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Abstract

In voting theory, two different settings are commonplace: either voters express

a preference ordering on the set of candidates or they express an individual

evaluation of each candidate. In either case, the aim may be to obtain a global

ranking of the candidates and, in particular, to determine the winner of the

election. We introduce a probabilistic framework that allows us to explore a

correspondence between some usual voting procedures based on either preference

orderings (e.g. the Borda count and the Condorcet procedure) or individual

evaluations (e.g. the Borda majority count and the majority judgment) and some

classical stochastic orderings (e.g. comparison of expected values, comparison

of medians and statistical preference). We also consider a recently-introduced

multivariate stochastic ordering, called probabilistic preference, and show its

connection with the plurality and veto procedures.
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1. Introduction

Voting procedures and stochastic orderings are two commonly used tools in

different branches of operations research, such as decision support for the former

and stochastic modelling for the latter. Just as illustrative recent examples,

voting procedures have been used in the aggregation of rankings [1, 20], social

welfare [19], and decision making [25, 30], whereas stochastic orderings have

been applied in decision making [27, 33] and in reliability theory [36], among

many others.

Formally, voting theory is the subfield of social sciences devoted to the study

and development of mathematical tools (voting procedures) used to deduce the

winner of an election. There are two main settings in voting theory: the frame-

work in which voters express a preference ordering on the set of candidates (here-

inafter referred to as Arrow’s framework [2, 3]1) and the framework in which

voters express individual evaluations of the candidates on a given (linearly-

ordered) linguistic scale (hereinafter referred to as Balinski and Laraki’s frame-

work [4, 5, 6]2). In both frameworks, the final objective may be to obtain a

global ranking of the candidates and, in this way, determine the winner of the

election according to the opinions of the voters.

Probably the most prominent and often used voting procedures in Arrow’s

framework are the Borda count [8], which determines a winner based on numer-

ical values assigned to each candidate according to its position in the preference

1Arrow’s framework could be traced back in time much further. Some authors refer to

the eighteenth century and the discussions between Jean Charles de Borda and Nicolas de

Condorcet, whereas some others refer to Ramon Llull in the thirteenth century and Nicolas

Cusanus in the fifteenth century.
2Balinski and Laraki’s framework could actually be traced back to Laplace in the nineteenth

century and to Galton in the early twentieth century. Approval voting [9] could also be argued

to fit within this framework.
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orderings given by the voters, the Condorcet procedure [11], which determines

a winner based on pairwise comparisons between candidates, as well as the plu-

rality and veto procedures, which consider the winner to be the candidate that

appears with the highest frequency at the first and last positions, respectively.

In Balinski and Laraki’s framework, the most common voting procedures are

majority judgment [4, 5, 6] and the Borda majority count [47] (or range vot-

ing [42]), in which the individual evaluations of each candidate are aggregated

and, subequently, ranked according to these aggregated evaluations. However,

using the Borda majority count in this setting has some significant problems,

as argued in [47]. In this direction, an alternative to the Borda majority count

and majority judgment was recently presented in [37].

In this work, we define a probability space that allows to link the most

prominent voting procedures and the comparison of some appropriately defined

random variables. Recall that the comparison of random variables is usually

performed in terms of stochastic orderings [35, 41]. Some of the most common

stochastic orderings are the comparison of expected values and the comparison

of medians, both based on the comparison of location parameters. Statistical

preference [17, 18] is another common stochastic ordering that is based on a re-

ciprocal relation computed from the bivariate marginal distributions of pairs of

random variables. A recently-proposed approach based on multivariate distri-

butions is probabilistic preference [34], allowing for the simultaneous comparison

of all the random variables.

In Arrow’s framework we associate a random variable with each candidate

such that for any voter the random variable expresses the position of the candi-

date in the preference ordering of this voter. We will prove that the Borda count

and the Condorcet procedure are equivalent to the comparison of the random

variables associated with the candidates in terms of expected values and statis-

tical preference, respectively. Since there is a close connection between voting

procedures and stochastic orderings, we will also compare the random variables

associated with the candidates in terms of probabilistic preference, and we will

investigate the winner of the election in this setting, which will turn to be closely
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related to the plurality and veto winners.

In Balinski and Laraki’s framework, we also associate a random variable with

each candidate expressing for any voter the individual evaluation of the candi-

date given by this voter. In this setting, the evaluations are usually given on a

(linearly-ordered) linguistic scale, and therefore we are dealing with qualitative

random variables. We will show that if we apply the comparison of expected

values or medians to the random variables associated with the candidates, we

obtain the same result as the Borda majority count and the majority judgment,

respectively. We will also consider probabilistic preference in this framework.

The idea of connecting voting procedures and stochastic orderings already

appeared in the literature in [43], where the authors proposed a voting procedure

in the spirit of stochastic dominance as an alternative to the usual Borda count

or Condorcet procedures. However, as we will discuss later on in Remark 1, this

approach could lead to incomparability.

It must be noted that we do stick to classical deterministic ranking voting

problems and that the here-defined probabilistic space does not aim at defining

a probabilistic voting procedure (see, e.g. [21, 23] for some introductory papers

on probabilistic social choice). In addition, the objective of this paper is not

to compare the mentioned voting procedures to determine the most adequate

one. Instead, the main goal of this contribution is to show that similar ideas

arise in two apparently separated fields when a voting problem is seen as a

result of comparing random variables defined on a probabilistic space with a

uniform distribution over the voters. Interestingly, the uniform distribution

over the voters aligns with the standard assumption in social choice theory in

which all voters are assumed to be equally important (neutrality). We end

this introduction by noting that this paper shows a correspondence between

the most prominent stochastic orderings and the classics of social choice theory,

and does not cover the closely related field of (group/multiattribute) decision

making [26, 44, 45].

The remainder of this paper is organized as follows. Section 2 introduces

basic notions related to voting theory. In Section 3, we develop an approach
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that allows to express voting procedures in terms of a probability space and

stochastic orderings in case the voters express their opinions in terms of pref-

erence orderings. Section 4 introduces the probabilistic approach to ranking

candidates in case the voters express their opinions in terms of individual eval-

uations. As in the preceding section, we will show that the usual procedures for

dealing with this kind of voting problems can be expressed in terms of stochastic

orderings. Finally, Section 5 ends the paper with some concluding remarks.

2. Basics of voting theory

In the framework of voting theory, a number of candidates, denoted C1,

. . . , Cm, participate in an election. The voters, denoted v1, . . . , vn, usually give

their preference orderings over the candidates, denoted e1, . . . , en, each of these

preference orderings establishing a total order on the set of candidates. A voter

vi thus expresses the preference ordering ei as Cσi(1) � . . . � Cσi(m), where σi is

a permutation of {1, . . . ,m}. We say that Cσi(1) is the most preferred candidate

for voter vi and Cσi(m) is the least preferred candidate for voter vi. The aim of

voting procedures is to establish a global ranking on the set of candidates to be

able to decide which is(are) the preferred candidate(s) according to the given

preference orderings.

Once we apply a voting procedure, we obtain a global ranking Cσ(1) �

. . . � Cσ(m), where σ again denotes a permutation of {1, . . . ,m}. Cσ(1) will be

called the winner of the election, while Cσ(m) will be called the loser. Also, a

candidate Cσ(i) is preferred to another candidate Cσ(j) in the global ranking if

Cσ(i) � Cσ(j). One should note that the global ranking might not be unique

and/or some candidates might be considered to be tied for some collections

of preference orderings given by the voters. In the latter case, we will denote

the fact that the candidates at the j-th and (j + 1)-th positions are tied by

Cσ(j) ∼ Cσ(j+1).

