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Laplacian of the Hamiltonian Kinetic Energy Density
as an Indicator of Binding and Weak Interactions.

Pablo Carpio-Martínez,a,b José E. Barquera-Lozada,a Angel Martín Pendás,c and Fer-
nando Cortés-Guzmán∗a,d

The kinetic energy is the center of a controversy between two opposite points of view about its
role in the formation of a chemical bond. One school states that a lowering of the kinetic energy
associated with electron delocalization is the key stabilization mechanism of covalent bonding. In
contrast, the opposite school holds that a chemical bond is formed by a decrease in the potential
energy due to a concentration of electron density within the binding region. In this work we present
the topographic analysis of the Hamiltonian Kinetic Energy Density (KED) and its laplacian to gain
more insight into the role of the kinetic energy within chemical interactions. Our study is focused
on atoms, diatomic and organic molecules, along with their dimers. We show that the laplacian
of the Hamiltonian KED exhibits a shell structure in atoms and that their outermost shell merge
when a molecule is formed. Moreover, we observe that a covalent bond is characterized by a
concentration of kinetic energy, potential energy and electron densities along the internuclear
axis. In the case of weak intermolecular interactions, the external shell of the molecules merge
into each other resulting in an intermolecular surface comparable to that obtained by the Non-
covalent interaction (NCI) analysis.

1 Introduction
The controversial role of the kinetic energy (KE) in the forma-
tion of a chemical bond is still the center of a debate. There exist
two different points of view concerning the role that KE plays in
the evolution of chemical bonds. One view, proposed by Hell-
mann,1 and supported by Peierls,2 Platt,3 Ruedenberg,4;5;6;7;8;9

and Kutzelnigg,10;11;12 states that a lowering of the kinetic en-

a Instituto de Química, Unversidad Nacional Autónoma de México, México DF 04510,
México.
b Department of Chemistry, University of Alberta, Edmonton, Alberta AB T6G 2G2,
Canada
cDepartamento de Química Física y Analítica, Facultad de Química, Universidad de
Oviedo, E-33006-Oviedo, Spain.
d Centro Conjunto de Investigación en Química Sustentable UAEMex-UNAM, carretera
Toluca-Atlacomulco km 14.5, Toluca, México 50200.
† Electronic Supplementary Information (ESI) available: [details of any supplemen-
tary information available should be included here]. See DOI: 10.1039/b000000x/
‡ Additional footnotes to the title and authors can be included e.g. ‘Present address:’
or ‘These authors contributed equally to this work’ as above using the symbols: ‡, §,
and ¶. Please place the appropriate symbol next to the author’s name and include a
\footnotetext entry in the the correct place in the list.

ergy associated with electron delocalization is the key stabiliza-
tion mechanism of covalent bonding. In contrast, the opposite
view, presented by Slater13 and supported by Feynman,14 Coul-
son15 and Bader,16;17 holds that a chemical bond is formed by a
decrease in the potential energy due to a concentration of elec-
tron density within the binding region. Recently, Ruedenberg,
Bacskay and Nordholm have followed this controversy by exam-
ining H2 and H+

2 molecules in which the virial theorem does not
hold. Their findings lead to the conclusion that the phenomenon
of bonding is not limited to systems with Coulombic interactions
and support the idea that the kinetic energy offers a fundamental
description of bonding.18 In this work, we present a topological
analysis of the Laplacian of Hamiltonian kinetic energy density to
gain more insight into the role of the kinetic energy within chem-
ical interactions, specifically non-covalent interactions.

