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ABSTRACT

First-order reversal-curves have proven to be an indispensable characterization tool for physics as well as for geology. However, the conventional
evaluation algorithm requires a lot of computational effort for a comparable easy task to overcome measurement noise. In this work, we
present a new evaluation approach, which exploits the diversity of Fourier space to not only speed up the calculation by a factor of 1000 but
also move away from the conventional smoothing factor toward real field resolution. By comparing the baseline resolution of the new and the
old algorithm, we are able to deduce an analytical equation that converts the smoothing factor into field resolution, making the old and new
algorithm comparable. We find excellent agreement not only for various systems of increasing complexity but also over a large range of
smoothing factors. The achieved speedup enables us to calculate a large number of first-order reversal-curve diagrams with increasing smooth-
ing factor allowing for an autocorrelation approach to find a hard criterion for the optimum smoothing factor. This previously computational
prohibitive evaluation of first-order reversal-curves solves the problem of over- and undersmoothing by increasing general readability and pre-
venting information destruction.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5120495

I. INTRODUCTION

Hysteresis measurements are an essential tool to investigate
the magnetic behavior of a large variety of systems and characterize
them by basic parameters such as coercivity field, remanent, and
saturation magnetization. Although a single major loop measure-
ment already contains valuable details about the sample, it is possi-
ble to maximize the information obtained from magnetization
measurements by systematically collecting data within the major
loop in different magnetic paths or minor loops. The information
obtained from comparing successive minor loops is not accessible
with a mere major loop measurement and, following Preisach’s
model of hysteresis,1 it reveals the system’s coercivities and interac-
tions at once. Two virtually congruent major loops can have a fun-
damentally different composition of minor loops.2,3 First-order
reversal-curves (FORCs)4 succeed at disentangling different magnetic
contributions and allow us to distinguish between various magnetic

phases within one single sample. This capability makes FORC a ver-
satile technique applicable to a broad spectrum of samples.

Starting as a tool to magnetically characterize geological com-
posites,5–8 FORC analysis evolved to a technique used for various
types of magnetic samples. From nanoscale materials3,9–16 to mac-
roscopic permanent magnets,17–19 going through temperature
dependence16,20–22 or interaction studies,9,12,23–27 FORC established
itself as an indispensable characterization technique in physics as
well as geology.

In principle, collecting FORC data is possible with any device
capable of measuring hysteresis loops.28 A measurement starts in
positive saturation.23 The field is then decreased to the first reversal
field Hr, usually negative saturation. The measured data consist of
the M-H minor loop starting at Hr and ending at positive satura-
tion. This procedure is then repeated for increasing reversal fields
Hr until the minor loop starts in positive saturation. Thus, the mea-
sured data can be displayed as a two-dimensional magnetization
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landscape, which not only depends on the applied field H but also
on the reversal field Hr.

The so-called FORC density is calculated in two steps. First,
the FORC diagram ρ is calculated from the magnetization land-
scape M(H, Hr) by taking the mixed second derivative along H
and Hr

ρ(H, Hr) ; � 1
2
@2M(H, Hr)
@H@Hr

: (1)

The second part is a coordinate transformation of H and Hr

into a more intuitive coercivity and an interaction field, Hc and Hu,
respectively,

Hc ¼ 1
2
(H �Hr), Hu ¼ 1

2
(H þHr): (2)

This transformation equals a rotation and expansion of the
coordinate system.23 Frequently done but not strictly needed, the
FORC density can be illustrated in H �Hr-coordinates as well.

Numerically evaluating Eq. (1) can be quite challenging since
derivatives are already susceptible to small amounts of noise, even
worse for a mixed second derivative. Nevertheless, a finite differen-
ces approach has recently been published by Abugri et al.,29 where
smoothing was not a valid option. A similar strategy is part of the
FORCit software by Acton et al.,30 which calculates the derivative
after a real space Gaussian filter.

