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Abstract  

Sand media filters are a key component of micro-irrigation systems since they help 

preventing emitter clogging, which greatly affects the system performance. Dissolved 

oxygen is an irrigation water quality parameter related to organic matter load. Low 

values of dissolved oxygen can cause crop root hypoxia and, therefore, agronomic 

problems. Thus, accurate prediction of dissolved oxygen values could be of great 

interest, especially if effluents are used in micro-irrigation systems. The aim of this 

study was to obtain a predictive model able to forecast the dissolved oxygen values at 

sand media filter outlet. In this study, a Gaussian process regression (GPR) model was 

used for predicting the output dissolved oxygen (DOo) from data corresponding to 547 

filtration cycles of different sand filters using reclaimed effluent. This optimization 

technique involves kernel parameter setting in the GPR training procedure, which 

significantly influences the regression accuracy. To this end, height of the filter bed (H), 

filtration velocity (v) and filter inlet values of the electrical conductivity (CEi), 

dissolved oxygen (DOi), pHi, turbidity (Turbi) and water temperature (Ti) were 
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monitored and analysed. The significance of each variable on the filtration is presented 

through the model and a model for forecasting the outlet dissolved oxygen was 

successfully obtained. Indeed, regression with optimal hyperparameters was performed 

and a coefficient of determination equal to 0.90 for DOo was obtained when this new 

predictive GPR–based model was applied to the experimental dataset. The agreement 

between experimental data and the model confirmed the good performance of the latter.  

  

Keywords: Gaussian process regression; Bayesian statistics; Machine learning 

techniques; Drip irrigation; Clogging; Effluents  

 

Nomenclature 

Abbreviation  

ANN Artificial neural network 

DE Differential evolution 

DOi 

DOo 

Dissolved oxygen at filter inlet, mg l-1 

Dissolved oxygen at filter outlet, mg l-1 

GEP Gene expression programming 

2R  Coefficient of determination 

SE Squared-exponential 

SVM Support vector machine 

v Filtration velocity, m h-1 

Symbol  

ij  Kronecker delta function 

  Additive white noise 
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 Lengthscale  for the RBF kernel 

2

f  Variance  for the RBF kernel 

2

n  Gaussian noise variance 

 

1. Introduction 

The substitution of conventional irrigation water by reclaimed effluents is a common 

strategy, in spite of its pollution and health hazards, in those areas that need to improve 

their water availability (Ait-Mouheb et al., 2018). Among the different irrigation 

techniques, micro-irrigation shows several environmental and health advantages related 

mainly to the reduced effluent exposure to humans and plants. However, one of the 

most important disadvantages of applying effluents with micro-irrigation is emitter 

clogging which could cause irrigation nonuniformity and system failure (Trooien & 

Hills, 2007). In order to avoid emitter clogging, micro-irrigation systems require a 

filtration treatment (Nakayama, Boman, & Pitts, 2007) being sand media filters the 

standard for protection of micro-irrigation systems (Trooien & Hills, 2017). 

 

The level of dissolved oxygen (DO) decreases with the increase of organic matter, 

commonly present in wastewaters. So, DO, which can be determined easier and quicker 

using sensors, is an indicator of irrigation water quality. Low DO values in the irrigation 

water cause root oxygen deficiency, leading to low yields (Bhattarai, Midmore, & 

Pendergast, 2008) and low quality (Zhou, Zhou, Xu, Muhammad, & Li, 2019). Usually, 

DO increases through micro-irrigation systems, especially when water is released by the 

emitters (Maestre–Valero & Martínez-Álvarez, 2010). The DO increase is slight in sand 

media filters but it is considerably affected by the filter performance (Elbana, Ramírez 
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de Cartagena, & Puig-Bargués, 2012; Solé–Torres, Puig–Bargués, Duran–Ros, Arbat, 

Pujol, & Ramírez de Cartagena, 2019b). Thus, the development of accurate models for 

forecasting DO at filter outlet can be very useful for an appropriate management of both 

sand filter performance and irrigation water quality. Optimal efficiency of drip irrigation 

systems is needed for implementing smart irrigation techniques, which aim to provide 

an optimum use of the water resources (Canales-Ide, Zubelzu & Rodríguez-Sinobas, 

2019).  