Probably the procedure most often used for aggregating a collection of pref-

erence orderings is the Borda count procedure [8]. If voter vi gives her preference
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ordering ei as Cσi(1) � . . . � Cσi(m), then the Borda count procedure assigns

m − 1 points to Cσi(1), m − 2 points to Cσi(2), . . . , and 0 points to Cσi(m).

To obtain the global ranking, the Borda count procedure computes the sum

of the points any candidate receives in each of the preference orderings. For a

candidate C, this sum is usually referred to as the Borda count of C and is de-

noted by B(C). Naturally, it holds that the greater the Borda count of a certain

candidate is, the more preferred the candidate is according to the Borda count

procedure, yielding a global ranking on the set of candidates. However, since

two (or more) candidates could have the same Borda count, ties are allowed.

The Borda count procedure belongs to the oldest and most prominent family

of voting rules: scoring rules [40, 46]. Other classical examples in this family

are the plurality rule and the veto rule (also known as the antiplurality rule or

the inverse plurality rule), which respectively rank the candidates according to

the number of times that they appear at the first or last position. Different

elimination procedures have been combined with scoring rules, to reduce the

effect of unimportant candidates within the election [38].

Another common procedure for ranking the candidates given the preference

orderings is that of Condorcet [11]: for any two candidates Ci and Cj we denote

by nCi�Cj
the number of voters that consider Ci preferred to Cj . In this way,

Ci is preferred to Cj whenever nCi�Cj > nCj�Ci .

Note that this procedure might not lead to a global ranking since cycles

might arise. The presence of such cycles is usually referred to as the voting

paradox or, more precisely, the Condorcet paradox. For avoiding such cycles,

different procedures respecting as far as possible the rationale of Condorcet

have been proposed (e.g. the Kemeny procedure [29]). These procedures are

commonly referred to as Condorcet procedures. Note that the Borda count, the

plurality rule and the veto rule are not Condorcet procedures since they might

yield a different winner than the Condorcet procedure, even in the absence of

cycles.

A slightly different approach to voting theory is based on individual eval-

uations of candidates instead of preference orderings [4, 5, 6]. In this frame-
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work, each voter assigns a label to each candidate, indicating her evaluation.

These evaluations are usually expressed on a (linearly-ordered) linguistic scale

L = {l1, . . . , ls}, where the linguistic terms are ordered from the worst to the

best, i.e., l1 < . . . < ls. This approach is in some sense more expressive than the

previous one, since a preference ordering can be obtained from the evaluations

(yet allowing for ties), however, the converse does not hold.

The evaluations provided by the voters can be summarized in a matrix:

G =


g11 g12 . . . g1n
...

...
. . .

...

gm1 gm2 . . . gmn

 , (1)

where gij ∈ L. For each candidate Ci, (gi1, . . . , gin) denotes the evaluations

given by the n voters. The main problem here is to aggregate the evaluations

of the voters in order to obtain the final evaluation of every candidate.

Two of the most commonly used procedures for solving this problem are the

majority judgment [4, 24] and the Borda majority count [47] procedures. The

first is defined in the following way:

1. If n is odd and the evaluations of a candidate C can be ordered as g1 ≥

. . . ≥ gn, then her majority grade is defined as MG(C) = g(n+1)/2. Note

that in this case the majority grade is a unique value and amounts to the

median or (lower/upper) middlemost.

2. If n is even and the evaluations of a candidate C can be ordered as g1 ≥

. . . ≥ gn, then her majority grade is defined as MG(C) = [gn/2, g(n+2)/2],

where gn/2 is the lower middlemost grade and g(n+2)/2 is the upper mid-

dlemost grade.

The candidates are ordered by comparing majority grades: the greater the

majority grade is, the more preferred the candidate is. Balinski and Laraki [6]

argue that when n is even, MG(C) must be defined as the lower middlemost

grade gn/2 and not as the interval [gn/2, g(n+2)/2]. In this way, the problem of

comparing intervals of grades is avoided. In case two or more candidates have
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the same majority grade, one single appearance of this value is removed from

the evaluations of both candidates and the newly-obtained majority grade is

used. This procedure is followed until both majority grades differ or until there

are no more evaluations, in which case the candidates are tied.

The Borda majority count procedure [47] works as follows: first of all, the

linguistic labels L = {l1, . . . , ls} are transformed into a numerical scale L∗ =

{0, 1, . . . , s− 1}. This assumes that all linguistic terms are equally spaced. The

matrix G is transformed into a matrix G∗ such that any element gij = lk is

transformed into g∗ij = k − 1. Then the Borda majority count of candidate Ci

is defined as:

BMC(Ci) =

n∑
j=1

g∗ij .

As before, the greater the Borda majority count is, the more preferred the

candidate is.

3. A probabilistic approach to the ranking of candidates based on

preference orderings

In this section we introduce a probabilistic approach that allows to express

the voting procedures for ranking candidates based on preference orderings in

terms of stochastic orderings.

3.1. Probability space and random variables

By V = {v1, . . . , vn} we denote the set of all voters. We define a probability

space (V,P(V ), P ), where P is the uniform distribution over the voters. Note

that the choice of the uniform distribution follows the same line of thought as the

standard requirement of the neutrality property in social choice theory assuring

that all voters are considered to be equally important. Then any candidate Ci

has an associated random variable Xi defined on (V,P(V ), P ) that assigns for

any vj ∈ V the position of the candidate Ci in the preference ordering ej .

Similarly, for any candidate Ci we can also define another random variable X̃i

on (V,P(V ), P ) that assigns for any vj ∈ V the number of candidates ranked at
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a worse position than Ci in the preference ordering ej . Of course, there is a linear

relation between the random variables Xi and X̃i, because if a voter ranks Ci at

the j-th position, there are m−j candidates ranked at a worse position than Ci,

that is: X̃i = m−Xi, for any i = 1, . . . ,m. Let us stress that neither the random

variables X1, . . . , Xm, nor the random variables X̃1, . . . , X̃m are independent,

because the position of one candidate obviously influences the position of the

other candidates. Furthermore, both {X1, . . . , Xm} and {X̃1, . . . , X̃m} are sets

of distinct random variables.

Example 1. Consider an election with three candidates C1, C2 and C3 and five

voters v1, . . . , v5, whose preference orderings are given by:

e1 : C1 � C3 � C2

e2 : C3 � C1 � C2

e3 : C2 � C1 � C3

e4 : C3 � C1 � C2

e5 : C2 � C3 � C1

The random variables X1, X2, X3 and X̃1, X̃2, X̃3 associated with the candidates

C1, C2, C3, are given by:

v1 v2 v3 v4 v5

X1 1 2 2 2 3

X2 3 3 1 3 1

X3 2 1 3 1 2

v1 v2 v3 v4 v5

X̃1 2 1 1 1 0

X̃2 0 0 2 0 2

X̃3 1 2 0 2 1

Clearly, all the information given by the voters is captured by the random vari-

ables.

In this probabilistic approach, candidates are represented by random vari-

ables, and therefore the global ranking of the candidates should be obtained

by means of the comparison of their associated random variables. Stochastic

ordering is the subfield of probability theory that allows for the comparison of

random variables (see, for instance, [35, 41]). In the remainder of this section,
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we are going to see that some procedures for ranking candidates can be ex-

pressed in terms of stochastic orderings applied to the random variables of the

candidates. For this aim, we consider three different cases: stochastic orderings

that only consider the univariate distribution of the random variables, stochas-

tic orderings based on the bivariate distributions and stochastic orderings that

consider the joint distribution of all the random variables.

3.2. Univariate stochastic orderings

Probably the most basic stochastic ordering we can find in the literature

is the comparison of expected values. The main characteristic of this stochastic

ordering is that it is based on the univariate marginal distributions of the random

variables. This fact has advantages and disadvantages: on the one hand, it is

much simpler to handle univariate distributions than bivariate or multivariate

ones; on the other hand, bivariate or multivariate distributions are much more

informative than the univariate marginal distributions, which do not take into

account the possible dependence between the random variables.

