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Abstract

This paper introduces and analyzes the combined use of the virtual element method (VEM) and
the boundary element method (BEM) to numerically solve linear transmission problems in 2D and
3D. As a model we consider an elliptic equation in divergence form holding in an annular domain
coupled with the Laplace equation in the corresponding unbounded exterior region, together with
transmission conditions on the interface and a suitable radiation condition at infinity. We employ
the usual primal formulation in the bounded region, and combine it, by means of the Costabel & Han
approach, with the boundary integral equation method in the exterior domain. As a consequence,
and besides the original unknown of the model, its normal derivative in 2D, and both its normal
derivative and its trace in the 3D case, are introduced as auxiliary non-virtual unknowns. Moreover,
for the latter case, a new and more suitable variational formulation for the coupling is introduced.
In turn, the main ingredients required by the discrete analyses include the virtual element subspaces
for the domain unknowns, explicit polynomial subspaces for the boundary unknowns, and suitable
projection and interpolation operators that allow to define the corresponding discrete bilinear forms.
Then, as for the continuous formulations, the classical Lax-Milgram lemma is employed to derive the
well-posedness of our coupled VEM/BEM scheme. A priori error estimates in the energy and weaker
norms, and corresponding rates of convergence for the solution as well as for a fully computable
projection of the virtual component of it, are provided. Finally, a couple of numerical examples in
2D illustrating the performance of the derived VEM/BEM schemes, are reported.
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1 Introduction

The numerical solution of diverse linear and nonlinear boundary value problems in continuum mechan-
ics by means of the virtual element method (VEM) has become a very active and promising research
subject during the last few years. The VEM approach was first introduced and analyzed in [4] for a
primal formulation of the Poisson problem. The idea underlying the VEM philosophy is twofold. On
one hand, the discrete spaces are defined on meshes made of polygonal or polyhedral elements, and the
corresponding basis functions are not known explicitly (which explains the concept virtual utilized),
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but only the degrees of freedom defining them uniquely on each element are required to implement the
method. These degrees of freedom normally have to do with polynomial moments within each element
and with traces and normal traces, both polynomial as well, on the boundaries of them. On the other
hand, suitable projection operators and stabilizing terms are employed to define approximated bilinear
forms that mimic the original ones and that provide still consistency and stability of the resulting
discrete scheme. Among the several advantages of VEM, and besides the simplicity of the respective
coding and the quality of the numerical results provided, we highlight the fact that the meshes are
formed by nonoverlapping convex or nonconvex elements that can be of very general shape. This
attractive feature of VEM should certainly remain as such if this technique is combined with other
methods. We point out that the virtual element method is not the only discretization strategy that
can handle polytopic meshes. We mention, for example, the discontinuous Galerkin approach (see e.g.
[19] and the references therein) and the BEM-based FEM method given in [44].

For a sample of the diverse developments and applications of VEM so far, including linear elasticity
problems in 2D and 3D, the linear plate bending problem, the incorporation of further global regularity
into the discrete solution, practical aspects of the computational implementation, the two-dimensional
Steklov eigenvalue problem, and the acoustic vibration problem, we refer to [5], [6], [10], [11], [15],
[25], and [37]. Additionally, the virtual element methods have also been extensively utilized in fluid
mechanics. In particular, stream function-based, divergence free, and non-conforming virtual element
methods for the classical velocity-pressure formulation of the Stokes equations have been developed in
[2], [8], and [20], respectively, whereas a primal virtual element approach for the Darcy and Brinkman
models is proposed in [43]. In turn, regarding the Navier-Stokes equations, we first mention [9], where
a family of virtual element methods for the two-dimensional case is proposed, thus yielding the first
work applying VEM to solve that nonlinear model. Furthermore, other contributions involving the
application of VEM in fluid mechanics have mainly concentrated in the use of dual-mixed variational
formulations, particularly pseudostress-based ones, which all go back to the basic principles of the
mixed virtual element method established in [13]. In this regard, we refer to [16], [17], [18], [30] and
[31], where mixed virtual element schemes for the Stokes equation, the linear and nonlinear Brinkman
problems, the nonlinear Stokes equation arising from quasi-Newtonian Stokes flows, and the Navier-
Stokes equations, have been introduced and analyzed.

On the other hand, boundary element method (BEM) is the name given to the Galerkin scheme of
the classical boundary integral equation method, which consists of using the associated fundamental
solutions to transform boundary value problems into equivalent equations holding only on the boundary
of the underlying domain (see, e.g. [33] and [38] for further details). These equations are usually
formed by boundary integral operators whose kernels depend on the aforementioned fundamental
solutions, and whose densities are given by the Cauchy data of the solution of the original boundary
value problem. Now, besides the use of BEM alone, we highlight that its combination with other
procedures such as finite element method (FEM) or discontinuous Galerkin methods, which aims mainly
to solve transmission problems, has been frequently utilized for many years in diverse applications.
In particular, the most popular ways of coupling FEM and BEM are the Johnson & Nédélec and
Costabel & Han procedures (cf. [14], [22], [32], [34], and [45]), which use the Green representation of
the solution in the corresponding region. Initially, and during a couple of decades, the applicability of
the former, being based on a single boundary integral equation and the Fredholm theory (as suggested
by the compactness of a boundary integral operator involved), was restricted basically to transmission
problems involving the Laplace operator. For other elliptic equations, such as the Lamé system, the
aforementioned compactness did not hold and hence the technique could not be employed.

The above difficulty motivated the approaches by Costabel and Han in [22] and [32], respectively,
which were both based on the addition of a boundary integral equation for the normal derivative (or
traction in the case of elasticity). As a consequence, the former yielded a symmetric and non-positive
definite scheme, whereas the latter, on the contrary, gave rise to a non-symmetric but elliptic system.
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However, since the only difference between them is the sign of a common integral identity, one simply
refers to either one of them as the Costabel & Han method. In turn, the aforementioned drawback
of the Johnson & Nédélec coupling method, was surprinsingly solved in [39] (see also [41], [28] and
[40]), where it was established that actually all Galerkin schemes for this approach are stable, thus
expanding its use to other elliptic equations and to arbitrary polygonal/polyhedral regions. In addition,
the corresponding extension to the coupling of mixed-FEM and BEM on Lipschitz-continuous domains
was successfully developed later on in [36], and the particular application of the latter to the three
dimensional exterior Stokes problem was analyzed in [26] and [27].

According to the above discussion, and in order to continue extending the applicability of VEM, as
well as to continue developing the ability of BEM to be coupled with other numerical procedures, our
purpose in this paper is to introduce and analyze, up to our knowledge for the first time, the combined
use of VEM and BEM for solving a model transmission problem in 2D and 3D. The own advantages
of each method, which to some extent have been discussed in the previous paragraphs, are certainly
transferred to the combined use of them. In particular, the possibility of using nonconvex elements of
very general shape to define the partitions of the domain becomes now an advantage of the coupling of
VEM and BEM as well. Another specific reason that makes attractive the coupling of VEM and BEM
lies on the fact, as commented before, that the densities of the boundary integral operators involved
in the formulation of BEM coincide with some of the degrees of freedom employed by VEM, which
certainly generates a natural way of performing the coupling. Needless to say, the present work is
not necessarily motivated by a specific application, but rather by the need of settling the main basis
allowing to analyze later on any other particular model of interest that is solved via the coupling of
VEM and BEM. One might expect, for instance, that this is the case for unbounded domains with
a bounded complex heterogeneous region for which the corresponding partitions are constructed in a
much easier way by using nonconvex elements.

The rest of this work is organized as follows. In Section 2 we describe the model problem, and then
establish the main results concerning the continuous formulation to be employed in two dimensions.
Next, in Section 3 we introduce and analyze the coupling of VEM and BEM for this 2D case. This
section is splitted into preliminary results on VEM, the VEM/BEM scheme itself, solvability analysis
and error estimates in the energy norm, error estimates in the L2(Ω)-norm, and a fully computable
approximation of the virtual component of the solution, for which its corresponding rates of convergence
are also provided. In Section 4 we consider the 3D case, for whose analysis we adopt basically the same
structure of Section 3. However, and differently from the 2D case, we make use of a new variational
formulation specially introduced for this purpose, and propose and analyze an associated VEM/BEM
scheme. Finally, in Section 5 we present two numerical examples in 2D confirming the expected
performance of the VEM/BEM schemes.

We end this section with some notations to be employed throughout the paper. Given a real number
r ≥ 0 and a polyhedron O ⊆ Rd, (d = 2, 3), we denote the norms and seminorms of the usual Sobolev
space Hr(O) by  · r,O and | · |r,O respectively (cf. [35]), and we use the convention L2(O) := H0(O).
Also, we recall that, for any t ∈ [−1, 1], the spaces Ht(∂O) have an intrinsic definition (by localiza-
tion) on the Lipschitz surface ∂O due to their invariance under Lipschitz coordinate transformations.
Moreover, for all t ∈ (0, 1], H−t(∂O) is the dual of Ht(∂O) with respect to the pivot space L2(∂O). In
addition, for nonnegative integers k, Pk is the space of polynomials of degree ≤ k with the convention
P−1 = {0}. Then, given a domain D ⊆ Rd, d ∈ {2, 3}, Pk(D) represents the restriction of Pk to D.