1.1 The kinetic energy density

Classically, the local kinetic energy of a system can be defined
without ambiguity, however, in quantum mechanics there exist
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an infinite number of expressions that integrated over the whole
space recover the total kinetic energy of the system. Most of these
expressions are valid and are mathematically justified neverthe-
less, their conceptual usefulness is limited.19;20 Besides, based on
the way the local kinetic energy is formulated, the spatial varia-
tion of the total energy is controlled by either the kinetic or po-
tential energy.21 There exist several ways to generate a family of
Kinetic Energy Densities (KED), but the most useful in chemistry
comes from the additive multiple of the Laplacian of the electron
density i.e., the Laplacian family, defined as

τα (r) = τ+(r)+
(
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4

)
∇

2
ρ(r), (1)

where τ+(r) is the positive-definite kinetic energy density, which
equals τ1(r) when α = 1, also denoted as G(r). When α = 0, one
obtains the Schrodinger or Hamiltonian form, K(r). The expres-
sions for these two KEDs are
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The difference between these two functions emerges when one
examines their local behavior. G(r) is finite and positive in all
points of the space and is, in general, a monotonic function in
atoms. This convenient feature makes it easily tractable up to
the point that is currently the most studied out of the two func-
tions; however, its use as a chemical descriptor is still limited
due to its lack of structure.22;23;24 In contrast K(r) can give rise
to either positive and negative values opening the possibility to
extract more information about chemical interactions.25 Locally,
these functions are related by the Laplacian of the electron den-
sity according to the following equation

K(r) = G(r)+L(r), (4)

where
L(r) =−1

4
∇

2
ρ(r). (5)

The topology of G(r) and K(r) have been studied separately by
Noorizadeh26 and Tachibana et al.,27 respectively. In both cases
a partition of the space was performed on the basis of the corre-
sponding gradients, ∇G(r) and ∇K(r), resulting in atomic basins
separated by zero flux surfaces, equivalent to those obtained with
the electron density.

There are several examples of the application of Kinetic En-
ergy Densities to understand chemical bonding. A very valuable
tool for analyzing the phenomenon of covalent bonding based on
the KED has been presented by Schmider and Becke,28 the so-
called Localized Orbital Locator (LOL). LOL enables the mapping

of regions characterized by relatively slow-moving electrons and
therefore, regions where KED is decreased. Based on the fact that
one of the driving forces for covalent bonding is the maximum
decrease of the KED, such regions can be interpreted as indica-
tive of covalent bonding.29 Jacobsen argues that "a description of
chemical bonding based on charge densities finds the essence of
a chemical bond in answer to the question where electrons are,
while kinetic energy densities focus on where electrons stay." Ad-
ditionally, Jacobsen has reported the complete topologies of LOL
for various sets of molecules revealing patterns in chemical bond-
ing such as Kinetic connection lines that define the extension of
the valence space around an atomic center.23 The empirical con-
cept of the steric effect has been defined as a "kinetic energy pres-
sure" in atoms and molecules.30 Frank De Proft et al. introduced
Weizsäcker kinetic energy as a measure of the steric energy, giving
reasonable linear relationships with experimental evidence.31

Tachibana et al. used KED to identify the intrinsic shape of the
reactants, the electronic transition state, and the reaction prod-
ucts along the course of a chemical reaction coordinate. Three
atomic regions were identified based on a classical interpretation
of the kinetic energy. K(r > 0), (KA), where the electron den-
sity is amply accumulated, and motion of electrons is guaranteed.
K(r < 0), (KF ), where the motion of electron is classically forbid-
den and K(r = 0), (KS), the boundary between the two previous
regions, which gives the shape of the atoms involved in the re-
action process.32;33 During a reaction, two KA disjoint regions of
neighboring atoms gradually polarized toward the internuclear
region until they fuse, where the transition state can be identified
with the coalescent point.

In the Quantum Theory of Atoms in Molecules (QTAIM),34 a
quantum atom is defined as a molecular fragment with a well de-
fined kinetic energy.35;36;37;38 Following the advent of QTAIM,
several scalar and vector fields have been proposed to under-
stand and predict the nature of chemical interactions. Recently,
all such studies and methodologies were encompassed by the so-
called Quantum Chemical Topology (QCT).39 Some examples in-
clude, the electron density,40 its gradient and its Laplacian,41;42

the Electron Localization Function (ELF),43 the Electron Localiz-
ability Indicator (ELI),44 the Reduced Density Gradient (NCI),45