 

In this regard, advanced techniques such as artificial neural networks (ANN) (Puig–

Bargués, Duran-Ros, Arbat, Barragán, & Ramírez de Cartagena, 2012), gene expression 

programming (GEP) (Martí et al., 2013), support vector machines (SVM) (García–

Nieto, García–Gonzalo, Arbat, Duran–Ros, Ramírez de Cartagena, & Puig–Bargués, 

2016) have been used for predicting the filtered volume and the value of dissolved 

oxygen at sand media filter outlets. More recently, other machine learning techniques 

like gradient boosted regression have been applied to different aspects of the filter 

operation (García–Nieto et al. 2017, 2018). 

  

Thus, the application of the innovative methodology that combines the Gaussian 

process regression (GPR) approach (Rasmussen, 2003; Kuhn & Johnson, 2018; Ebden, 

2015) with the metaheuristic optimization algorithm Differential Evolution (DE) (Storn 

& Price, 1997; Price, Storn, & Lampinen, 2005; Feoktistov, 2006; Chakraborty, 2008; 

Simon, 2013) to foretell the outlet dissolved oxygen in sand media filters used in 

microirrigation systems could be an interesting approach since this issue has not been 

yet addressed in previous investigations. GPR is a machine learning method developed 
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on the basis of statistical and Bayesian theory. It is a nonparametric regression method 

and can be considered a complex model with capability to model nonlinearities and 

variable interactions (Rasmussen, 2003; Ebden, 2015). When this method is compared 

with other machine learning techniques, GPR has several advantages (Rasmussen & 

Williams, 2006): (1) GPR has an important generalization capacity; (2) the 

hyperparameters in GPR can be self-adaptively calculated; and (3) the GPR outputs 

have clear probabilistic meaning. In this study, the DE method was applied successfully 

to optimize the GPR hyperparameters. Previous researches show that GPR is an 

effective tool in many fields, such as irrigation mapping (Chen, Lu, Luo, Pokhrel, Deb, 

Huang, & Ran, 2018), wind engineering and industrial aerodynamics (Ma, Xu, & Chen, 

2019), applied geophysics (Noori, Hassani, Javaherian, Amindavar, & Torabi, 2019), 

applied demography (Wu & Wang, 2018), psychology (Schulz, Speekenbrink, & 

Krause, 2018), mechanical engineering (Kong, Chen, & Li, 2018), environmental 

engineering (Liu, Yang, Huang, Wang, & Yoo, 2018), tracking and positioning (Ko, 

Klein, Fox, & Haehnelt, 2007a), deformation observation (Rogers & Girolami, 2016), 

system identification and control (Ko, Klein, Fox, & Haehnelt, 2007b) and so on. 

However, it has never been used in micro-irrigation sand filters. 

 

The main objective of the present study was to predict the outlet dissolved oxygen 

(DOo) in sand media filters that worked with reclaimed effluents using Gaussian 

Processes (GPs) in combination with the DE parameter optimization technique. 

  

The structure of this paper is organized as follows: Section 2 introduces the 

experimental setup and variables involved in this study as well as the GPR method; 
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Section 3 describes the results obtained with this model by comparing the GPR results 

with the experimental measurements, including the importance of the input variables 

and validating the efficacy of the proposed approach; and finally, Section 4 concludes 

this study with a list of main findings. 

  

2. Materials and methods 

2.1. Experimental setup 

The experimental setup was composed by 3 media filters fed with the reclaimed effluent 

of the wastewater treatment plant of Celrà (Girona, Spain). Each filter had a different 

underdrain design: inserted domes (model FA-F2-188, Regaber, Parets del Vallès, 

Spain), arm collector (model FA1M, Lama, Gelves, Spain) and porous media (prototype 

designed by Bové et al. (2017) (see Fig. 1). 

 

Silica sand CA-07MS (Sibelco Minerales SA, Bilbao, Spain) with an effective diameter 

(De, size opening which will pass 10% of the sand) of 0.48 mm and a coefficient of 

uniformity (ratio of the sizes opening which will pass 60% and 10% of the sand 

through, respectively) of 1.73 was used as filtration media in the three filters. Media 

heights of 20 and 30 cm, were tested for each filter. 