2 The model problem

Let Ω0 and O be two simply connected and bounded polygonal/polyhedral domains with boundaries
Γ0 := ∂Ω0 and Γ := ∂O. We assume that Ω0 ⊆ O ⊆ Rd, with d = 2, 3, and introduce the annular
region Ω := O \Ω0 and the exterior domain Oe := Rd \ O (see Figure 2.1 below). Then, we denote by
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n the unit outward normal to Γ pointing towards Oe, and consider the transmission problem

− div(κ∇u) = f in Ω , u = 0 on Γ0 ,

u = ue on Γ , κ
∂u

∂n
=

∂ue
∂n

on Γ ,

−∆ue = 0 in Oe , ue(x) = O(
1

|x|) as |x| −→ ∞ ,

(2.1)

where f ∈ L2(Ω) and κ ∈ L∞(Ω) are given functions. Additionally, we assume that there exists a
constant κ > 0 such that

κ ≤ κ(x) ≤ κ := κL∞(Ω) ∀x ∈ Ω .

Figure 2.1: 2D geometry of the model problem.

We remark here that the introduction of the interior boundary Γ0 is just for purposes of simplicity.
Further details on this issue are provided at the end of Section 3.2. Now, in order to solve the
transmission problem (2.1) by using only Ω as a computational domain, we follow the Costabel & Han
approach (see [22], [32], [38] and the references therein), and compute the harmonic solution in the
exterior domain Oe by means of the integral representation formula

ue(x) =



Γ

∂E(|x− y|)
∂ny

γu(y) dsy −


Γ
E(|x− y|)λ(y) dsy ∀x ∈ Oe , (2.2)

where

E(|x− y|) :=






1

4π

1

|x− y| if d = 3

− 1

2π
log |x− y| if d = 2

is the fundamental solution of the Laplace operator, γ is the usual trace operator on Γ (acting either

from Ω or Oe), and γu = γue and λ := κ∇u · n =
∂ue
∂n

are the Cauchy data on this interface. Then,

employing the jump conditions on Γ of the two potentials in the right hand side of (2.2), we arrive at
(cf. [33], [38])

γue =
 id
2
+K


γu − V λ on Γ , (2.3)

and
∂ue
∂n

= −Wγu +
 id
2
−Kt


λ on Γ , (2.4)
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where V , K, Kt are the boundary integral operators representing the single, double and adjoint of
the double layer, respectively, id is a generic identity operator, and W is the hypersingular operator.

Moreover, replacing γue and
∂ue
∂n

by γu and λ, respectively, (2.3) and (2.4) become

0 =
 id
2
−K


γu + V λ on Γ , (2.5)

and

λ = −Wγu +
 id
2
−Kt


λ on Γ . (2.6)

From now on,

·, ·

stands for the duality pairing between H−1/2(Γ) and H1/2(Γ) with respect to the

pivot space L2(Γ). Then, we introduce the subspaces

H
1/2
0 (Γ) := {ϕ ∈ H1/2(Γ) :


1,ϕ


= 0}

and
H

−1/2
0 (Γ) := {µ ∈ H−1/2(Γ) :


µ, 1


= 0} ,

and recall in the following lemma the main mapping properties of V , K, Kt, and W (cf. [35, Theorem
6.11, Theorem 8.12, Corollary 8.13, and Theorem 8.21]).

Lemma 2.1. The operators

V : H−1/2(Γ) −→ H1/2(Γ), K : H1/2(Γ) −→ H1/2(Γ) ,

Kt : H−1/2(Γ) −→ H−1/2(Γ), W : H1/2(Γ) −→ H−1/2(Γ) ,

are continuous. Furthermore, there exist positive constants αV , αW such that


µ, V µ


≥ αV µ2−1/2,Γ


∀µ ∈ H

−1/2
0 (Γ), if d = 2 ,

∀µ ∈ H−1/2(Γ), if d = 3 ,
(2.7)

and 
Wϕ, ϕ


≥ αW ϕ21/2,Γ ∀ϕ ∈ H

1/2
0 (Γ). (2.8)

Then, introducing the spaces

X :=

v ∈ H1(Ω) : v|Γ0 = 0


and X := X ×H

−1/2
0 (Γ) ,

the variational formulation for the first four rows of (2.1) completed with the boundary integral equa-
tions (2.5) and (2.6), reads as follows: Find (u,λ) ∈ X such that



Ω
κ∇u ·∇v +


Wγu, γv


−


λ, (

id

2
−K)γv)


=



Ω
fv ∀v ∈ X ,


µ, V λ


+


µ, (

id

2
−K)γu)


= 0 ∀µ ∈ H

−1/2
0 (Γ) .

(2.9)

Equivalently, (2.9) can be rewritten as: Find (u,λ) ∈ X such that

A

(u,λ), (v, µ)


= F(v, µ) :=



Ω
fv ∀ (v, µ) ∈ X , (2.10)

where
A

(u,λ), (v, µ)


:= a(u, v) +


Wγu, γv


+


µ, V λ



+

µ, (

id

2
−K)γu)


−


λ, (

id

2
−K)γv)

 (2.11)
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and

a(u, v) :=



Ω
κ∇u ·∇v .

We deduce from Lemma 2.1 that there exist constants M0 > 0 and α0 > 0 such that, for all
(u,λ), (v, µ) ∈ X, there holds

A

(u,λ), (v, µ)


≤ M0 (u,λ) (v, µ)

and
A

(v, µ), (v, µ)


≥ α0 (v, µ)2 ,

where
(v, µ)2 := v21,Ω + µ2−1/2,Γ .

stands for the square of the norm in the product space X.
In this way, the well-posedness of problem (2.10) follows then directly from the foregoing estimates

and the Lax-Milgram lemma.
We end this section by remarking that the transmission conditions imposed for the derivation of

our continuous formulation are actually recovered from (2.10) and (2.2). In fact, we first notice that
the second equation of (2.9) together with (2.3) yields γu = γue on Γ. In turn, integrating by parts
backwardly the field term of the first equation in (2.9), we deduce that − div


k∇u


= f in Ω, and

then that κ∇u · n = −Wγu +

id
2 − Kt


λ, which, combined with (2.4), gives κ∇u · n =

∂ue
∂n

on

Γ. Then, knowing that ue can also be represented with
∂ue
∂n

instead of λ in (2.2), we deduce that

V λ = V
∂ue
∂n

, and hence the ellipticity of V (cf. (2.7)) yields λ =
∂ue
∂n

= κ∇u · n.

3 The VEM/BEM coupling in two dimensions

3.1 Preliminaries

From now on we assume that there exists a polygonal partition ∪I
i=1Ωi = Ω and an integer k ≥ 1

such that f |Ωi ∈ Hk(Ωi) and κ|Ωi ∈ Wk+1,∞(Ωi), for i = 1, . . . , I. Then we let {Fh}h be a family of
partitions of Ω constituted of connected polygons F ∈ Fh of diameter hF ≤ h, and assume that the
meshes {Fh}h are aligned with each Ωi, i = 1, . . . , I. For each F ∈ Fh the boundary ∂F is subdivided
into straight segments e, which are referred to in what follows as edges. In particular, we introduce
the set

Eh :=

edges of Fh : e ⊆ Γ


.

In addition, we assume that the family

Fh


h
of meshes satisfy the following conditions: There exists

ρ ∈ (0, 1) such that

(A1) each F of {Fh}h is star-shaped with respect to a disk DF of radius ρhF ,

(A2) for each F of {Fh}h and for all edges e ⊆ ∂F it holds |e| ≥ ρhF .

Then, for each F of {Fh}h , we introduce the projection operator Π∇,F
k : H1(F ) → Pk(F ) uniquely

characterized by (see [7])



F
∇(Π∇,F

k v) ·∇p+



∂F
Π∇,F

k v



∂F
p


=



F
∇v ·∇p+



∂F
v



∂F
p


(3.1)
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for all p ∈ Pk(F ). Moreover, we let ΠF
k be the L2(F )–orthogonal projection onto Pk(F ) with vectorial

counterpart ΠF
k : L2(F )2 → Pk(F )2, and following [1] we introduce, for k ≥ 1, the local virtual element

space

Xk
h(F ) :=


v ∈ H1(F ) : v|e ∈ Pk(e), ∀e ⊆ ∂F, ∆v ∈ Pk(F ), ΠF

k v −Π∇,F
k v ∈ Pk−2(F )


. (3.2)

It can be shown (cf. [1]) that the degrees of freedom of Xk
h(F ) consist of:

i) the values at the vertices of F ,

ii) the moments of order ≤ k − 2 on the edges of F , and

iii) the moments of order ≤ k − 2 on F .