the magnetically induced current density and its vorticity,46;47

among others.48 Most of the quantities used within the QCT are
derived from one- and two-electron densities, meaning that the
energetic properties are usually obtained by integrating densities
over real space domains and not by examining appropriate ener-
getic scalar or vector fields.49 Besides, the scalar fields associated
with energetic properties as the kinetic and potential energy den-
sities have not been explored sufficiently.50 Then this work aims
to present the topology of the Hamiltonian KED and its Laplacian,
which is related to the electronic energy density by the local virial
theorem,51;36 and their application to analyze chemical interac-
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tions. The present paper is organized as follows: In section 2,
we provide details of our calculations. In section 3, we discuss
our results in the following order: the hydrogen atom, hydrogen
molecule, diatomic molecules, organic molecules, and weak in-
teractions. Finally, the conclusions are given in section 4.

2 Computational details
We calculated the Hamiltonian KED (K(r)) and its lapla-
cian (∇2K(r)) for selected atoms (from H to Ca), four di-
atomic molecules (H2, N2, CO, and LiF), five organic molecules
(methane, ethane, ethylene, acetylene and benzene) and their
respective dimers. Analytic expressions for the two scalar fields
were obtained for the hydrogen atom. The calculations were per-
formed with Slater-type Orbitals (STOs) alongside with M06-2X
DFT functional52 with ADF2013 program.53 The ρ(r), ∇2ρ(r)
and G(r) were obtained in 3D grids with the Dgrid code54 and
used to calculate K(r) as described by the equation 4. ∇2K(r)
was calculated numerically with a script written in python and
pvpython, implemented in Paraview 4.2. Several grid spacings
were tested to calculate the numerical derivatives. H atom and
H2 molecule needed very fine grids (0.005 a.u.) to achieve well
converged results. Other atoms just needed coarse grids (0.02
a.u.) and their corresponding graphics were generated with a
0.01 a.u. spacing. For comparison, in some cases we calculated
the same properties with Gaussian-type orbitals (GTOs) using the
Gaussian 09 package55 and AIMALL program.56

3 Results and discussion

3.1 The hydrogen atom

In the first place, we derived the analytic expressions of K(r) and
∇2K(r) for the hydrogen atom. For that purpose, we used equa-
tion 3 and the wave function ψ1s = (1/

√
π)e−r to obtain the fol-

lowing equations:

K(r) =
1

2π

(
2
r
−1
)

e−2r (6)

∇
2K(r) =− 2

π

(
1− 3

r

)
e−2r. (7)

The profiles of K(r) and ∇2K(r) are shown in Figure 1 (black
lines) to illustrate their behavior as a function of the distance from
the nucleus. Both curves exhibit a decrease from its cusp (cen-
tered at the nucleus position, r = 0 a.u.) to a minimum, then an
asymptotic increase to zero as the distance tends to infinity. The
intersection with the abscissa is 2.0 a.u. for K(r) and 3.0 a.u. for
∇2K(r). It can be seen that all the basis sets capture the behaviour
of the analytic expression of K(r); on the contrary, for ∇2K(r) the
STO basis set performs better than GTO one.

It is worth mentioning that Figure 1 only displays a section

Fig. 1 Profiles of the exact expressions of K(r) and ∇2K(r) for the
hydrogen atom.

of the valence region given that the core of the atoms presents
many unwanted oscillations between 0 and 0.5 a.u. due to the
use of the sixth-order derivative of the electron density. The Slater
basis set does not show this inconsistency around the core, and
conversely, the obtained profiles agree reasonably well with the
analytic ones. Outside this region, both, Slater and Gaussian basis
sets give similar results.