 

Each filter operated on a 8 h per day and not simustaneously with the other two. 

Filtration velocities 30 and 60 m h-1 were tested in each filter. Each combination of 

media height and filtration velocity was tested during 250 h. The filters were 

automatically backwashed when the pressure loss across them reached 50 kPa for more 
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than 1 min. The backwashing was carried out during 3 min with previously filtered 

effluent that was chlorinated for achieving 4 ppm target chlorine concentration. 

 

Filtered and backwashed effluent volumes, pressures across the filter and some effluent 

quality parameters before (pH, temperature, electrical conductivity, dissolved oxygen 

and turbidity) and after (only dissolved oxygen and turbidity) being filtered were 

measured and recorded every minute in a supervisory control and data acquisition 

system (SCADA) fully described by Solé-Torres et al. (2019a). Sensors were initially 

calibrated by comparing with manual measurements. Once the experiment started, the 

performance of the effluent quality sensors was assessed periodically by comparing its 

measurements with results obtained by manual sampling and, if necessary, they were 

calibrated following manufacter's recommendations. 

 

Fig. 1 - Picture of the experimental set-up with the three filter designs: (a) red: arm 

collector; (b) blue: inserted domes; and (c) green: porous media prototype. 

 

2.2. Variables involved in the model and materials tested  

The main objective of this study was to compute the outlet dissolved oxygen as a 

function of different experimentally measured parameters that the GPR–based model 

needs as input. The output variable was the outlet dissolved oxygen, which is an 

indicator of the quality of the filtered effluent and it is directly related to the organic 

load and hypoxic risk of irrigation water.  
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The new predictive model created, employed as input variables eight different operation 

variables (see Table 1) commonly used for characterizing sand media filter performance 

(Puig-Bargués et al., 2012). After removing samples with missing data from the initial 

637 samples, we have worked with 547 samples. 

 

Table 1 - Set of operation physical input variables used in this study and their names 

along with their mean and standard deviation. 

 

The operation input variables are as follows: 

 Filter: Each one of the three filter designs (porous, dome and arm collector 

underdrains) described in section 2.1. This is a categorical variable. 

 Height of the filter bed (cm): this is an operation variable for sand filters. Two 

different filter bed heights of 20 and 30 cm were tested for each filter. 

 Filtration velocity (m h-1): it is a variable related to filter operation. Two 

filtration velocities (30 and 60 m h-1) were tested for each filter since these 

follow within the common range of velocities suggested by the manufacturers.  

 Electrical conductivity (S cm-1): it is a general measure of water quality related 

to salinity, which is a constraint in microirrigation (Tal, 2016).  

 Dissolved oxygen (mg l-1): it is a variable related to the ability of water to 

support aerobic processes. This is a common parameter used for both controlling 

the biological treatment in wastewater plants and measuring irrigation water 

quality.  
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 pH: it measures water acidity or alkalinity. 

 Water temperature (ºC): temperature of the effluent at the filter inlet. 

 Input turbidity (FNU): this is a key parameter for water quality that measures 

water clarity, which depends on suspended solid load.  

 Filtered volume (m3): it measures the volume of effluent filtered in each 

filtration cycle. 

 

2.3. Gaussian process  regression (GPR) 

GPs are Bayesian state-of-the-art tools for discriminative machine learning (i.e., 

regression, classification, and dimensionality reduction). GPs assume that a GP prior 

governs the possible latent functions, which are unobserved, and the likelihood (of the 

latent function) and observations shape this prior to produce posterior probabilistic 

estimates. Consequently, the joint distribution of training and test data is a 

multidimensional GP, and the predicted distribution is estimated by conditioning on the 

training data (Camps–Valls, 2016; Witten, Frank, Hall, & Pal, 2016).  