The most prominent method for the calculation of FORC den-
sities was proposed by Pike et al.23 Instead of directly calculating
the mixed second derivative as a difference quotient, they proposed
to interpolate the magnetization data on a rectangular grid in order
to locally fit a polynomial p of the form

p(H, Hr) ¼ a1 þ a2Hr þ a3H
2
r þ a4H þ a5H

2 þ a6HHr (3)

to the magnetization. The amount of data points included in the fit
depends on the so-called “smoothing factor” SF. When substituting
p into Eq. (1) and calculating the mixed second derivative, it can be
directly seen that only �a6=2 remains and thus equals the FORC
density at that given position.

This is a well-established method to calculate the FORC
density from the magnetization landscape, which has seen several
extensions and adaptations over the course of the years.31–34

However, this algorithm has some inherent disadvantages.
First of all, it calculates a two-dimensional fit at every point

of the interpolation grid, which is in the order of 250 000 fits. That
typically means a calculation time of up to 10 min on modern
computers for a reasonable resolution. Moreover, since the
smoothing factor defines the number of surrounding data points
included in the fit on a rectangular grid (NData ¼ (2SFþ 1)2), it is
not possible to choose noninteger smoothing factors. Thus, the
resolution of a FORC diagram not only depends on the smoothing
factor but also on the grid that is chosen for the data interpolation.
The smoothing factor is virtually meaningless without the grid
spacing.

There are multiple extensions and variations of this conven-
tional fitting algorithm. The first one, “extended FORC,” proposed

by Pike, is able to capture fully reversible information in a “reversible
ridge” at Hc ¼ 0 by extending each minor loop. 31

“FORCinel” by Harrison and Feinberg32 calculates FORC
diagrams based on a locally weighted regression smoothing, often
referred to as LOESS35 algorithm. The distance weighted and,
therefore, not squarelike smoothing kernel allows for a noninteger
smoothing factor.

“VARIFORC” by Egli33 is able to dynamically adapt the
smoothing in order to meet the requirement of high resolution or
noise reduction for different regions of the FORC diagram.

Cimpoesu et al. presented a versatile fitting tool for first-order
reversal-curves (“doFORC”34), which is able to use a great variety
of different smoothing kernels for the local regression. However,
the calculation of a large amount of fits persists throughout all of
these different adaptations.

Another challenge is the choice of the optimum smoothing
factor. FORC diagrams can be hard to read and are not always
straightforward to interpret.2,27 For a correct interpretation, the
choice of the smoothing factor is crucial. It is relatively easy to
determine whether a FORC diagram is undersmoothed since it
mainly consists of noise; however, it is much harder to identify a
slightly oversmoothed FORC diagram. There have been approaches
to numerically determine the optimum smoothing factor.32,36

However, with several minutes computing time per smoothing
factor, this can be a long and exhausting task to perform. New
approaches that allow for a shorter computing time are, therefore,
not only important for convenience but also necessary for a more
reliable interpretation of FORC diagrams.

In this work, we present an alternative approach for the
calculation of FORC densities based on Fourier filtering and
derivatives. To verify the approach, we compare FORC diagrams
of four different samples at identical field resolutions and over a
large range of smoothing factors. Achieving a severe speed up of
the FORC density calculation allows us to reiterate on previously
computational prohibitive approaches to find the optimum
smoothing factor of a FORC diagram and apply it to the pre-
sented measurements.

II. EXPERIMENTAL SECTION

A. Sample preparation

In this study, two types of samples are investigated, thin film
stripe structures and a macroscopic permanent magnets. As a
guide to the eye, the stripe measurements are labeled with green,
light blue, and orange, and the permanent magnet measurements
in violet.