We are then allowed to introduce the global virtual element space as

Xk
h :=


v ∈ X : v|F ∈ Xk

h(F ) ∀F ∈ Fh


. (3.3)

On the other hand, for any integer k ≥ 0, we denote by Pk(Fh) the space of piecewise polynomials
of degree ≤ k with respect to Fh, and let ΠF

k be the global L2(Ω)-orthogonal projection onto Pk(Fh),
which is assembled cellwise, i.e. (ΠF

k v)|F := ΠF
k (v|F ) for all F ∈ Fh and for all v ∈ L2(Ω). Similarly,

for any q ∈ L2(Ω)2, ΠF
k q is defined by (ΠF

k q)|F = ΠF
k (q|F ) for all F ∈ Fh. It is important to notice

that Pk(F ) ⊆ Xk
h(F ) and that the projectors Π∇,F

k v and ΠF
k v are computable for all v ∈ Xk

h(F ).
Furthermore, it is also easy to check that ΠF

k−1∇v is explicitly known for all v ∈ Xk
h(F ) (cf. [7]).

Hereafter, given any positive functions Ah and Bh of the mesh parameter h, the notation Ah ≲ Bh

means that Ah ≤ CBh with C > 0 independent of h, whereas Ah ≃ Bh means that Ah ≲ Bh and
Bh ≲ Ah. Then, under the conditions on Fh, the technique of averaged Taylor polynomials introduced
in [24] permits to prove the following error estimates,

v −ΠF
k v0,F + hF |v −ΠF

k v|1,F ≲ hℓ+1
F |v|ℓ+1,F ∀ ℓ ∈


0, 1, ..., k


, ∀ v ∈ Hℓ+1(F ) , (3.4)

v −Π∇,F
k v0,F + hF v −Π∇,F

k v1,F ≲ hℓ+1
F |v|ℓ+1,F ∀ ℓ ∈


1, 2, ..., k


, ∀ v ∈ Hℓ+1(F ) . (3.5)

In turn, the local interpolation operator IFk : H2(F ) → Xk
h(F ) is defined by imposing that v− IFk v has

vanishing degrees of freedom, which satisfies (cf. [12, Lemma 2.23])

v − IFk v0,F + hF
v − IFk v


1,F

≲ hℓ+1
F |v|ℓ+1,F ∀ℓ ∈


1, 2, ..., k


, ∀ v ∈ Hℓ+1(F ) . (3.6)

In addition, we denote by IFk the global virtual element interpolation operator, i.e., for each v ∈ C0(Ω),
we set locally (IFk v)|F = IFk (v|F ) for all F ∈ Fh.

On the other hand, we will seek an approximation for λ in the non-virtual (but explicit) subspace

Λk−1
h :=


µ ∈ L2(Γ) : µ|e ∈ Pk−1(e), ∀e ∈ Eh,



Γ
µ = 0


, (3.7)

and denote by ΠE
k−1 the L2(Γ)-orthogonal projection onto Λk−1

h . We let

Γj , j ∈ {1, . . . , J}


be

the set of segments constituting Γ, and for any t ≥ 0 we consider the broken Sobolev space Ht
b(Γ) :=J

j=1H
t(Γj) endowed with the graph norm

ϕ2t,b,Γ :=

J

j=1

ϕ2t,Γj
.

We recall the following classical approximation property (cf. [38, Theorem 4.3.20]).

Lemma 3.1. Assume that µ ∈ H−1/2(Γ) ∩Hr
b(Γ) for some r ≥ 0. Then,

µ−ΠE
k−1µ


−t,Γ

≲ hmin{r,k}+t µr,b,Γ ∀ t ∈ {0, 1/2}.
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3.2 The VEM/BEM scheme

For all F ∈ Fh we let SF
h be the symmetric bilinear form defined on H1(F )×H1(F ) by

SF
h (v, w) := h−1

F



e⊆∂F



e
πe
kv π

e
kw ∀ v, w ∈ H1(F ) , (3.8)

where πe
k is the L2(e)-projection onto Pk(e). It is shown in [12, Lemma 3.2] that

SF
h (v, v) ≃ aF (v, v) ∀ v ∈ Xk

h(F ) such that Π∇,F
k v = 0 , (3.9)

where aF is the local version of a, that is

aF (v, w) :=



F
κ∇v ·∇w ∀ v, w ∈ H1(F ) . (3.10)

It is important to notice that SF
h is computable on Xk

h(F ) × Xk
h(F ) since πe

kv = v ∈ Pk(e) for all
v ∈ Xk

h(F ), and that, by symmetry, there holds

SF
h (v, w) ≤ SF

h (v, v)
1/2 SF

h (w,w)
1/2 ≲ aF (v, v)1/2 aF (w,w)1/2

for all v, w ∈ Xk
h(F ) satisfying Π∇,F

k v = Π∇,F
k w = 0. Next, for each F ∈ Fh we introduce

aFh (v, w) :=



F
κΠF

k−1∇v · ΠF
k−1∇w + SF

h (v −Π∇,F
k v, w −Π∇,F

k w) , (3.11)

and let ah be the global extension of it, that is

ah(v, w) =


F∈Fh

aFh (v, w) ∀ v, w ∈ Xk
h . (3.12)

We now stress, as shown in [7], that the first term defining aFh is also computable on Xk
h(F )×Xk

h(F )
even if κ is not a polynomial function. Indeed, using the fact that ΠF

k−1 is self-adjoint and integrating
by parts, we find that there holds



F
κΠF

k−1∇v · ΠF
k−1∇w =



F
ΠF

k−1


κΠF

k−1∇v

·∇w

= −


F
div


ΠF

k−1


κΠF

k−1∇v

w +



∂F
ΠF

k−1


κΠF

k−1∇v

· n∂F w

for all v, w ∈ Xk
h(F ). Then, we notice that the first term on the right hand side of the foregoing

identity is computable thanks to the moments of w on F of order ≤ k − 2, whereas the second one is
computable as well since each factor of it is a known polynomial.

We now let Xh := Xk
h×Λk−1

h and introduce the discrete version of problem (2.10): Find (uh,λh) ∈
Xh such that

Ah


(uh,λh), (vh, µh)


= Fh(vh, µh) :=



Ω
(ΠF

k−1f) vh ∀ (vh, µh) ∈ Xh , (3.13)

where
Ah


(uh,λh), (vh, µh)


:= ah(uh, vh) +


Wγuh, γvh


+


µh, V λh



+

µh, (

id

2
−K)γuh)


−


λh, (

id

2
−K)γvh)


.

(3.14)
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At this point we stress, as announced before, that the interior boundary Γ0 of Ω has been introduced
only for sake of simplicity. In fact, if Ω were a simply connected domain, we would proceed as suggested
in [3, Assumption 6 and Theorem 18] by replacing Ah by the equivalent bilinear form Ah given by

Ah


(uh,λh), (vh, µh)


:= Ah


(uh,λh), (vh, µh)



+ 〈ξ, V λh + (
id

2
−K)γuh)〉 〈ξ, V µh + (

id

2
−K)γvh)〉 ,

(3.15)

where ξ is a fixed element of H−1/2(Γ) such that ξ ∈ Λk−1
h for all h > 0, and 〈ξ, 1〉 ∕= 0. In this case,

and except for the use of Ah (with the incorporation of the extra term depending on ξ) instead of Ah,
the corresponding analysis would be almost verbatim to the one to be developed in what follows.

We end this section by highlighting that, due to the degrees of freedom of the virtual element
subspace Xk

h (cf. (3.3)), and thanks to the non-virtual character of the finite element subspace Λk−1
h

(cf. (3.7)), all the terms in (3.14) and (3.15) involving the boundary integral operators are computable.

3.3 Solvability and error estimates

We begin with the boundedness property of Ah.

Lemma 3.2. There hold

|aFh (z, v)| ≲ z1,F v1,F ∀F ∈ Fh , ∀ z, v ∈ H1(F ) , (3.16)

and
|Ah


(z, η), (v, µ)


| ≲ (z, η) (v, µ) ∀ (z, η), (v, µ) ∈ Xh . (3.17)

Proof. The local estimate (3.16) is basically a consequence of the Cauchy-Schwarz inequality and the
fact that (see [7])

SF
h (z −Π∇,F

k z, v −Π∇,F
k v) ≲ |z −Π∇,F

k z|1,F |v −Π∇,F
k v|1,F ≲ |z|1,F |v|1,F , (3.18)

whereas (3.17) follows from (3.16) and the mapping properties provided by Lemma 2.1.

Next, the following lemma recalls from [7] some useful estimates between aF and aFh , which involve
the local operators ΠF

k and IFk .

Lemma 3.3. For each F ∈ Fh there hold

|aF (ΠF
k z, vh)− aFh (Π

F
k z, vh)| ≲ hkF zk+1,F vh1,F ∀ (z, vh) ∈ Hk+1(F )×Xk

h(F ) , (3.19)

|aF (vh, IFk z)− aFh (vh, I
F
k z)| ≲ hF vh1,F z2,F ∀ (z, vh) ∈ H2(F )×Xk

h(F ) , (3.20)

and

|aF (ΠF
k z, I

F
k v)− aFh (Π

F
k z, I

F
k v)| ≲ hk+1

F zk+1,F v2,F ∀ (z, v) ∈ Hk+1(F )×H2(F ) . (3.21)

Proof. For (3.19) we refer to [7, Lemma 5.5], whereas (3.20) can be proved as explained in [7, Remark
5.1]. In turn, (3.21) follows by combining the proofs of (3.19) and (3.20). We omit further details.

