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We discuss new solutions in massive type IIA supergravity with AdS3 × S2 factors, preserving
N ¼ ð0; 4Þ supersymmetry. We propose a duality with a precise family of quivers that flow to N ¼ ð0; 4Þ
fixed points at low energies. These quivers consist on two families of linear quivers coupled by matter
fields. Physical observables such as the central charges provide stringent checks of the proposed duality. A
formal mapping is presented connecting our backgrounds with those dual to six dimensional N ¼ ð1; 0Þ
conformal field theories (CFTs), suggesting the existence of a flow across dimensions between the CFTs.
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I. INTRODUCTION

An important by-product of the Maldacena conjecture
[1], has been a thorough study of supersymmetric and
conformal field theories (CFTs) in various dimensions. In
particular, the last two decades have witnessed a large effort
in the classification of Type II or M-theory backgrounds
with AdSdþ1 factors, see e.g., [2,3]. The solutions are con-
jectured to be dual to CFTs in d dimensions with different
amounts of SUSY, that can then be studied holographically.
Major progress has been achieved when the CFT

preserves half of the maximum number of allowed super-
symmetries. For the case of N ¼ 2 CFTs in four dimen-
sions, the field theories studied in [4,5] have holographic
duals discussed in [6], and further elaborated (among other
works) in [7–13]. The case of five-dimensional CFTs was
analyzed from the field theoretical and holographic view-
points in [14–20], among many other interesting works. An
infinite family of six-dimensional N ¼ ð1; 0Þ CFTs was
discussed from both the field theoretical and holographic
points of view in [21–28]. For three-dimensional N ¼ 4
CFTs, the field theories presented in [29] were discussed
holographically in [30–33], among other works.

The case of two-dimensional CFTs and their AdS duals
is particularly attractive, due to the interest that CFTs in two
dimensions and AdS3 solutions present in other areas of
theoretical physics. This applies in particular to the micro-
scopical study of black holes, where major progress has
been achieved [34–39]. This motivated various attempts
at finding classifications of AdS3 backgrounds and study-
ing their dual CFTs [40–58]. N ¼ ð0; 4Þ AdS3 solutions
remained however largely unexplored, with known cases
following mostly from orbifoldings, string dualities or
F-theory constructions. Two-dimensional CFTs with N ¼
ð0; 4Þ supersymmetry constructed in the literature [59–63]
await as well their holographic description. In this context,
an important recent development has been the complete
classification of AdS3 solutions to massive IIA supergravity
with small N ¼ ð0; 4Þ supersymmetry (and SU(2) struc-
ture) achieved in [64]. In this letter we add a new entry to
the dictionary between CFTs and string backgrounds with
an AdS-factor by proposing explicit CFTs dual to these
solutions. We define our CFTs as the IR fixed points of
N ¼ ð0; 4Þ UV finite two dimensional QFTs. These QFTs
are described by quivers, consisting of two long rows of
gauge groups connected by hypermultiplets and Fermi
multiplets. We show that the new background solutions to
massive IIA supergravity constructed in [64] contain the
needed isometries to be dual to our CFTs. We give an
example (further elaborated in [65], where additional
examples can be found) that shows agreement between
the field theory and holographic calculations of the central
charge. Finally, we provide a formal mapping to the AdS7
solutions constructed in [22] that suggests the existence of a
flow across dimensions [66,67] between the dual CFTs.
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II. THE GEOMETRY

The backgrounds of massive type IIA supergravity
constructed in [64] were proposed to be dual to N ¼
ð0; 4Þ CFTs in two dimensions. These solutions have
SLð2Þ × SUð2Þ isometries and eight (four Poincaré plus
four conformal) supercharges. In this paper we will con-
sider the particular case of the geometries in [64] referred
therein as class I. In string frame they read,

ds2 ¼ g1ðds2ðAdS3Þ þ g2ds2ðS2ÞÞ þ g3ds2ðCY2Þ þ
dρ2

g1
;

e−Φ ¼ g4; B2 ¼ g5volðS2Þ; F̂0 ¼ g6; F̂2 ¼ g7volðS2Þ;
F̂4 ¼ g8dρ ∧ volðAdS3Þ þ g9volðCY2Þ: ð1Þ