The 1� 1� 2mm3 bulk permanent magnet is cut from a
commercially available 1� 1� 1 cm3 neodymium magnet (NdFeB)
via wire electrical discharge machining. Its easy axis is aligned
along the long edge of the cuboid. Thin film stripe structures were
fabricated via photolithography and direct laser writing using
the “LOR 3A” and “AZ ECI 3027” resist by “MicroChem” and
“MicroChemicals,” respectively. For exposure, the UV laser system
“KLOÉ Dilase 250” was used. After development, 50 nm permalloy
(Fe20Ni80, Py) and 2 nm aluminum (Al) were deposited via ion
beam sputtering at a pressure lower than 10�7 mbar. Further details
can be found elsewhere.27
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B. Measurement methods

Permalloy sample measurements were conducted using
“Durham Magneto Optics’ NanoMOKE3,” which makes use of
the magneto-optical Kerr effect (MOKE). For more information
on the MOKE-FORC setup, the reader is referred elsewhere.27,37

Bulk measurements were carried out using “Quantum Design’s
MPMS 3” vibrating sample magnetometer SQUID (VSM-SQUID).
A fast ramping 7 T magnet is able to saturate the NdFeB magnet
while still reducing the measurement time by approximately a factor
of five compared to a conventional SQUID. All FORC measurements
presented consist of approximately 100 to 150 minor loops. The
reversal field spacing was distributed nonuniformly in order to
measure more minor loops in interesting field regions while keeping
the measurement time at a minimum. An in-house written acquisi-
tion and processing software is able to collect the MOKE as well as
the SQUID data and subsequently process it.

III. RESULTS

A. A new approach

The first step of the calculation is the interpolation of the mea-
surement data onto a rectangular grid. This step automatically
ensures that the algorithm is robust enough to also handle nonuni-
formly spaced reversal field distributions.

Since the Fourier transformation expects a periodic func-
tion, simply Fourier transforming each minor loop will cause
artifacts after the inverse transformation. Therefore, each minor
loop is extended by a flipped copy of itself, which results in a
smooth periodic signal. Subsequently, the fast Fourier transfor-
mation (FFT) MH(H, Hr) of M(H, Hr) along H is calculated. H
denotes the H-spectrum.

In Fourier space, any arbitrary filter can be applied; usually,
a Gaussian works well. However, any frequency filter can be
applied, e.g., known instrument noise frequencies can be eliminated
selectively. The derivative is calculated by multiplying the filtered
M*

H(H, Hr) with iH in Fourier space where i denotes the imaginary
unit. The inverse transformation (iFFT) of iHM*

H(H, Hr) yields a
smoothed @HM(H, Hr). ρ(H, Hr) is obtained by repeating the same
process along the Hr-axis. The total calculation process is as follows:

[1] MðH;HrÞ )
FFT MHðH;HrÞ,

[2] MH H;Hrð Þ )Fourier
Filter

M�
H H;Hrð Þ,

[3] iHM�
H H;Hrð Þ )iFFT @HMðH;HrÞ, and

[4] Repeat (1)�(3) for Hr direction.

The advantage of this method is that it does not calculate a six
parameter fit at every data point anymore. The algorithm only con-
sists of Fourier transformations, a multiplication in Fourier space,
and an inverse Fourier transformation. These operations are inher-
ently fast and parallelized on graphics processing units (GPUs).
The performance of the algorithm was tested on an “Intel Xeon
E3-1505M v6” with an “Nvidia Quadro M1200” and an “Intel Core
i7-8850H” with an “Nvidia Quadro P2000”. The calculation time of

a full FORC density, which used to be in the order of minutes, is
reduced to approximately 0.2 s.

B. Comparing smoothing factors

To compare the results obtained from the proposed and
the conventional algorithm, a common resolution is necessary.
Since the proposed FFT algorithm expresses resolutions in absolute
field units whereas the conventional fitting algorithm expresses
resolutions in a combination of smoothing factors and field step
size, a transformation is necessary. As it is nontrivial to compare
the resolution of the squarelike smoothing kernel of the conven-
tional fitting algorithm to the resolution given by the Gaussian in
Fourier space, we instead compare the baseline resolution of both
algorithms. For the conventional algorithm, the baseline resolution
is directly given by the smoothing factor SF and the field step ΔH
of the interpolation grid

Rconventional ¼ 2SFþ 1ð Þ � ΔH: (4)

The baseline resolution of two neighboring Gaussians is given
by their width. 38 If the inverse width in Fourier space is 1=σ, it
can be shown that the baseline resolution in real space is given by

