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A diet based on cured acorn-fed ham with
oleic acid content promotes anti-
inflammatory gut microbiota and prevents
ulcerative colitis in an animal model
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Abstract

Background: Diets based on meat products are not recommended in the case of ulcerative colitis (UC). The
objective here is to test if some traditional cured meat products, as acorn-fed ham (high levels of oleic acid), may
be useful for controlling inflammatory diseases as UC in animal models, which could represent a new dietary
complementary intervention in the prevention of this inflammatory disease in humans.

Methods: Two rat cohorts have been used: conventional vegetable rat feed and acorn-fed ham. UC was induced
with DSS in drinking water ad libitum for 1 week. Short-chain fatty acids (SCFAs) and 16S rRNA metagenomics from
bacterial populations were analyzed in cecum samples. Colon samples were analyzed for histological parameters.

Results: Acorn-fed ham diet induced changes in gut microbiota composition, with pronounced enrichments in
anti-inflammatory bacterial genera (Alistipes, Blautia, Dorea, Parabacteroides). The animals with this diet showed a
strong reduction in most parameters associated to ulcerative colitis: disease activity index, macroscopic score of
colitis, epitelium alteration in colon mucosa, inflammatory cell density in colon, myeloperoxidase titers in colon,
proinflammatory cytokines (IL-17, IFN-γ). Also, acorn-fed ham diet animals showed increased total antioxidant
activity an oleic acid levels in plasma, as well as higher short-chain fatty acid concentrations in cecum (isobutyric,
isovaleric and valeric).

Conclusions: In the acorn-fed ham cohort, as a result of the dietary intake of oleic acid and low intake of omega-6
fatty acids, a strong preventive effect against UC symptoms was observed.
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Background
Some traditional foods present in the Mediterranean diet
contain nutraceutical compounds with anti-inflammatory
bioactivities which may be useful under certain gastro-
intestinal conditions. Ulcerative colitis (UC) is the most
common form of inflammatory bowel disease (IBD),

followed by Crohn’s disease (CD). In the European Union,
UC affects 178,000 new individuals each year and about
2.1 million patients in total. Though the etiology of both
UC and CD is still unknown, they share an inflammatory
basis. In UC, for example, there are higher mucosal levels
of pro-inflammatory cytokines such as IL-1β, IL-6, IL-17
or TNFα. UC and CD show a linkage in terms of genetic
susceptibility as well, such as the NOD2 and IL23R genes,
which are involved in immune response to microbes. Also,
IBD patients show alterations in gut microbiota character-
istics with respect to the canonical bacterial populations
from healthy individuals (dysbiosis). This includes in-
creased Proteobacteria (such as E. coli) and Bacteroidetes
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(such as Prevotella spp., as opposed to Bacteroides spp.)
rates, and lower Firmicutes populations [1–8].
Several environmental factors have been proposed to

modulate the onset of UC in children and adults. Lower
levels of vitamin D are associated with higher UC inci-
dence. Vaginal delivery and breastfeeding seem to be
protective factors against UC, as well as rural lifestyle
and exposure to pets. All these factors supposedly in-
crease gut microbiota diversity. However, antibiotic
therapy before 5 years of age has been linked to in-
creased UC onset, as it is a factor that diminishes gut
microbiota diversity. Smoking, sedentary lifestyle, air
pollution, infections by Salmonella or Campylobacter,
or colonization by Mycobacterium avium also show a
positive correlation with UC development, probably be-
cause they trigger inflammatory responses in the
gastrointestinal tract [9, 10].
Diet is another important environmental factor linked

with UC development and relapses. Dietary fiber from
vegetables and fruits in a normal diet shows a protective
effect. This is probably due to the gut production of
SCFAs by microbiota fermentation of fiber, a type of me-
tabolite with anti-inflammatory effects. The protective ef-
fect of dietary prebiotic fiber leads to a reduction of gut
inflammatory biomarkers in UC patients, such as fecal cal-
protectin [11–14]. Processed meat foods (sausages, ham-
burgers, etc.) are risk factors for UC onset. Conversely, a
normal diet high in omega-3 fatty acids (low omega-6/3
ratio) is associated with lower risk of UC [12, 15].
In general, Western diets (high saturated fat and high

sugar content, high omega-6/3 ratio, low fiber) have been
associated with IBD onset. In contrast, the Mediterranean
diet (low saturated fat, low omega-6/3 ratio, high fiber)
has been associated with an anti-inflammatory gut status,
therefore preventing dysbiosis and IBD [8].
One of the anti-inflammatory actors in the Mediterranean

diet is its low omega-6/3 ratio. This diet is high in protective
omega-3 fatty acids from vegetables (α-linolenic) and fish
(eicosapentaenoic (EPA), docosapentaenoic (DPA) and doc-
osahexaenoic (DHA) acids), and low in omega-6 (linoleic,
arachidonic or adrenic acids). The omega-6/3 ratio in trad-
itional diets rich in vegetables and fish is considered to be 1,
whereas in some European and North American countries
this ratio is around 15. This high value induces a pro-
inflammatory status associated with increased incidence of
cancer, as well as cardiovascular and inflammatory diseases
(such as UC). A low omega-6/3 ratio (such as 2:1) has been
shown to attenuate inflammatory mediators production in
UC animal models, downregulating pro-inflammatory cell
populations such as Th1 (which produces IFN-γ), Th2
(which produces IL-4) and Th17 (which produces IL-17A),
CD4+ T-helper, and at the same time upregulating Treg cell
populations titers (which have anti-inflammatory effects, by
modulating T-helper cells) [16]. Another anti-inflammatory

actor in the Mediterranean traditional diet is its high oleic
acid content. This monounsaturated fatty acid is able to re-
duce gut pro-inflammatory cytokine levels in animal models
for UC generated by the chemical inducer dextran sodium
sulfate (DSS) [8, 17, 18].
During the course of this research, a rat animal model

for UC was induced with DSS (in drinking water, admin-
istered ad libitum for 1 week) and the protective effect
of a diet based on traditional acorn-fed Iberian ham was
tested, in comparison with rat feed. Acorn-fed Iberian
ham is a cured meat product with a low omega-6/3 ra-
tio, traditionally from Southwestern Spain and Portugal.
This low omega-6/3 ratio is due to the fact that, in these
geographical areas, free-range Iberian pigs fed exclu-
sively on acorns (from green oaks and cork trees) and
grass during the months prior to their sacrifice. Acorns
are seeds with a low omega-6/3 ratio and high oleic acid
content (63%). Consequently, these healthy fatty acids
are stored in Iberian pig muscle tissue (as ham) during
the free-range feeding months of these pigs on acorns
[19]. Continuous use of this traditional cured acorn-fed
ham in the human diet is interesting as it provides a gut
anti-inflammatory status regarding important gut disor-
ders as UC.

Methods
Animals and experimental design
A total of 20 male Fischer 344 rats were maintained in
the Animal Facilities at the University of Oviedo (autho-
rized facility No. ES330440003591). All rat experiments
were approved by the Ethics Committee of the Principal-
ity of Asturias (authorization code PROAE 23/2016).
Rats (5 weeks old) were divided into 2 cohorts of 10

individuals each and fed ad libitum. Rats were main-
tained in individual cages at controlled temperature, hu-
midity and light cycle. Cohort 1 was fed with universal
feed (2014 Teklad Global 14% Protein Rodent Mainten-
ance Harlan diet feed). Cohort 2 was fed only with
acorn-fed Iberian commercial ham. Tables 1 and 2 show
the nutritional composition and fatty acids composition
of the two different diets used in this study. Every day,
25 g of the corresponding ham was added to each rat
cage, and the leftovers discharged the next day. The
daily ham diet consisted in cubic pieces of 1 cm size,
which were stored at 4 °C before daily addition to rat
cages. Feed and ham nutritional composition is referred
on Tables 1 and 2.