The functions gi are defined in terms of three functions,
uðρÞ, ĥ4ðρÞ, h8ðρÞ, according to,

g1 ¼
uffiffiffiffiffiffiffiffiffiffi
ĥ4h8

q ; g2 ¼
h8ĥ4

4h8ĥ4 þ ðu0Þ2 ; g3 ¼
ffiffiffiffiffi
ĥ4
h8

s
;

g4 ¼
h

3
4

8

2ĥ
1
4

4

ffiffiffi
u

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h8ĥ4 þ ðu0Þ2

q
; g6 ¼ h08; g9 ¼ −∂ρĥ4

g5 ¼
1

2

�
−ρþ 2πkþ uu0

4ĥ4h8 þ ðu0Þ2
�
;

g7 ¼ −
1

2
ðh8 − h08ðρ − 2πkÞÞ; g8 ¼

�
∂ρ

�
uu0

2ĥ4

�
þ 2h8

�
:

Notice that we have written the Page fluxes F̂ ¼ e−B2 ∧ F.
We have also allowed for large gauge transformations
B2 → B2 þ πkvolðS2Þ, with k ¼ 0; 1;…:; P. The transfor-
mations are performed every time we cross a ρ-interval
½2πk; 2πðkþ 1Þ�. The preservation of N ¼ ð0; 4Þ super-
symmetry implies u00 ¼ 0. Away from localized sources
Bianchi identities also impose h008 ¼ 0 and ĥ4

00 ¼ 0 [64].
Below, we present new solutions, defined piecewise in

the intervals ½2πk; 2πðkþ 1Þ�. For ĥ4, h8 we have,

ĥ4ðρÞ ¼ ϒ

8>><
>>:

β0
2π ρ 0 ≤ ρ ≤ 2π

αk þ βk
2π ðρ − 2πkÞ; 2πk ≤ ρ ≤ 2πðkþ 1Þ

αP − αP
2π ðρ − 2πPÞ; 2πP ≤ ρ ≤ 2πðPþ 1Þ;

ð2Þ

h8ðρÞ ¼

8>><
>>:

ν0
2π ρ 0 ≤ ρ ≤ 2π

μk þ νk
2π ðρ − 2πkÞ 2πk ≤ ρ ≤ 2πðkþ 1Þ

μP − μP
2π ðρ − 2πPÞ 2πP ≤ ρ ≤ 2πðPþ 1Þ;

ð3Þ

while uðρÞ ¼ b0
2π ρ.

Imposing the continuity of the Neveu-Schwarz (NS)-
sector across the various intervals we find,

μk ¼
Xk−1
j¼0

νj; αk ¼
Xk−1
j¼0

βj; ð4Þ

which also imply the continuity of the functions ĥ4, h8
across intervals. The first derivatives present discontinuities
at ρ ¼ 2πk where D8 and D4 sources are located.

A. Page charges

The Page charges are important observable quantities
characterizing a supergravity solution. They are quantized,
and are the ones that are related to the ranks of the
gauge or global groups of the dual CFT. They are
obtained integrating the Page fluxes, according to
ð2πÞ7−pgsα0ð7−pÞ=2QDp ¼ R

Σ8−p
F̂8−p.

1 This implies the

quantization of some of the constants in Eqs. (2)–(3). In
the interval ½2πk; 2πðkþ 1Þ� we find,

QD8 ¼ 2πF0 ¼ νk; QD6 ¼
1

2π

Z
S2
F̂2 ¼ μk:

QD4 ¼
1

8π3

Z
CY2

F̂4 ¼ ϒ
VolðCY2Þ

16π4
βk;

QD2 ¼
1

32π5

Z
CY2×S2

F̂6 ¼ ϒ
VolðCY2Þ

16π4
αk: ð5Þ

We have used that the magnetic part F̂6;mag ¼ f̂6 is

f̂6 ¼
ϒ
2
ðh4 − h04ðρ − 2πkÞÞvolðS2Þ ∧ volðCY2Þ: ð6Þ

Besides, we count one NS-five brane every time we cross
the value ρ ¼ 2πk (for k ¼ 1;…:; P). The total number of
NS-five branes is QNS ¼ 1

4π2

R
ρ×S2 H3 ¼ Pþ 1.