 

To fix ideas, a Gaussian distribution is a probability distribution that explains the 

random variables including vectors and scalars. On the one hand, this kind of 

distribution is fully stated exactly through the mean and covariance:  2,x N   . On 

the other hand, a Gaussian process can be seen as a generalization of the Gaussian 

probability distribution and applies over functions. From the functional space point of 

view, a Gaussian procedure is an ensemble of random variables, that is to say, any finite 

number having a joint Gaussian distribution. 
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2.3.1. The fundamentals of GPR 

Suppose that   , / 1, 2,...,i iD y i N x depicts the training dataset of the Gaussian 

approach. Moreover, the feature vectors 
n

i x  comprise the extracted features or the 

merged features and the pertinent segregation parameters. The observed target values iy  

reproduce the outlet dissolved oxygen measured in a filtration process, respectively. 

 
1

N

i î
X


 x  depicts the input matrix of training dataset,  

1

N

i i
y


y symbolizes the output 

vector. A Gaussian process  f x defines a prior over functions, which can be converted 

into a posterior over functions once we have seen some data.  A Gaussian process can 

be fully stated exactly by using its mean function  m x  and covariance function 

 ,k x x . In this way, the Gaussian process is indicated as (Rasmussen & Williams, 

2006; Marsland, 2014; Witten, Frank, Hall, & Pal, 2016): 

      , ,f GP m k x x x x

 

(1) 

so that 

   

           ,
T

m E f

k E f m f m

   

     
 

x x

x x x x x x  

(2) 

The mean function  m x  depicts the anticipated value of the function  f x  at the input 

point x . The covariance function  ,k x x  can be taken into account as a measurement 

of the confidence level for  m x , and it is required that  ,k    be a positive definite 

kernel. In general, the mean function is set to be zero for notation simplicity, but it is 

also reasonable if there is no prior knowledge about the mean variable, as is the case in 

this study. 
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The choice of the covariance function is critical for the Gaussian process. It describes 

the assumptions about the latent regression model and, therefore, is also referred to as 

the prior (Schneider & Ertel, 2010). In this research, the affine mean function and 

squared-exponential (SE) covariance function are expressed as follows (Shi & Choi, 

2011; Witten, Frank, Hall, & Pal, 2016; Kuhn & Johnson, 2018): 

 
2

2

SE 2
, exp

2
fk

l


 
   

 
 

x x
x x  

(3) 

being l the characteristic length-scale and 
2

f  the signal variance. The parameter 

selection of the SE covariance function has a direct effect on the performance of the 

Gaussian process. Here, l controls the horizontal scale over which the function changes, 

and 
2

f  controls the vertical scale of the function. 

 

The function values  f x  are not achievable in most applications. In practice, only the 

noisy observations are available given by: 

 f  y x  (4) 

so that   is the additive white noise. Besides, suppose that Gaussian noise is 

independent and identically distributed such that  20, nN  , where 
n  is the 

standard deviation of this noise. Any finite number of the observed values can also 

constitute an individual Gaussian process as given by (Witten, Frank, Hall, & Pal, 2016; 

Vidales, 2019): 

       2 2, , 0, ,n ij n ijGP m k GP k      y x x x x x  (5) 

where ij  is the Kronecker delta function described as: 
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1 if

0 otherwise
ij

i j


 
  
 

 

The purpose of the GPR model is to foretell the function value *f  and its variance 

 *cov f  given the new test point 
*

x . In this sense, 
*X  depicts the input matrix of test 

dataset and *N  the size of test dataset. Taking into account the definition of Gaussian 

process, the observed values and the function values at new test points obey a joint 

Gaussian previous distribution which can be expressed as: 

   

   

2 *

* * * *

, ,
0,

, ,

nK X X I K X X
N

K X X K X X

              

y

f
 

(6) 

where: 

   ,K X X : is the covariance matrix of training dataset; 

  * *,K X X : is the covariance matrix of test dataset; 

  *,K X X : depicts the covariance matrix obtained from the training and test 

dataset. Furthermore    * *, ,
T

K X X K X X . 