UC induction and monitoring
One week after the arrival of the animals to the animal
facility, the two respective diets started. After one week
feeding on the corresponding diet, UC was induced in 8
rats from each cohort. Induction was carried out using
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autoclaved drinking water containing 3% DSS (40,000 g/
Mol, Alpha Aesar) for 7 days, administered ad libitum.
The rats were monitored weekly for food and drinking

water intake, weight loss and stool consistency/rectal
bleeding using a modified protocol from a published
work on UC disease activity index (DAI). DAI is the
sum of two parameters: body weight loss (0, more than
5% body weight gain; 1, less than 5% body weight gain
and less than 5% body weight loss; 2, from 5 to 10%
body weight loss; 3, from 10 to 20%% body weight loss;
4, more than 20% body weight loss); stool consistency
(0, normal feces; 1, loose stool; 2, watery diarrhea; 3,
slimy diarrhea with little blood; 4, severe watery diarrhea
with blood) [7].

Blood and tissue samples
One week after finishing the administration of DSS, all
fasted rats were anesthetized (isoflurane) and sacrificed
(pneumothorax) for the extraction of blood (2 mL from
heart, centrifuged at 3000 rpm 15min and then the
plasma was frozen), the small intestine (fresh, for Peyer’s
patches quantification), the whole colon (fresh or kept in
4% formaldehyde at 4 °C, depending on the test) and the
cecum (frozen at − 20 °C). Two rats from each cohort
were left free of DSS as absolute controls (no UC).

Physical measures
The rats were weighed every week during the 3 experi-
mental weeks: at the beginning of DSS administration
(day 7), at the end of DSS administration (day 14) and
just before sacrifice (day 21).

Histological studies
Colon length
The percentage of its reduction in the experimental
samples was calculated with respect to the colons of the
2 control animals from each cohort.

Peyer’s patches
Hyperplastic Peyer’s patches were counted along the
small intestine. Their number in the experimental ani-
mals was calculated with respect to the small intestines’
Peyer’s patches of the 2 absolute control animals from
each cohort (animals 9 and 10).

Macroscopic score assessment of ulcerative colitis
This parameter was measured by an external investiga-
tor, according to a published score. The macroscopic
damage score of UC was quantified as: 1, no ulceration
and local hyperemia; 2, ulceration without hyperemia; 3,
ulceration and inflammation in only one site; 4, two or
more ulceration and inflammation sites; 5, ulceration
bigger than 2 cm; value 6 to 11, one score point per each
1 cm of extra ulceration [20].

Reparative changes in colon mucosa, colon epithelium
alterations and inflammatory cell density in colon
The distal colon samples were opened along the longitu-
dinal axis and fixed for 24 h in 4% phosphate-buffered
formaldehyde at room temperature before being embed-
ded in paraffin blocks, in accordance with routine pro-
cedure. Specimens were sectioned in 5 μm thick sections

Table 1 Nutritional composition of acorn-fed ham and rat feed

Humidity
%

Protein % fat
%

Fiber
%

Chlorides % Ash
%

Nitrates
ppm

Nitrites
ppm

Acorn-fed ham 38.3 31.1 21.4 0 4.50 5 15.04 0.47

Feed 6.9 14.3 4 22.1 0.3 4.7 0 0

Table 2 Fatty acids composition of acorn-fed ham and rat feed.
One batch per food was measured

Fatty acids Acorn ham
%

Feed
%

C14:0 Myristic 1.37 –

C16:0 Palmitic 20.81 14.72

C16:1 Palmitoleic 3.25 –

C17:0 Margaric 0.22 –

C17:1 Heptadecenoic 0.26 –

C18:0 Stearic 7.96 2.94

C18:1 Oleic 51.92 20.58

C18:2n6 Linoleic 10.26 58.82

C18:3n3 α-linolenic 0.75 2.94

C20:0 Arachidic 0.12 –

C20:1n9 Eicosenoic 1.16 –

C20:4n6 Arachidonic 1.30 –

C20:5n3 Eicosapentaenoic 0.08 –

C22:4n6 Adrenic 0.18 –

C22:5n3 DPA 0.17 –

C22:6n3 DHA 0.18 –

100% 100%

Saturated FA 30.49 17.66

Monounsaturated FA 56.59 20.58

Polyunsaturated FA 14.09 61.76

ω-3 1.18 2.94

ω-6 11.74 58.82

ω-6/ω-3 9.97 20.40
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and were stained using hematoxylin and eosin. Micro-
scopic diagnosis was performed on microphotographs
obtained by an Olympus BX-53 microscope and a DP73
digital camera connected to a computer with CellSens
software. The images were used to identify widespread
epithelial erosions, the degree of loss of goblet cells and
crypts, and the degree of inflammatory infiltrate (from
mucosa to submucosa), as well as the presence of
lymphoid follicles. The colon epithelium alteration score
was quantified as: 0, no alteration; 1, focal loss of calici-
form cells; 2, extensive loss of caliciform cells; 3, loss of
crypts lower than in 50% mucosa surface; 4, loss of
crypts in more than 50% mucosa surface and/or polyp-
oid regeneration. The inflammatory cells were analyzed
for type (lymphocytes, plasma cells and neutrophils), in-
tensity (mild, moderate and severe degree) and the pres-
ence of reparative changes (with or without epithelial
regeneration and mucin depletion). The inflammatory
cell density in colon mucosa score was defined as: 0, no
inflammation; 1, mild inflammation; 2, moderate inflam-
mation; 3, severe inflammation.

Myeloperoxidase assay in colon mucosa
A 0.5 cm longitudinal section from each colon was ex-
cised and this pro-inflammatory enzyme was quantified
following a published protocol [21].

Total antioxidant capacity in blood plasma
Total antioxidant activity was measured in plasma sam-
ples using a commercial FRAP (ferric reducing activity
of plasma) assay kit (Bioquochem SL, Ref. Kf-01-003). A
standard curve of different Trolox (a vitamin E
analogue) concentrations was used for comparison.

Pro- and anti-inflammatory cytokines analysis in blood
plasma
IFN-γ, IL-1β, IL-6, IL-10, IL-17a, TGF-β1 and TNF-α
tests were performed on blood plasma samples, using
commercial Elisa kits (Abnova Ref. KA0273, KA1502,
KA0278, KA0274, KA1001, KA0279, KA0280) and fol-
lowing the manufacturer’s instructions.