Recall that given two random variables X and Y , X is preferred to Y with

respect to expected value [35], denoted by X �EV Y , if E(X) ≥ E(Y ), where

E(X) and E(Y ) denote the expected values of X and Y . Next, we investi-

gate the meaning of the comparison of expected values when applied to the

comparison of random variables associated with candidates.

We have already mentioned the Borda count, which probably is the most

commonly used procedure for ranking candidates when voters express prefer-

ence orderings. For any candidate, this procedure only considers its position in

each preference ordering, regardless of the position of the other candidates. It

will thus be not surprising that the Borda count and the univariate stochastic

ordering are closely related.

Proposition 1. A candidate Ci is preferred to a candidate Cj in the global

ranking induced by the Borda count if and only if Xj �EV Xi, or, equivalently,

if and only if X̃i �EV X̃j.
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Proof. Denote by n(Ci, k) the number of voters v ∈ V that rank Ci at the

k-th position. The Borda count of Ci takes the following value:

B(Ci) =

m∑
k=1

(m− k) · n(Ci, k) =

m−1∑
k=0

k · n(Ci,m− k) .

Considering the relationship X̃i = m−Xi, it holds that:

E(X̃i) =

m−1∑
k=0

k · P (X̃i = k)

=

m−1∑
k=0

k · P (Xi = m− k) =

m−1∑
k=0

k · n(Ci,m− k)

n
=

B(Ci)

n
.

Furthermore, E(X̃i) = m− E(Xi), and therefore:

B(Ci) ≥ B(Cj)⇔ E(Xj) ≥ E(Xi)⇔ E(X̃i) ≥ E(X̃j) .

�

Note that the expected value is quite sensitive to extreme values. The strong

connection between the expected value and the Borda count implies that the

same holds for the Borda count. This translates to possibilities for manipulation

by voters: suppose two candidates would have a very close Borda count, then

by (insincerely) assigning these two candidates positions 1 and m, a voter could

attempt to produce a big difference between these two candidates. There is

quite some literature on this topic in the field of voting theory [10, 28, 39].

Remark 1. Another univariate stochastic ordering is stochastic dominance,

which is probably the most common stochastic ordering that can be found in the

literature [31]. It compares the cumulative distribution functions of the random

variables X and Y , which are given by:

FX(t) = P (X ≤ t), FY (t) = P (Y ≤ t) ∀t ∈ R .

We say X is stochastically preferred to Y , denoted by X �FSD Y , if FX(t) ≤

FY (t) for any t ∈ R.

For the random variables X1, . . . , Xm associated with the candidates, FXi(k)

denotes the number of voters that rank candidate Ci at the first k positions of
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their preference orderings. With this very meaning, stochastic dominance has

been used in the field of voting theory under the name of Borda-dominance [22,

43]. Its main drawback is that it might lead to incomparability. In our frame-

work, this means that stochastic dominance cannot be counted on to produce a

ranking on the set of candidates.

3.3. Bivariate stochastic orderings

We have mentioned in the previous subsection that one of the main draw-

backs of the expected value is that it only takes into account univariate marginal

distributions, so it ignores the possible dependence between the random vari-

ables. One possible way of dealing with the dependence between the random

variables is to use stochastic orderings based on the bivariate marginal distri-

butions (or even the entire multivariate distribution, as will be discussed in the

next subsection). Statistical preference is one approach to do so, and it is based

on a reciprocal relation [7, 12].

Definition 1. Given a set of alternatives A, a reciprocal relation is a function

Q : A×A → [0, 1] such that Q(a, b) +Q(b, a) = 1, for any a, b ∈ A.

Reciprocal relations are a very important tool because Q(a, b) can be inter-

preted as a measure of the strength of the preference for a over b on the scale

[0, 1], where 1
2 is understood as indifference, 1 is understood as total preference

for a over b and 0 is understood as total preference for b over a.

When the set of alternatives is formed by random variables defined on the

same probability space (Ω,Σ, P ), it is possible to define the following reciprocal

relation:

Q(X,Y ) = P (X > Y ) +
1

2
P (X = Y ) . (2)

The valueQ(X,Y ), called winning probability ofX over Y , measures the strength

of the preference for X over Y , and statistical preference is defined by consid-

ering the strong 1
2 -cut of the relation Q [17, 18].

Definition 2. X is statistically preferred to Y when Q(X,Y ) > 1
2 , and this is

denoted by X �SP Y .
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It is obvious that X �SP Y if and only if P (X ≥ Y ) > P (X ≤ Y ). Further-

more, when P (X = Y ) = 0, like for instance for continuous random vectors or

discrete random variables with disjoint supports, the reciprocal relation given

in Eq. (2) becomes Q(X,Y ) = P (X > Y ).

Statistical preference can be understood as a stochastic ordering based on the

bivariate marginal distributions. It takes into account the possible dependence

between the random variables and yields winning probabilities, in the sense that

the greater the winning probability is, the more preferred is one random variable

over the other. Moreover, since it only takes into account the order between

the values X(ω) and Y (ω) for any ω ∈ Ω instead of their values, statistical

preference can also be applied to qualitative random variables.

Let us now consider the random variables Xi associated with the candidates

Ci, for i = 1, . . . ,m. First of all, note that these random variables cannot take

the same value simultaneously, and hence Q(Xi, Xk) = P (Xi > Xk) for any

i 6= k.

Proposition 2. A candidate Ci is a Condorcet winner if and only if Xk �SP Xi

for any k 6= i.

Proof. Let us develop the expression Q(Xk, Xi):

Q(Xk, Xi) = P (Xk > Xi) = P ({v ∈ V | Xk(v) > Xi(v)})

=
|{v ∈ V | Xk(v) > Xi(v)}|

n
=
|{vj ∈ V | σj(i) < σj(k)}|

n
.

Hence, Xk �SP Xi means that Ci is preferred to Ck in pairwise comparisons.

Then, if such preference holds for any k 6= i, this is equivalent to being a

Condorcet winner. �

Of course, the previous result can also be expressed in terms of the random

variables X̃i, because Xk �SP Xi is equivalent to X̃i �SP X̃k.

We have already mentioned that the Condorcet procedure might lead to

cycles. This is related to the lack of transitivity of statistical preference ([13, 14,

15, 16, 32]): it is possible to find random variables X,Y, Z such that X �SP Y ,

Y �SP Z, but Z �SP X.
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3.4. Multivariate stochastic orderings

3.4.1. Probabilistic preference on a set of candidates

As mentioned above, one of the most important drawbacks of statistical pref-

erence is its lack of transitivity. This is due to the fact that statistical preference

is based on bivariate marginal distributions only, so it does not consider all the

information given by the multivariate distribution. Hence, in order to construct

a voting procedure giving a ranking, one could use the multivariate distribu-

tion of all the random variables to be compared, rather than only the bivariate

marginal distributions. One possible way of doing so is by using probabilistic

preference [34]. This procedure was introduced as an extension of statistical

preference allowing for the comparison of more than two random variables si-

multaneously.

Definition 3. Let A be a finite set of distinct random variables defined on the

same probability space (Ω,Σ, P ). For every X ∈ A, the multivariate winning

probability of X in A is defined as3:

ΠA(X) =
∑

Y⊆A\{X}

1

1 + |Y|
P
((
∀Z ∈ Y

)(
∀W ∈ A\ ({X}∪Y)

)(
X = Z > W

))
.

(3)

As we can see, the multivariate winning probabilities preserve the idea of the

(pairwise) winning probabilities in Eq. (2). In fact, considering a set of random

variables A = {X,Y }, we obtain the reciprocal relation in Eq. (2):

ΠA(X) = Q(X,Y ) and ΠA(Y ) = Q(Y,X) .

