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The null space of fuzzy inclusion measures
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and Luciano Sánchez, Senior Member, IEEE

Abstract—Some formal relationships between the different
axiomatic definitions of inclusion measure are analysed. In
particular, the links between the different proposals about the
null-space (the collection of pairs associated with a null degree of
inclusion) are studied. Taking as starting point the well-known
axiomatics of Kitainik and Sinha-Dougherty, we observe that
other alternative proposals about the null-space are incompatible
with both the null-space and the decomposition axioms of these
authors. We also conclude that both the axiomatics of Kitainik
and that of Sinha-Dougherty contain certain redundancies. Re-
duced equivalent lists of axioms are proposed.
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I. INTRODUCTION

Zadeh defined in his seminal paper from 1965 [12] the well
known inclusion relation “⊆” between fuzzy sets defined as
follows:

A ⊆ B ⇔ A(x) ≤ B(x), ∀x.

It induced a partial order over the family of fuzzy subsets of a
universe. Such a binary (0-1-valued) relation was not consid-
ered to match the essence of fuzzy set theory, and in order to
overcome this issue, Bandler and Kohout [1] introduced for the
first time the notion of subsethood grade in order to quantify
(within a [0, 1]−scale) to what extent a fuzzy set is included in
another. Different axiomatic definitions of subsethood or fuzzy
inclusion measures have been later on proposed successively
by Kitainik [6], Sinha and Dougherty [9], Young [11], Fan el
al. [4]. Some other authors as Bustince et al. [2], Vlachos et
al. ( [10]) or Zhang [13] have provided additional discussions
around those axiomatic definitions, or applied them in practical
situations. A further axiomatic definition has been recently
proposed by Santos et al. [8].

Most of those definitions coincide in requiring that the
inclusion measure assigns the value σ(A,B) = 1 to any pair
of fuzzy sets satisfying the relation A ⊆ B. They also demand
the mapping σ to be decreasing in the first argument and
increasing in the second, with respect to Zadeh’s inclusion.

However, the different axiomatics disagree in the conditions
required to a pair of fuzzy sets (A,B) in order to satisfy the
equality σ(A,B) = 0.
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Furthermore, some axiomatics, such as those of Kitainik [6]
and Sinha-Dougherty [9], include additional restrictions on the
relationship between the degree of inclusion between the union
of two sets and a third one, as well as the inclusion of a fuzzy
set wrt to the intersection of two additional fuzzy sets. More
specifically, these authors demand:

σ(A ∪B,C) = min{σ(A,C), σ(B,C)} (1)

σ(A,B ∩ C) = min{σ(A,B), σ(A,C)}, ∀A,B,C. (2)

The above constraints influence the functional expression of
σ, and, as a consequence, they implicitly restrict the conditions
under which a pair (A,B) satisfies the equality σ(A,B) = 0,
as we will prove in this paper. In particular, we will show
that Equations 1 and 2 are incompatible with some of the
proposals about σ(A,B) = 0 alternatively required by some
authors such as Santos et al. [8], for example.

As a consequence of our study, we will see that there is a
certain redundancy in the lists of axioms respectively proposed
by Kitainik and Sinha-Dougherty, and we will show (equiva-
lent) reduced versions of both definitions. As an intermediate
step we will show some (alternative but not reduced) lists
of axioms that are respectively equivalent to Kitainik and to
Sinha-Dougherty proposals.

II. PRELIMINARIES

Let us consider a finite universe Ω and let F(Ω) denote
the collection of fuzzy subsets of it. Sinha and Dougherty
proposed the following list of axioms to be satisfied by a fuzzy
inclusion measure σ : F(Ω)×F(Ω)→ [0, 1]:
• SD1.- σ(A,B) = 1⇔ A ⊆ B.
• SD2.- σ(A,B) = 0⇔ ∃x ∈ Ω s.t. A(x) = 1, B(x) = 0.
• SD3.- B ⊆ B′ ⇒ σ(A,B) ≤ σ(A,B′).
• SD4.- A ⊆ A′ ⇒ σ(A,B) ≥ σ(A′, B).
• SD5.- σ(A,B) = σ(S(A), S(B)) for any S : F(Ω) →
F(Ω) where S(A)(x) = A(s(x)), ∀x ∈ Ω and s : Ω→
Ω is a one-to-one mapping (permutation).

• SD6.- σ(A,B) = σ(Bc, Ac) where ·c denotes Zadeh’s
complement (Ac(x) = 1−A(x), ∀x ∈ Ω.)

• SD7.- σ satisfies Eq. 1, i.e., σ(A ∪ B,C) =
min{σ(A,C), σ(B,C)}, ∀A,B,C ∈ F(Ω).