GC-MS quantification of SCFAs in feces using deuterated
standards
400mg of frozen cecum feces were thawed and resus-
pended in 1716 μl milli-Q H20 in 5ml glass vials, homoge-
nized by vortexing. Then, deuterated SCFAs standards
were added as internal controls: deuterated acetate, butyr-
ate, propionate and valerate (Cambridge Isotope Labora-
tories, USA), to a final concentration of 0.4 mM each.
Finally, 400 μl of 50% H2SO4 and 800mg NaCl were
added. This mixture was resuspended and 1ml of ethyl
acetate was added as an extraction solvent. Samples were
stirred for 1 h at 300 rpm and 25 °C, and centrifuged for 5

min at 3500 rpm. 500 μl of supernatants were transferred
to a new vial. This extraction was repeated twice.
The GC-MS equipment was an Agilent 7890A (Agilent

Technologies) equipped with an inert XL MSD with a
triple-Axis detector. Acquisition was done using Chemsta-
tion software. The capillary chromatographic column was
DB-FFAP (30m, 0.25 mm ID, 0.25 μm film thickness). He-
lium was used as the carrier gas at 1mL/min. Injection
was made in splitless mode with an injection volume of
1 μL and an injector temperature of 200 °C. A glass liner
with a glass wool plug at the lower end of the liner was
used to avoid the contamination of the GC column with
nonvolatile fecal material. A blank sample was inserted be-
tween experimental samples to check for memory effects.
The column temperature, initially 50 °C (1min), was in-

creased to 150 °C at 5 °C/min and, finally, to 230 °C at
15 °C/min (total time 20min). The temperature of the ion
source, the quadrupole and the interface were 230 °C,
150 °C and 220 °C, respectively. Scanning ions were 45
and 76m/z for deuterated propionic acid, 45 and 74m/z
for propionic acid, 43 and 73m/z for isobutyric acid, 63
and 77m/z for deuterated butyric acid, 60 and 73m/z for
butyric acid, 60 and 87m/z for isovaleric acid, 63 and 77
m/z deuterated isovaleric acid, 60 and 73m/z for valeric
acid and 60, 73 and 87m/z for hexanoic acid. Identifica-
tion of the SCFAs was based on the retention time of stan-
dards and with the assistance of the Wiley 7 library.

GC-MS quantification of fatty acids in meat samples and
blood plasma samples
Lipids from blood plasma samples and biceps femoris
muscle were extracted and methylated using the proced-
ure described by [22]. Fat extracts were methylated in
the presence of sulfuric acid and analyzed by gas chro-
matography. Previously fatty acid methyl ester (FAME)
samples were identified by gas chromatography, as de-
scribed elsewhere [23]. GC-MS was performed using an
HP-6890 (Hewlett Packard, Avondale, PA, USA) gas
chromatograph, equipped with a flame ionization de-
tector and capillary column (HP-Innowax, 30 m by 0.32
mm ID and 0.25 μm polyethylene glycol-film thickness).
A temperature program of 170 °C to 245 °C was used.
The injector and detector were maintained at 250 °C.
The carrier gas (helium) flow rate was 2 mL/min. For
the identification of each fatty acid, pure standards were
used (Sigma). The concentration of individual fatty acids
was calculated as a % of total fatty acids. The results
were expressed as grams per 100 g of detected FAMEs.

gDNA extraction and 16S rRNA sequencing for
metagenomics
gDNA was extracted from 200mg of frozen (− 80 °C)
cecum feces using E.Z.N.A.® DNA Stool Kit (Omega Bio-
Tek Ref. D4015–02), producing 200 μl of genomic DNA.
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gDNA samples were quantified using a BioPhotometer®
(Eppendorf) and their concentrations diluted to 6 ng/μl.
These diluted samples were used for performing a PCR
amplification following the protocol of Ion 16™ Metage-
nomics kit (Thermo Fischer Scientific).
PCR amplification products were used to create a li-

brary using the Ion Plus Fragment Library kit for AB Li-
brary Builder™ System (Cat. No.4477597), with sample
indexing using the Ion Xpress™ Barcode Adapters 1–96
kit (Cat. No. 4474517). Template preparation was per-
formed using the ION OneTouch™ 2 System and the
ION PGM™ Hi-Q™ OT2 kit (Cat. No. A27739). Metage-
nomics sequencing was performed using ION PGM™ Hi-
Q™ Sequencing kit (Cat. No. A25592) on the ION PGM™
System. The chips used were the ION 314™ v2, 316™ v2
or 318™ v2 Chips (Cat. No. 4482261, 4,483,188, 4,484,
355) with various barcoded samples per chip.

Phylogenetic analysis
The consensus excel table for each metagenomics se-
quencing was downloaded from ION Reporter 5.6 soft-
ware. This excel table includes the percentages for each
taxonomic level and was used for comparing frequencies
between rat individuals and cohorts.
Taxonomic adscription up to species level was performed

using the QIIME 2 (v.2017.6.0) open-source bioinformatics
pipeline. Analysis of the microbiome community was car-
ried out using R software (v3.2.4): non-supervised multi-
variate analysis (PCA). For LDA analysis, tab-delimited files
were generated in R and computed at family level using
Galaxy. Graphical representation of Galaxy output included
only discriminative features with logarithmic LDA score
higher than 3. The reference library used was the Curated
MicroSEQ(R) 16S Reference Library v2013.1; Curated
Greengenes v13.5. The number of mapped reads (after the
ignored ones due to less than 10 copies) per sample was al-
ways over 60.000. Total number of reads was always over
110.000. Counts were normalized by sum scaling. All raw
metagenomics data have been deposited at NCBI SRA
database (submission PRJNA524796).

Statistical methods
Data were expressed as the mean value ± S.E.M. Statis-
tical analyses were conducted using Student’s t-test
when the quantitative data presented normality and the
variances were assumed equal. When the variances were
assumed different, the Welch’s t-test was used. When
the quantitative data were not normal, the non-
parametric Mann-Whitney U test was used. In the case
of qualitative data, the χ2 test was used. The graphical
representation of all these data was generated using
GraphPad Prism software, version 7. In all cases, a p
value < 0.05 was considered statistically significant (*:
p < 0.05; **: p < 0.005; ***: p < 0.0005; ****: p < 0.0001).

Results
Nutritional composition comparison of acorn-feed ham
and feed
Acorn-feed cured ham was analyzed with respect to per-
centages of humidity, total protein, total fat, total chlo-
rides and total ash. The major difference here was in the
total fat content, which was high in acorn-fed ham
(21.4%) than in feed (4%) [Table 1].
With respect to the specific composition of fatty acids

for acorn-fed ham and rat feed, the main differences be-
tween acorn-fed ham and feed are in the oleic acid con-
tent, because the content of this monounsaturated fatty
acid is much higher in the acorn-fed ham (51.92%) than
in the rat feed (20.58%) [Table 2]. Also, the levels of
omega-6 fatty acids, considered pro-inflammatory com-
pounds, are 6 times lower in the acorn-feed ham
(11.74%) than in rat feed (58.82%). This omega-6 content
difference is responsible for a much lower omega-6/
omega-3 ratio in acorn-fed ham (9.97) as compared to
the feed (20.40) [Table 2].
The nitrate concentration in the acorn-feed ham was

15.04 ppm [Table 1]. This low value is due to the fact
that during manufacture of this acorn-feed ham, only
sea salt is added, and no chemical preservatives as ni-
trates nor nitrites are included.

Effect of acorn-feed ham on body weight and disease
activity index
In both cohorts, the animals’ body weight was affected
by DSS treatment [Fig. 1]. In the feed cohort, 4 of the
UC animals did not recover body weight after finishing
the DSS treatment [Fig. 1a]. In fact, these same 4 ani-
mals were the ones that later, after sacrifice, showed a
higher disease activity index in the colon mucosa (de-
grees 3 and 4) [Fig. 1d].
In the acorn-fed ham cohort, weight gain slowed

slightly during DSS treatment, but this parameter was
recovered after the treatment ended. This recovery hap-
pened in all 8 animals [Fig. 1b].
The absolute control rats for all cohorts (feed and

acorn-fed ham) maintained a continuous and normal
weight gain along the experimental weeks and they
showed an UC disease activity index of 0, as expected
[Fig. 1c].
Finally, disease activity index (DAI) was measured in

all animals. DAI values were higher in the feed cohort
(4 ± 0.84) than in acorn-fed ham cohort (0.87 ± 0.29)
[Fig. 1d].

