 Volkswagen AG 

F55 Air Liquide SA F114 Volvo AB B 

F56 L'Oreal SA F115 Wolters Kluwer NV 

F57 Lagardere SCA F116 Yara International ASA 

F58 Land Securities Group PLC F117 Zurich Insurance Group AG 

F59 Legal & General Group PLC   
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