• SD8.- σ satisfies Eq. 2, i.e., σ(A,B ∩ C) =
min{σ(A,B), σ(A,C)}, ∀A,B,C ∈ F(Ω).

Their original version included an additional axiom that was
later proved to be equivalent to SD3. Kitainik independently
studied this notion in [6] and [7]. He proposed the following
alternative list of axioms:
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• K1.- σ(A,B) = σ(Bc, Ac) (SD6)
• K2.- σ(A,B∩C) = min{σ(A,B), σ(A,C)}, ∀A,B,C.

(SD8)
• K3.- σ(A,B) = σ(S(A), S(B)) for any S : F(Ω) →
F(Ω) where S(A)(x) = A(s(x)), ∀x ∈ Ω and s : Ω→
Ω is a one-to-one mapping. (SD5)

• K4.- The restriction of σ to the collection of pairs of
crisp sets coincides with crisp set inclusion, i.e., for all
A,B ∈ ℘(Ω):

– K4a.- σ(A,B) = 1⇔ A ⊆ B and
– K4b.- σ(A,B) = 0⇔ A 6⊆ B,

and proved that Properties SD3 and SD4 and SD7 can
be derived from his collection of axioms, which are in turn
implied by Sinha-Dougherty axioms. The interested reader can
consult Cornelis et al. [3] for more detailed explanations. As
a consequence of Kitainik result, SD3, SD4 and SD7 can
be removed from Sinha & Dougherty list. Thus, the list of
axioms proposed by Sinha and Dougherty is equivalent to the
following reduced list:
• SD1.- σ(A,B) = 1⇔ A ⊆ B.
• SD2.- σ(A,B) = 0⇔ ∃x ∈ Ω s.t. A(x) = 1, B(x) = 0.
• SD5.- σ(A,B) = σ(S(A), S(B)) for any S : F(Ω) →
F(Ω) where S(A)(x) = A(s(x)), ∀x ∈ Ω and s : Ω→
Ω is a one-to-one mapping.

• SD6.- σ(A,B) = σ(Bc, Ac).
• SD8.- σ satisfies Eq. 2, i.e., σ(A,B ∩ C) =

min{σ(A,B), σ(A,C)}, ∀A,B,C ∈ F(Ω).
Thus we can observe that both axiomatic definitions (the

one proposed by Sinha & Dougherty, equivalent to the above
reduced list, and the one proposed by Kitainik) essentially
capture the same idea, except for the “boundary” conditions
SD1 and SD2 (proposed by Sinha & Dougherty), which are
stronger than condition K4 (proposed by Kitainik instead).

As a side remark, let us furthermore notice that the con-
junction of SD6 (K1) plus SD8 (K2) is equivalent to the
conjunction of SD6 (K1) plus SD7. Thus, Axiom SD8 (K2)
can be alternatively replaced in both definitions (Sinha &
Dougherty and Kitaink) by Axiom SD7. I.e. the following
results hold:

Corollary 1: Consider a finite universe Ω and a mapping
σ : F(Ω)×F(Ω)→ [0, 1].

• σ satisfies Sinha & Dougherty’s properties (SD1 to SD8)
iff it satisfies SD1, SD2, SD5, SD6, SD7.

• σ satisfies Kitainik’s properties (K1 to K4) iff it satisfies
K1, SD7, K3, K4.

Furthermore, the following additional properties concerning
the boundary conditions can be deduced from Kitainik’s list
of axioms. The first one is stronger than K4a and the second
one complements Property K4b. They are respectively weaker
than SD1 and SD2:

Theorem 1: Let σ : F(Ω)×F(Ω)→ [0, 1] satisfy properties
K1 to K4. Then the following properties hold:
• SD1−.-

– SD1−a).- σ(∅, A) = 1, ∀A ∈ F(Ω)
– SD1−b).- σ(A,Ω) = 1, ∀A ∈ F(Ω)

• SD2−.- ∃x such that A(x) = 1, B(x) = 0⇒ σ(A,B) =
0.

Proof:
• SD1−.- The first property (SD1−) is straightforwardly

derived from K4 and the monotonicity conditions SD3
and SD4. These two monotonicity conditions are in turn
respectively derived from SD7 and SD8. Finally, as we
have clarified in Corollary 1, SD7 is implied by the
conjunction of properties SD6 (K1) and SD8 (K2).

• SD2−.- Let us suppose that σ satisfies Kitainik properties.
Let us consider a pair of fuzzy subsets A,B ∈ F(Ω)
satisfying the following condition:

∃x such that A(x) = 1, B(x) = 0.

Let us now consider the crisp sets A and B respectively
defined as follows:

A(x) = 1 if A(x) = 1, A(x) = 0 otherwise.

B(x) = 0 if B(x) = 0, B(x) = 1 otherwise.