Effect of acorn-feed ham on colon histological
measurements
Statistically significant differences were observed be-
tween the acorn-fed ham cohort and the feed cohort
with respect to the histological measurements assessed.

Fernández et al. Lipids in Health and Disease           (2020) 19:28 Page 5 of 19



The macroscopic score assessment of UC was much
lower (0.12) in the acorn-fed ham cohort than in the
feed cohort (2.75), and this difference was statistically
significant [Fig. 2a].
The mean score for epithelium alteration in the acorn-fed

ham cohort (2.50) was lower than in the feed cohort (3.50)
and this difference was statistically significant [Fig. 2b].
The mean score for colon mucosa inflammatory cells

density in the acorn-fed ham cohort (1.50) was lower
than in the feed cohort (2.00) and this difference was
statistically significant [Fig. 2c]. Histology studies on
colon mucosa revealed that in feed cohort animals, the
colon mucosa lacks a structured epithelium monolayer

[Figs. 3a and c] due to ulcerative colitis challenge in
these animals without re-epithelization. However, in
acorn-fed ham animals colon mucosa, it can be easily
observed the presence of a proper colon mucosa epithe-
lium structure in a continuous monolayer of cells [Figs.
3b and d].
With respect to the myeloperoxidase assay (MPO),

mean myeloperoxidase levels in the colon mucosa from
the acorn-fed ham rats were much lower (0.13 MPO
units) than in the feed cohort (1.76), and this difference
was statistically significant [Fig. 2d].
The three other parameters associated with colon

histological studies did not show statistically significant

Fig. 1 Effect of acorn-fed ham on body weight and disease activity index (DAI). a, percentage of body weight reduction in the feed cohort; b in
the acorn-fed ham cohort; and c in the absolute control rats (those lacking the DSS challenge). Data were taken every week during the UC
experiment. DSS treatment (UC status) took place between days 7 and 14 of the experiment, and those days are the ones represented on
graphics. d disease activity index (DAI): this parameter is the sum of two parameters: body weight loss (0, more than 5% body weight gain; 1, less
than 5% body weight gain and less than 5% body weight loss; 2, from 5 to 10% body weight loss; 3, from 10 to 20%% body weight loss; 4, more
than 20% body weight loss); stool consistency (0, normal feces; 1, loose stool; 2, watery diarrhea; 3, slimy diarrhea with little blood; 4, severe
watery diarrhea with blood)

Fernández et al. Lipids in Health and Disease           (2020) 19:28 Page 6 of 19



differences between the acorn-fed ham and the feed co-
horts. These parameters were the reduction of colon
length (which is associated with UC severity) [Fig. S1A],
the presence of reparative changes in colon mucosa
(which indicates tissue recovery after colon mucosa

ulceration) [Fig. S1B] and the number of hyperplastic
Peyer’s patches in the small intestine [Fig. S1C]. And fi-
nally, the Evans blue assay was also carried out with no
statistically significant differences in colon permeability
observed between the cohorts [Fig. S1D].

Fig. 2 Effect of acorn-fed ham on colon histological measurements, blood plasma total antioxidant capacity and cytokines levels. Circles and
squares indicate the corresponding value or score for each rat. a macroscopic damage score assessment of UC. b colon epithelium alteration
score. c inflammatory cells density in colon mucosa score. d myeloperoxidase assay (MPO). E, FRAP total antioxidant capacity. f Mean plasma
levels of the pro-inflammatory IL-17 cytokine. g mean plasma levels of interferon-γ (IFN-γ)
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Effect of acorn-feed ham on blood total antioxidant
capacity and cytokine levels on DSS-treated animals
The sacrificed acorn-fed ham cohort rats (1 week after
finishing the DSS treatment) showed a much higher total
antioxidant capacity (FRAP) in the blood plasma
(453.82 μM Trolox equivalent) than the feed cohort rats
(315.41 μM Trolox equivalent), and this difference was
statistically significant [Fig. 2e].
In terms of cytokines, the main differences observed be-

tween the feed cohort rats and the acorn cohort rats were
in the levels of IL-17, IFN-γ and TGF-β, though statisti-
cally significant differences were obtained only in the cases
of the pro-inflammatory IL-17 (3.62 pg/mL mean value in
the acorn-fed ham cohort and 15.92 pg/mL mean value in
the feed cohort) [Fig. 2f] and IFN-γ (173.81 pg/mL mean
value in the acorn-fed ham cohort and 221.96 pg/mL
mean value in the feed cohort) [Fig. 2g].

Effect of acorn-feed ham on short-chain fatty acids
concentrations in feces of DSS-treated animals
Various short-chain fatty acids (SCFAs) were measured by
GC-MS in cecum feces collected after sacrifices. These
SCFAs were propionic, butyric, isobutyric, valeric and iso-
valeric acids, which are known compounds involved in
colon homeostasis and health. In these quantifications,
deuterated standards were used for measurements (see
materials and methods section). Statistically significant

differences were observed for some of these SCFAs, with
higher concentrations in the acorn-fed ham cohort in the
cases of isobutyric acid (mean values of 2.06mM in the
acorn-fed ham cohort and 1.62mM in the feed cohort)
[Fig. 4a], isovaleric acid (0.0098mM in the acorn-fed ham
cohort and 0.0023mM in the feed cohort) [Fig. 4b], and
valeric acid (0.14mM in acorn-fed the ham cohort and
0.063mM in the feed cohort) [Fig. 4c]. No statistically sig-
nificant differences were observed with respect to the pro-
pionic acid levels between the cohort, although the mean
value for propionic acid concentration in cecums from the
acorn-fed ham cohort animals (0.8546mM) was higher
than in the feed cohort (0.7851mM) [Fig. 4d]. Finally, the
butyric acid mean value was higher in the feed cohort
(0.98mM) than in the acorn-fed ham cohort (0.32mM)
[Fig. 4e].

Effect of acorn-feed ham on fatty acids concentrations in
blood plasma
Table 3 shows the percentages for each fatty acid in the
blood plasmas of the acorn-fed ham cohort rats and feed
cohort rats. In accordance with the type of food in each
case, animals from the acorn-fed ham cohort showed
higher plasma levels of the monounsaturated fatty acid
oleic acid (31.61%). This value was double the oleic acid
content in the feed cohort rats (16.21%), and the differ-
ence was statistically significant [Fig. 4f].

Fig. 3 Histology studies on colon mucosa stained with hematoxylin and eosin. a Feed cohort, showing moderate inflammation and no re-
epithelialization of colon mucosa (10x magnification). b Acorn-fed ham cohort, showing mild inflammation and good re-epithelialization of colon
mucosa (10x magnification). c Feed cohort, showing the no re-epithelialization of colon mucosa at 30x magnification. d Acorn-fed ham cohort,
showing the good re-epithelialization of colon mucosa at 30x magnification
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In contrast, the plasma content of the omega-6 fatty
acid linoleic acid was much higher in the feed cohort an-
imals (20.05%) than in the acorn-fed ham cohort
(10.56%) [Table 3], and this difference was also statisti-
cally significant [Fig. 4i]. As this is the main omega-6
fatty acid present in these blood plasmas, this difference
resulted in a higher total omega-6 plasma content in the
feed cohort animals (33.64%) as compared to the acorn-
fed ham cohort (21.79%). It also caused the omega-6/
omega-3 ratio in the feed cohort animals to be consider-
ably higher (36.67) than in the acorn-fed ham cohort
(24.07) [Table 3]. Both these differences, the total
omega-6 content and the omega-6/omega-3 ratio, were
statistically significant [Fig. 4g and h].