Rproposed ¼ 4σ: (5)

From Eqs. (4) and (5) and the condition for those two resolu-
tions to be equal Rproposed ¼! Rconventional, a smoothing factor equiva-
lent SFeq of the new algorithm can be calculated from the Gaussian
width σ and the field step given by the interpolation grid ΔH

SFeq ¼ 4σ=ΔH � 1
2

: (6)

C. Verification

In the following, we verify the proposed algorithm against stan-
dard data sets. Using Eq. (6), FORC diagrams of the conventional
and proposed algorithm become comparable via the smoothing factor
and the smoothing factor equivalent. Figure 1 displays three different
verification measurements. A more extended verification against sim-
ulated data sets can be found in the supplementary material.

The first column displays the three different sample geometries.
The first two measurements [(green, light blue, Figs. 1(a)–1(f)] are
conducted on the same thin film permalloy stripe sample
(150 μm� 10 μm� 50 nm) for two different field geometries. The
third measurement [purple, Figs. 1(g)–1(i)] is conducted on bulk
NdFeB (1� 1� 2mm3). The second column displays the major
and minor loops of the corresponding sample.

The two FORC densities of the first sample [green, Figs. 1(b)
and 1(c)] are virtually identical. Both have a peak at the coercivity
expected from the major loop and at Hu ¼ 0. However, the two
FORC diagrams do not perfectly match. First, the noise level of the
FFT algorithm is slightly superior but secondly and more important
is that the peak shape is different. While the proposed FFT algo-
rithms result in a round peak shape, the FORC peak of the fitting
algorithm adopts the shape of the smoothing kernel. Obviously, a
square shaped smoothing kernel will cause sharp peaks in the
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FORC density to have a squarelike shape. There are several
approaches to avoid such artifacts. This can, for example, be done
by taking a different smoothing kernel34 or by applying a distance
weighted fitting algorithm.32 The FFT algorithm automatically
avoids such artifacts by using a Gaussian filter in Fourier space.

To verify the correct processing of fully reversible information,
the second measurement (light blue) was conducted on the same
sample as the first on (green) but with a different field geometry.
Whereas the field was applied along the easy axis in the previous
case, the field is applied along the hard axis of the stripe for the
second measurement as seen in the sample column in Fig. 1.

Such a hard axis system will only experience continuous rotation
of the magnetic moments without any irreversible switching as seen

in the major and minor loops [Fig. 1(d)]. The extended FORC tech-
nique31 ensures that also fully reversible information at Hc ¼ 0 is
captured in the conventional FORC diagram.

This extended FORC technique is also implemented in the FFT
algorithm. It ensures that information of fully reversible processes is
displayed as part of a so-called reversible ridge31 at Hc ¼ 0. It also
ensures that the integral over the entire FORC density

ð ð
ρ(H, Hr) dHdHr ¼ MS (7)

equals the saturation magnetization, a necessary condition
that follows from the way the FORC density is calculated [cf.

FIG. 1. Comparison between the conventional fitting and the proposed FFT algorithm: three different sample geometries are shown (green, light blue, purple). The first column
displays sample sketches and the applied field axis. The second column displays the major and a few selected minor loops. The color of the FORC density has been mapped
onto the minor loops, which enables direct assignment of FORC density peaks to their origin in the minor loops. The third and fourth columns display the FORCs calculated with
the fitting and the FFT algorithm, respectively. The field resolutions used for the FFT smoothing are 1.06 Oe (green), 10.8 Oe (light blue), and 0.18 T (purple). Positive signal in
the FORC density is represented by red color, and negative contributions are illustrated in blue. The signal intensity is encoded in color saturation.
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Eq. (1) in Ref. 31]. Comparing the fitting and the FFT algorithm
[Figs. 1(e) and 1(f)], the FFT algorithms seem to perfectly recover
the reversible information. The FORC diagrams show no difference.