Since y and *
f  are jointly distributed, it is possible to condition the prior on the 

observations and ask how likely predictions for the *
f are. This can be expressed as: 

  * * * *, , ,covX X Nf y f f  (7) 

where 

   
1

* * * * 2, , , , nE X X K X X K X X I


       
f f y y  (8) 

         
1

* * * * 2 *cov , , , ,nK X X K X X K X X I K X X


    f  (9) 
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Afterwards, the subsequent distribution can be used for the forecast of new test input 

points. Indeed, *
f  is the predicted output value of the GPR model for test point. 

Additionally, confidence interval (CI) of the predicted output value can be calculated 

through the variance  *cov f . For instance, the 95% CI can be determined by 

   * * * *2 cov , 2 cov    
  
f f f f . As a consequence, the GPR model not only 

supplies the predicted values but also furnishes the confidence level of the predicted 

results. 

 

Finally, the GPR model is a nonparametric model since the predicted outputs rely only 

on the inputs and the observed values y . In this way, parameters  , ,f nl     are 

termed the hyperparameters of the GPR model. 

 

2.3.2. Hyperparameter estimation 

In order to tackle this study, we divided the dataset in a training set with 80% of the 

data, and a testing set with the remainder 20% of the data. A model was constructed and 

optimized with the training data and then, it was tested with the test dataset. Moreover, 

the optimization of the parameters was performed with the help of the DE technique. 

 

The predictive performance of GPR model depends exclusively on the suitability of the 

chosen kernel. To estimate the kernel hyperparameters, an exhaustive search over a 

discrete grid of values can be used, but this can be quite slow. The most usual method 

considers an empirical Bayes approach that maximizes the marginal likelihood. That is, 

the optimal hyperparameters are achieved by maximizing the log marginal likelihood.  
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The marginal likelihood  P Xy  is obtained, using Bayes’ rule, as: 

     ,P X P f X P f X df y y  (10) 

The term marginal likelihood refers to the marginalization over the function values f . 

Since  0, ( , )K X Xy , the log marginal likelihood can be written as: 

 11 1
log ( ) log log 2

2 2 2
y y

N
p X K K    yu y y u u  

(11) 

where 
2 , ( , )y nK K I K K X X     and u  is the determinant. In this expression, the 

first term is a data-fit term, the second term (always positive), substracted from it, is a 

model complexity penalty, and the last term is just a normalization constant. Then, this 

expression shows that the criterion of maximum marginal likelihood avoids the problem 

of over-fitting because if two models are explaining the observed data then, the simplest 

one will be chosen (Murphy, 2012; Witten, Frank, Hall, & Pal, 2016). 

 

The optimal hyperparameters  arg max log ,p X


  y  can be calculated using any 

standard evolutionary optimizer after parameter initialization. In this study, the 

metaheuristic optimization algorithm, denomined DE algorithm (Storn & Price, 1997; 

Price, Storn, & Lampinen, 2005; Feoktistov, 2006; Simon, 2013) is used. The process is 

shown in Fig. 2. 

 

Fig. 2 – GPR Model selection using the DE optimization technique. 

 

2.4. The goodness–of–fit of this approach 
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Eight predicting variables were used (see section 2.2) to construct the new GPR–based 

model. The output predicted variable is the outlet dissolved oxygen. To predict the 

outlet dissolved oxygen from other input operation parameters, it is necessary to choose 

the model that best fits the experimental data. In this sense, to determine the goodness–

of–fit, the criterion considered here was the coefficient of determination 2R (Picard & 

Cook, 1984; Freedman, Pisani, & Purves, 2007). A dataset takes values it , each of 

which has an associated modelled value iy . The former are termed the observed values 

and the latter are often referred to as the predicted values. The dataset variability is 

measured through different sums of squares as follows (Freedman, Pisani, & Purves, 

2007): 

  



n

i

itot ttSS
1

2
: the total sum of squares, proportional to the sample variance. 

  



n

i

ireg tySS
1

2
: the regression sum of squares, also termed the explained 

sum of squares. 

  



n

i

iierr ytSS
1

2
: the residual sum of squares. 

Note that in the previous sums, t is the mean of the n observed data: 





n

i

it
n

t
1

1
 

(12) 

Taking into account the above sums, the coefficient of determination is defined via: 

2 1 err

tot

SS
R

SS
   

(13) 
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so that a coefficient of determination value of 1.0 points out that the regression curve 

fits the data perfectly. 