In this way, the function ΠA also measures the intensity of preference for one

random variable in the set A, preserving the property that∑
X∈A

ΠA(X) = 1 .

3Note that the notation
{(

∀Z ∈ Y
)(
∀W ∈ A \ ({X} ∪ Y)

)(
X = Z > W

)}
in Eq. (3) is a

shorthand for
{
ω ∈ Ω |

(
∀Z ∈ Y

)(
∀W ∈ A \ ({X} ∪ Y)

)(
X(ω) = Z(ω) > W (ω)

)}
.
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Using these multivariate winning probabilities, we can define a weak ordering

(allowing for ties) on the random variables in A.

Definition 4. Let A be a finite set of distinct random variables defined on the

same probability space. Given X,Y ∈ A, X is probabilistically preferred to Y

in A if ΠA(X) ≥ ΠA(Y ). Similarly, given X ∈ A, X is the probabilistically

preferred random variable in A if:

ΠA(X) ≥ max
Y ∈A\{X}

ΠA(Y ).

As we can see, probabilistic preference reduces to statistical preference when

A = {X,Y }. For an in-depth study on this stochastic ordering, we refer to [34].

When we deal with a set of discrete and distinct random variables A whose

supports are pairwisely disjoint, it holds that P (X = Y ) = 0 for everyX,Y ∈ A,

and the expression of the multivariate winning probabilities becomes simpler,

more precisely (see [34, Prop. 13]):

ΠA(X) = Q
(
X, max

Y ∈A\{X}
Y
)

= P
(
X > max

Y ∈A\{X}
Y
)
. (4)

We have seen that by computing the expected value of the random variables

associated with the preference orderings given by the voters (either the random

variables Xi or X̃i) we obtain the Borda count, and when applying statistical

preference, we obtain the Condorcet procedure. In the remainder of this section,

we apply the notion of probabilistic preference to the comparison of the random

variables Xi and X̃i associated with the candidates to obtain a ranking of them.

Although for univariate or bivariate stochastic orderings, we have seen that

the use of either the random variables Xi or the random variables X̃i is equiv-

alent, this is no longer the case for probabilistic preference, and two possible

ways of ranking the candidates arise.

On the one hand, the random variable X̃i indicates the number of candidates

ranked at a worse position than Ci for any voter. This means that the greater

the value of X̃i is, the more preferred the candidate Ci is. Applying the notion

of probabilistic preference to the set of random variables A = {X̃1, . . . , X̃m},
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we can rank the candidates from the winner to the loser. This approach will be

called the top-down probabilistic preference procedure.

On the other hand, the random variable Xi indicates the position of Ci in

the preference orderings given by the voters. This means that the smaller the

value of Xi is, the more preferred the candidate Ci is. Hence, the greater the

multivariate winning probability is, the less preferred the candidate is. So if

we apply the notion of probabilistic preference to the set of random variables

A = {X1, . . . , Xm}, we will obtain a ranking from the loser to the winner. This

approach will be called the bottom-up probabilistic preference procedure.

Next, we study both approaches in detail.

3.4.2. Top-down probabilistic preference procedure

Let us consider the set of random variables A = {X̃1, . . . , X̃m} associated

with the candidates. Recall that all the random variables in A are distinct, so

we can apply the notion of probabilistic preference to them. If we apply the top-

down probabilistic preference procedure to this set of distinct random variables

A = {X̃1, . . . , X̃m}, we obtain that not all the candidates have a strictly positive

multivariate winning probability.

Proposition 3. Consider the set of distinct random variables A = {X̃1, . . . , X̃m}

associated with the candidates. A candidate has a strictly positive top-down mul-

tivariate winning probability if and only if it is the most preferred candidate in

at least one preference ordering.

Proof. If there is a voter vj ∈ V for which Ci is considered the most preferred

candidate, then X̃i(vj) = m− 1. This implies that:

ΠA(X̃i) ≥ P ({vj}) =
1

m
> 0 .

Conversely, if ΠA(X̃i) > 0, this means that there is at least one vj with X̃i(vj) =

m− 1, which means that Ci is the most preferred candidate for the voter vj .�

Using this property, we can easily identify which candidate will be the winner

of the election.
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Proposition 4. Consider the set of distinct random variables A = {X̃1, . . . , X̃m}

associated with the candidates. A candidate is the winner of the election with re-

spect to the top-down probabilistic preference procedure if it is the most preferred

candidate in at least as many preference orderings as any other candidate.

Proof. Let us compute ΠA(X̃i):

ΠA(X̃i) = P
(
X̃i > max

Y ∈A\{X̃i}
Y
)

= P (X̃i = m− 1)

=
|{v ∈ V | X̃i(v) = m− 1}|

n
=
|{vj ∈ V | σj(i) = 1}|

n
.

Then a winner of the election is the most preferred candidate in at least as many

preference orderings as any other candidate. �

This result allows to relate top-down probabilistic preference to the plurality

rule. Moreover, the previous results show that if there is a subset of candidates C

that contains only the candidates that appear at the first position of at least one

preference ordering, the ranking given by the top-down probabilistic preference

procedure ranks them at the first |C| positions, and all of them have positive

multivariate winning probabilities. The top-down probabilistic preference pro-

cedure thus creates a ranking of the candidates in the set C, but it does not

rank the other candidates. If we want to obtain a ranking of all the candidates,

we can apply the top-down probabilistic preference procedure recursively:

Step 0 Let A1 = {X̃1, . . . , X̃m} be the set of distinct random variables associ-

ated with the candidates.

Step i For any X̃ ∈ Ai, compute the multivariate winning probability ΠAi
(X̃).

i.1: Rank the candidates such that their associated random variables X̃ ∈

Ai carry a positive multivariate winning probability ΠAi
(X̃) > 0

according to decreasing ΠAi(X̃).

i.2: Let Ai+1 = Ai \ {X̃ ∈ Ai | ΠAi
(X̃) > 0}.

i.3: If Ai+1 = ∅, then all the candidates are ranked. Otherwise, go to

step i+ 1.
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In the first step, this procedure considers the candidates that are ranked at the

first position of the preference ordering for at least one voter. Then, it ranks

those candidates according to their frequency at the first position. In the next

step, we remove the candidates that have already been ranked and we iterate

the procedure.

Example 2. Consider an election with five candidates C1, C2, C3, C4 and C5,

and 100 voters. The following table summarizes the preference orderings:

Number of votes Preference orderings

40 C1 � C2 � C3 � C4 � C5

35 C2 � C3 � C4 � C5 � C1

25 C4 � C5 � C2 � C3 � C1

Consider the random variables X̃i associated with the candidates, which are

defined by:
v1, . . . , v40 v41, . . . , v75 v76, . . . , v100

X̃1 4 0 0

X̃2 3 4 2

X̃3 2 3 1

X̃4 1 2 4

X̃5 0 1 3

Applying the top-down probabilistic preference procedure to the set of distinct

random variables A1 = {X̃1, X̃2, X̃3, X̃4, X̃5} associated with the candidates, we

obtain the following multivariate winning probabilities:

ΠA1
(X̃1) = 0.4, ΠA1

(X̃2) = 0.35, ΠA1
(X̃4) = 0.25, ΠA1

(X̃3) = ΠA1
(X̃5) = 0 .

This means that C1, C2 and C4 are the candidates that are ranked at the first

position in at least one preference ordering, and the multivariate winning proba-

bilities express the frequency with which they appear at the first position. Then,

C1 is the winner with multivariate winning probability 0.4, C2 is the candidate

ranked second and C4 is ranked third. Next, in order to rank X̃3 and X̃5, we

18



consider the set of random variables A2 = {X̃3, X̃5} and we compute the multi-

variate winning probabilities in A2:

ΠA2(X̃3) = 0.75 and ΠA2(X̃5) = 0.25 .