Under the above condition about A and B, A 6⊆ B, and
therefore, according to Kitainik’s restrictions σ(A,B) =
0. Furthermore, taking into account that A ⊇ A and
B ⊆ B, and according to the monotonicity of Kitainik’s
measures, we can deduce that σ(A,B) ≤ σ(A,B) =
0. �

Some alternative axiomatic definitions were later proposed
by Young [11], Fan et al. [4] (who proposed different ver-
sions). As we mentioned in our introduction, all those authors
require some monotonicity properties such as SD3 and SD4
or weaker versions of them (as Young and Fan et al. do).
Furthermore, all of them σ(A,B) = 1 ⇔ A ⊆ B (although
Kitainik restricts this condition to the case of pairs of crisp
sets). We can nevertheless observe different proposals con-
cerning necessary and sufficient conditions for σ(A,B) = 0.
(In the next section, we will study those differences in detail).

Santos et al. [8] reviewed all those axiomatic definitions and
proposed the following one:

Definition 1: σ : F(Ω) × F(Ω) → [0, 1] is a subsethood
measure if it satisfies the following properties:
• SA1.- σ(A,B) = 1⇔ A ⊆ B. (SD1)
• SA2.- σ(A,B) = 0⇔ A = Ω, B = ∅.
• SA3.-

– SA3a) B ⊆ B′ ⇒ σ(A,B) ≤ σ(A′, B). (SD3)
– SA3b) A ⊆ A′ ⇒ σ(A,B) ≥ σ(A′, B). (SD4)

III. THE RESTRICTION OF THE INCLUSION MEASURES TO
THE FAMILY OF CRISP SETS

As we have previously mentioned, the different axiomatic
definitions of fuzzy inclusion disagree (among other things)
on the conditions about the null space,

{(A,B) ∈ F(Ω)×F(Ω) : σ(A,B) = 0}.

The different conditions correspond to basically two different
viewpoints about the restriction of the inclusion measure to
the family of pairs of crisp sets:

a) The restriction of σ to the family of pairs of crisp sets
takes values within the (binary) set {0, 1}. In other
words, given two crisp sets, we only distinguish the
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case in which one of them is included in the other
(σ(A,B) = 1), from the case where it is not (σ(A,B) =
0).

b) The inclusion measure assigns intermediate values 0 <
σ(A,B) < 1 to some pairs of crisp sets.

Kitainik and Sinha-Dougherty definitions correspond to sit-
uation a), while Santos et al. matches situation b). In the three
axiomatic definitions, the restriction of the kernel σ−1({1}) to
the collection of pairs of crisp sets is:

σ−1({1}) ∩ ℘(Ω)× ℘(Ω) =

{(A,B) ∈ ℘(Ω)× ℘(Ω) : A ⊆ B}, (3)

but the respective null-spaces do not coincide. In fact, ac-
cording to Kitainik and Sinha-Doughery definitions, the cor-
responding restriction is:

σ−1
K ({0}) ∩ ℘(Ω)× ℘(Ω) =

σ−1
SD({0}) ∩ ℘(Ω)× ℘(Ω) =

{(A,B) ∈ ℘(Ω)× ℘(Ω) : ∃x : A(x) = 1, B(x) = 0} =

℘(Ω)× ℘(Ω) \ σ−1
K ({1})

which strictly includes Santos et al. null space, as this last one
is required to be the following singleton:

σ−1
SA({0}) ∩ ℘(Ω)× ℘(Ω) = σ−1

SA({0}) = {(Ω, ∅)}.

Thus, under Santos et al. definition (and more concretely
speaking, under conditions SA1 and SA2), all those pairs of
crisp sets (A,B) that do not either satisfy the condition A ⊆ B
or coincide with the pair (Ω, ∅) take intermediate inclusion
values.

But Santos et al. boundary condition SA2 is not only incom-
patible with the corresponding boundary axioms respectively
proposed by Sinha-Dougherty (SD2) and Kitainik (K4b), but
also with axioms SD8 (K2) and SD7, as we will prove next:

Proposition 1: Consider a universe Ω with cardinality
strictly greater than 1. Consider a mapping σ : F(Ω) ×
F(Ω)→ [0, 1] satisfying SA2.

1) σ does not satisfy SD7.
2) σ does not satisfy SD8.
Proof: Let us prove the first result. According to the “if”

part of condition SA2 σ(Ω, ∅) = 0. Furthermore, if σ satisfies,
in addition, Property SD7, then for any arbitrary D ∈ ℘(Ω),
∅ ( D ( Ω σ(D ∪ Dc, ∅) = min{σ(D, ∅), σ(Dc, ∅)}. We
therefore conclude that either σ(D, ∅) = 0 or σ(Dc, ∅) = 0.
This implies, according to the “only if” part of SA2, that either
D = Ω or D = ∅, which leads us to a contradiction.