 

The value of R2 was calculated using the optimized model with the testing dataset. The 

module Gpy from the Gaussian process framework in python (Gpy, 2014; Martin, 

2018), along with the DE technique (Storn & Price, 1997; Price, Storn, & Lampinen, 

2005; Simon, 2013) were used to construct the final regression model. 

 

Besides, it is well known that the GPR technique depends strongly on the following 

hyperparameters (Friedman & Roosen, 1995; Aggarwal, 2015; Larose, 2015; Witten, 

Frank, Hall, & Pal, 2016; Tan, Steinbach, Karpatne, & Kumar, 2018): 

 Variance (
2

f ): is the signal variance and controls the vertical scale of the kernel 

function. 

 Lengthscale ( ): is the characteristic length-scale and controls the horizontal 

scale over which the kernel function changes. 

 Gaussian noise variance (
2

n
): if   is the additive white noise and the Gaussian 

noise is independent and identically distributed such that 
 20, nN 

, then 
2

n
 

is the variance of this noise.  

At this point, we have constructed a model (specifically in this study, the novel GPR–

based model) taking as dependent variable the outlet dissolved oxygen (output variable) 

from the other eight remaining variables (input variables) in granular filters (Tien, 2012; 

Bové, Arbat, Duran–Ros, Pujol, Velayos, Ramírez de Cartagena, & Puig–Bargués, 
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2015), studying their effect in order to optimize its calculation through the analysis of 

the coefficient of determination 2R with success. 

 

Additionally, as previously mentioned, this GPR technique is greatly dependent on their 

hyperparameters: variance (
2 ); lengthscale ( ) and the Gaussian noise variance ( 2

n ). 

The traditional way of performing hyperparameter optimization has been grid search, or 

a parameter sweep, which is simply an exhaustive searching through a manually 

specified subset of the hyperparameter space of a learning algorithm. In this study, the 

metaheuristic optimization algorithm, denomined DE algorithm (Storn & Price, 1997; 

Price, Storn, & Lampinen, 2005; Feoktistov, 2006; Simon, 2013) is used for 

multidimensional real-valued functions but does not use the gradient of the problem 

being optimized, which means DE does not require the optimization problem to be 

differentiable, as is required by classic optimization methods such as gradient descent 

and quasi-newton methods. Like other algorithms in this evolutionary category, the DE 

maintains a population of candidate solutions, which are recombined and mutated to 

produce new individuals which will be chosen according to the value of their 

performance function (Storn & Price, 1997). What characterizes DE is the use of test 

vectors, which compete with individuals in the current population in order to survive. 

 

Additionally, the importance of the variables has been studied. As categorical variables 

are present, the chosen method depends on removing a variable, evaluating the new 

model performance and comparing it with the performance of the full model. The 

greater the decrease in the goodness-of-fit parameter, the greater the importance of the 

removed independent variable. 
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3. Results and discussion 

The outlet dissolved oxygen is used as output dependent variable of the proposed GPR–

based model. The prediction performed from the independent variables (Tien, 2012) 

was satisfactory as it was already stated before, the GPR technique is influenced by the 

selection of the GPR hyperparameters as the variance 
2 and lengthscale  for the RBF 

kernel and the Gaussian noise variance 2

n . 

 

Table 2 points out the optimal hyperparameters of the best fitted GPR–based model 

found with the DE technique. The objective function value, in this case the Marginal 

Likelihood is optimized to a value of 239 using the DE technique over the training set. 

 

Table 2 - Optimal hyperparameters of the best fitted GPR–based model found with the 

DE technique: variance 
2

f  and lengthscale  for the RBF kernel, the Gaussian noise 

variance 2

n  for the optimized models for the training set. 