Thus, the ranking given by the top-down probabilistic preference procedure is

C1 � C2 � C4 � C3 � C5.

Remark 2. The top-down probabilistic preference procedure can be seen as a

slightly modified version of the plurality rule. The difference lies in the tie-

breaker used to rank the candidates that do not appear at the first position in at

least one preference ordering.

Note that the Borda count and the top-down probabilistic preference proce-

dures could give different winners. In fact, if we consider the previous example,

it holds that:

B(C1) = 27 , B(C2) = 21 , B(C3) = 22 , B(C4) = 8 .

C1 is the Borda winner, while the winner with respect to the top-down proba-

bilistic preference procedure is C2. This is quite reasonable, because, as we have

shown in [34], the ranking with respect to the comparison of expected values

and the probabilistic preference may give different results.

We have seen that the top-down probabilistic preference procedure uses all

the available information about the random variables X̃i (or, in this framework,

about the preference orderings given by the voters). Since the Condorcet pro-

cedure only considers bivariate marginal distributions, it is reasonable that the

top-down probabilistic preference procedure does not necessarily give the same

winner as the Condorcet procedure, as the following example shows.

Example 3. Consider an election with three candidates C1, C2 and C3 and

100 voters. The preference orderings given by the voters are summarized in the
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following table:

Number of votes Preference ordering

49 C1 � C2 � C3

49 C3 � C2 � C1

2 C2 � C1 � C3

C2 is the winner with respect to the Condorcet procedure because:

nC2�C1
=

51

100
>

49

100
= nC1�C2

, nC3�C1
=

51

100
>

49

100
= nC1�C3

,

but according to the top-down probabilistic preference procedure C1 and C3 are

considered the winners with multivariate winning probability 0.49, while the mul-

tivariate winning probability of C2 is only 0.02.

The fact that the winner according to the top-down probabilistic preference

procedure might differ from the winners according to the Borda count and Con-

dorcet procedures was to be expected since it is widely known in the field of

voting theory that the plurality rule might yield a different winner than the

Borda count and the Condorcet procedure.

3.4.3. Bottom-up probabilistic preference procedure

Next, let us consider the bottom-up probabilistic preference procedure, which

ranks the candidates from the loser to the winner. For this aim, we consider

the set of distinct random variables A = {X1, . . . , Xm} associated with the

candidates and perform the following steps:

Step 0 Let A1 = {X1, . . . , Xm} be the set of distinct random variables associ-

ated with the candidates.

Step i For any X ∈ Ai, compute the multivariate winning probability ΠAi
(X).

i.1: Rank the candidates such that their associated random variables X ∈

Ai carry a positive multivariate winning probability ΠAi
(X) > 0

according to increasing ΠAi(X).

i.2: Let Ai+1 = Ai \ {X ∈ Ai | ΠAi
(X) > 0}.
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i.3: If Ai+1 = ∅, then all the candidates are ranked. Otherwise, go to

step i+ 1.

In the first step, this procedure considers the candidates that are ranked at the

last position of the preference ordering for at least one voter. Then, it ranks

those candidates according to their frequency at the last position. In the next

step, we remove the candidates that have already been ranked and we iterate

the procedure.

Remark 3. The bottom-up probabilistic preference procedure can also be under-

stood as a slightly modified version of the veto rule. The difference lies in the

tie-breaker used to rank the candidates that do not appear at the last position in

at least one preference ordering.

A sharp reader would note that there exists a connection between the top-

down and bottom-up probabilistic preference procedures. The reason is that,

due to the relationship between the random variables Xi and X̃i, the reversed

ranking of the one obtained with the bottom-up probabilistic preference proce-

dure coincides with the ranking given by the top-down probabilistic preference

applied to the reversed preference orderings. This fact is graphically explained

in Figure 1.

Example 4. Consider again the election of Example 2. Let us now apply the

bottom-up probabilistic preference procedure to the set of distinct random vari-

ables A1 = {X1, X2, X3, X4, X5} associated with the candidates, which are given

by:
v1, . . . , v40 v41, . . . , v75 v76, . . . , v100

X1 1 5 5

X2 2 1 3

X3 3 2 4

X4 4 3 1

X5 5 4 2
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Cσi(m) � . . . � Cσi(1)

i ∈ {1, . . . , n}
Cσ(m) � . . . � Cσ(1)

Cσi(1) � . . . � Cσi(m)

i ∈ {1, . . . , n}
Cσ(1) � . . . � Cσ(m)

Top-down

probabilistic preference

Bottom-up

probabilistic preference

Reversed

preference

orderings

Reversed

preference

ordering

Figure 1: Graphical explanation of the relationship between the top-down and bottom-up

probabilistic preference procedures.

We obtain the following multivariate winning probabilities:

ΠA1
(X1) = 0.6, ΠA1

(X5) = 0.4, ΠA1
(X2) = ΠA1

(X3) = ΠA1
(X4) = 0 .

According to Step 1.1, this means that C1 is the loser, followed by C5. Next, we

consider the set of unranked random variables A2 = {X2, X3, X4}, and compute

again the multivariate winning probabilities:

ΠA2
(X2) = 0, ΠA2

(X3) = 0.25, ΠA2
(X4) = 0.75 .

Then, of these random variables, X4 is the least preferred, followed by X3 and

X2. The final ranking is given by: C2 � C3 � C4 � C5 � C1.

If we compare this result with the one obtained in Example 2, the ranking is

quite different, because C1 moves from the first to the last position.

Remark 4. When there are only two candidates, both top-down and bottom-

up probabilistic preference procedures are equivalent and coincide with statistical

preference. This is related to the well-known fact in voting theory that the only

meaningful procedure for ranking candidates in a two-candidate election is simple

majority, to which all among the plurality rule, the veto rule, the Borda count

and the Condorcet procedure reduce in two-candidate elections.
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4. A probabilistic approach to the ranking of candidates based on

individual evaluations

We now consider Balinski and Laraki’s framework, where the voters express

their evaluations on a (linearly-ordered) linguistic scale. In this case, we also

define a probability space and a random variable for each candidate, and we

express the voting procedures in terms of the comparison of those random vari-

ables. Also, we apply the probabilistic preference procedure and analyze the

winner of the election following this procedure.

4.1. Probability space and random variables

Let us now consider that voters express an individual evaluation of the can-

didates instead of a preference ordering. In this framework, as we have seen in

Eq. (1), these evaluations can be collected in a matrix G = (gij)m,n such that

gij denotes the evaluation of candidate Ci given by voter vj . In this situation,

we can also consider a probability space (V,P(V ), P ), where V = {v1, . . . , vn}

is the set of voters and P is the uniform distribution on V . Then, we can define

a random variable Yi associated with a given candidate Ci by Yi(vj) = gij .

We can consider the scale L′ = {l′1, . . . , l′s} such that l′1 > . . . > l′s, and a

function N : L → L′ that assigns N(li) = l′s−i+1 for any i = 1, . . . , s. This

means that for any candidate Ci, we can also consider the random variable Ỹi

given by

Ỹi(vj) = N(Yi(vj)) = N(gij).

In this section we will try to express the procedures for ranking the candidates

based on individual evaluations in terms of stochastic orderings, and in partic-

ular we will apply the probabilistic preference procedure to the sets of random

variables A = {Y1, . . . , Ym} and A = {Ỹ1, . . . , Ỹm} and investigate the rankings

they yield.