The proof of the second part is analogous. �
We could even consider an intermediate condition between

the one proposed by Kitainik (K4b) and the one considered
by Santos et al. (SD2), for the null-space, like the following
one:

σ−1({0}) ∩ ℘(Ω)× ℘(Ω) =

{(A,B) ∈ ℘(Ω)× ℘(Ω) : A 6= ∅, A ∩B = ∅}, (4)

but such a condition is also incompatible with Axioms SD7
and SD8, as we prove next:

Proposition 2: Consider a mapping σ : F(Ω) × F(Ω) →
[0, 1] satisfying the following condition:

[σ(A,B) = 0⇔ A 6= ∅, A ∩B = ∅], ∀A,B ∈ ℘(X)

Then:
1) σ does not satisfy SD7.
2) σ does not satisfy SD8.
Proof:
1) Let us consider a non-empty proper subset of Ω,

A ∈ ℘(Ω), ∅ ( A ( Ω. According to the above
property σ(A,Ac) is null and therefore, the minimum
min{σ(A,Ac), σ(Ac, Ac)} is also zero. However, ac-
cording to the same property, σ(Ω, Ac) > 0 and there-
fore σ fails to satisfy the equality σ(A ∪ Ac, Ac) =
min{σ(A,Ac), σ(Ac, Ac)}.

2) The proof of the second part is quite similar. According
to the above property σ(Ω, ∅) would be equal to zero,
but given a proper nonempty subset A ∈ ℘(Ω), none
of the inclusion values σ(Ω, A), σ(Ω, Ac) would be
equal to zero. Therefore σ(Ω, ∅) = σ(Ω, A ∩ Ac) does
not coincide with the minimum of both quantities, and
therefore σ fails to satisfy SD8. �

In summary, as Propositions 1 and 2 show, conditions
SD7 and SD8 (both of them included in Kitainik and Sinha-
Dougherty definitions) imply some restrictions about the null-
space of the fuzzy inclusion measure:

σ−1({0}) = {(A,B) ∈ F(Ω)×F(Ω) : σ(A,B) = 0}.

The next section is devoted to a more profound study of those
restrictions.

IV. CONDITIONS ABOUT THE NULL SPACE AND THE
INFLUENCE OF OTHER AXIOMS

As we have illustrated in the previous section, the conditions
about the null-space of fuzzy inclusion measures interact with
the decomposition axioms proposed by Kitainik and Sinha-
Dougherty (SD7 and SD8). In particular, we have proved that
those decomposition properties are incompatible with some
conditions about the null-space proposed in other axiomatic
definitions like the one recently proposed by Santos et al. In
this section, we will deepen into the study about the condi-
tions about the null-space and other conditions included in
Kitainik’s list. We will conclude that part of the requirements
about the null-space involved in Property K4b are implicitly
derived from the rest of Kitainik’s axioms. As a consequence
of this, we will show that there is mild redundancy in Ki-
tainik’s list of axioms. We will deduce that Sinha-Dougherty
list also contains the same redundancy.

A. Kitainik and Sinha & Dougherty properties and the func-
tional expression of fuzzy inclusion measures

Before studying the interaction between SD7 and SD8 and
the conditions about the null space, we need to analyse their
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interaction with the following decomposition properties, that
we will denote by D1 and D2:
• D1.- ∀X ∈ ℘(Ω),∀A,B ∈ F(Ω), σ(A,B) =

min{σ(A ∩X,B ∩X), σ(A ∩Xc, B ∩Xc)}.
• D2.- If A,B,C ∈ F(Ω) with A∩C = ∅ then σ(A,B) =
σ(A,B ∪ C).

The following result shows some formal relations between
our new decomposition properties and the conjunction of SD7,
SD8 and K4a.

Theorem 2: Let us consider a mapping σ : F(Ω)×F(Ω)→
[0, 1]. The following implications hold:

(a) If σ satisfies K4a, SD7 and SD8, then it also satisfies
D2.

(b) If σ satisfies SD7 and D2, then it also satisfies D1.
(c) If σ satisfies SD7, SD8 and K4a, then it also satisfies

D1.
(d) If σ satisfies SD6 (K1), SD8 (K2) and K4a, then it

satisfies D1.
(e) If σ satisfies D1, SD4 and K4a, then it also satisfies

SD7.
Proof:

(a) Suppose that σ satisfies K4a, SD7 and SD8, and consider
a triple of fuzzy sets A,B,C ∈ F(Ω) with A ∩C = ∅.
Under these conditions, there exists a crisp set X ∈
℘(Ω) such that A ⊆ X and C ⊆ Xc. By means of
the distributive property, we can easily check that B
coincides with (B ∪ C) ∩ (B ∪X). Thus:

σ(A,B) = σ(A, (B ∪ C) ∩ (B ∪X)),

which, according to SD8 coincides with min{σ(A,B ∪
C), σ(A,B ∪ X}. Now by means of SD3 and SD4
(respectively derived from SD8 and SD7) we can state
that σ(X,X) ≤ σ(A,B ∪ X). Furthermore, accord-
ing to K4a, σ(X,X) = 1 Therefore min{σ(A,B ∪
C), σ(A,B∪X} = min{σ(A,B∪C), 1} = σ(A,B∪C)
and thus σ(A,B) = σ(A,B ∪ C).