To prove that the FFT algorithm can reliably recover the
correct FORC diagram even for complex sample compositions, a
third measurement (purple) was conducted on a macroscopic
NdFeB sample. This sample consists of a hard magnetic compo-
nent at Hc � 1:5T, a soft magnetic component at Hc � 0 T, and a
positive-negative peak pair at Hc � 0:7T and Hu � �0:6T, which
originates as a consequence of the interaction between the hard
and the soft magnetic component in the sample. 27 Further inter-
pretation of the FORC diagram is beyond the scope of this work.
The important point is that the FFT algorithm is able to recover all
peaks in the FORC diagram reliably.

To further validate the FFT technique not only for different
samples but also for various smoothing factors, an additional thin
film permalloy stripe sample has been measured. The sample con-
sists of 150 μm long permalloy stripes of alternating width (10 μm
and 30 μm) with a thickness of 50 nm and a spacing of 10 μm.
To measure this sample with MOKE, the laser spot is slightly defo-
cused in order to capture not only the magnetization of one single
stripe but to include the full structure into the magnetization
measurement.

A sketch of the sample and the major and minor loop
measurement can be seen in Figs. 2(a) and 2(b). A series of FORC
diagrams for different smoothing factors (SF ¼ 1, 5, 10, 15) is dis-
played in Figs. 2(c) and 2(d). Figure 2(c) shows the FORC diagrams

of the FFT algorithm and Fig. 2(d) displays the results of the fitting
algorithm.

The FORC diagrams are characteristic for a two component
system with two different coercivities. Two peaks on the Hc-axis
correspond to the respective coercivities of the system and a
positive-negative peak pair at negative Hu arises as a consequence
of the interaction. A thorough analysis of such FORC diagrams is
once again beyond the scope of this work and can be found
elsewhere.27

The FORC diagrams of the FFT [Fig. 2(c)] and the fitting
algorithm [Fig. 2(d)] are almost identical over a large range of
smoothing factors. For the two smaller smoothing factors
(SF ¼ 1, 5) the FORC densities are basically identical. For larger
smoothing factors (SF ¼ 10, 15), they are still similar; however, the
peaks of the fitting algorithm start to adopt the square like shape if
the fitting kernel is much larger than the peak itself.

Each FORC diagram has an optimum smoothing factor at
which noise is sufficiently suppressed while no information is
destroyed, in this case SF � 5. Since the FFT algorithms allow for
an arbitrary width of the Gaussian Fourier filter, the smoothing
factor can have any real value SFeq � �0:5, where �0:5 equals no
smoothing [σ ¼ 0 Oe in Eq. (6)].

Judging whether a FORC density is well-smoothed and not
over- or undersmoothed can be challenging. There have been
approaches to find hard criteria for the optimum smoothing
parameters.32,36 However, they rely on the calculation of a large
number of FORC densities over an extended range of smoothing

FIG. 2. Comparison of FORC densities with different smoothing factors: (a) Sample sketch. (b) Major loop measurement with a few selected minor loops. (c) Series of dif-
ferent smoothing factors (FFT). Real field resolutions are SFeq ¼ 1≙ 0:29 Oe, SFeq ¼ 5≙ 1:07Oe, SFeq ¼ 10≙ 2:05Oe, and SFeq ¼ 15≙ 3:03Oe. Positive signal in
the FORC density is represented by red color, and negative contributions are illustrated in blue. The signal intensity is encoded in color saturation. (d) Series of different
smoothing factors (fit). See supplementary material for a video of additional smoothing factors.
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factors, which is very time consuming if done with the conven-
tional fitting algorithm.

D. Exploring new possibilities

Reducing the time needed to calculate a FORC diagram by a
factor of approximately 1000 allows for the exploration of science,
which was computational prohibitive before. We use the autocor-
relation approach described in Secs. 4–6 in Ref. 36, which is based
on the autocorrelation of the residual. The residual for a given
smoothing factor is calculated as the difference of the unsmoothed
magnetization landscape and the magnetization landscape of the cor-
responding smoothing factor that is obtained by integrating the

FORC density along H and Hr,

Residual(SF) ¼ M(H, Hr)�
ð ð

ρSF(H, Hr) dHdHr: (8)

The residual is the difference between the actually measured
magnetization landscape and the landscape that corresponds to the
smoothed FORC density.