The study of the Bianchi identities (see [65] for the
details), shows that dissolved in flux, we have “color” D2
and D6 branes. We also find that D4 and D8 branes play the
role of “flavor,” appearing explicitly as delta-function
corrections of the Bianchi identities. For the interval
½2πðk − 1Þ; 2πk�, we calculate

N½k−1;k�
D8 ¼ νk−1 − νk; N½k−1;k�

D4 ¼ βk−1 − βk; ð7Þ

N½k−1;k�
D6 ¼ μk ¼

Xk−1
i¼0

νi; N½k−1;k�
D2 ¼ αk ¼

Xk−1
i¼0

βi: ð8Þ

We then have a Hanany-Witten brane setup [68], that in the
interval ½2πðk − 1Þ; 2πk� (bounded by NS-five branes), has

1In what follows, we set α0 ¼ gs ¼ 1.
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N½k−1;k�
D6 , N½k−1;k�

D2 color branes and N½k−1;k�
D8 , N½k−1;k�

D4 flavor
branes (see Table I and Fig. 1).
To close the geometric part of our study, we use the

formalism in [69,70] to calculate the holographic central
charge. The result is (see [65] for a derivation),

chol ¼
3π

2GN
VolðCY2Þ

Z
2πðPþ1Þ

0

ĥ4h8dρ: ð9Þ

Since the backgrounds have localized singularities, asso-
ciated with the presence of D-branes, observables calcu-
lated using the geometry are trustable as long as the
numbers νk, βk, b0, P are large.

III. THE FIELD THEORY

In this section we discuss the two-dimensional CFTs
dual to the backgrounds given by Eqs. (1)–(3). They are
defined as the strongly coupled IR fixed points of QFTs that
in the (weakly coupled) UV are constructed from the
“building block” depicted in Fig. 2. We have an SUðNÞ
gauge group with the matter content of a two-dimensional
N ¼ ð4; 4Þ vector multiplet in the adjoint of SUðNÞ. This
gauge group is joined with other (gauge or global)
symmetry groups SU(P̂), SUðRÞ and SUðQÞ. The con-
nection with the SU(P̂) symmetry group is mediated by

N ¼ ð4; 4Þ hypermultiplets running over the black solid
line, that with the SUðRÞ symmetry group via N ¼ ð0; 4Þ
hypermultiplets that propagate over the grey lines, and that
with SUðQÞ via N ¼ ð0; 2Þ Fermi multiplets that run over
the dashed line.2 All these multiplets transform in the
bifundamental representation of the gauge groups. A
similar (but not the same) field content was used in [61].
The cancellation of gauge anomalies constrains the ranks

of the different symmetry groups. Using the contribution to
the gauge anomaly coming from each multiplet, see [72],
we find that for the SUðNÞ gauge group the cancellation of
the anomaly imposes,

2R ¼ Q: ð10Þ

Our quiver gauge theories are then obtained by “assem-
bling” the building blocks of Fig. 2 such that there is
anomaly cancellation for all gauge groups.
In turn, the central charge of the IR CFT is calculated by

associating it with the correlation function of U(1)-R-
symmetry currents (computed in the UV-description
above). At the conformal point, the (right-moving) central
charge is related to the, two point, Uð1ÞR current correlation
function, such that (see [73]),

c ¼ 6ðnhyp − nvecÞ: ð11Þ

The central charge is then obtained by counting the number
of N ¼ ð0; 4Þ hypermultiplets and subtracting the number
ofN ¼ ð0; 4Þ vector multiplets in the UV description. Note
that the SUð2Þ R-symmetry does not mix with the Abelian
flavor symmetries, and it is not necessary to go through a
c-extremization procedure [74].

A. The proposed duality

Our proposal relates the backgrounds in Eqs. (1)–(3)
with quiver field theories obtained by assembling the
building block depicted in Fig. 2. For generic functions
ĥ4, h8 this results in the quiver shown in Fig. 3, associated
to the Hanany-Witten setup in Fig. 4. The reader can check
that the cancellation of gauge anomalies implies for a
generic SUðαkÞ color group, in the interval ½2πðk − 1Þ; 2πk�

FIG. 1. The generic Hanany-Witten setup associated with our
backgrounds. The vertical lines are NS-five branes. The hori-
zontal lines represent D2 and wrapped D6 branes. The crosses
indicate D4 and wrapped D8 branes.

FIG. 2. The building block of our theories.

TABLE I. 1
8
-BPS brane intersection underlying our geometry.

ðx0; x1Þ are the directions where the 2d CFT (dual to our AdS3) is
defined. ðx2;…; x5Þ span the CY2, on which the D6 and the D8-
branes are wrapped. x6 is the direction associated with ρ. Finally
ðx7; x8; x9Þ are the transverse directions realizing the SU(2)-
symmetry associated to S2.