(b) Consider a pair of fuzzy sets A,B ∈ F(Ω) and a crisp
set X ∈ ℘(Ω). We can decompose A as the union A =
(A ∩ X) ∪ (A ∩ Xc), and then, according to SD7 we
have:

σ(A,B) = min{σ(A ∩X,B), σ(A ∩Xc, B)}.

Furthermore, according to D2, we can write

σ(A ∩X,B) = σ(A ∩X,B ∩X)

and
σ(A ∩Xc, B) = σ(A ∩Xc, B ∩Xc),

and thus

σ(A,B) =

min{σ(A ∩X,B ∩X), σ(A ∩Xc, B ∩Xc)}.

(c) This result is a direct consequence of the previous ones
((a) and (b)).

(d) This result is immediately derived from (c) and the
fact that the conjunction of Properties SD6 and SD7

is equivalent to the conjunction of Properties SD6 and
SD8.

(e) Consider three arbitrary fuzzy subsets A,B,C ∈ F(Ω).
Consider the crisp set

X = {x ∈ Ω : A(x) ≥ C(x)}.

According to D2 we can write σ(A ∪ C,B) coincides
with the minimum of the quantities:

{σ((A ∪ C) ∩X,B ∩X)

and
σ((A ∪ C) ∩Xc, B ∩Xc),

which, according to the construction of the crisp set X ,
respectively coincide with σ(A∩X,B ∩X) and σ(C ∩
Xc, B ∩Xc). Thus, we deduce the following equality:

σ(A ∪ C,B) =

min{σ(A ∩X,B ∩X), σ(C ∩Xc, B ∩Xc)}.

Now, according to SD4, we have:

σ(A ∩X,B ∩X) ≤ σ(C ∩X,B ∩X)

and

σ(C ∩Xc, B ∩Xc) ≤ σ(A ∩Xc, B ∩Xc).

Thus, the above minimum can be alternatively expressed
as the minimum of the four quantities σ(A∩X,B∩X),
σ(A∩Xc, B∩Xc), σ(C∩X,B∩X) and σ(C∩Xc, B∩
Xc). Now, again by means of D2,

σ(A,B) = min{σ(A∩X,B∩X), σ(A∩Xc, B∩Xc)}

and

σ(C,B) = min{σ(C∩X,B∩X), σ(C∩Xc, B∩Xc)}.

We derive the following equality:

σ(A ∪ C,B) = min{σ(A,B), σ(C,B)}. �

As a consequence, and taking into account the results proved
by Kitainik and recalled in Section II, we can derive the
following results establishing alternative lists of axioms re-
spectively equivalent to Sinha & Dougherty’s and to Kitainik’s
lists:

Corollary 2: Let us consider a mapping σ : F(Ω)×F(Ω)→
[0, 1]. The following results are equivalent:
• σ satisfies the list of axioms proposed by Sinha &

Dougherty (SD1 to SD8).
• σ satisfies SD1, SD2, SD5, SD6 and SD7.
• σ satisfies SD1, SD2, SD5, SD6 and SD8.
• σ satisfies SD1, SD2, SD4, SD5, SD6 and D1.
Corollary 3: Let us consider a mapping σ : F(Ω)×F(Ω)→

[0, 1]. The following results are equivalent:
• σ satisfies the list of axioms proposed by Kitainik (K1 to

K4).
• σ satisfies K1, SD7, K3 and K4.
• σ satisfies K1, SD4, D1, K3 and K4.
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The following result shows a sufficient condition for a
mapping σ to admit a decomposition in terms of the min-
operator:

Proposition 3: Consider a finite universe Ω = {x1, . . . , xn},
with n ∈ N. Suppose that a mapping σ : F(Ω)×F(Ω)→ [0, 1]
satisfies D1 and SD5 (K3). Then there exists some I : [0, 1]×
[0, 1]→ [0, 1] such that

σ(A,B) = min
x∈Ω

I(A(x), B(x)),∀A,B ∈ F(Ω).