We now establish the Xh-ellipticity of the bilinear form Ah.

Lemma 3.4. There holds

Ah


(v, µ), (v, µ)


≳ (v, µ)2 ∀ (v, µ) ∈ Xh . (3.22)
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Proof. We first observe, by using (2.7) and (2.8), that for all (v, µ) ∈ Xh we obtain

Ah


(v, µ), (v, µ)


= ah(v, v) +


Wγv, γv


+


µ, V µ


≥ ah(v, v) + αV µ2−1/2,Γ . (3.23)

On the other hand, according to the definition of aFh (cf. (3.11)), noting that certainly there holds

Π∇,F
k


v −Π∇,F

k v

= 0, and then employing (3.9) and the fact that

|v −Π∇,F
k v|1,F = ∇v −∇Π∇,F

k v0,F ≥ ∇v −ΠF
k−1∇v0,F ,

we deduce that
aFh (v, v) ≳

ΠF
k−1∇v

2
0,F

+ aF (v −Π∇,F
k v, v −Π∇,F

k v)

≳
ΠF

k−1∇v
2
0,F

+ |v −Π∇,F
k v|21,F



≳
ΠF

k−1∇v
2
0,F

+
∇v −ΠF

k−1∇v
2
0,F


≳ |v|21,F .

(3.24)

In this way, the proof follows from the definition of ah (cf. (3.12)), (3.23), and (3.24).

As a consequence of Lemmas 3.2 and 3.4, a straightforward application again of the Lax-Milgram
lemma shows that (3.13) admits a unique solution (uh,λh) ∈ Xh. Moreover, we have the following a
priori error estimate.

Theorem 3.1. Under the assumption that u ∈ X ∩
I

i=1H
2(Ωi), there holds

(u,λ)− (uh,λh) ≲
(u,λ)− (IFk u,ΠE

k−1λ)


+ sup
wh∈Xk

h

|a(u,wh)− ah(I
F
k u,wh)|

wh1,Ω
+

f −ΠF
k−1f


0,Ω

.
(3.25)

Proof. We first observe from the definitions of F and Fh (cf. (2.10) and (3.13)) that

sup
(vh,µh)∈Xh
(vh,µh) ∕=0

F(vh, µh)− Fh(vh, µh)


(vh, µh)
≤

f −ΠF
k−1f


0,Ω

.

In turn, according to the definitions of A and Ah (cf. (2.11) and (3.14)) it readily follows that

A((vh, µh), (wh, ξh))−Ah((vh, µh), (wh, ξh)) = a(vh, wh)− ah(vh, wh)

for all (vh, µh), (wh, ξh) ∈ Xh. In addition, adding and subtracting u to the first component of a, and
using the boundedness of this bilinear form, we obtain

a(vh, wh)− ah(vh, wh)
 ≲


u− vh wh1,Ω +

a(u,wh)− ah(vh, wh)



∀ vh, wh ∈ Xk
h .

Hence, bearing in mind the foregoing estimates, a straightforward application of the first Strang Lemma
(cf. [21, Theorem 4.1.1]) to the context given by (2.10) and (3.13) gives

(u,λ)− (uh,λh) ≲ inf
(vh,µh)∈Xh


(u,λ)− (vh, µh)

+ sup
wh∈Xk

h
wh ∕=0

a(u,wh)− ah(vh, wh)


wh1,Ω


+

f −ΠF
k−1f


0,Ω

.

(3.26)

Next, since X ∩
I

i=1H
2(Ωi) ⊆ C0(Ω) and H

1/2
b (Γ) ⊆ L2(Γ), we deduce by hypotheses that u ∈ C0(Ω)

and λ = κ∇u · n ∈ L2(Γ), which implies that IFk u and ΠE
k−1λ are meaningful. In this way, taking in

particular (vh, µh) = (IFk u,ΠE
k−1λ) ∈ Xh in (3.26) we arrive at (3.25) and conclude the proof.
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We now aim to bound the supremum in (3.25). To this end, we begin by noticing that for each
wh ∈ Xk

h we have

a(u,wh)− ah(I
F
k u,wh) =



F∈Fh


aF (u,wh) − aFh (I

F
k u,wh)


, (3.27)

where each term of the sum in (3.27) can be decomposed as

aF (u,wh) − aFh (I
F
k u,wh) = aF (u−ΠF

k u,wh)

+ aF (ΠF
k u,wh)− aFh (Π

F
k u,wh) + aFh (Π

F
k u− IFk u,wh) .

(3.28)

Then, employing the boundedness of aF (cf. (3.10)) and aFh (cf. (3.16)), we obtain, respectively,

|aF (u−ΠF
k u,wh)| ≲

u−ΠF
k u


1,F

wh1,F (3.29)

and
|aFh (ΠF

k u− IFk u,wh)| ≲
u− IFk u


1,F

+
u−ΠF

k u

1,F


wh1,F , (3.30)

which, replaced back in (3.28) and then in (3.27), and after some algebraic manipulations, yields

sup
wh∈Xk

h

|a(u,wh)− ah(I
F
k u,wh)|

wh1,Ω
≲

u− IFk u

1,Ω

+

 

F∈Fh

u−ΠF
k u

2
1,F

1/2

+ sup
wh∈Xk

h



F∈Fh

aF (ΠF
k u,wh)− aFh (Π

F
k u,wh)



wh1,Ω
,

(3.31)

where we also used that
u− IFk u

2
1,Ω

=


F∈Fh

u− IFk u
2
1,F

. In this way, using (3.31) in (3.25), we

find that

(u,λ)− (uh,λh) ≲


(u,λ)− (IFk u,ΠE
k−1λ)

 +

 

F∈Fh

u−ΠF
k u

2
1,F

1/2

+ sup
wh∈Xk

h



F∈Fh

aF (ΠF
k u,wh)− aFh (Π

F
k u,wh)



wh1,Ω
+

f −ΠF
k−1f


0,Ω


.

(3.32)

We are now ready to establish the rates of convergence of our VEM/BEM scheme.

Theorem 3.2. Under the assumptions that u ∈ X ∩
I

i=1H
k+1(Ωi) and f ∈

I
i=1H

k(Ωi), there holds

(u,λ)− (uh,λh) := u− uh1,Ω + λ− λh−1/2,Γ ≲ hk
I

i=1


uk+1,Ωi

+ fk,Ωi


. (3.33)

Proof. It reduces to bound each one of the terms in (3.32) by using our regularity assumptions on u and
f , and the approximation properties of the projection and interpolation operators involved. Indeed,
from (3.19) (cf. Lemma 3.3) we have that

aF (ΠF
k u,wh)− aFh (Π

F
k u,wh)

 ≲ hkF uk+1,F wh1,F ∀F ∈ Fh , (3.34)
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which implies

sup
wh∈Xk

h



F∈Fh

aF (ΠF
k u,wh)− aFh (Π

F
k u,wh)



wh1,Ω
≲ hk

I

i=1

uk+1,Ωi
. (3.35)

Next, by applying (3.4) and (3.6), we readily deduce that

u− IFk u

1,Ω

+

 

F∈Fh

u−ΠF
k u

2
1,F

1/2

+
f −ΠF

k−1f

0,Ω

≲ hk
I

i=1


uk+1,Ωi

+ fk,Ωi


.

(3.36)

On the other hand, by hypothesis λ = κ∇u · n satisfies λ|Γj ∈ Hk−1/2(Γj) on each straight segment
Γj , j ∈ {1, ..., J}, constituting Γ. Hence, Lemma 3.1 and the trace theorem yield

λ−ΠE
k−1λ


−1/2,Γ

≲ hk
J

j=1

λk−1/2,Γj
≲ hk

I

i=1

uk+1,Ωi
. (3.37)

Finally, replacing (3.35), (3.36), and (3.37) in (3.32) we obtain (3.33) and conclude the proof.