3.2 Atoms

We computed K(r) and ∇2K(r) for He and the subsequent atoms
up to Ca. We found that, for polyelectronic atoms, K(r) and
∇2K(r) present a shell structure similar to other scalar fields:
∇2ρ(r),41;42 ELF,43 LOL,28 among others. Figure 2 shows an ide-
alized profile of K(r) (or ∇2K(r)) of an atom in the third period
of the periodic table. This plot aims to characterize the topog-
raphy of K(r) and ∇2K(r) by identifying the following features:
nodes ( ji), maxima and minima (αi and βi) and their correspond-
ing radii (rαi and rβi

). It should be noted that rc represents the
limit of the core region where the anomalous behavior occurs if
GTOs are used. The numerical values associated to these values
are shown in Tables 1 and 2. For K(r), H and He atoms exhibit
one α1 shell, whereas the atoms from Li to Ar exhibit two shells
(α1 and α2). The exceptions of this behavior are Ne and Cl atoms,
which only present the α2 shell. From the analysis of ∇2K(r), it
is possible to observe that H and He have just one concentration
shell of K(r), whereas the atoms from Li to Ne have two shells and
subsequently, the atoms in the third period have three shells. In
contrast to K(r), ∇2K(r) behaves well since every expected shell
is observed with no exceptions.

Journal Name, [year], [vol.],1–10 | 3



Fig. 2 Ideal profile of both K(r) and ∇2K(r) of an atom in the third
period. The origin is situated at the position of the nucleus and r

represents an arbitrary axis. For the case of K(r) the number of shells is
limited to two.

3.3 Hydrogen molecule
Ruedenberg, Bacskay, and Nordholm described the shape of
the HKED in the bonding region of H+

2
57 whereas Preston and

Bader examined the relationship between the topographical fea-
tures of charge distribution and the kinetic energy of hydrogen
molecule.25 Figure 3 shows the profiles of K(r), G(r), ∇2G(r) and
∇2K(r) along the internuclear axis of the equilibrium geometry
of the H2. As described by the previous reports, within the in-
ternuclear region, the behavior of G(r) and K(r) are comparable
with that of ρ(r), with maxima at the nuclei positions and a sad-
dle point between them, with K(r) presenting a more pronounced
spatial change than G(r). In the case of ∇2G(r) also presents the
same shape as ρ(r) with no special structure within the bonding
region, in contrast, ∇2K(r) has a shell structure in the neighbor-
hood of the bond critical point (BCP). The Basis set effect is im-
portant for the accurate description of the interatomic region of
the hydrogen molecule, whereas STO gives smooth curves, GTO
produces additional unphysical oscillations. With STO, it is pos-
sible to observe a K(r) concentration around the BCP, with two
minima (around -0.5 and 0.5) and a saddle point (at zero). These
features are similar to those that characterize a covalent bond
when it is described by ∇2ρ(r).58 Based on the observed changes
of ∇2K(r) within the bonding region, it is possible to say that the
stabilization of a covalent bond is originated by the concentration
of both, electron and kinetic energy densities.

Another perspective that illustrates how the kinetic energy
evolves during the formation of the hydrogen molecule is pre-
sented qualitatively in Figure 4 (at CCSD/aug-cc-pV5Z theoreti-
cal level), where the internuclear distance (∆r, in Å) is zero at
the equilibrium structure. To obtain the exact behavior of ∇2K(r)
during the formation of the hydrogen molecule, it is necessary

Fig. 3 Profiles of G(r), K(r) and their respective laplacians functions at
the equilibrium geometry of hydrogen molecule.

to perform CASSCF/STO calculations which are not accessible,
but the valence region features are similar with GTO basis func-
tions, as has been shown in the previous section. When ∆r = 3.5
Å, the contours are practically spherical with a valence K(r) con-
centration shell, α1, surrounding an internal depletion region. At
∆r = 3.0 Å, both α1 concentration shells start to polarize as the hy-
drogen nuclei approach, along with an increase of kinetic energy
concentration at the internuclear region. At ∆r = 2.0 Å, the con-
centration shells coalesce to form an external molecular concen-
tration shell, δ1, which allows the contact of the depletion shells
of both atoms. A similar behaviour has been reported for the most
outer shells of K(r) in the formation of covalent bonds.32;33 Note
that between ∆r = 0.2 Å and the equilibrium distance, K(r) goes
from being locally depleted to locally concentrated at the inter-
nuclear region. Throughout this process, an external molecular
K(r) concentration shell (δ1) is formed and this shell ends as an
enveloping region of kinetic energy concentration for both hydro-
gen nuclei.