Proof: Let us consider the family of nested (crisp) sets Xi =
{xi+1, . . . , xn}, i = 1, . . . , n−1. Every pair of sets ({xi}, Xi)
forms a partition of the set Xi−1 = {xi, . . . , xn}. Let us now
define the mapping I : [0, 1]× [0, 1]→ [0, 1] as follows

I(a, b) = σ(a · 1{x1}, b · 1{x2}), ∀ (a, b) ∈ [0, 1]× [0, 1],

where 1A : Ω → {0, 1} denotes the indicator function of the
crisp set A, for every A ∈ ℘(Ω). For an arbitrary pair of sets
A,B ∈ F(Ω), by means of successively applying the property
D2 to each of those partitions, we get the following equality:

σ(A,B) =
n

min
i=1

σ(A ∩ {xi}, B ∩ {xi}).

According to Property D5, σ(A ∩ {xi}, B ∩ {xi}) coincides
with

I(A(xi), B(xi)) = σ(A(xi) · 1{x1}, B(xi) · 1{x1}),

for every i = 1, . . . , n. Then σ(A,B) =
mini=1,...,n I(A(xi), B(xi)) and therefore σ can be expressed
as follows as a function of I:

σ(A,B) = min
x∈Ω

I(A(x), B(x)), ∀A,B ∈ F(Ω). �

From now on, we will refer to I as the generating map-
ping. Fodor and Yager had already proved that any inclusion
measure fulfilling all the axioms proposed by Kitainik admits
the previous functional expression. However, and as a conse-
quence of the above results, we can deduce that condition K4b
is not necessary in order to guarantee that a fuzzy inclusion
measure can be expressed in terms of the “min” operator. More
concretely:

Corollary 4: Consider a finite universe Ω = {x1, . . . , xn},
with n ∈ N. Suppose that a mapping σ : F(Ω)×F(Ω)→ [0, 1]
satisfies K1(SD6), K2 (SD8), K3 (SD5) and K4a. Then there
exists some I : [0, 1]× [0, 1]→ [0, 1] such that

σ(A,B) = min
x∈Ω

I(A(x), B(x)),∀A,B ∈ F(Ω),

with I decreasing in the first argument and increasing in the
second one.

Proof: According to Theorem 2, part d), if σ satisfies
Properties K1, K2 and K4a then it satisfies D1. If it satisfies
in addition K3 (SD5) then, according to Proposition 3, there
exists a mapping I : [0, 1]× [0, 1]→ [0, 1] such that it can be
decomposed in terms of the min-operator as follows:

σ(A,B) = min
x∈Ω

I(A(x), B(x)),∀A,B ∈ F(Ω).

Now, according to the monotonicity conditions SD3 and SD4
(which are implied by the conjunction of K1 (SD6) and K2
(SD8)), we can straightforwardly derive that I is decreasing

wrt the first argument and increasing wrt the second one: given
an arbitrary value α ∈ [0, 1] let ~α denote the fuzzy set with
constant membership function ~α(x) = α, ∀x ∈ Ω. Let us
now consider an arbitrary tuple of numbers a, a′, b, b′ ∈ [0, 1]
satisfying the condition a ≤ a′ and b ≥ b′. According to SD3
and SD4, we have:

σ(~a,~b) ≥ σ(~a′,~b′).

But, according to the previous paragraph, σ(~a,~b) = I(a, b)
and σ(~a′,~b′) = I(a′, b′) and therefore

I(a, b) ≥ I(a′, b′). �

The following result is easily derived from the above
corollary:

Corollary 5: Consider a finite universe Ω = {x1, . . . , xn},
with n ∈ N. Suppose that a mapping σ : F(Ω)×F(Ω)→ [0, 1]
satisfies K1 (SD6), K2 (SD8), K3 (SD5) and K4a. Consider
A,B ∈ F(Ω) such that ∃x ∈ Ω with A(x) = 1 and B(x) = 0.
Then:

σ(A,B) = σ(Ω, ∅) = min
(C,D)∈F(Ω)×F(Ω)

σ(C,D).

In particular if A,B ∈ ℘(Ω) and A 6⊆ B then:

σ(A,B) = σ(Ω, ∅).

As a consequence of the above results, we can prove some
additional formal relations between Kitainik and the definition
proposed by Young (and mentioned in the Introduction).
Young suggests four properties to be satisfied by a fuzzy
inclusion, that we will respectively denote Y1, Y2, Y3 and
Y4. Properties Y1 and Y4 respectively coincide with SD1 and
SD3 and Property Y3 is softer than SD4. Therefore, the three
properties are implied by all the axiomatic definitions analysed
in this paper (Kitainik, Sinha & Dougherty and Santos et al.
definitions).

But there is a fourth property concerning the null space of
the fuzzy inclusion that is clearly implied by Santos et al.
definition. It reads as follows:

Definition 2: σ : F(Ω)×F(Ω) satisfies Property Y2 if:
• Y2a.- σ(Ω, ∅) = 0.
• Y2b.- If A(x) ≥ 0.5, ∀x ∈ Ω, and σ(A,Ac) = 0 then
A = Ω.