3.4 L2(Ω)-error estimate

Our goal here is to derive rates of convergence for u−uh0,Ω. To this end, we now recall the symmetry
properties of the boundary integral operators V and W , which establish that (cf. [33], [38])

〈ξ, V µ〉 = 〈µ, V ξ〉 ∀ ξ, µ ∈ H−1/2(Γ) and 〈Wϕ,ψ〉 = 〈Wψ,ϕ〉 ∀ϕ, ψ ∈ H1/2(Γ) . (3.38)

Next, we let (z, η) ∈ X := X × H
−1/2
0 (Γ) be the unique solution of (2.10) with datum u − uh instead

of f , that is

A

(z, η), (v, µ)


=



Ω
(u− uh) v ∀ (v, µ) ∈ X , (3.39)

which implies, taking in particular v ≡ 0, that

V η +
 id
2
−K


γz = 0 on Γ . (3.40)

Then, according to the definition of A (cf. (2.11)), and using the symmetry of a as well as those of V
and W (cf. (3.38)), we find that

A

(v, µ), (z,−η)


= a(v, z) + 〈Wγv, γz〉 − 〈η, V µ〉 − 〈η,

 id
2
−K


γv〉 − 〈µ,

 id
2
−K


γz〉

= a(z, v) + 〈Wγz, γv〉 − 〈µ, V η +
 id
2
−K


γz〉 − 〈η,

 id
2
−K


γv〉 ,

which, invoking (3.40) and using (3.39), yields

A

(v, µ), (z,−η)


= A


(z, η), (v, µ)


=



Ω
(u− uh) v ∀ (v, µ) ∈ X . (3.41)

In what follows we assume that z ∈ X ∩
I

i=1H
2(Ωi) and that there exists C > 0 such that

I

i=1

z2,Ωi
≤ C u− uh0,Ω . (3.42)

Then, we have the following result.
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Theorem 3.3. In addition to the hypothesis on z, assume that u ∈ X ∩
I

i=1H
k+1(Ωi) and that

f ∈
I

i=1H
k(Ωi). Then, there holds

u− uh0,Ω ≲ hk+1
I

i=1


uk+1,Ωi

+ fk,Ωi


. (3.43)

Proof. It begins by choosing (v, µ) = (u−uh,λ−λh) in (3.41), adding and subtracting (IFk z,−ΠE
k−1η)

in the second component of A, and using (2.10). Then, it continues by adding and subtracting other
suitable expressions, and by employing the orthogonality condition satisfied by ΠF

k−1, the approxima-

tion properties of IFk z, ΠE
k−1, and ΠF

k−1, the regularity estimate (3.42), and the a priori estimate for
the solution of (3.39), among other arguments. We omit further details and refer to [29, Theorem
3.3].

3.5 Computable approximation of u

We now introduce the fully computable approximation of u given by u := ΠF
k uh, and establish next

the rates of convergence for u− u0,Ω and for the corresponding broken H1(Ω)-seminorm, that is

|u− u|1,b,Ω :=







F∈Fh

|u− uh|21,F






1/2

.

Theorem 3.4. Under the assumptions that u ∈ X ∩
I

i=1H
k+1(Ωi) and f ∈

I
i=1H

k(Ωi), there holds

u− uh0,Ω + h |u− u|1,b,Ω ≲ hk+1
I

i=1


uk+1,Ωi

+ fk,Ωi


. (3.44)

Proof. Let us first recall that (ΠF
k v)|F := ΠF

k (v|F ) and that certainly ΠF
k (v|F )0,F ≤ v|F 0,F for all

F ∈ Fh and for all v ∈ L2(Ω). Then, adding and subtracting ΠF
k u, we readily obtain that

u− uh0,Ω ≤ u−ΠF
k u0,Ω + ΠF

k (u− uh)0,Ω ≤ u−ΠF
k u0,Ω + u− uh0,Ω . (3.45)

In turn, by choosing ℓ = 0 in (3.4), we easily deduce that |ΠF
k (v)|1,F ≲ |v|1,F for all F ∈ Fh and for

all v ∈ H1(F ). Hence, proceeding similarly to (3.45), we find that for each F ∈ Fh there holds

|u− uh|1,F ≤ |u−ΠF
k u|1,F + |ΠF

k (u− uh)|1,F ≲ |u−ΠF
k u|1,F + |u− uh|1,F ,

which yields
|u− uh|1,b,Ω ≲ |u−ΠF

k u|1,b,Ω + |u− uh|1,Ω . (3.46)

In this way, applying (3.4) and the rates of convergence provided by (3.33) and (3.43) to the corre-
sponding terms in (3.45) and (3.46), we arrive at (3.44) and finish the proof.

4 The VEM/BEM coupling in three dimensions

4.1 Preliminaries

We let {Th}h be a family of decompositions of Ω into polyhedral elements E of diameter hE ≤ h,
and assume again that the meshes {Th}h are aligned with each of the subdomaines Ωi, i = 1, . . . , I
mentioned at the beginning of Section 3. In turn, the boundary ∂E of each E ∈ Th is subdivided into
planar faces denoted by F , and we let Fh be the set of faces of Th that are contained in Γ. In addition,
we assume that the family {Th}h of meshes satisfy the following conditions: There exists ρ ∈ (0, 1)
such that
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(B1) each E of {Th}h is star-shaped with respect to a ball BE of radius ρhE ,

(B2) for each E of {Th}h, the diameters hF of all its faces F ⊆ ∂E satify hF ≥ ρhE ,

(B3) the faces of each E ∈ {Th}h, viewed as 2-dimensional elements, satisfy the properties (A1) and
(A2) (cf. Section 3.1) with the same ρ.

Next, given an integer k ≥ 1 and E ∈ Th, and bearing in mind the definition (3.2), we set

Xk
h(∂E) :=


v ∈ C0(∂E) : v|F ∈ Xk

h(F ) ∀F ⊆ ∂E

, (4.1)

and introduce the local virtual element space

W k
h (E) :=


v ∈ H1(E) : v|∂E ∈ Xk

h(∂E), ∆v ∈ Pk(E), ΠE
k v −Π∇,E

k v ∈ Pk−2(E)

, (4.2)

where, analogously to the 2D case (cf. Section 3.1), ΠE
k is now the L2(E)–orthogonal projection onto

Pk(E), and the projection operator Π∇,E
k : H1(E) → Pk(E) is defined as in (3.1) after replacing F

with E. In addition, the degrees of freedom of W k
h (E) consist of:

i) the values at the vertices of E,

ii) the moments of order ≤ k − 2 on the edges of E,

iii) the moments of order ≤ k − 2 on the faces of E, and

iv) the moments of order ≤ k − 2 on E.

We can then define the global virtual element space as

W k
h :=


v ∈ X : v|E ∈ W k

h (E) ∀E ∈ Th

. (4.3)

Furthermore, and coherently with the notations of Section 3, given any integer k ≥ 0, we let ΠE
k

and ΠT
k be the L2–orthogonal projections onto Pk(E) and Pk(Th), respectively, and denote by ΠE

k and
ΠT

k their corresponding vectorial counterparts. Here again, we stress that Pk(E) ⊆ Xk
h(E) and that

the projectors Π∇,E
k v, ΠE

k v and ΠE
k−1∇v are all computable for each v ∈ Xk

h(E) (cf. [1]). In turn,
we let IEk : H2(E) → W k

h (E) be the local interpolation operator, which is uniquely determined by the
degrees of freedom of W k

h (E), and whose corresponding global operator is denoted ITk : H2(Ω) → W k
h .

The error estimates satisfied by the operators ΠE
k , Π

∇,E
k and IEk are given by analogue versions of (3.4),

(3.5) and (3.6), respectively, in which F is replaced with E.
On the other hand, we also introduce the simplicial submesh Fh of Γ obtained by subdividing each

face F ∈ Fh into the set of triangles that arise after joining each vertex of F with the midpoint of the
disc with respect to which F is star-shaped. Since we are assuming that the meshes satisfy conditions
(A1) and (A2) (cf. Section 3.1), the triangles T ∈ Fh have a shape ratio that is uniformly bounded
with respect to h. According to the above, and in order to approximate the non-virtual boundary
unknowns of our scheme (cf. Section 4.2 below), we now introduce the piecewise polynomial spaces

Λk−1
h :=


µh ∈ L2(Γ) : µh|T ∈ Pk−1(T ) ∀T ∈ Fh


(4.4)

and
Ψk

h :=

ϕh ∈ C0(Γ) : ϕh|T ∈ Pk(T ) ∀T ∈ Fh


∩ H

1/2
0 (Γ) . (4.5)

Moreover, we let ΠF
k−1 be the L2(Γ)-orthogonal projection onto Λk−1

h , and let LF
k : C0(Γ) → Ψk

h be
the corresponding global Lagrange interpolation operator of order k. Then, denoting by {Γ1, ...,ΓJ}
the open polygons, contained in different hyperplanes of R3, such that Γ = ∪J

j=1Γj , we now recall

the following approximation properties of ΠF
k−1 and LF

k (cf. [38, Theorem 4.3.20] and [38, Proposition
4.1.50]), which will be used later on.
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Lemma 4.1. Assume that µ ∈ H
−1/2
0 (Γ) ∩ Hr

b (Γ) for some r ≥ 0. Then
µ−ΠF

k−1µ

−t,Γ

≲ hmin{r,k}+t µr,b,Γ ∀ t ∈ {0, 1/2} .

Lemma 4.2. Assume that ϕ ∈ H
r+1/2
b (Γ) ∩ H1(Γ) for some r > 1/2. Then

ϕ− LF
kϕ


t,Γ

≲ hmin{r+1/2,k+1}−t ϕr+1/2,b,Γ ∀ t ∈ {0, 1/2, 1} .

4.2 A new variational formulation

We begin by stressing that the variational formulation (2.10) is not valid for a VEM/BEM coupling in
three dimensions because, as noticed from definitions (4.1) and (4.2), the restriction of a VEM function
to the boundary of a given element is not a polynomial function but a virtual function as well. As a

consequence, the term

µh, (

id

2
− K)γvh)


of (3.13) is not computable for vh ∈ W k

h and µh ∈ Λk−1
h .