  

Taking into account the results achieved, the GPR technique in combination with the 

DE metaheuristic optimization method is able to build models with a high performance 

for the estimation of the outlet dissolved oxygen in micro-irrigation sand filters fed with 

effluents using the test set. Indeed, the coefficient of determination (R2) of the fitted 

GPR model was of 0.9023 with a correlation coefficient of 0.9499 for the outlet 

dissolved oxygen. 
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A graphical representation of the terms that form the best fitted GPR–based model for 

the outlet dissolved oxygen  oDO is shown below in Figs. 3 and 4. The first order 

terms, that is, the variation of the dependent variable when all the variables but one are 

constant (its median value) is shown in Fig 3. The graphs suggest that the variable Input 

Dissolved Oxygen is the main influence in the variation of the Output Dissolved 

Oxygen, while other variables as pH and Temperature do not affect much this variable 

as these curves are almost constant. The same effect can be appreciated in the surfaces 

that represent the order two relations, that is, we leave all the independent variables 

constant but two. Again, we can appreciate that the main influence in a quick variation 

of the output variable is due to the Input Dissolved Oxygen.  

 

Fig. 3 - First-order terms for some of the independent variables for the dependent 

variable output dissolved oxygen  oDO . 

 

Fig. 4 - Second-order terms of some of the independent variables for the dependent 

variable output dissolved oxygen  oDO . 

 

The significance rankings for the input variables predicting the outlet dissolved oxygen 

(output variable) in this complex nonlinear study are shown in Table 3 and Fig. 5. As 

we have some categorical variables such as the Filter Type, we have followed a method 

where we discard one independent variable from the model and take into account the 

drop of the goodness-of-fit, in this case, the Marginal Likelihoods, that are shown in 

Table 3. The result is that for the GPR model the most significant variable in output 
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dissolved oxygen prediction is the input dissolved oxygen, followed by the type of 

filter, water temperature, height of the filter bed, pH, velocity, turbidity, and electrical 

conductivity. 

 

Table 3 - Log marginal likelihood variation value between the full model and the model 

without the variable for the DOo model. 

 

Fig. 5 - Relative relevance of the variables in the GPR model for the outlet dissolved 

oxygen (DOo). 

 

As it could be anticipated, outlet dissolved oxygen was highly dependent on inlet 

dissolved oxygen since organic pollutants are retained across filter media and 

chlorination of filter backwashing water reduced microorganisms level, and therefore 

less oxygen is consumed and dissolved oxygen could increase. However, DO removal 

depended also on media particle size (Elbana, Ramírez de Cartagena, & Puig-Bargués, 

2012) and on the interaction between filter type and filtration velocity, considering input 

inlet DO as a co-variable (Solé–Torres, Puig–Bargués, Duran–Ros, Arbat, Pujol, & 

Ramírez de Cartagena, 2019b). The filter type had also a contribution on the results 

since different underdrain designs affect backwashing performance and frequency (Burt, 

2010), which is directly related to DO removal (Enciso-Medina, Multer, & Lamm, 

2011; Elbana, Ramírez de Cartagena, & Puig-Bargués, 2012). The third parameter is 

temperature, but this is also logical since dissolved oxygen value is temperature 

dependent. 
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The importance of DOi for estimating DOo has been previously observed by Martí et al. 

(2013) and García–Nieto et al. (2016), working with different types of models. Martí et 

al. (2013) observed that pH, EC and pressure loss, but not temperature, García–Nieto et 

al. (2016) found that inlet turbidity and pressure loss were also considered as influential 

parameters for predicting DOo. Thus, the results highlight the importance of correctly 

assessing the performance of each prediction model. 

  

In conclusion, this research work was able to estimate the outlet dissolved oxygen 

(output variable) in agreement with the actual experimental values observed using the 

GPR–based model with great accurateness as well as success. Indeed, Fig. 6 shows the 

comparison among the outlet dissolved oxygen values observed and predicted by using 

the GPR model with the testing set. The values predicted by the model using the 

samples of the testing dataset show a very good agreement with the observed values. As 

it can be seen, they are very close to the observed values or within the 95% confidence 

interval obtained as was to be expected given that the coefficient of determination equal 

to 0.90. Therefore, it is mandatory the use of a GPR model with a DE optimization 

technique in order to achieve the best effective approach in this regression problem.  

 

Fig. 6 - Observed and predicted DOo values, taking into account the confidence interval, 

by using the GPR–based model with the testing set ( 2 0.9023R  ). 