The above property is compatible with Kitainik’s boundary
axiom K4b. In fact, if A ∈ ℘(X) and A(x) ≥ 0.5, ∀x ∈ Ω
then necessarily coincides with Ω and therefore the consequent
of Y2b is trivially satisfied (σ(A,Ac) = σ(Ω, ∅) = 0).

But, on the basis of the above results, we can prove that
Young axiom Y2 is not compatible with the rest of the axioms
proposed by Kitainik.

Theorem 3: Consider a finite universe Ω = {x1, . . . , xn},
with n ∈ N. Suppose that a mapping σ : F(Ω)×F(Ω)→ [0, 1]
satisfies K1(SD6), K2 (SD8), K3 (SD5), K4a and Y2a. Then
it does not satisfy Y2b.

Proof: According to Corollary 5 and assuming that σ sat-
isfies all the above properties, we can deduce that σ(A,B) =
1, ∀A,B ∈ F(Ω) such that ∃x ∈ Ω with A(x) = 1 and
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B(x) = 0. In particular, if we select an arbitrary x0 ∈ Ω and
define the fuzzy sets A as follows:

A(x0) = 1, and A(x) = 0.5, ∀x 6= x0,

then σ(A,Ac) = 0, which contradicts Property Y2b. �

B. Redundancy of Kitainik and Sinha & Dougherty lists of
axioms

As we have seen in the last result of the previous section,
if a function fulfills the axioms K1, K2, K3 and K4a then it
can be expressed as an aggregation of values in terms of the
minimum operator. Now, if a function σ admits this expression
in terms of a function I : [0, 1]× [0, 1]→ [0, 1], then the null-
space of σ can be expressed as follows:

σ−1{0} = {(A,B) : ∃x ∈ Ω with I(A(x), B(x)) = 0}.

Based in turn on this result, we can see that the conjunction
of the axioms K1, K2, K3 and K4a has some interaction with
the axiom K4b. More concretely, we see that the K4b property
can be replaced by another weaker property, resulting in an
equivalent collection of axioms. Specifically:

Theorem 4: The following statements are equivalent:
(a) σ satisfies Properties K1, K2, K3 and K4.
(b) σ satisfies Properties K1, K2, K3, K4a and the following

property:
– K4b’.- min{σ(A,B) : A,B ∈ F(Ω)} = 0.

Proof:
• (a) ⇒ (b).- If σ satisfies K4b, then σ(Ω, ∅) = 0 and

therefore min{σ(A,B) : A,B ∈ F(Ω)} = 0. Thus the
implication (a)⇒(b) is trivially satisfied.

• (b) ⇒ (a).- Let us assume that σ satisfies Properties K1,
K2, K3, K4a and K4b’. It only remains to prove that it
also satisfies Property K4b, i.e., that

∀A,B ∈ ℘(X) [σ(A,B) = 0⇔ A 6⊆ B].

– Suppose that A,B ∈ ℘(Ω) and suppose that
σ(A,B) = 0. Then, according to K4a, A 6⊆ B
(otherwise we would have σ(A,B) = 1).

– Suppose now that A,B ∈ ℘(Ω) and A 6⊆ B.
Therefore, there exists x ∈ Ω such that A(x) = 1
and B(x) = 0 and therefore according to Corollary
5, we have

σ(A,B) = σ(Ω, ∅) = minσ(C,D)∈F(Ω)×F(Ω)(C,D),

which is equal to 0, according to Property K4b’. �

The above property (minσ = 0) is clearly weaker than K4b,
and therefore we conclude that the list of axioms of Kitainik
contains a mild redundancy.

As a result of the same results, Sinha & Dougherty’s list of
axioms is also slightly redundant. Specifically, we can verify
that, if we replace SD2 with the conjunction of the following
properties (weaker than SD2):
• SD2’a.- minσ = 0 and
• SD2’b.- A(x)−B(x) < 1, ∀x ∈ Ω⇒ σ(A,B) > 0,

we obtain a list of properties equivalent to the list proposed
by Sinha & Dougherty, i.e.:

Theorem 5: The following statements are equivalent:
• (a).- σ satisfies properties SD1, SD2, SD5, SD6, SD8.
• (b).- σ satisfies properties SD1, SD5, SD6, SD8 and the

following property:
– SD2’a.- minσ = 0
– SD2’b.- A(x)−B(x) < 1, ∀x ∈ Ω⇒ σ(A,B) > 0

Proof: Properties SD2a’ and SD2b’ are clearly weaker than
SD2, so we just need to prove the implication (b) ⇒ (a). Let
us suppose that σ satisfies SD1, SD5, SD6, SD8 and SD2’
and let us prove that the following equivalence holds:

σ(A,B) = 0⇔ ∃x ∈ Ω : A(x) = 1, B(x) = 0.