Moreover, it can be easily shown that, replacing this term by

µh, (

id

2
−K)ΠF

k γvh)

in the formulation

of the discrete problem, results in a dramatic loss of accuracy because, as Γ is a polyhedral Lipschitz
boundary, the integral operator K does not yield any further regularity.

Therefore, in order to devise a more suitable VEM/BEM coupling for the three dimensional version
of our model, we need to avoid the interaction of a VEM variable with a BEM variable through a
boundary integral operator. This can be achieved by introducing in what follows, not only the normal
derivative λ := κ∇u · n = ∂ue

∂n , but also the trace ψ := γu = γue, as boundary unknowns in the
formulation. As a consequence, and instead of (2.2), the harmonic solution in the exterior region Oe

is computed now as

ue(x) =



Γ

∂E(|x− y|)
∂ny

ψ(y) dsy −


Γ
E(|x− y|)λ(y) dsy ∀x ∈ Oe , (4.6)

and hence, the corresponding identities (2.5) and (2.6) become

0 =
 id
2
−K


ψ + V λ on Γ , (4.7)

and

λ = −Wψ +
 id
2
−Kt


λ on Γ . (4.8)

Then, integrating by parts the first equation in (2.1), adding and subtracting the expression 〈λ,ϕ〉
with arbitrary ϕ ∈ H

1/2
0 (Γ), and imposing weakly the relation ψ = γu in H1/2(Γ), we are led at first

instance to seek (u,ψ,λ) ∈ X := X ×H
1/2
0 (Γ)×H−1/2(Γ) such that



Ω
κ∇u ·∇v −


λ, γv − ϕ


−

λ,ϕ


+

µ, γu− ψ


=



Ω
fv (4.9)

for all (v,ϕ, µ) ∈ X. Moreover, incorporating (4.8) and (4.7), respectively, into the third and fourth
terms on the left hand side of (4.9), we arrive at our new variational formulation: Find (u,ψ,λ) ∈ X
such that

A

(u,ψ,λ), (v,ϕ, µ)


= F(v,ϕ, µ) :=



Ω
fv ∀ (v,ϕ, µ) ∈ X , (4.10)

where
A

(u,ψ,λ), (v,ϕ, µ)


= A


(u,ψ,λ), (v,ϕ, µ)


+


Wψ,ϕ



+

µ, V λ


−


λ,

 id
2
−K


ϕ

+


µ,

 id
2
−K


ψ
 (4.11)
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and
A

(u,ψ,λ), (v,ϕ, µ)


= a(u, v) −


λ, γv − ϕ


+


µ, γu− ψ


, (4.12)

with a and its local version aE being defined as in the 2D case (cf. (3.10) with E instead of F ).
Analogously as observed in Section 2, it is easy to see here, thanks again to Lemma 2.1, that A is
bounded and elliptic in X with respect to the usual norm of this product space, and therefore the
well-posedness of (4.10) follows also from a straightforward application of the Lax-Milgram lemma.

Analogously to Section 2, we now stress that the transmission conditions employed in the derivation
of the present continuous formulation are recovered from (4.10) and (4.6). Indeed, taking separately
(v,ϕ) = (0, 0) and (v, µ) = (0, 0) in (4.10), we obtain γu = −V λ +


id
2 + K


ψ = γue on Γ,

and λ = −Wψ +

id
2 − Kt


λ = ∂ue

∂n on Γ, respectively. In addition, choosing (ϕ, µ) = (0, 0) in
(4.10), it follows that div


κ∇u) = −f in Ω and λ = κ∇u ·n on Γ, and hence λ = κ∇u ·n =

∂ue
∂n on Γ. Finally, knowing that ue can also be represented with γue instead of ψ in (4.6), we arrive
at Wψ = Wγue, and thus the ellipticity of W (cf. (2.8)) yields ψ = γue = γu.

4.3 The VEM/BEM scheme

Having in mind the finite dimensional subspaces defined in (4.3), (4.4), and (4.5), here we propose the
following discrete formulation for (4.10): Find (uh,ψh,λh) ∈ Xh := W k

h ×Ψk
h × Λk−1

h such that

Ah


(uh,ψh,λh), (vh,ϕh, µh)


= Fh(vh,ϕh, µh) :=



Ω
ΠT

k−1fvh (4.13)

for all (vh,ϕh, µh) ∈ Xh, where

Ah


(uh,ψh,λh), (vh,ϕh, µh)


= Ah


(uh,ψh,λh), (vh,ϕh, µh)


+


Wψh,ϕh



+

µh, V λh


−


λh,

 id
2
−K


ϕh


+


µh,

 id
2
−K


ψh


,

(4.14)

and

Ah


(uh,ψh,λh), (vh,ϕh, µh)


= ah(uh, vh) −



F∈Fh



F
λhΠ

F
k−1(γvh − ϕh)

+


F∈Fh



F
µhΠ

F
k−1(γuh − ψh) ,

(4.15)

with the bilinear form ah being constructed as in Section 3. Namely, denoting by E(E) and F(E) the
sets of edges and faces, respectively, of a given E ∈ Th, we introduce

SE
h (v, z) :=



e∈E(E)



e
Πe

kvΠ
e
kz + h−1

E



F∈F(E)



F
ΠF

k−2vΠ
F
k−2z ∀ v, z ∈ W k

h (E) , (4.16)

set

aEh (v, z) :=



E
κΠE

k−1∇v ·ΠE
k−1∇z + SE

h (v −Π∇,E
k v, z −Π∇,E

k z) ∀ v, z ∈ H1(E) , (4.17)

and define
ah(v, z) :=



E∈Th

aEh (v, z) ∀ v, z ∈ W k
h . (4.18)

Here we stress that the boundary terms in (4.15) are certainly induced by the corresponding
boundary terms in (4.12). More precisely, the fact that the discrete version of the second term on the
right hand side of (4.12), that is


λh, γvh − ϕh


, is not computable since the virtual trace γvh is not
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known, suggests to replace γvh−ϕh by a suitable projection such as ΠF
k−1(γvh−ϕh), thus yielding the

new term


F∈Fh


F λhΠ

F
k−1(γvh−ϕh). An analogue reason explains the replacement of


µh, γuh−ψh



by


F∈Fh


F µhΠ

F
k−1(γuh − ψh). Moreover, the use here of the global orthogonal projector ΠF

k−1 :

L2(Γ) → Λk−1
h , equivalently the local projections ΠF

k−1, is strongly motivated by the fact that λh and

µh live in the subspace Λk−1
h , which allows to apply later on the corresponding orthogonality condition,

a key property for the derivation of the a priori error estimate and the associated rates of convergence
(see below Theorem 4.1, (4.26), and Theorem 4.2).

In turn, we also remark that the discrete problem (4.13) is meaningful since SE
h (·, ·) is computable

on W k
h (E)×W k

h (E). Moreover, it can be shown that SE
h (v, z) scales like a

E(v, z) :=

E κ∇v ·∇z on the

kernel of Π∇,E
k in W k

h (E). In other words, the three-dimensional counterpart of (3.9) holds true (cf.
[12, Section 5.5]), which implies, in particular, that we have the corresponding 3D versions of (3.18)
and (3.24) as well.

We end this section by mentioning that, certainly, choosing a partition Th of Ω formed by tetrahedra
gives rise to a particular case of the 3D VEM/BEM scheme described here. Indeed, in this case
the faces of Th that are contained in Γ are automatically triangles, and hence there is no need of
introducing the simplicial submesh Fh of Γ. In this way, VEM and BEM would use the same partition
of the transmission boundary Γ, thus yielding a less expensive coupled method. Needless to say, the
corresponding analysis of it is obviously covered by the more general one to be developed in the next
section. However, as already emphasized in Section 1, the main advantage of VEM, and hence of the
coupling of VEM and BEM, is precisely the possibility of using not only simplexes to define Th, but
to some extent arbitrary nonconvex elements as well. Instead of the aforementioned particular case, it
seems more interesting to explore the combination of VEM, in its whole generality, with a polygonal
BEM type method. This should be matter of a separate work.

4.4 Solvability and error estimates

We begin this section by introducing further notations to be employed later on. In fact, for any s ≥ 0
we define the broken Sobolev spaces

Hs(Th) :=


E∈Th

Hs(K) , Hs(Fh) :=


F∈Fh

Hs(F ) ,

which are endowed with the Hilbertian norms and corresponding seminorms, given respectively, by

v2s,Th :=


E∈Th

v2s,E , ϕ2s,Fh
:=



F∈Fh

ϕ2s,F .

and
|v|2s,Th :=



E∈Th

|v|2s,E , |ϕ|2s,Fh
:=



F∈Fh

|ϕ|2s,F ,

for all v ∈ Hs(Th) and for all ϕ ∈ Hs(Fh). In addition, we set as usual H0(Th) = L2(Th) and
H0(Fh) = L2(Fh).

Now, concerning the solvability of (4.13), we first notice, in virtue of the comments at the end of
the previous section, that the boundedness of Ah follows exactly as proved for the 2D case (cf. Section
3.3). Then, we continue the analysis with the Xh-ellipticity of Ah with respect to the usual product
norm of X.