Effect of acorn-feed ham on intestinal microbiota
The statistical differences at the phylum level between the
two sequenced cohorts is that ham diet showed a increase
in Bacteroidetes (44.10% versus 17.67% in feed cohort),

Actinobacteria (1.16% versus 0.15% in feed cohort), and Pro-
teobacteria populations (20.41% in ham cohort versus less
than 1.81% in feed cohort), and a similar decrease in Firmi-
cutes (33.94% in ham cohort versus 79.79% in feed cohort),
Synergistetes (0% in ham cohort versus 0.11% in feed cohort)
and in Deferribacteres (0% in ham cohort versus 0.29% in
feed cohort) [Fig. 5a, b]. The distribution of these phyla in
all the rats treated with DSS was similar to their distribution
in the absolute control animals of each cohort, with the ex-
ceptions of the F4 rat (and, to a lesser extent, the F3 rat) of
the feed cohort, which showed a deep dysbiosis [Fig. 5a].
At the family level, in general, the composition found

in the ham cohort was different from that of the feed co-
hort animals [Fig. 5c]. The acorn-fed ham cohort ani-
mals showed a relatively statistically higher proportion
of Coriobacteriaceae (Actinobacteria, 1.14% in ham co-
hort in contrast to 0.14% in feed animals), Bacteroida-
ceae (26.74% in ham cohort in contrast to 5.54% in feed
animals), Porphyromonadaceae (12.63% in ham cohort

Fig. 4 Effect of acorn-fed ham on short-chain fatty acids concentrations in feces and lipids in plasma. a isobutyric acid mM concentration in
cecum feces. b isovaleric acid mM concentration in cecum feces. c valeric acid mM concentration in cecum feces. d propionic acid mM
concentration in cecum feces. e butyric acid mM concentration in cecum feces. f plasma levels of oleic acid in both rat cohorts. g plasma levels
of omega-6 fatty acids in both rat cohorts. h plasma omega-6/omega-3 ratio in both rat cohorts. i plasma linoleic acid in both rat cohorts
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in contrast to 7.26% in feed animals) and Rikenellaceae
(1.51% in ham cohort in contrast to 0.10% in feed ani-
mals) (Bacteroidetes), Desulfovibrionaceae and Sutterel-
laceae (Proteobacteria), Staphylococcaceae (2.55% in
ham cohort in contrast to 0% in feed animals), Entero-
coccaceae (0.04% in ham cohort in contrast to 0.005% in
feed animals), Clostridiaceae Family XIII (0.13% in ham
cohort in contrast to 0.009% in feed animals) Eubacter-
iaceae (2.20% in ham cohort in contrast to 0.42% in feed
animals), Acidaminococcaceae (0.72% in ham cohort in
contrast to 0.3% in feed animals) and Erysipelotrichaceae
(Firmicutes); as well as in Sutterellaceae (2.97% in ham
cohort in contrast to 0.86% in feed animals), Desulfovi-
brionaceae (15.16% in ham cohort in contrast to 0.56%
in feed animals) and Enterobacteriaceae (1.55% in ham
cohort in contrast to 0.06% in feed animals) (Proteobac-
teria) [Fig. 5c and 6b].
The acorn-fed animals showed a statistically lower pro-

portion of Marinifilaceae (0% in ham cohort in contrast
to 0.12% in feed animals), Prevotellaceae (0.57% in ham
cohort in contrast to 3.16% in feed animals), Sphingobac-
teriaceae (0.05% in ham cohort in contrast to 0.18% in
feed animals) (Bacteroidetes), Ruminococcaceae (3.02% in
ham cohort in contrast to 7.22% in feed animals), Lach-
nospiraceae (8.91% in ham cohort in contrast to 37.38% in
feed animals), Clostridiaceae (8.14% in ham cohort in con-
trast to 18.87% in feed animals), Veillonellaceae (0.02% in

ham cohort in contrast to 0.16% in feed animals) and Lac-
tobacillaceae (1.41% in ham cohort in contrast to 10.24%
in feed animals) (Firmicutes); and Cohaesibacteriaceae
(0.04% in ham cohort in contrast to 0.11% in feed animals)
(Proteobacteria) [Fig. 5c and 6b].
The animals treated with DSS from each cohort showed

a family distribution similar to that of their counterparts
without UC induction. The exception, again, was for rats
F3 and F4 from the acorn-fed ham cohort [Fig. 5c].
PCA of gut microbiota composition divided the ani-

mals in two clusters, indicating differences in the gut
microbiota composition associated to both dietary inter-
ventions, feed and acorn-fed ham diets (Fig. 6a). Bacter-
ial families with significant differences in their relative
abundances between the feed and acorn-fed ham cohorts
are indicated in the LDA analysis (Fig. 6b): in total, 32
families explain in a significant way both types of diet.
The main statistically significant differences at the

genus level involved a higher proportion in the acorn-
fed ham animals of Bacteroides, Butyricimonas, Parabac-
teroides, Alistipes, Staphylococcus, Enterococcus, Blautia,
Dorea, Absiella, Phascolarctobacterium, Parasutterella
and Bilophila [Table 4]. On the other hand, the genera
Prevotella, Mucispirillum, Lactobacillus, Clostridium,
Lachnoanaerobaculum, Ruminococcus, Oscillibacter and
Desulfovibrio showed a reduction in the acorn-fed ham
cohort [Table 4].

Table 3 Mean and SEM fatty acid levels in the blood plasma of rats belonging to acorn-fed ham and feed cohorts

Fatty acids Plasma levels in acorn-fed
ham cohort rats
%

Plasma levels in feed cohort rats
%

C14:0 Myristic 0.67 ± 0.04 0.88 ± 0.06

C16:0 Palmitic 21.99 ± 0.20 25.59 ± 0.47

C16:1n7 Palmitoleic 1.51 ± 0.11 3.42 ± 0.50

C17:0 Margaric 0.59 ± 0.03 0.77 ± 0.08

C18:0 Stearic 13.40 ± 0.48 11.69 ± 0.66

C18:1 Oleic 31.61 ± 1.33 16.21 ± 1.90

C18:1n-7 11-Octadecenoic 5.15 ± 0.14 3.92 ± 0.22

C18:2n6 Linoleic 10.56 ± 0.24 20.05 ± 0.86

C18:3n3 α-linolenic 0.73 ± 0.05 1.13 ± 0.09

C20:0 Arachidic 0.19 ± 0.02 0.12 ± 0.01

C20:1n9 Eicosenoic 1.02 ± 0.04 0.81 ± 0.12

C20:4n6 Arachidonic 10.03 ± 0.71 12.27 ± 1.05

C22:4n6 Adrenic 1.20 ± 0.06 1.32 ± 0.14

C22:5n3 DPA 0.45 ± 0.02 0.51 ± 0.05

C22:6n3 DHA 1.10 ± 0.07 1.38 ± 0.13

100% 100%

ω-3 2.28 ± 0.13 3.03 ± 0.18

ω-6 21.79 ± 0.88 33.64 ± 1.85

ω-6/ω-3 24.07 ± 1.01 36.67 ± 2.01
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Discussion
High doses of processed meat products are not recom-
mended in a healthy diet, especially for UC patients. How-
ever, some traditional cured meat products, such as
acorn-fed ham, contain very high levels of the monoun-
saturated fatty acid, oleic acid, an anti-inflammatory fatty
acid. Furthermore, acorn-fed ham has a lower omega-6/
omega-3 ratio than rat feed [Table 2]. The roles of omega
3 and omega 6 fatty acids in DSS-induced UC are not sim-
ple and may be influenced by a number of variables. They
have been studied extensively, and although in some cases

no difference has been found in terms of the protective
role of short-term omega 3 dietary fish oil supplementa-
tion versus omega 6, in other animal models omega 3 ex-
acerbated the induced UC initially due to a reduction in
adiponectin expression in subepithelial myofribroblasts
[24, 25]. However, most of the published results point to
the anti-inflammatory nature and protective role of the
oleic acid and the omega-3 fatty acids against UC. In the
case of omega-3 these protective effects are due, in part,
to the production of the anti-inflammatory resolvins and
reduced titers of TNFα and LTB4 leukotrienes [8, 12, 15,