• ⇒).- Suppose that σ(A,B) = 0. Then, according to
SD2’b we deduce that A(x)−B(x) = 1, i.e., A(x) = 1
and B(x) = 0, for some x ∈ Ω.

• ⇐).- Consider a pair of fuzzy sets A,B ∈ F(Ω)
satisfying the condition [∃x ∈ Ω such that A(x) = 1
and B(x) = 0]. Thus, according to Corollary 5, we have
that σ(A,B) = min(C,D)∈F(Ω)×F(Ω) σ(C,D). Now,
according to Property SD2’a, we have that σ(A,B) = 0.
�

The above property S2’b is implied by Sinha-Dougherty
list of axioms, but not by Kitainik properties. It basically
indicates that σ−1({0}) is the smallest possible non-empty
set, according to the rest of the axioms.

As a conclusion of some of the results of this work, we
deduce that the difference between Kitainik and Sinha &
Dougherty falls on the following properties (satisfied by Sinha
& Dougherty, but not Kitainik):
• σ(A,B) = 1 ⇒ A ⊆ B and [0 < A(x) ≤ B(x) <

1∀x ∈ Ω⇒ σ(A,B) = 1].
• A(x)−B(x) < 1, ∀x ∈ Ω⇒ σ(A,B) > 0.

In this way, we deduce the following corollary:
Corollary 6: The following statements are equivalent:
• σ satisfies properties SD1, SD2, SD5, SD6, SD8.
• σ satisfies properties K1, K2, K3, K4a and:

– σ(A,B) = 1 ⇒ A ⊆ B and [0 < A(x) ≤ B(x) <
1∀x ∈ Ω⇒ σ(A,B) = 1].

– minσ = 0
– A(x)−B(x) < 1, ∀x ∈ Ω⇒ σ(A,B) > 0.

The differences between the requirements of Sinha &
Dougherty and Kitainik are reflected in the properties of the
generating mapping I : [0, 1] × [0, 1] → [0, 1]. The following
result is easily deduced from the previous ones:

Corollary 7: Let Ω be a finite universe. Consider a mapping
σ : F(Ω) × F(Ω) → [0, 1] satisfying properties K1, K2, K3
and K4a. Let Iσ : [0, 1] × [0, 1] → [0, 1] denote the (unique)
generating mapping (the one satisfying the following equalities

σ(A,B) = min
x∈Ω

I(A(x), B(x)), ∀A,B ∈ F(Ω).

Then I satisfies the following properties:
• I(0, 0) = I(1, 1) = 1
• I is decreasing on the first argument and increasing in

the first one.
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If, furthermore, σ satisfies K4b (or equivalently, K4b’) then
I−1({0}) 6= ∅. If, on top of that, σ satisfies SD1 and SD2
then, given a pair of numbers a, b ∈ [0, 1], we have:
• If a ≤ b then I(a, b) = 1.
• If 0 < a ≤ b < 1 then I(a, b) = 1.
• If (a, b) 6= (1, 0) then I(a, b) > 0.

V. CONCLUDING REMARKS

We have studied some formal relationships between differ-
ent axioms of fuzzy inclusion. All the axiomatics coincide in
assigning the maximum inclusion value (σ(A,B) = 1) in the
case where A ⊆ B, but they differ mainly:
• In the axioms concerning the null-space and
• in the decomposition properties proposed by some au-

thors such as Sinha & Dougherty and Kitainik.
In Sinha & Dougherty and Kitainik’s axiomatics, the restric-

tion of the inclusion measure to the family of pairs of crisp sets
takes values inside the binary set {0, 1}, since all those cases in
which A is not included in B are associated with the minimum
inclusion value (normally, 0). Thus, any fuzzy inclusion of
that kind defines a “crisp” relationship between pairs of crisp
sets. From the mathematical results proved in this manuscript,
we can conclude that this property is already derived from
other axioms. In particular, if the fuzzy inclusion satisfies the
properties of decomposition and symmetry and, in addition,
any pair of nested crisp sets A ⊆ B reaches the maximum
value for σ, then σ(A,B) reaches the minimum value for all
those pairs of crisp sets (A,B) in which A 6⊆ B. Thus, any
other definition that allows some crisp pairs to be assigned an
intermediate inclusion value between the minimum and the
maximum will be incompatible with any of those axioms.
These results have allowed us to find a certain redundancy
in Sinha & Dougherty and Kitainik’s lists of axioms.

In the near future, we intend to study the relationships
between the properties of inclusion measures and other func-
tional expressions not based on the minimum function. There
has already been a precedent for this study in Santos et al.
[8], where some relationships between the properties of alter-
native aggregation operators and the axioms of the inclusion
measures are studied.
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