3.4 Diatomic molecules

In order to confirm that the previous behavior is general, we ana-
lyzed the ∇2K(r) contour diagrams (Figure 6) of N2, CO and LiF
molecules, which are archetypes of the covalent, polar covalent
and ionic bond respectively.

From table 2, it is known that nitrogen has two kinetic energy
concentration shells, α1 and α2, one associated with the core and
the other with the valance. During the formation of the nitro-
gen molecule, the valence shell of both nitrogen atoms fuses to
form a symmetric molecular shell, δ2, along with the merge of
the outer depletion shells that cover both cores, as shown in Fig-
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Fig. 4 Evolution of the ∇2K(r) as the Hydrogen atoms approach. The
white contours represent nodes of the ∇2K(r)

ure 6. Finally, the inner concentration and depletion shells are
slightly polarized but separated.

In the case of polar molecules, as CO, it is possible to observe
that the less electronegative atom presents a stronger perturba-
tion in its shells. The α2 valence shell of each isolated atom com-
bines to form an asymmetric δ2 molecular shell. In the vicinity of
the carbon atom, the outer depletion shell is larger than the con-
centration shell. The combination of α1 core shells also depicts a
disproportionate distribution within the internuclear region. The
bond critical point for the CO is found within the α1 shell of the
carbon atom.

In the case of LiF , as a consequence of the charge transfer from
the Lithium to the Fluorine atom, the second charge concentra-
tion shell of the Lithium atom is no longer observed at the equilib-
rium distance, as described by Hernández-Trujillo and Bader.59 A
similar process is carried out with the valence shell concentration
of K(r) of the Lithium atom. The remaining shell (α1) of the Li
atom merges with the α2 shell of the fluorine atom to form the
molecular envelope shell of kinetic energy concentration δ2. In
this case, the critical point is found in the region of kinetic energy
depletion of the Lithium atom. The inner shells of Florine atom
remain unaltered. It is possible to say that every molecule has

an external concentration shell of HKED that covers the whole
molecule. Additionally, a covalent or a polar covalent molecule
is characterized by a internuclear concentration of K(r), whereas
ionic interactions has a depletion of K(r) between the nuclei. It
is worth to mention that the type basis set effect are significantly
less pronounced for bonding between heavy atoms than for the
hydrogen bonding.

3.5 Organic molecules

To further expand our study, we analyzed the behavior of ∇2K(r)
in particular cases of single, double, triple, and aromatic carbon-
carbon bonds. Figure 7 shows the profile of ∇2K(r) along the
C-C internuclear axis of ethane, ethylene, acetylene and benzene.
The C-C bond presents two internuclear K(r) concentrations con-
nected by a saddle point similar to that presented in the symmet-
ric diatomic molecules, H2 and N2. The four profiles have the
same shape that differs in the width of saddle point and the value
of the K(r) concentration. The width decreases from the single
(0.612 a.u.) to the triple (0.112 a.u.) bond while the magnitude
of the concentration increases in the same direction, from -37.7
a.u. in ethane to -43.3 a.u. in acetylene, correlating with the bond
order. Also, it is possible to observe that each organic molecule is
surrounded by a δ2 shell of K(r) concentration.

3.6 Weak interactions

Finally, the C6H6/C6H6 and CH4/CH4 dimers were studied as ex-
amples of systems where weak interactions are presented. The
first case is a prototype case of π-π stacking and the latter a pro-
totype of van der Waals interacting molecules. Figure 8 shows
the envelopes maps of each organic dimer. In the case of the ben-
zene dimer, the concentration δ2 shells of both benzene merge
producing an intermolecular surface. Moreover, this ∇2K(r) sur-
face matches with the intermolecular bond critical points and the
NCI surface observed for the same dimer. In the case of methane,
the δ2 molecular shell is localized around the C-H bonds. It can
be seen from Figure 8 that similarly to the benzene dimer, the
δ2 of the methane molecules merge to produce an intermolecular
surface.