Fig. 5 Intestinal microbiota composition (Phyla, Families). Phyla composition (Verrucomicrobia, Tenericutes, Proteobacteria, Firmicutes,
Deferribacteres, Bacteroidetes, Actinobacteria) for all the surviving animals in this study. a feed cohort animals; b acorn-fed ham cohort animals. c
Families composition for all the surviving animals in this study. F: feed, A: acorn-fed ham. An asterisk indicates phyla and families with statistical
significant differences between both cohorts
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17, 18, 26, 27]. Given the different levels of these fatty
acids in the acorn-fed ham compared to other meats, the
goal of the study was to test if a diet based on a Mediterra-
nean traditional meat product with a high content of the
anti-inflammatory oleic acid and a low omega-6/omega-3
ratio (due to a lower level of the pro-inflammatory poly-
unsaturated omega-6) would aid in diminishing the UC
symptoms in a rat animal model for this disease. Recently,

several bioactive peptides generated in cured ham and
other fermented meats (chorizo sausages) have been asso-
ciated to beneficial effects, such as antioxidant and cardio-
protective ones [28]. The objective here was to
demonstrate the benefits of maintaining acorn-fed ham as
part of a traditional Mediterranean diet, regarding its pro-
tective effects against UC, as an example of a common in-
flammatory gut condition.

Fig. 6 PCA and LDA analyses of gut microbiota composition. A: Gut microbiota PCA cluster analysis, showing that animals belonging to each of
the two compared diet cohorts (feed and acorn-fed ham) show very distinctive characteristics. B: LDA analysis showing the families that better
discriminate between feed and acorn-fed ham cohorts
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Table 4 Genera and species composition of the cecal microbiota (mean values from all animals in each cohort) in the analyzed
animals

Genus Species Feed Acorn ham Significance

Adlercreutzia eqolifaciens 0,000 0,052 ***

Bacteroides 3973 25,640 ****

acidifaciens 0,230 0,021 **

caccae 0,494 1286 *

dorei 0,146 2247 ***

massiliensis 0,171 14,970 ****

uniformis 0,150 0,469 **

vulgatus 1735 4320 *

Butyricimonas 0,070 1071 ****

virosa 0,020 0,305 ****

Parabacteroides 0,981 4808 ***

distasonis 0,161 3069 ****

merdae 0,709 0,011 ****

Prevotella 1780 0,012 ***

Alistipes 0,074 1432 ****

finegoldii 0,023 0,812 ****

indistinctus 0,002 0,073 ***

Mucispirillum schaedleri 0,294 0,000 *

Staphylococcus 0,000 2485 ****

Enterococcus 0,000 0,048 ****

Lactobacillus 10,040 1388 ***

hominis 1157 0,044 **

intestinalis 0,345 0,000 **

johnsonii 0,866 0,050 **

murinus 0,666 0,091 **

reuteri 0,571 0,085 **

vaginalis 1001 0,290 **

Clostridium 9036 5757 *

Blautia 1041 3388 **

glucerasea 0,084 1272 ****

Dorea 0,002 1045 ****

Lachnoanaerobaculum umeaense 0,579 0,008 *

Ruminococcus 12,670 1911 ***

gnavus 6372 1480 **

Oscillibacter 0,124 0,072 *

Absiella dolichum 0,000 0,424 ****

Phascolarctobacterium 0,303 0,727 *

succinatutens 0,225 0,530 *

Parasutterella 0,868 2831 **

excrementihominis 0,594 2154 **

Bilophila 0,134 15,040 ****

wadsworthia 0,103 10,430 ****

Desulfovibrio 0,374 0,000 ****
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To assess the potential effects of these two diets on
UC (control rat feed and experimental acorn-fed ham),
once the animals were sacrificed, three histological pa-
rameters were studied: macroscopic damage score as-
sessment, colon epithelium alteration and inflammatory
cell density in colon mucosa [Fig. 2a, b and c]. In all
three cases, statistically significant differences were ob-
served between the acorn-fed ham cohort and the feed
cohort. All three parameters indicate the extent of the
colon mucosa damage and the pro-inflammatory status
and all three were clearly lower in the colons from the
acorn-fed ham cohort rats. This indicated either that the
acorn-fed ham diet helped prevent damage to the colon
mucosa caused by DSS treatment or that the acorn-fed
ham diet enhanced the recovery of the affected colon
mucosa. A plausible explanation for this is the known
anti-inflammatory effect of oleic acid, which is abundant
in the acorn-fed ham, as well as its low omega-6/omega-
3 ratio [17, 18]. These two parameters support the idea
that keeping the traditional acorn-fed ham in a normal
diet can provide important anti-inflammatory benefits to
the gut health, without the need of drugs nor dietary
supplements.
It is also worth noting that the considerable difference

in the growth rate of the absolute control animals (those
lacking the DSS challenge) in the two cohorts. On aver-
age, at the end of the three experimental weeks, the
acorn-fed ham cohort rats had a 44% weight gain, while
feed cohort rats showed just a 32% weight gain [Fig. 1].
Regarding the feed cohort, animals showed different re-
sponses along the UC induction experiment. Rat number
F3 and F4, and at a lesser extent F6 and F5, showed a
marked reduction in the weight gain, due to a higher
damage associated to the UC induction by DSS [Fig. 1a].
Further histological data regarding the myeloperoxidase

levels in the colon mucosa also demonstrated this lower
pro-inflammatory status in the acorn-fed ham rats. The
myeloperoxidase test is usually carried out in UC studies
because it serves as a quantitative method for identifying
the presence of infiltrated granulocytes in the colon mu-
cosa, a type of immune cell. The higher the myeloperoxi-
dase value, the higher the pro-inflammatory status of the
mucosa [29–31]. An analysis of these levels in the two co-
horts revealed a statistically significant reduction in the
myeloperoxidase levels in the acorn-fed ham rats [Fig. 2d].
In the same way, a statistically significant higher UC dis-
ease activity index (DAI) was measured in the feed cohort
(DAI level 4) than in the acorn-fed ham cohort (DAI level
0.87) [Fig. 1d].
Along with the histological data, several blood plasma

parameters were analyzed in both surviving cohorts.
First, the total antioxidant capacity, measured with the
FRAP method, was found to be higher in the acorn-fed
ham rats, and this difference between the two cohorts