Lemma 4.3. There holds

Ah


vh,ϕh, µh


,

vh,ϕh, µh


≳ (vh,ϕh, µh)2 (4.19)

for all

vh,ϕh, µh


∈ Xh.
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Proof. Given (vh,ϕh, µh) ∈ Xh, it follows from (4.14) and (4.15) that

Ah


vh,ϕh, µh


,

vh,ϕh, µh


= ah(vh, vh) +


Wϕh,ϕh


+


µh, V µh


,

and hence the 3D version of (3.24) and Lemma 2.1 finish the proof.

Consequently, applying once again the Lax-Milgram lemma, we deduce that (4.13) has a unique
solution (uh,ψh,λh) ∈ Xh. We now aim to establish the corresponding a priori error estimate. To
this end, and following the same notations from Section 3.1, for each planar face F ∈ Fh we let ΠF

k

be the L2(F )-orthogonal projection onto Pk(F ) with vectorial counterpart ΠF
k . In addition, ΠF

k and
ΠF

k stand for their global extensions to L2(Γ) and L2(Γ)2, respectively, which are assembled cellwise.
Moreover, the approximation properties of ΠF

k (and hence of ΠF
k , Π

F
k and ΠF

k ) are exactly those given
by (or derived from) (3.4).

The following result corresponds to the 3D analogue of Theorem 3.1.

Theorem 4.1. Under the assumption that u ∈ X ∩
I

i=1H
2(Ωi), there holds

(u,ψ,λ)− (uh,ψh,λh) ≲
f −ΠT

k−1f

0,Ω

+ (u,ψ,λ)− (ITk u,LF
kψ,Π

F
k−1λ)

+ sup
(wh,φh,ξh)∈Xh
(wh,φh,ξh) ∕=0

A

(u,ψ,λ), (wh,φh, ξh)


−Ah


(ITk u,LF

kψ,Π
F
k−1λ), (wh,φh, ξh)



(wh,φh, ξh)
.

(4.20)

Proof. We follow basically the same sequence of arguments provided in the proof of Theorem 3.1.
Indeed, according to the definitions of F (cf. (4.10)), Fh (cf. (4.13)), A (cf. (4.11) - (4.12)) and Ah

(cf. (4.14) - (4.15)), which yields, in particular


A− Ah


(vh,ϕh, µh), (wh,φh, ξh)


=


A−Ah


(vh,ϕh, µh), (wh,φh, ξh)



for all (vh,ϕh, µh), (wh,φh, ξh) ∈ Xh, and using the boundedness of A, we find that a direct application
of the first Strang Lemma (cf. [21, Theorem 4.1.1]) to the context given now by (4.10) and (4.13),
gives

(u,ψ,λ)− (uh,ψh,λh) ≲
f −ΠT

k−1f

0,Ω

+ inf
(vh,ϕh,µh)∈Xh


(u,ψ,λ)− (vh,ϕh, µh)

+ sup
(wh,φh,ξh)∈Xh
(wh,φh,ξh) ∕=0

A

(u,ψ,λ), (wh,φh, ξh)


−Ah


(vh,ϕh, µh), (wh,φh, ξh)


(wh,φh, ξh)


.

(4.21)

Next, the hypothesis guarantees that both u and ψ = γu are continuous, and hence ITk u and LF
kψ are

meaningful. In addition, the fact that u ∈
I

i=1H
2(Ωi) implies that λ = κ∇u · n ∈ H

1/2
b (Γ) ⊆

L2(Γ), and hence ΠF
k−1λ is meaningful as well. In this way, taking in particular (vh,ϕh, µh) =

(ITk u,LF
kψ,Π

F
k−1λ) ∈ Xh in (4.21) we arrive at (4.20) and conclude the proof.

Similarly to our analysis for the 2D case, we now aim to estimate the supremum in (4.20). For this
purpose, we first observe from the definitions of A (cf. (4.12)) and Ah (cf. (4.15)), and using that
ψ = γu, that

A

(u,ψ,λ), (wh,φh, ξh)


−Ah


(ITk u,LF

kψ,Π
F
k−1λ), (wh,φh, ξh)


= a(u,wh)− ah(I

T
k u,wh)

− 〈λ, γwh − φh〉 +



Γ
ΠF

k−1λΠ
F
k−1(γwh − φh) −



Γ
ξhΠ

F
k−1(γI

T
k u− LF

kψ)
(4.22)
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for all (wh,φh, ξh) ∈ Xh. Then, recalling that κ has been assumed to be piecewise constant, and noting
that certainly ∇ΠE

k u ∈ Pk−1(E)3, we deduce, according to the definition of aEh (cf. (4.17)), that

aEh (Π
E
k u,wh) = aE(ΠE

k u,wh) ∀E ∈ Th , ∀wh ∈ W k
h (E) ,

and therefore, adding and subtracting ΠE
k u in the first components of aE and aEh , we readily find that

a(u,wh)− ah(I
T
k u,wh) =



E∈Th


aE(u−ΠE

k u,wh) + aEh (Π
E
k u− IEk u,wh)


∀wh ∈ W k

h .

In this way, thanks to the foregoing identity and the boundedness of aE and aEh , the latter being proved
similarly to the proof of Lemma 3.2, and then adding and subtracting u in the expression resulting
from bounding aEh , we arrive at

a(u,wh)− ah(I
T
k u,wh)

 ≲

|u− ITk u|1,Ω + |u−ΠT

k u|1,Th

|wh|1,Ω . (4.23)

On the other hand, noting that ΠF
k−1(γwh−φh) ∈ Λk−1

h (cf. (4.4)), and employing the orthogonality

condition satisfied by ΠF
k−1, as well as the symmetry of ΠF

k−1, we obtain

−〈λ, γwh − φh〉 +



Γ
ΠF

k−1λΠ
F
k−1(γwh − φh) = −〈λ, γwh − φh〉 +



Γ
λΠF

k−1(γwh − φh)

= −〈λ, γwh − φh〉 +



Γ
ΠF

k−1λ (γwh − φh) = 〈ΠF
k−1λ− λ, γwh − φh〉 ,

from which, according to the duality pairing between H−1/2(Γ) and H1/2(Γ), and using the trace
theorem, we obtain




Γ
ΠF

k−1λΠ
F
k−1(γwh − φh) − 〈λ, γwh − φh〉

 ≲ λ−ΠF
k−1λ−1/2,Γ


wh1,Ω + φh1/2,Γ


. (4.24)

In turn, adding and subtracting γu = ψ, we readily get

−


Γ
ξhΠ

F
k−1(γI

T
k u− LF

kψ) =



Γ
ξhΠ

F
k−1


γ(u− ITk u)− (ψ − LF

kψ)

,

from which, applying the Cauchy-Schwarz inequality in L2(Γ) and the inverse inequality satisfied by
Λk−1
h (cf. (4.4)), we find that




Γ
ξhΠ

F
k−1(γI

T
k u− LF

kψ)
 ≲ h−1/2


γ(u− ITk u)0,Γ + ψ − LF

kψ0,Γ

ξh−1/2,Γ . (4.25)

Consequently, using (4.23), (4.24), and (4.25) to bound (4.22), and then replacing the resulting estimate
into (4.20), we arrive at the following a priori error estimate

(u,ψ,λ)− (uh,ψh,λh) ≲
f −ΠT

k−1f

0,Ω

+ |u− ITk u|1,Ω + ψ − LF
kψ1/2,Γ

+ λ−ΠF
k−1λ−1/2,Γ + |u−ΠT

k u|1,Th + λ−ΠF
k−1λ−1/2,Γ

+ h−1/2

γ(u− ITk u)0,Γ + ψ − LF

kψ0,Γ

.

(4.26)

Analogously to the 2D case, the foregoing equation constitutes the key estimate to derive the rates
of convergence of the present 3D VEM/BEM scheme. Additionally, and in order to bound one of the
terms involved, we also need the scaled trace inequality (cf. [23, Lemma 1.49]), which is stated as
follows.
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Lemma 4.4. For each E ∈ Th there holds

v20,∂E ≲

h−1
E v20,E + hE |v|21,E


∀ v ∈ H1(E) . (4.27)

Then, we have the following main result.

Theorem 4.2. Under the assumptions that u ∈ X ∩
I

i=1H
k+1(Ωi) and f ∈

I
i=1H

k(Ωi), there holds

(u,ψ,λ)− (uh,ψh,λh) := u− uh1,Ω + ψ − ψh1/2,Γ + λ− λh−1/2,Γ

≲ hk
I

i=1


uk+1,Ωi

+ fk,Ωi


.

(4.28)

Proof. We begin by noticing, thanks to the regularity assumption on u, that ψ = γu ∈ H
k+1/2
b (Γ)

and λ = κ∇u · n ∈ H
k−1/2
b (Γ). In what follows we identify the terms on the right hand side of (4.26)

according to the order they have been written there, from left to right and from up to down. Then,
applying the 3D versions of (3.4) (to the first and fifth terms), (3.6) (to the second term), and Lemma
3.1 (to the sixth term), and using by the trace theorem that λk−1/2,b,Γ ≤ c

I
i=1 uk+1,Ωi

, we
obtain

f −ΠT
k−1f0,Ω + |u− ITk u|1,Ω + |u−ΠT

k u|1,Th + λ−ΠF
k−1λ−1/2,Γ

≲ hk
I

i=1


fk,Ωi

+ uk+1,Ωi


.