4.2. Univariate stochastic orderings

The use of univariate stochastic orderings is closely related to the use of

an aggregation function for aggregating the evaluations assigned to each of the
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candidates and, subsequently, to compare these results of the aggregation. In

the following, we consider the median and the mean and, tie-breakers aside,

relate them to the majority judgment and the Borda majority count.

Remark 5. Since stochastic dominance only requires the random variables to

be defined on a linearly-ordered scale, we can also apply it in this framework.

However, as we have already mentioned in Remark 1 in Arrow’s framework,

it can give rise to incomparabilities, so it will rarely give a ranking on the set

of candidates. Note that if the evaluations of each candidate are aggregated by

means of an increasing and symmetric aggregation function, any ranking ob-

tained by comparing these aggregated results will be a refinement of the ordering

given by stochastic dominance.

4.2.1. Comparison of medians

First of all, let us consider a stochastic ordering based on the comparison of

the medians. In this way, X is preferred to Y with respect to the median crite-

rion, denoted by X �Me Y , when inf Me(X) > inf Me(Y ), where the median of

a random variable Z is defined as:

Me(Z) =

{
t | P (Z ≥ t) ≥ 1

2
, P (Z ≤ t) ≥ 1

2

}
.

When applying the median criterion to the random variables associated with

evaluations of candidates, we obtain the most primitive version of majority

judgment due to Galton [24] in which only the median evaluations are used for

comparing the candidates. The introduction of a suitable tie-breaker is due to

Balinski and Laraki [4, 6].

Proposition 5. Let Y1, . . . , Ym be the random variables associated with the

candidates C1, . . . , Cm. Then Yi �Me Yj for any j 6= i if and only if Ci is the

winner with respect to the majority grade.

Proof. The main point is that Me(Yi) = MG(Ci), and then the result

trivially follows. �
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4.2.2. Comparison of means

In the case of ranking candidates based on preference orderings, we have seen

that the Borda count procedure can be expressed in terms of the comparison

of the expected values of the random variables. When dealing with evaluations

of candidates, we also obtain a connection between the comparison of expected

values and the Borda majority count.

Proposition 6. Let Y1, . . . , Ym be the random variables associated with the

candidates C1, . . . , Cm. Consider the mapping f : L = {l1, . . . , ls} → {0, . . . , s−

1} given by f(lk) = k− 1. Then E(f(Yi)) > E(f(Yj)) for any j 6= i if and only

if Ci is the winner with respect to the Borda majority count.

Proof. Let us compute E(f(Yi)):

E(f(Yi)) =

n∑
j=1

1

n
f(gij) =

1

n

s−1∑
k=0

k · |{j | g(i, j) = lk+1}| =
1

n
BMC(Ci) .

We conclude that E(f(Yi)) = 1
nBMC(Ci), and therefore Yi is the random vari-

able with the greatest expected value if and only if Ci is the candidate with the

greatest Borda majority count. �

We have to point out that the Borda majority count can be criticized from

several points of view (see, for instance, [6, 47]). In our probabilistic framework,

the most important critique is that the expected value is not an adequate lo-

cation parameter for describing qualitative random variables. Instead, it seems

more natural to use the median or, as we will see in Subsection 4.4, a multivari-

ate stochastic ordering that could be used for this kind of random variables.

4.3. Bivariate stochastic orderings

Statistical preference is a stochastic ordering that can be applied whenever

the random variables are defined on a linearly-ordered scale. Hence, as we did

in Section 3.3, we can also apply it in this framework. Thus, a candidate Ci is

the winner of the election if Q(Yi, Yj) ≥ 0.5 for every j 6= i. Of course, this is

exactly the Condorcet procedure where we take into account possible ties. As
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was the case in Arrow’s framework, the main drawback of statistical preference

is that it might lead to cycles.

4.4. Multivariate stochastic orderings

Just as statistical preference, probabilistic preference is a stochastic ordering

that allows for the comparison of qualitative random variables. In this frame-

work, we are going to apply the notion of probabilistic preference to the sets of

random variables A = {Y1, . . . , Ym} and A = {Ỹ1, . . . , Ỹm}.

4.4.1. Distinction between both approaches

As in Section 3.4, we have to distinguish two cases. On the one hand, for the

random variables Yi, the greater the value is, the more preferred the candidate

is. This means that when applying the notion of probabilistic preference to

A = {Y1, . . . , Ym}, we rank the random variables from the winner to the loser.

On the other hand, for the random variables Ỹi, the greater the value is, the

less preferred the candidate is. This means that when applying the notion

of probabilistic preference to A = {Ỹ1, . . . , Ỹm}, we rank the candidates from

the loser to the winner. Following the terminology from Section 3.4, these

procedures will be called the top-down probabilistic preference procedure and

the bottom-up probabilistic preference procedure, respectively.

Note that one of the main differences with respect to ranking candidates

based on preference orderings is that the random variables considered could

take the same value, i.e., ties are allowed, in contrast with the random variables

considered in Section 3. This means that for computing the multivariate winning

probabilities, we have to use Eq. (3), but we cannot use the simplified formula

in Eq. (4). Additionally, unlike the random variables defined in Section 3, A =

{Y1, . . . , Ym} and A = {Ỹ1, . . . , Ỹm} do not necessarily need to be sets of distinct

random variables. Thus, for computing the multivariate winning probabilities,

we assume in the remainder of this section that the random variables Y1, . . . , Ym,

and, hence, Ỹ1, . . . , Ỹm, are all distinct. Note that this is not a heavy restriction

because, if two random variables Yi and Yj are equal, this means that the
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candidates Yi and Yj have the same evaluations for all the voters, so we can

simple remove one of them and, at the end, assign the same position in the

global ranking to both candidates.

4.4.2. Top-down probabilistic preference procedure

For the set of distinct random variables A = {Y1, . . . , Ym} expressing the

evaluations of the candidates by the voters, the greater the evaluation (with

respect to the qualitative scale) is, the more preferred the candidate is. Hence,

we will compute the multivariate winning probabilities using Eq. (3), and the

greater the multivariate winning probability is, the more preferred the candidate

is. In order to rank all the candidates, we follow a procedure that is quite similar

to that of Subsection 3.4.2:

Step 0 Let A1 = {Y1, . . . , Ym} be the set of distinct random variables associ-

ated with the candidates.

Step i For any Y ∈ Ai, compute the multivariate winning probability ΠAi
(Y ).

i.1: Rank the candidates such that their associated random variables Y ∈

Ai carry a positive multivariate winning probability ΠAi
(Y ) > 0

according to decreasing ΠAi(Y ).

i.2: Let Ai+1 = Ai \ {Y ∈ Ai | ΠAi
(Y ) > 0}.

i.3: If Ai+1 = ∅, then all the candidates are ranked. Otherwise, go to

step i+ 1.

As we can see, this procedure is quite similar to that of Subsection 3.4.2, since

we rank the candidates starting from the winner to the loser according to their

frequency at the first position. Therefore, we also name it top-down probabilistic

preference procedure.

Example 5. Consider an election with five candidates C1, C2, C3, C4 and C5

and ten voters that evaluate each candidate on the following linguistic scale:

L = { poor (po), acceptable (ac), good (go), very good (vg), excellent (ex)} .
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Their evaluations are given in matrix form as in Eq. (1).

G =



go ac ac go go ex vg go ac go

vg go go ac po ac go vg ac go

ac vg go ac ac go go go go ac

po ac po po ac vg go ac po po

ac po po po ac go ac ac po po


Let us apply the top-down probabilistic preference procedure to the set of distinct

random variables A1 = {Y1, Y2, Y3, Y4, Y5} associated with the candidates. First,

let us compute the multivariate winning probabilities:

ΠA1(Y1) = P ({v4}) + P ({v5}) + P ({v6}) + P ({v7}) + 1
2P ({v10}) = 0.45 ;

ΠA1
(Y2) = P ({v1}) + 1

2P ({v3}) + P ({v8}) + 1
2P ({v10}) = 0.3 ;

ΠA1
(Y3) = P ({v2}) + 1

2P ({v3}) + P ({v9}) = 0.25 ;

ΠA1
(Y4) = ΠA1

(Y5) = 0 .