0 1 2 3 4 5 6 7 8 9

D2 x x x
D4 x x x x x
D6 x x x x x x x
D8 x x x x x x x x x
NS5 x x x x x x

2Notice that N ¼ ð0; 2Þ Fermi multiplets are allowed in N ¼
ð0; 4Þ theories as long as they do not transform under the SOð4Þ
R-symmetry (see [71]).
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Fk−1 þ μkþ1 þ μk−1 ¼ 2μk → Fk−1 ¼ νk−1 − νk; ð12Þ

which, according to (7), is precisely the number of flavor
D8 branes in the ½2πðk − 1Þ; 2πk� interval of the brane set-
up. Things work analogously if D6 are replaced by D2 (or
μk ↔ αk) and D8 by D4 (νk ↔ βk), and we work with a
generic lower-row gauge group SUðμkÞ.
The central charge of the quiver is calculated using

expression (11). We find,

c
6
¼

XP
j¼1

ðαjμj − α2j − μ2j þ 2Þ þ
XP−1
j¼1

ðαjαjþ1 þ μjμjþ1Þ:

ð13Þ

In [65] we present various examples in which this expres-
sion agrees with the holographic central charge computed
according to (9). This should hold in the limit in which the
number of nodes P and the ranks of each gauge group αi, μi
are large, which is when the supergravity backgrounds are
trustable. We present one such example below. Notice that
both the global symmetries and isometries (space-time,
SUSY, and flavor), as well as the ranks of the gauge
(colour) groups do match in both descriptions, the latter
being given by the numbers αk, μk in (4).

B. An example

Let us discuss an example that illustrates the duality
proposed above. We consider the quiver with two rows of

linearly increasing color groups depicted in Fig. 5. For an
intermediate gauge node SU(kν) we have Q ¼ 2kβ,
R ¼ kβ. This implies that (10) is satisfied and any generic
intermediate gauge group is not anomalous. If we refer to
the last gauge group in the upper-row SU(Pν) we have that
Q ¼ ðPþ 1Þβ þ ðP − 1Þβ ¼ 2Pβ and R ¼ Pβ. As a con-
sequence (10) is satisfied and the gauge group SU(Pν) is
also not anomalous. The same occurs for the lower-row
gauge groups.
The counting of (0,4) hypermultiplets and vector mul-

tiplets gives

nvec ¼
XP
j¼1

ðj2ðν2 þ β2Þ − 2Þ;

nhyp ¼
XP−1
j¼1

jðjþ 1Þðν2 þ β2Þ þ
XP
j¼1

j2νβ; ð14Þ

from which the central charge of the IR CFT can be
computed,

c ¼ 6νβ

�
P3

3
þ P2

2
þ P

6

�
− 3ðν2 þ β2ÞðP2 þ PÞ þ 12P

∼ 2νβP3: ð15Þ

In turn, the holographic description of the system is in
terms of the functions,

h8ðρÞ ¼
(

ν
2π ρ 0 ≤ ρ ≤ 2πP
νP
2π ð2πðPþ 1Þ − ρÞ 2πP ≤ ρ ≤ 2πðPþ 1Þ;

ĥ4ðρÞ ¼ ϒ

(
β
2π ρ 0 ≤ ρ ≤ 2πP
βP
2π ð2πðPþ 1Þ − ρÞ 2πP ≤ ρ ≤ 2πðPþ 1Þ:

Using (9) and a convenient choice for the constant ϒ, gives
rise to the holographic central charge,

chol ¼ 2νβP3

�
1þ 1

P

�
∼ 2νβP3: ð16Þ

We thus find perfect agreement between the field theory
and holographic calculations. In [65] other examples of
dual holographic pairs are discussed that provide stringent
support to our proposed duality.

FIG. 3. A generic quiver field theory whose IR is dual to the
holographic background defined by Eqs. (1)–(3).

FIG. 4. Hanany-Witten setup associated with our generic quiver
in Fig. 3.

FIG. 5. Quiver consisting of two rows of linearly increasing
color groups, terminated with the addition of flavour groups.
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IV. MAPPING TO AdS7 BACKGROUNDS

A subclass of the solutions discussed in [64] can be
related to the AdS7 solutions to massive IIA supergravity
constructed in [22]. As opposed to the mappings in [21],
this mapping is not one-to-one, due to the presence of
additional D2-D4 branes in the AdS3 solutions, whose
backreaction introduces extra 4-form and 6-form fluxes,
and reduces the supersymmetries by a half. Using this map
it is possible to give an interpretation to the 2d CFTs dual to
the AdS3 solutions as associated to D2-D4 defects in the
D6-NS5-D8 brane setups dual to the AdS7 solutions in
[22], wrapped on the CY2. Thus, the word defect is here
used to indicate the presence of extra branes in Hanany-
Witten brane set-ups that would otherwise arise from
compactifying higher dimensional branes.
The explicit map, discussed in detail in [75], reads,