was statistically significant [Fig. 2e]. This is most likely
due to the higher antioxidant composition (higher levels
of monounsaturated and polyunsaturated fatty acids) of
acorn-fed ham with respect to feed. Two pro-
inflammatory cytokines were also less present in the
acorn-fed ham cohort plasma with respect to the feed
cohort plasma. These were IL-17 and IFN-γ [Fig. 2f, g].
These immunological parameters present a biochemical
explanation for the lesser damage observed in the colon
mucosa of the acorn-fed ham cohort animals [Fig. 2].
Similarly, considerable differences were observed in

the fatty acid content of the blood plasmas [Table 3]. As
expected from a diet rich in oleic acid, the acorn-fed
ham cohort animals showed double the amount of oleic
acid in their blood plasma [Fig. 4f], lower omega-6 con-
tent and a lower omega-6/omega-3 ratio [Fig. 4g and h].
All these parameters indicated a lower pro-inflammatory
status in the acorn-fed ham animals, which was also
clearly observed at the histological level, as described
above.
Other parameters were analyzed in the cecal content,

since it is in this organ where fermentation processes are
carried out by its microbiota [32]. These analyses allow
the identification of metabolic differences associated
with the digestion of the three diets in the animals’
cecum [33–35]. Only three of all the SCFAs analyzed
were found in a higher concentration in the fecal cecum
content of the acorn-fed ham cohort animals: isobutyric
acid, isovaleric acid and valeric acid [Fig. 4]. A canonical
explanation for the absence of important quantities of
butyric acid in the acorn-fed ham cohort animals’ cecum
(0.32 mM with respect to 0.98 mM in feed cohort rats) is
the fact that ham diets do not supply fiber content
[Table 1], the nutrient that is usually fermented by
cecum microbiota to generate this SCFA [35, 36].
With respect to gut microbiota changes, the case of

the F3 and F4 rats (rat feed cohort) is unique. Although
all of the feed cohort animals survived after the DSS
challenge, two of them, the F3 rat, and especially the F4
rat, were in critical condition one week after the end of
the treatment (DAI score 7 and 8 respectively) [Fig. 1d].
These two rats lost between 21 and 25% of the body
weight with respect to week 1 [Fig. 1a]. Also, it is worth
noting that the F3 and F4 rats lost this body weight in
the week following the withdrawal of DSS from the
drinking water [Fig. 1a], i.e., during the expected period
of recovery, which indicated a bad prognosis.
The profile of the intestinal microbiota of these two

animals (F3 and F4 rats) showed a dramatic alteration at
all taxonomic levels examined (especially in the F4 rat)
in comparison with the other animals from the feed co-
hort [Fig. 5a and c]. At the phylum level, the F4 rat
showed 52% Bacteroidetes, 38% Firmicutes and 9% Pro-
teobacteria (Firmicutes/Bacteroidetes ratio of 0.7), while
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the other rats from the feed cohort showed, on average,
17.6% Bacteroidetes, 79.7% Firmicutes and 1.8% Proteo-
bacteria (Firmicutes/Bacteroidetes ratio of 4.5). This in-
dicated a deep gut dysbiosis in the F3 and F4 rats with
respect to the other animals in the feed cohort. In fact,
this phylum distribution for the F3 and F4 rats was very
similar to the animals from the acorn-fed ham cohort
(44.1% Bacteroidetes, 39.9% Firmicutes and 20.4% Proteo-
bacteria, Firmicutes/Bacteroidetes ratio of 0.9). This
similarity may indicate that the Firmicutes/Bacteroidetes
ratio is probably not sufficient to express the health sta-
tus of the individual. This is evidenced by the fact that,
although both types showed the same Firmicutes/Bacter-
oidetes ratio, the F4 rat was in critical condition but the
acorn-fed ham cohort animals recovered and thrived.
Nevertheless, even though there were more similarities

than differences in the relative proportions of most fam-
ilies present in the F4 rat microbiota as compared to the
average values of the acorn-fed ham animals, significant
differences were found at the genus and species levels.
For example, the relative proportion of the Parabacter-
oides genus was the same, 4.5%, in the F4 rat and 4.8%
in the acorn-fed ham cohort animals. But while the dis-
tribution at the species level in the acorn-fed ham cohort
animals was 3.1% Parabacteroides distasonis, 0.7% P.
goldsteinii and 0.01% P. merdae; in the F4 rat these
values were 0.7% P. distasonis, 0.5% P. goldsteinii and 3%
P. merdae. It is perhaps this distinct distribution at the
species level that differentiates a sick animal (such as the
F3 and F4 rats) from a healthy one (such as those in
acorn-fed ham cohort).
Similarly, the acorn-fed ham cohort animals showed a

very different taxa distribution in their intestinal micro-
biota from feed cohort rats [Fig. 5, 6b and Table 4].
The significance of all these changes is difficult to de-

termine. Likewise, it is difficult to establish the most
relevant taxa that were favored with the acorn-fed ham
diet, which could be involved in protecting against the
DSS challenge. For example, Bacteroides vulgatus (Bac-
teroidaceae family) [Table 4] has a relatively high pres-
ence in the gut microbiota of the acorn-fed ham cohort
animals (4.3%) compared with the feed cohort rats
(1.7%). Additionally, several studies have found that it is
more commonly present at higher levels in healthy hu-
man controls than in UC or IBD patients and it can pro-
vide different types of protection against UC [36–41].
However, sialidase activity from B. vulgatus mediates the
release of sialic acid from intestinal tissue, driving intes-
tinal inflammation and microbial dysbiosis in mice after
DSS administration [40]. B. massiliensis is present in
higher amounts (14.9%) in acorn-fed ham cohort, in
comparison with feed cohort (0.1%), a species associated
to gut microbiota of healthy subjects [41]. In a similar
way, higher levels of B. dorei (a species with anti-

inflammatory activity) were found in acorn-fed animals
(2.2%) in comparison with feed cohort (0.1%) [42].
P. distasonis (Bacteroidetes phylum, Porphyromonada-

ceae family, [Table 4]) has a greater presence in the
acorn-fed ham cohort rats (3.1%) than in the feed cohort
rats (0.1%). As in the case of B. vulgatus, opposing roles
have been assigned to this species in the development of
UC: as a reducer of intestinal inflammation in mice
treated with DSS by inducing the anti-inflammatory
cytokine IL-10 [43], but also as an enhancer of the in-
flammatory condition in mutant mice affected in the
anti-inflammatory intestinal peptidoglycan recognition
proteins (Pglyrps) [44]. Perhaps the protective role of P.
distasonis requires the presence of these Pglyrps proteins
in the intestinal mucosa, that is, homologues to these
proteins must be present in the wild type animals (R.
norvegicus) used in this acorn-fed ham cohort and could
help P. distasonis achieve an anti-inflammatory effect,
since animals from the acorn-fed ham cohort with high
numbers of this species have a better health status. The
UC-associated Prevotella genus showed a marked abun-
dance in the feed cohort rats (1.7%) in comparison with
the acorn-fed ham animals (0.01%) [45].
As it was indicated in the results section, the acorn-fed