We conclude that Y1 is the winner, with multivariate winning probability 0.45,

followed by Y2 and Y3, with multivariate winning probabilities 0.3 and 0.25,

respectively.

Next, consider the set of random variables A2 = {Y4, Y5}, and let us compute

their multivariate winning probabilities:

ΠA2
(Y4) =

1

2

(
P ({v2}) + P ({v3}) + P ({v4}) + P ({v5}) + P ({v8}) + P ({v9})

+ P ({v10})
)

+ P ({v1}) + P ({v6}) + P ({v7}) = 0.65 ;

ΠA2
(Y5) =1−ΠA2

(Y4) = 0.35 .

The global ranking obtained from the top-down probabilistic preference procedure

is:

C1 � C2 � C3 � C4 � C5.

The following result is quite similar to Proposition 3. Its proof is obvious

and therefore omitted.

Proposition 7. Let A = {Y1, . . . , Ym} be the set of distinct random variables

associated with the candidates C1, . . . , Cm. A candidate has a strictly positive
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top-down probability if and only if it is a most preferred candidate for at least

one voter.

4.4.3. Bottom-up probabilistic preference procedure

As we did in Subsection 3.4.3, we can also apply the notion of probabilistic

preference to the set of random variables A = {Ỹ1, . . . , Ỹm}. In that case, taking

into account that the greater the value of Ỹi is, the worse the evaluation of the

candidate is, the multivariate winning probabilities establish a ranking from

the loser to the winner. This means that the greater the multivariate winning

probability is, the less preferred the evaluation of the candidate is. Taking this

comment into account, we obtain the following procedure:

Step 0 Let A1 = {Ỹ1, . . . , Ỹm} be the set of distinct random variables associ-

ated with the candidates.

Step i For any Ỹ ∈ Ai, compute the multivariate winning probability ΠAi
(Ỹ ).

i.1: Rank the candidates such that their associated random variables Ỹ ∈

Ai carry a positive multivariate winning probability ΠAi
(Ỹ ) > 0

according to increasing ΠAi
(Ỹ ).

i.2: Let Ai+1 = Ai \ {Ỹ ∈ Ai | ΠAi
(Ỹ ) > 0}.

i.3: If Ai+1 = ∅, then all the candidates are ranked. Otherwise, go to

step i+ 1.

In this framework, there is also a relationship between the top-down and bottom-

up probabilistic preference procedures. The ranking obtained from the bottom-

up probabilistic preference procedure is the reversed ranking of the one we ob-

tain if we apply the top-down probabilistic preference procedure to the random

variables Ỹ1, . . . , Ỹm.

Example 6. Let us apply this approach to the evaluations given in Example 5.

First of all, consider the set of distinct random variables A1 = {Ỹ1, Ỹ2, Ỹ3, Ỹ4, Ỹ5},
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and let us compute the multivariate winning probabilities:

ΠA1
(Ỹ1) = ΠA1

(Ỹ3) = 0 ;

ΠA1
(Ỹ2) = P ({v5, v6}) = 0.2 ;

ΠA1(Ỹ4) = P ({v1}) + 1
2P ({v3, v4, v8, v9, v10}) = 0.35 ;

ΠA1
(Ỹ5) = P ({v2, v7}) + 1

2P ({v3, v4, v8, v9, v10}) = 0.45 .

Ỹ2, Ỹ4 and Ỹ5 are the random variables with positive multivariate winning prob-

ability. According to Step 1.1, C5 is the loser, followed by C4 and C2.

Next, we compute the multivariate winning probabilities on the set of random

variables A2 = {Ỹ1, Ỹ3} of the still unranked candidates C1 and C3:

ΠA2(Ỹ1) = 0.35 and ΠA2(Ỹ3) = 0.65 .

The global ranking obtained from the bottom-up probabilistic preference procedure

is:

C1 � C3 � C2 � C4 � C5 .

As we can see, the ranking given by the bottom-up probabilistic preference pro-

cedure is slightly different from the one obtained in Example 5, but in both cases

C1 is the winner of the election.

5. Conclusions

In the framework of voting theory, there are two common scenarios: vot-

ers either give their preference orderings or their individual evaluations of the

candidates. In this work, we have considered a probabilistic approach to model

both situations.

In the first scenario, any candidate defines a random variable that expresses

the position in the preference ordering of this candidate for any voter. We have

seen that the most common procedure used for solving this kind of problems,

the Borda count, is related to the comparison of expected values of those ran-

dom variables. Furthermore, the Condorcet procedure is also connected to the

comparison of the random variables through the notion of statistical preference.
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The recently-proposed notion of probabilistic preference is proved to be linked

to the plurality and veto rules. More precisely, top-down probabilistic pref-

erence relates to the former and bottom-up probabilistic preference relates to

the latter. The choice between the top-down and the bottom-up approaches

is similar to that of decision making with maximax and maximin criteria, and

depends on the interpretation. If we are looking for the candidate that is ranked

as the most preferred candidate for most voters, we should use the top-down

probabilistic preference procedure; on the other hand, if we are looking for the

candidate that is not ranked as the least preferred candidate for most voters,

we will apply the bottom-up probabilistic preference procedure. A summary of

the connections between stochastic orderings and voting procedures in Arrow’s

framework is shown in the next table:

Arrow’s framework

Voting procedure Stochastic ordering

Borda Expected value

Borda-dominance Stochastic dominance

Condorcet Statistical preference

Plurality Probabilistic preference (top-down)

Veto Probabilistic preference (bottom-up)

In the second scenario, any candidate has an associated random variable

that expresses the evaluation of this candidate for any voter. In this case, we

have seen that the two most common procedures – the majority judgment and

the Borda majority count – are equivalent to the comparison of the medians and

expected values of the random variables, respectively, whereas the Condorcet

procedure, allowing ties, is again equivalent to applying statistical preference.

In this second scenario, we have also analyzed probabilistic preference, both

the top-down and the bottom-up procedure. To the best of our knowledge,

there is no connection between these two stochastic orderings and any existing

voting procedure in the framework of Balinski and Laraki. Again, the choice

of procedure depends on the kind of winner we are looking for. The next table
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summarizes the connection between the voting procedures in this framework

and stochastic orderings.

Balinski and Laraki’s framework

Voting procedure Stochastic ordering

Majority judgement Comparison of medians

Borda majority count Expected value

Condorcet Statistical preference

Probabilistic preference (top-down)

Probabilistic preference (bottom-up)

We end by recalling that the aim of this paper was not to compare the dif-

ferent voting procedures but, instead, showing a correspondence between voting

procedures and stochastic orderings. Determining which is the most suitable

procedure for solving voting problems seems to be closely related to the ques-

tion of which is the most suitable stochastic ordering for comparing random

variables: it depends on the available information and the interpretation we

are adopting. A conclusion is clear nevertheless: both voting theory and the

comparison of random variables build upon some common concepts.

Acknowledgements

The research reported in this paper has been supported by Projects PGC2018-

098623-B-I00 and TIN2017-87600-P of the Spanish Ministry of Economy, GRUPIN-

IDI/2018/000176 of the Principality of Asturias and by the Research Foundation

of Flanders FWO17/PDO/160.

[1] J.A. Aledo, J.A. Gámez, A. Rosete. Approaching rank aggregation prob-

lems by using evolution strategies: The case of the optimal bucket order

problem. European Journal of Operational Research 270, 982–998, 2018.