ρ ↔ 2πz; u ↔ α; h8 ↔ −
α̈

81π2
; ĥ4 ↔

81

8
α;

ds2ðAdS3Þ þ
34

23
ds2ðCY2Þ ↔ 4ds2ðAdS7Þ: ð17Þ

This transforms the original backgrounds in (1) into the
AdS7 backgrounds constructed in [22]

ds210
π

ffiffiffi
2

p ¼ 8

ffiffiffiffiffiffiffi
−
α

α̈

r
ds2ðAdS7Þ

þ
ffiffiffiffiffiffiffi
−
α̈

α

r
dz2 þ α3=2ð−α̈Þ1=2

Δ
ds2ðS2Þ;

e2Φ ¼ 25=2π538
ð−α=α̈Þ3=2
_α2 − 2αα̈

; F0 ¼ −
⃛α

162π3

B2 ¼ π

�
−zþ kþ α _α

Δ

�
volðS2Þ;

F̂2 ¼
1

162π2
ðα̈ − ⃛αðz − kÞÞvolðS2Þ; Δ ¼ _α2 − 2αα̈;

ð18Þ
where the function αðzÞ satisfies the equation ⃛α ¼
−162π3F0. As analyzed in [22], αðzÞ encodes the informa-
tion about the 6d (1,0) dual CFT, which is realized in a D6-
NS5-D8 Hanany-Witten setup. Using the mapping defined
by (17) it is possible to obtain an AdS7 solution in the class
of [22] from an AdS3 solution. In turn, the D6-NS5-D8
sector of the AdS3 solution is obtained by compactifying the
D6-NS5-D8 branes that underlie the AdS7 solution on the
CY2, while it is necessary to add the D2-D4 sector, encoded
by the functions u and h4 (see [75] for the details) to achieve
conformality and fully determine the AdS3 solution.
The holographic central charge of the 6d CFTs dual to

the AdS7 solutions was computed in [25],

cAdS7 ¼
1

GN

24

38

Z
dzð−αα̈Þ: ð19Þ

In turn, the holographic central charge of the 2d CFTs is
given in (9). Using the mapping given by (17) this becomes,

cAdS3 ↔
3

23GN
VolðCY2Þ

Z
dzð−αα̈Þ ¼ 39

27
VolðCY2ÞcAdS7 :

This kind of relation is ubiquitous when calculating the
holographic central charges for “flows across dimensions.”
Our result strongly suggests that we can obtain our CFTs by
compactifying the D6-NS5-D8 system underlying the 6d
(1,0) CFTon a CY2. Conformality in the lower dimensional
theory however requires the presence of “defect” D2 and
D4 branes, represented by the fluxes F4, F6 in (1). Flows of
this type were studied in [76,77], but these do not reach an
AdS3 fixed point. It would be interesting to find the explicit
RG flows that deform the six-dimensionalN ¼ ð1; 0Þ CFT
to reach a two-dimensional N ¼ ð0; 4Þ conformal fixed
point in the IR.

V. CONCLUSIONS

This paper presents a new entry in the mapping between
CFTs and AdS-supergravity backgrounds, for the case of
two-dimensional (small)N ¼ ð0; 4Þ CFTs and backgrounds
with AdS3 × S2 factors. We have reported new solutions of
the type AdS3 × S2 × CY2, belonging to class I in the
classification in [64], with compact CY2 and piecewise
continuous defining functions. We have proposed explicit 2-
d dual CFTs based on the Hanany-Witten setups implied by
the Page charges of the solutions. We matched the back-
ground isometries and the global symmetries (both space-
time and flavor) of the CFTs, and checked the agreement
between the holographic and field theory central charges.
The CFTs are defined as the IR limit of UV finite long
quivers with (0,4) SUSY, that generalize 2-d (0,4) quivers
previously discussed in the literature [61,63]. We presented a
map between a subclass of the solutions in [64] and the AdS7
backgrounds dual to six dimensionalN ¼ ð1; 0Þ CFTs [22–
24]. This mapping suggests the possibility of finding an RG
flow across dimensions between the dual CFTs.
This paper just scratches the surface of a rich line of

work. In the forthcoming papers [65,75] we will present
various checks of our proposed duality. As a by-product we
will obtain explicit completions of the background obtained
via non-Abelian T-duality on AdS3 × S3 × CY2, along the
lines of [9,18,33,78,79].
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