ham cohort animals showed a great reduction in phylum
Firmicutes with respect to the feed cohort animals [Fig.
5a, b]. Two families in this phylum showed the largest
reductions in the acorn-fed ham cohort: Lachnospira-
ceae (from 37.3% in feed cohort to 8.9%) and Rumino-
coccaceae (from 7.2% in feed cohort to 3%) [Fig. 5c].
Both families include numerous species with the ability
to synthesize anti-inflammatory SCFAs (such as butyrate
or propionate) from various polysaccharidic prebiotic fi-
bers [46, 47]. These fibers are present in the feed diet
(22.1%) but totally absent in the two types of ham diets.
However, other factors apart from the absence of pre-
biotic fibers in the acorn-fed ham were probably in-
volved in the lower DAI for UC seen in these animals
[Fig. 1d]. For example, within Lachnospiraceae, the pop-
ulations of the mucolytic bacteria Ruminococcus gnavus
were reduced in the acorn-fed ham cohort animals (from
6.4% in feed cohort rats to 1.9%). This bacterium has
been reported to be more prevalent and more abundant
in CD and IBD patients [48–50] and may play an im-
portant role in inducing chronic intestinal inflammation
in this study [51].
Nonetheless, even with this decrease in Lachnospira-

ceae populations, some genera increased, such as Blautia
(1% in the feed cohort rats to 3.4% in the acorn-fed ham
animals) and Dorea (0.002% in feed cohort to 1% in
acorn-fed ham cohort) [Table 4]. UC individuals and CD
patients have shown a lower abundance of Blautia spe-
cies than their healthy counterparts [52]. Blautia and
Dorea species could maintain gut homeostasis in terms
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of its ability to produce the anti-inflammatory SCFA
propionate in the acorn-fed ham animals used in this
study [47].
With this gut microbiota panorama, the loss of

butyrate-synthesizing bacteria that led to a decrease of
butyrate in the cecal content [Fig. 4e] could be compen-
sated in the acorn-fed ham cohort rats with an increase
in microorganisms able to produce isobutyrate, isovale-
rate and valerate. An increase in these three SCFAs has
been observed by GC-MS of the cecal content of the
acorn-fed ham cohort animals [Fig. 4a, b and c].
The higher proportion of Bacteroidetes phylum species

found in the acorn-fed ham cohort [Fig. 5] could explain
the maintenance in SCFAs production. Some of these
genera can produce butyrate, such as Butyricimonas
(0.07% in the feed cohort to 1.1% in the acorn-fed ham
animals) [Table 4], [53], but most members of this
phylum are mainly propionate producers [47]. Alistipes
genus (Rikenellaceae family) [Fig. 5c and Table 4], for
example, was undetectable in the feed cohort animals
(0.07%), but accounted for 1.4% total bacteria in the
acorn-fed ham cohort. Several studies have linked the
presence of Alistipes genus with a healthy state [54]. Ac-
cordingly, a decrease in this genus has been associated
with inflammatory processes [55]. More direct proof of
its protective role in the development of UC was ob-
served in the attenuation of DSS-induced UC in mice
after gavage with an Alistipes strain. In addition to its
ability to synthesize SCFAs, succinate is also a significant
end product of Alistipes metabolism, and this may
stimulate SCFAs production by other commensal micro-
organisms in the gut through the succinate pathway
[56]. For example, Phascolarctobacterium (Acidamino-
coccaceae family, Firmicutes) [Fig. 5c and Table 4] is a
succinate-utilizing propionate-producer bacterium with
a low presence in the feed cohort rats (0.3%), but ac-
counting for 0.7% in the acorn-fed ham animals [57].
Another notable difference between the gut microbiota

of the feed and acorn-fed ham cohorts, not related to
SCFAs production, is the presence of the bacteria Bilo-
phila wadsworthia (Desulfovibrionaceae family, [Fig. 5c
and Table 4]). Although this Proteobacteria occurs in
the intestinal microbiota of healthy humans [58], it has
been found to be frequently associated with inflamed ap-
pendices in children and adults and it can be considered
an opportunistic pathogen [57–60]. In the present study,
the presence of B. wadsworthia in the feed cohort rats
was 0.1%, with the only exception being the dysbiotic F4
rat (1.3%), which was in poor health condition. On the
contrary, all animals from acorn-fed ham cohort, treated
with DSS or not treated, showed 10.4% B. wadsworthia
populations. These data are in accordance with a previ-
ous work which showed that short-term consumption of
a diet based only on animal products changed microbial

community structure and increased the abundance of B.
wadsworthia in the human gut [60].
However, in this study acorn-fed ham animals showing

high B. wadsworthia populations had a lower DAI than
feed cohort rats. In these acorn-fed ham animals, weight
gain and recovery were better after the DSS challenge [Fig.
1c]. Also, their pro-inflammatory cytokines plasma levels
(such as TNF-α and IL-6) were not statistically different,
indicating that more factors than only the presence of B.
wadsworthia are required for the development of UC in
this animal model.
Another proinflammatory Proteobacteria, Desulfovi-

brio, a mucinolytic species (causing a reduction in the
mucin barrier, and therefore a lack of protection against
pro-inflammatory microbiota) [61], showed a reduction
in the acorn-fed ham cohort (0%) in comparison with
feed cohort (0.3%). This bacterium is associate to the in-
duction of apoptosis in colon mucosa in in vitro models,
and to proinflammatory changes in UC patients [62, 63].
Finally, the Proteobacteria of the species Parasutterella

excrementihominis show a high abundance in acorn-fed
ham cohort (2.1%) in comparison with feed diet (0.5%).
This species is considered anti-inflammatory, with higher
populations present in non-obese individuals [64].
A total of 32 bacterial families explain the main

differences in microbiota composition between feed and
acorn-fed ham cohorts. Veillonellaceae, Neisseriaceae Pepto-
coccaceae, Rhodospirillaceae and other families [Fig. 6b] bet-
ter describe the effect of acorn-fed diet on gut microbiota
composition, whereas Corynebacteriaceae, Marinifilaceae,
Enterococcaceae and other ones better define the microbiota
associated to feed diet [Fig. 6b].

Conclusions
In conclusion, the acorn-fed ham diet changed the rats
gut microbiota due to the different carbohydrate/protein
content of the food ingested. The lower carbohydrate
and higher protein content in the acorn-fed ham diet led
to a decrease in saccharolytic Firmicutes species and to
an increase in proteolytic Bacteroidetes and Proteobac-
teria [Fig. 5]. This dysbiosis caused less butyrate-
producing strains, but more isobutyrate, isovalerate and
valerate producers, such that total SCFAs amounts in
both cohorts were similar, including similar propionate
producers [Fig. 4]. Several other beneficial properties
from the increased strains in the acorn-fed ham cohort
contributed to maintain an appropriate gut homeostasis
and to facilitate the recovery of these animals after the
DSS challenge. These include some taxons which may
secrete metabolites or proteins able to ameliorate in-
flammation conditions [65], apart from the proven anti-
inflammatory effect of oleic acid.
As a second conclusion, the healthy fatty acid compos-

ition of the acorn-fed ham, with very high levels of the
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anti-inflammatory oleic acid and a low omega-6/omega-
3 ratio (together with potential bioactive peptides and
higher antioxidant activity), may serve as a prevention
strategy for UC onset or progression, as it has been
demonstrated in this animal model.
The changes observed in the cecal microbiota of

acorn-fed ham animals, towards increased populations
of anti-inflammatory bacterial species (such as B. vulga-
tus, P. distasonis, Parasutterella), increased populations
of SCFA producers (propionate and others) such as
Blautia, Dorea, Phascolarctobacterium or Butyricimonas,
and decreased populations of bacteria associated to UC
(such as Prevotella, R. gnavus or Desulfovibrio), together
with the anti-inflammatory effect of insaturated fatty
acids (specially oleic acid), give rise to the protective ef-
fect of acorn-fed ham diet observed in this animal model
for UC. Future clinical studies in humans would be ne-
cessary to confirm the findings of this UC animal model.
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