[2] K. J. Arrow. A difficulty in the concept of social welfare. Journal of Political

Economics 58(4), 328–346, 1950.

32



[3] K. J. Arrow. Social Choice and Individual Values. Wiley, New York, 1963.

[4] M. Balinski, R. Laraki. A theory of measuring, electing and ranking. Proc.

Nat. Aca. Sci. USA 104(21), 8720–8723, 2007.

[5] M. Balinski, R. Laraki. Election by majority judgment: experimental evi-

dence, in: B. Dolez D. Grofman, A. Laurent (Eds.), In Situ and Labora-

tory Experiments on Electoral Law Reform: French Presidencial Elections,

Studies in Public Choice, vol. 25, 13–54, 2011.

[6] M. Balinski, R. Laraki. Majority Judgment. MIT Press, Cambridge, 2011.

[7] J. C. Bezdek, D. Spilman, R. Spilman. A fuzzy relation space for group

decision theory. Fuzzy Sets and Systems 1, 255–268, 1978.

[8] J. C. de Borda.Mémoire sur les élections au scrutin. Histoire de l’Académie

Royale des Sciences, Paris. Available in: I. McLean, A. Urken (Eds.), Clas-

sics of Scocial Choice, University of Michigan Press, Ann Arbor, 1995

(1784).

[9] S. Brams, P. C. Fishburn. Approval Voting. Birkhauser, Boston, 1983.

[10] J. R. Chamberlin. An investigation into the relative manipulability of four

voting systems. Behavioral Science 30(4), 195–203, 1985.

[11] M. Condorcet. An essay on the application of probability theory to plurality

decision making: an election between three candidates. Reprinted in 1989,

F. Sommerlad, I. McLean (Eds.), 1785.

[12] B. De Baets, K. De Loof, H. De Meyer. A frequentist view on cycle-

transitivity of reciprocal relations. Fuzzy Sets and Systems 281, 198–218,

2015.

[13] B. De Baets, H. De Meyer. Transitivity frameworks for reciprocal relations:

cycle-transitivity versus FG-transitivity. Fuzzy Sets and Systems 152(2),

249–270, 2005.

33



[14] B. De Baets, H. De Meyer. On the cycle-transitive comparison of artificially

coupled random variables. International Journal of Approximate Reasoning

47, 306–322, 2008.

[15] B. De Baets, H. De Meyer, K. De Loof. On the cycle transitivity of the mu-

tual rank probability relation of a poset. Fuzzy Sets and Systems 161(20),

2695–2708, 2010.

[16] B. De Baets, H. De Meyer, B. De Schuymer, S. Jenei. Cyclic evaluation of

transitivity of reciprocal relations. Social Choice and Welfare 26, 217–238,

2006.

[17] B. De Schuymer, H. De Meyer, B. De Baets. A fuzzy approach to stochastic

dominance of random variables. Lectures Notes in Artificial Intelligence,

2715, 253–260, 2003.

[18] B. De Schuymer, H. De Meyer, B. De Baets, S. Jenei. On the cycle-

transitivity of the dice model. Theory and Decision 54, 261–285, 2003.

[19] A. Darmann, J. Schauer. Maximazing Nash product social welfare in al-

locating indivisible goods. European Journal of Operational Research 247,

548–559, 2015.

[20] J. Ding, D. Han, Y. Yang. Iterative ranking aggregation using quality im-

provement of subgroup ranking. European Journal of Operational Research

268, 596–612, 2018.

[21] P. C. Fishburn. Lotteries and social choices. Journal of Economic Theory

5, 189–207, 1972

[22] P. C. Fishburn. Paradoxes of voting. The American Political Science Review

68(2), 537–546, 1974.

[23] P. C. Fishburn. Probabilistic social choice based on simple voting compar-

isons. The Review of Economic Studies 51(4), 683–692, 1984.

[24] F. Galton. One vote, one value. Nature 75, 414–414, 1907.

34



[25] J.L. García-Lapresta, R. González del Pozo. An ordinal multi-criteria

decision-making procedure under imprecise linguistic assessments. Euro-

pean Journal of Operational Research 279, 159–167, 2019.

[26] V.-N. Huynh, Y. Nakamori. A satisfactory-oriented approach to multi-

expert decision-making under linguistic assessments. IEEE Transactions on

Systems, Man, and Cybernetics, Part B: Cybernetics 35, 184–196, 2005.

[27] Y. Jiang, X. Lian, H. Liang, N. Yang. Multiple criteria decision making

with interval stochastic variables: A method based on interval stochastic

dominance. European Journal of Operations Research 271, 632–643, 2018.

[28] J. S. Kelly. Almost all social choice rules are highly manipulable, but a few

aren’t. Social Choice and Welfare 10(2), 161–175,1993.

[29] J. G. Kemeny. Mathematics without numbers. Daedalus 88(4), 577–591,

1959.

[30] D.M. Kolgour, R. Vetschera. Two-player fair division of indivisible items:

Comparison of algorithms. European Journal of Operational Research 271,

620–631, 2018.

[31] E.L. Lehmann. Ordered families of distributions. The Annals of Mathemat-

ical Statistics 26(3), 399–419, 1955.

[32] D. Martinetti, I. Montes, S. Díaz, S. Montes. A study of the transitivity of

the probabilistic and fuzzy relation. Fuzzy Sets and Systems 184, 156–170,

2011.

[33] I. Montes, E. Miranda, S. Montes. Decision making with imprecise utilities

and beliefs by means of statistical preference and stochastic dominance.

European Journal of Operational Research 234(1), 209–220, 2014.

[34] I. Montes, S. Montes, B. De Baets. Multivariate winning probabilities.

Fuzzy Sets and Systems 362, 129–143, 2019.

35



[35] A. Müller, D. Stoyan. Comparison Methods for Stochastic Models and Risks.

Wiley, New York, 2002.

[36] J. Navarro, A. Arriaza, A. Suárez-Llorens. Minimal repair of failed compo-

nents in coherent systems. European Journal of Operational Research 279,

951–964, 2019.

[37] R.B.M. Ngoie, Z. Savadogo, B. Ulungu. New prospects in Social Choice

Theory: Median and average as tools for measuring, electing and ranking.

Advances Studies in Contemporary Mathematics 25(1), 19–38, 2015.

[38] J. T. Richelson. Running off empty: run-off point systems. Public Choice

35(4), 457–468, 1980.

[39] D. G. Saari. Susceptibility to manipulation. Public Choice 64, 21–41, 1990.

[40] D. G. Saari. Mathematical structure of voting paradoxes II: Positional vot-

ing. Economic Theory 15, 55–102, 2000.

[41] M. Shaked, J. G. Shanthikurmar. Stochastic orders and their applications.

Springer, Berlin, 2006.

[42] W. D. Smith. Range Voting.

https://rangevoting.org/WarrenSmithPages/homepage/rangevote.pdf

(last accessed 15th October 2018), 2000.

[43] W. E. Stein, P. J. Mizzi, R. C. Pfaffenberger. A stochastic dominance anal-

ysis of ranked voting systems with scoring. European Journal of Operational

Research 74, 78–85, 1994.

[44] H.-B. Yan, T. Ma. A group decision-making approach to uncertain quality

function deployment based on fuzzy preference relation and fuzzy majority.

European Journal of Operational Research 241(3), 815–829, 2015.

[45] H.-B. Yan, T. Ma, V.-N. Huynh. On qualitative multi-attribute group de-

cision making and its consensus measure: A probability based perspective.

Omega 70, 94–117, 2017.

36



[46] H. P. Young. Social choice scoring functions. SIAM Journal on Applied

Mathematics 28(4), 824–838, 1975.

[47] M. A. Zahid, H. de Swart. The Borda Majority Count. Information Sciences

295, 429–440, 2015.

37