 

4. Conclusions 

Taking into account the experimental and numerical results, the main findings of this 

study can be summarized as follows: 
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 Firstly, the development of novel data-driven diagnostic techniques is very 

useful to predict the outlet dissolved oxygen from the experimental values. In 

this sense, the new GPR–based method used in this work is a good decision to 

evaluate the outlet dissolved oxygen in sand media filters used in microirrigation 

systems.  

 Secondly, the assumption that the outlet dissolved oxygen diagnosis can be 

accurately modelled by using a hybrid GPR–based model in granular filters was 

confirmed.  

 Thirdly, a reasonable coefficient of determination equal to 0.9023 was obtained 

when this GPR–based model was applied to the experimental dataset 

corresponding to the outlet dissolved oxygen. 

 Fourthly, the significance order of the input variables involved in the prediction 

of the outlet dissolved oxygen in sand media filters was set. This is one of the 

main findings in this work. Specifically, input variable dissolved oxygen (DOi) 

could be considered the most influential parameter in the prediction of the outlet 

dissolved oxygen. In this regard, it is also important to highlight the influential 

role of the type of filter in the dependent variable outlet dissolved oxygen. 

 Finally, the influence of the hyperparameters setting of the GPR approach on the 

outlet dissolved oxygen regression performance was set up.  

In summary, this methodology could be applied to other filtration processes with similar 

or distinct filter media types with success, but it is always necessary to take into account 

the characteristics of each filter and experiment. Consequently, an effective GPR–based 

model is a good practical solution to the problem of the determination of the outlet 

dissolved oxygen in sand media filters broadly used in microirrigation systems. 
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Fig. 1 - Picture of the experimental set-up with the three filter designs: (a) red: arm 

collector; (b) blue: inserted domes; and (c) green: porous media prototype. 

 

 

 

 

 
 

 

 

 



 

 

 

 

Fig. 2 – GPR Model selection using the DE optimization technique. 

 



 

 

 

 

Fig. 3 - First-order terms for some of the independent variables for the dependent 

variable output dissolved oxygen  DOo . 



 

 

 

 

 

 

Fig. 4 - Second-order terms of some of the independent variables for the dependent 

variable output dissolved oxygen  DOo . 



 

 

 

 

 

Fig. 5 - Relative relevance of the variables in the GPR model for the outlet dissolved 

oxygen (DOo). 



 

 

 

 

 

 

 

Fig. 6 - Observed and predicted DOo values, taking into account the confidence interval, 

by using the GPR–based model with the testing set ( 2 0.9023R  ). 

 

 

 

 



 

Table 1 - Set of operation physical input variables used in this study and their names 

along with their mean and standard deviation. 

Input variables 
Name of the 

variable 
Mean 

Standard 

deviation 

Filter media type Filter -- -- 

Height of the filter bed (cm) H 25.631 4.9601 

Filtration velocity (m h-1) v 49.909 14.174 

Electrical conductivity (  S cm-1) CEi 2575.6 497.68 

Input dissolved oxygen (mg l-1) DOi 3.3529 0.9860 

pH pHi 7.3526 0.2229 

Input turbidity (FNU) Turbi 6.1029 2.5898 

Water temperature (ºC) Ti 20.002 3.3486 

 

 

 

Table 2 - Optimal hyperparameters of the best fitted GPR–based model found with the 

DE technique: variance 
2

f  and lengthscale  for the RBF kernel, the Gaussian noise 

variance 2

n , and the corresponding objective function value for the optimized models 

for the training set.  

Output 

variable 

2

f   
2

n  Objective fun. 

value 

DOo 1.57 1.97 0.0636 239 

 

 

 

 

 



 

 

 

Table 3 - Log marginal likelihood variation value between the full model and the model 

without the variable for the DOo model. 

Variable Likelihood variation 

Input dissolved Oxygen (mg l-1) 589.62 

Filter 123.51 

Water temperature (ºC)  37.77 

Height (cm) 33.21 

pH 32.45 

Velocity (m h-1) 17.31 

Input turbidity (FNU) 15.96 

Electrical Conductivity (μS cm-1) 8.25 

 