If the residual is perfectly flat the corresponding FORC equals
the unsmoothed FORC and contains a lot of noise. When increas-
ing the smoothing factor, the residual will become noisier but there
will not be any significant features in it. If the smoothing is further
increased, the residual will start to form features. This is the point
at which the smoothing starts to destroy features of the FORC
diagram and separated peaks start to merge.

By calculating the sum over the autocorrelation matrix of the
residual for a large number of different smoothing factors, these
three regions can be distinguished. The blue graph in Fig. 3 displays
the normalized sum of the autocorrelation matrix according to
Eq. (12) of Ref. 36 (same sample as in Fig. 2). Each of the 500 data
points corresponds to the calculation of a FORC diagram and the
calculation of the residual autocorrelation over the ten nearest
neighbors. In the optimum case, this plot consists of three different
regions. The slope of the correlation in the first region (left gray
box) corresponds to the reduction of noise in the FORC diagram.
The flat part and second region (green box) corresponds to a well-
smoothed FORC diagram and is the main region of interest. In this
region, the noise reduction by smoothing is sufficient and the signal
is not reduced yet. In the third region (right gray box), the correla-
tion starts to increase dramatically, which indicates the merging of
peaks and the loss of information.

The optimum smoothing factor can be identified by looking at
the red graph, which displays the normalized derivative of the
residual correlation, and taking the minimum of it. This ensures
that the identified smoothing factor is neither too close to the point
of noise nor to the point of signal reduction.

Although it takes a considerable amount of computational
time, this is a hard criterion for the optimum smoothing factor of a
FORC diagram and also outputs a range of acceptable smoothing
factors as well. This has been facilitated by the speedup of the
FORC calculation without which it would have been impossible to
calculate FORCs for so many smoothing factors in the first place.

IV. SUMMARY

A new approach for the calculation of FORC densities based
on Fourier filtering and multiplications in Fourier space has been
presented. This approach reduces the calculation time per FORC
density by a factor of 1000 compared to the conventional six
parameter fitting algorithm.23 By comparing the baseline resolu-
tions of the fitting algorithm and the new Fourier approach, the
well-established concept of smoothing factors is comparable to real
field smoothing resolutions. This is a thorough step toward a uni-
versal comparability of FORC diagram resolutions.

The new approach has been verified by comparing three
different sample geometries for identical smoothing resolutions.
We find excellent agreement between the fitting algorithm and the
newly developed Fourier algorithm for all presented samples.

FIG. 3. Identifying the optimum smoothing factor: the blue graph displays the
residual correlation as a function of smoothing factor. The red graph displays its
derivative.
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To further verify the approach, we compared FORC densities
of the same samples over a large range of smoothing factors. All
FORC densities, whether under- or oversmoothed, show an excep-
tionally good agreement with the conventional algorithm.

The calculation speedup allows us to evaluate FORC densities
over a large range of noninteger smoothing factors with small
spacing. This allows for the visualization of the evolution of a FORC
densities as a function of smoothing factor that highlights over- and
undersmoothing. Furthermore, the reduction of the calculation time
allows us to reevaluate a previously computationally prohibitive tech-
nique to calculate the optimum smoothing factor. The speedup
allows us to calculate the autocorrelation function of the FORC resid-
ual as a function of smoothing factor, which gives a hard criterion
for the smoothing factor needed for the optimum calculation of the
corresponding FORC diagram.

SUPPLEMENTARY MATERIAL

See the supplementary material for a movie of the FORC density
evolution as a function of smoothing factor. The supplementary
material also includes two more data sets of the autocorrelation
of the data sets shown in Figs. 1(a)–1(c) and 1(g)–1(i) and an
example of the FFT algorithm evaluating data generated by the
Preisach model with and without noise. A MATLAB implementa-
tion of the algorithm for the evaluation of FORC densities can be
found at https://gitlab.gwdg.de/MoKeteam/gFORC/.
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