4 Conclusions
We have explored the topographic behavior of the HKED and its
Laplacian for a variety of chemical scenarios, going from atoms
to diatomic molecules and from strong covalent bonded atoms
to weak interacting molecular systems. Though simple and read-
ily interpretable, we observed that G(r) and ∇2G(r) do not re-
veal substantial chemical information. On the contrary, K(r) and
∇2K(r) unveil a structured shell behavior in atoms, which allows
the observation of changes associated with the formation of bonds
and presence of chemical interactions. Particularly, the atomic
shells of ∇2K(r) melt when forming a covalent bond yielding an
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Fig. 5 Profiles of ∇2K(r) along the internuclear axis of a) N2, b) CO and
c) LiF . These molecules were taken as archetypal cases of covalent,

polar covalent and ionic bindings respectively

intramolecular dilution region (in which the nuclei are embed-
ded) and an external concentration region (that envelopes the
interacting atoms). Besides, One can observe two internuclear
K(r) concentrations connected by a saddle point. In the case of
a ionic bond, the ∇2K(r) atomic shells do not fuse and the exter-
nal concentration is not observed. We found that, when it comes
to intermolecular interactions, the molecular external concentra-
tion regions come into contact and coalesce without losing their
form, avoiding the contact of the inner shells. The inherent ambi-
guity of the quantum KED restricts most of its definitions from a
classical (or even unique) interpretation nevertheless, in light of
this work we have shown that the analysis of the local changes of

∇2K(r) opens the possibility to an energetic description of weakly
interacting systems.
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Table 1 Numerical values (in a.u.) associated to K(r) for atoms from H to Ca. αi and βi are situated right below their corresponding radius (rαi or rβi )

Atom j1 rα1 /α1 j2 rβ1
/β1 j3 rα2 /α2 j4 rβ2

/β2 j5 rα3 /α3

H 2.022 2.4575
-2.22E-004

He 1.1975 1.4835
-0.004598963

Li 0.74 0.889 1.9145 2.313 5.0925 5.9195
-0.05380428 6.05E-004 -5.30E-006

Be 0.542 0.6485 1.1635 1.4385 3.3975 3.9695
-0.264151578 0.012065785 -6.95E-005

B 0.4285 0.514 0.879 1.085 2.531 2.9445
-0.882838128 0.052340384 -2.96E-004

C 0.377 0.4315 0.555 0.7505 2.5115 2.9195
-0.996473025 0.552027642 -0.000466994

N 0.327 0.3695 0.4525 0.62 2.067 2.403
-1.653037823 1.42594732 -0.001230441

O 0.335 0.455 1.9505 2.2345
4.342168859 6.166930487 -0.002003628

F 0.2995 0.3865 1.6905 1.9495
10.629996983 12.864759689 -0.004245983

Ne 0.2715 0.3365 1.4965 1.73
21.705691158 24.240140133 -0.007829006

Na 1.2325 1.42 2.6865 3.087 5.513 6.384
-0.026552014 2.05E-004 -4.05E-006

Mg 1.067 1.2245 1.9145 2.2715 4.2135 4.8945
-0.057480791 0.002196188 -3.14E-005

Al 0.937 1.0685 1.5835 1.8695 3.306 3.814
-0.108540346 0.006755313 -1.12E-004

Si 0.839 0.9455 1.2245 1.5075 3.638 4.237
-0.173402815 0.045550471 -8.88E-005

P 0.7625 0.8545 1.0695 1.317 3.036 3.458
-0.259898978 0.09835536 -2.54E-004

S 0.699 0.7785 0.95 1.174 2.6885 3.043
-0.362872599 0.192199459 -5.30E-004

Cl 0.652 0.706 0.793 1.0195 2.5085 2.8415
-0.308522777 0.556588966 -0.001018525

Ar 0.6105 0.6525 0.714 0.9295 2.271 2.5735
-0.313183175 0.9332493 -0.001808983

K 0.582 0.606 0.631 0.846 1.976 2.243 3.852 4.372 6.8735 7.852
-0.132873486 1.636050874 -0.004529514 0.000044386 -0.000001769