(4.29)

In turn, invoking Lemmas 4.2 and 4.1 to bound the third and fourth terms, respectively, and employing
also by trace theorem that ψk+1/2,b,Γ ≤ c

I
i=1 uk+1,Ωi

, we find that

ψ − LF
kψ1/2,Γ + λ−ΠF

k−1λ−1/2,Γ

≲ hk

ψk+1/2,b,Γ + λk−1/2,b,Γ


≲ hk

I

i=1

uk+1,Ωi
.

(4.30)

On the other hand, another straightforward application of Lemma 4.2, but now to the eighth term,
gives

ψ − LF
kψ0,Γ ≲ hk+1/2 ψk+1/2,b,Γ ,

which yields

h−1/2 ψ − LF
kψ0,Γ ≲ hk

I

i=1

uk+1,Ωi
. (4.31)

Finally, taking advantage of the scaled trace inequality (4.27), and making use once again of the 3D
version of (3.6), we obtain that for each face F of an element E ∈ Th there holds

h−1
F

γ

u− IEk u

2
0,F

≤ h−1
F

γ

u− IEk u

2
0,∂E

≲ h−2
E

u− IEk u
2
0,E

+
u− IEk u


1,E

≲ h2kE u2k+1,E ,

from which we deduce that

h−1/2
γ


u− ITk u


0,Γ

≲ hk
I

i=1

uk+1,Ωi
. (4.32)

In this way, utilizing (4.29), (4.30), (4.31), and (4.32) in (4.26), we arrive at (4.28), thus ending the
proof.
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We end the paper by remarking that the analysis developed in Sections 3.4 and 3.5 can be easily
extended to the VEM/BEM approach from Section 4.3, thus providing rates of convergence for u −
uh0,Ω and for


u− uh0,Ω + h |u− u|1,b,Ω


in this 3D case as well.

5 Numerical results

In this section we present two examples in 2D that confirm the expected performance of the coupled
VEM/BEM schemes (3.13) and (4.13). Indeed, while (4.13) has been introduced and analyzed in the
3D case only, it is not difficult to see that it is also applicable to two-dimensional problems. As usual, in
what follows h and N stand for the meshsize and the total number of degrees of freedom, respectively,
of each partition of Ω. In addition, the individual and global errors are defined by

e(u) := u− uh0,Ω + |u− uh|1,b,Ω , e(λ) := λ− λh−1/2,Γ , e(ψ) := ψ − ψh1/2,Γ ,

e(u,λ) :=

e(u)2 + e(λ)2

1/2
, and e(u,ψ,λ) :=


e(u)2 + e(ψ)2 + e(λ)2

1/2
,

with corresponding rates of convergence

r() :=
log(e()/e′())

log(h/h′)
∀  ∈


u,λ,ψ


,

and analogously for r(u,λ) and r(u,ψ,λ), where h and h′ denote two consecutive meshsizes with errors
e and e′. Note here that the exact error for u, that is u− uh1,Ω, is not computable since uh, being
virtual, is not known explicitly in Ω. This is the reason why e(u) is defined above with uh (cf. Section
3.5) instead of uh.

h N e(u) r(u) e(λ) r(λ) e(u,λ) r(u,λ)
1/8 105 2.205E−00 − 8.584E−01 − 2.366E−00 −
1/16 305 1.148E−00 0.941 4.277E−01 1.005 1.226E−00 0.949
1/32 993 5.810E−01 0.983 2.135E−01 1.003 6.190E−01 0.985
1/64 3521 2.914E−01 0.996 1.066E−01 1.002 3.103E−01 0.996
1/128 13185 1.458E−01 0.999 5.327E−02 1.001 1.552E−01 0.999
1/256 50945 7.292E−02 1.000 2.663E−02 1.000 7.763E−02 1.000
1/512 200193 3.646E−02 1.000 1.332E−02 1.000 3.882E−02 1.000

h N e(u) r(u) e(ψ) r(ψ) e(λ) r(λ) e(u,ψ,λ) r(u,ψ,λ)
1/8 137 2.205E−00 − 1.793E−01 − 8.619E−01 − 2.375E−00 −
1/16 369 1.148E−00 0.941 6.141E−02 1.546 4.291E−01 1.006 1.228E−00 0.952
1/32 1121 5.810E−01 0.983 2.140E−02 1.521 2.140E−01 1.004 6.195E−01 0.987
1/64 3777 2.914E−01 0.996 7.522E−03 1.508 1.068E−01 1.002 3.104E−01 0.997
1/128 13697 1.458E−01 0.999 2.659E−03 1.500 5.338E−02 1.001 1.553E−01 0.999
1/256 51969 7.292E−02 1.000 9.454E−04 1.492 2.669E−02 1.000 7.765E−02 1.000
1/512 202241 3.646E−02 1.000 3.387E−04 1.481 1.335E−02 1.000 3.883E−02 1.000

Table 1: Convergence history of the VEM/BEM schemes (3.13) and (4.13) for Example 1

Now, for each one of the examples we take the coefficient κ := 1 in (2.1) and the exact so-
lution u(x) := x1+x2

x2
1+x2

2
∀x := (x1, x2) ∈ Ω. In Example 1 we consider the polygonal domains

Ω0 := (−0.25, 0.25)2 and O := (−0.5, 0.5)2, and use a sequence of meshes constructed out of square ele-
ments. In turn, in Example 2 we take Ω0 :=


(x1, x2) ∈ R2 : x21+x22 < 0.252


and O := (−0.5, 0.5)2,

and employ a sequence of Voronoi meshes initially generated from random seeds and subsequently
smoothed using Lloyd’s relaxation algorithm, as implemented by PolyMesher (cf. [42]). The conver-
gence history of both schemes, by using the lowest polynomial degree k = 1, are reported in Tables 1
and 2 for Examples 1 and 2, respectively. There we can see that the rates of convergence predicted
by Theorems 3.2, 3.4, and 4.2, that is O(h) for k = 1, are confirmed for each one of the unknowns
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h N e(u) r(u) e(λ) r(λ) e(u,λ) r(u,λ)
1/32 1896 7.006E−01 − 3.831E−01 − 7.986E−01 −
1/48 4169 4.654E−01 1.009 1.399E−01 2.485 4.860E−01 1.225
1/64 7197 3.488E−01 1.003 1.053E−01 0.988 3.643E−01 1.002
1/96 15720 2.331E−01 0.994 7.046E−02 0.990 2.435E−01 0.994
1/128 27529 1.749E−01 0.997 5.294E−02 0.993 1.828E−01 0.997
1/192 61032 1.166E−01 1.000 3.537E−02 0.995 1.219E−01 0.998
1/256 107683 8.743E−02 1.001 2.656E−02 0.996 9.137E−02 1.001
1/384 240512 5.825E−02 1.002 1.774E−02 0.996 6.089E−02 1.001

h N e(u) r(u) e(ψ) r(ψ) e(λ) r(λ) e(u,ψ,λ) r(u,ψ,λ)
1/32 2028 7.007E−01 − 6.678E−02 − 4.289E−01 − 8.242E−01 −
1/48 4367 4.654E−01 1.009 2.729E−02 2.207 1.400E−01 2.762 4.868E−01 1.298
1/64 7459 3.488E−01 1.003 1.744E−02 1.557 1.053E−01 0.988 3.648E−01 1.003
1/96 16110 2.331E−01 0.994 1.021E−02 1.319 7.047E−02 0.991 2.437E−01 0.994
1/128 28047 1.749E−01 0.997 6.559E−03 1.539 5.295E−02 0.994 1.829E−01 0.998
1/192 61806 1.166E−01 1.000 3.699E−03 1.412 3.537E−02 0.995 1.219E−01 1.000
1/256 108713 8.743E−02 1.001 2.472E−03 1.402 2.655E−02 0.997 9.140E−02 1.001
1/384 242054 5.825E−02 1.002 1.349E−03 1.493 1.772E−02 0.997 6.090E−02 1.002

Table 2: Convergence history of the VEM/BEM schemes (3.13) and (4.13) for Example 2

in both examples. The higher rate provided by the unknown ψ for the scheme (4.13) must be simply
understood as a proper super convergence behavior of this particular exact solution u. In addition, we
observe that, except for the additional direct approximation ψh of the trace of u provided by (4.13),
both VEM/BEM schemes behave very similarly since, at each partition, they yield basically the same
errors for each common unknown. Certainly, the advantage of (4.13) with respect to (3.13) is that the
former is applicable in 2D and 3D, whereas the latter is restricted to 2D. In turn, the advantage of
(3.13) with respect to (4.13), which is obviously valid only in 2D, is that the former, having one less
boundary unknown, is a bit cheaper than (4.13) in terms of the total number of degrees of freedom.
This is illustrated in the present examples by the second columns of Tables 1 and 2.

Acknowledgements. The authors are very thankful to Antonio Márquez for performing the
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