Ca 0.5635 0.7735 1.7655 1.9865 2.8215 3.2785 5.4325 6.26
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Table 2 Numerical values (in a.u.) associated to ∇2K(r) for atoms from H to Ca. αi and βi are situated right below their corresponding radius (rαi or rβi )

ATOM j1 rα1 /α1 j2 rβ1
/β1 j3 rα2 /α2 j4 rβ2

/β2 j5 rα3 /α3 j6 rβ3
/β3 j7 rα4 /α4 j j8 rβ4

/β4

He 1.73812 1.99568
-0.00474

Li 1.10792 1.28328 2.90536 3.3328 7.06468 7.09756
-0.13656 0.00019 -0.00000007

Be 0.80652 0.93256 1.85868 2.12172 4.69732 4.72472
-1.48945 0.0077 -0.00000232

B 0.63116 0.7298 1.34356 1.56276 3.86436 4.03972
-8.87347 0.0952 -0.00004251

C 0.51608 0.59828 1.03668 1.223 3.26156 3.59584
-36.28196 0.67747 -0.00022404

N 0.43936 0.50512 0.83392 0.99284 2.77932 3.06428
-115.4789 3.38673 -0.00080532

O 0.37908 0.43936 0.69692 0.83392 2.43956 2.71904
-309.9434 12.68841 -0.00198891

F 0.33524 0.38456 0.5928 0.71336 2.182 2.44504
-729.8511 40.7264 -0.00469635

Ne 0.30236 0.3462 0.51608 0.6202 1.96828 2.19844
-1554.024 115.3129 -0.01067165

Na 0.26948 0.31332 0.45032 0.54896 1.65592 1.86416 3.58488 3.99588 6.8674 6.87836
-3290.048 303.4992 -0.04704581 0.00011116 -0.00000001

Mg 0.24756 0.28592 0.40648 0.49416 1.40932 1.5792 2.68616 2.99852 5.33848 5.34944
-6266.933 677.6692 -0.1894483 0.00162165 -0.00000065

Al 0.22564 0.25852 0.36812 0.45032 1.22848 1.37096 2.2368 2.56012 5.05352 5.12476
-11104.17 1382.663 -0.5860227 0.00804356 -0.00000334

Si 0.2092 0.24208 0.33524 0.41196 1.08052 1.20656 1.86964 2.12172 4.71376 4.75212
-19238.02 2713.407 -1.739363 0.0366997 -0.00000417

P 0.19276 0.22564 0.30784 0.37908 0.96544 1.086 1.634 1.8806 4.06164 4.1
-32170.12 5093.814 -4.236046 0.1260265 -0.00001881

S 0.1818 0.2092 0.28592 0.35168 0.87776 0.98188 1.45316 1.68332 3.6068 3.94656
-51979.43 9124.594 -9.381371 0.3504405 -0.00024672

Cl 0.17084 0.19824 0.264 0.32976 0.80104 0.89968 1.3052 1.50796 3.24512 3.53008
-80821.44 15732.41 -19.57989 0.8840574 -0.00061423

Ar 0.15988 0.1818 0.24756 0.30784 0.73528 0.82296 1.18464 1.37096 2.94372 3.24512
-122721.5 26195.35 -38.80572 2.038936 -0.0014882

K 0.14892 0.17632 0.23112 0.28592 0.68048 0.76816 1.08052 1.2504 2.57108 2.84508 4.94392 5.059 8.93336 8.9498 8.93336 8.9498
-180571 42052.48 -70.42233 4.391843 -0.00583386 0.00000682 -0.00000001 -0.00000001

Ca 0.14344 0.16536 0.21468 0.26948 0.63116 0.70788 0.98736 1.14628 2.27516 2.52176 3.78764 4.03972 6.77424 6.77424
-269663.3 65878.15 -129.4737 9.250498 -0.01719778 0.00023956 0.00000003
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